On the Hilbert-Siegel modular group and abelian varieties 11

By Koji KATavama

Introduction

Let F be a totally real algebraic number field of finite degree » over @, o the
ring of integers of F. We denote by G the subgroup of GL(2n, F'), n being any
natural number, defined as follows:

G={a=GL2n, F)loJ'a=mlc)], m{a)=F},

0 1, . . .
1.0 \ with 1,==the unit matrix of degree n. (G may

be called the symplectic group of order » with similitudes in F.)

where J is the matrix <

Let p be any finite or infinite prime spot of F' and F\ the p-completion of F.
Let gv be the ring of integers in Fy. We define

G;\:{dpEGL(Zn, F;,)Ia;;J"mx:m(ap) J, ’m-(t)'p)EEFu} .
Wp={apeGLE@n, g)lopJ ap=m(y)J, m(oy): p-unit}

and denote by J; the idelization of G, i. e., the restricted direct product of {Gv}vce
with respect to {Uplvcw. (For infinite p, we have Gy=11,.) We put as usual J;
=J; X e, with infinite and finite parts Ji =, Joo0 Of J; respectively, and also
1Io= H up.

plee

Two g-lattices M, N of the 2n-dimensional row vector space B=L(2n, F') over
F will be called G-equivalent if there exists s&G such that Mo=N. The G-
equivalence of two gy-lattices My, My of Wpy=U(2n, Fy) will be similarly defined.
M, N are said to belong to the same genus if the p-completions My, Ny are Gy-
equivalent for all p. Then it will be proved in the first part of §1, that every
genus of g-lattices consists of just & G-equivalence classes, where h is the class
number of F (Theorem 1),

According to this result, J;, can be decomposed into double cosets in the
following form:

h
(") Jr;,o=2UlG$zuo, 2=, Tap, Moo

where 21,,=1,, hence the ideal (m(x)))= N (FNm(%»)) of F is just q.
We define '
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W=, yzrt, €5 e=B@n, quyz;),
for every p, 4 and put

Y= ﬁ i NB2n, F))

/~{JFPL(272 Y a=Y;, aJa=J}

for every 4. I', is the Hilbert-Siegel modular group and I°, the Hilbert-Siegel
para-modular group of type ¥; for i>1.

We shall then prove a so-called approximation theorem (Proposition 7.3):
WealyeW, ol =1 all; for oG, Now the Hecke ring N attached to G is
defined with J;, and U, and the transformation sets ;. are defined with 17;, s
and G following Shimura [1]. It will be proved that R is commutive.

The approximation theorem establishes a connection between R and N
{Proposition 8.1.) In §2 we consider the polarized abelian varieties of type g with
data R, U, V and P constructed in [4].

Let D=D.x D, be an element of J;; we may write

(34 1 / (3 (ry
Do=(v, 00y, o= (80D (0 o))

(CVD Dw) T C Do
Let 77 be an element of F' and m(D..)p>0 (totally positive), i.e., m(D);"’ >0 for
f==1,++-, 7, where 9" is the i-th conjugate of 7.

Now we put

" M= N (B2n, w)D;'NY)
Ploo
(UN_((v=1A" 4B 1A 4B _
(\V)““ <<:{rm1 C(")+D<”>' LRI (:/“‘*1 C‘"'" 4:D“”>> and P—-—J

Then we can show that the following conditions are satisfied:

o
7/\,\53~:<1Uu>zV(i>)¢J—a(g{i)>:0 for every 1,

“V;'_‘]‘);(i)q(fUu)fV(i»)zJ»l(%i:;>>0 for every 1.

Therefore we can construct a polarized abelian variety with these data W, U,
V, 7, and J and furthermore, conversely we can show that every such abelian
variety can be constructed in this way from some element D of J; (Theorem 5).

We shall show furthermore that isomorphism classes of these abelian varieties
and double cosets G\J;/N are in bijective correspondence, where

o \1) T\I‘ S(z') T(r)
{D"““‘« T s)(—'f s))EJ“}
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and
K= xlp. (Theorem 6.)

In §3, we define h abelian varieties 4; by means of «; (A=1,---, k) in (%), i.e.,
I defining A; is & (e. f. (**), and we put A=4,%--- X A,. Then we shall show
that every element of the Hecke ring defines an isogeny of 4 (Theorem 7).

In [4], we considered a parametrization of a system of polarized abelian
varieties by means of elements of the Hilbert-Siegel upper half-plane, which
amounts to considering the maximal compact sub-group of Ji .. Now that we
are dealing with f. amounts to saying that a parametrization of a similar system
of abelian varieties by means of elements of the following symmetric space (c. f.,
[17, [3)) is obtained:

S, r)={Z=(ZP, .-, Z)NZ:
n-n complex symmetric matrix and Im Z7>0 or <0}.

Ji(n, r) consists of 2" connected components, each of which is upper or lower
Siegel’s half-plane.

Many of the ideas developed in this paper were suggested to the author by
Professor G. Shimura in two lectures on *‘Siegel modular groups’” at Komaba
(campus of the College of General Education of Tokyo University) and on
“Arithmetic of Algebraic groups’ at Hongo (campus of Faculty of Science of
Tokyo University), particularly in the former lecture, and also in the seminar of
Professors 1. Satake and G. Shimura. The approximation theorem was first formu-
lated by Shimura and proved for our case by me in the seminar; it was then
proved in more general case in Hongo lecture by Shimura. In his Komaba lecture,
Shimura defined the Hecke ring, constructed abelian varieties attached to Siegel
modular groups and proved that every element of the Hecke ring defines an
isogeny of a certain abelian variety. This result is yet unpublished, but his recent
paper [1] gives allied results on the unit groups of indefinite quaternion algebra
over a totally real algebraic number field. In [1], Shimura developes the theory
of Dirichlet series attached to this kind of groups, proves Euler product formula
and functional equations. These results belong to holomorphie theory of automorphic
forms, but he suggests that an analogous theory would be also valid for non-
holomorphic automorphic forms which are eigenfunctions of invariant differential
operators.

The author is intending to pursue the study of our group G in case n==1. In a
subsequent paper we shall define a certain class of invariant differential operators
on Je. generalizing Laplacians, and study some eigenfunctions of these operators,

r
which are not always holomorphic and have 11 (¢"02 4d@Yyi(eF +d )y, n,, m,
Fu
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e /Z, as automorphic factors. Their ‘“Mellin transform’ defines Dirichlet series
which represents * formal Dirichlet series” with Hecke operators as coefficients.
We shall consider the ‘“Euler product formula’ and the ‘functional equation”
for this ‘‘Dirichlet series”’.

The author wishes to acknowledge his gratitude to Professor G. Shimura for
his valuable suggestions and to Professor S. Iyanaga for his constant encourage-
ment during the preparation of this paper.

§1. Hecke ring

1. Let F be an algebraic number field of finite degree r over @ and g the
ring of integers in F. Denote by B=%(m, F) the row vector space of dimension
m over F. By a lattice in ¥, we shall mean a free Z-submodule € of ¥ of rank
mr such that FU=. If gRc¥, we call £ a g-lattice.

Let & be a g-lattice. Then it is well-known that € has a basis {z;} such that
L=z, 4 -+ + %01 +0T0 (*)

where o is an ideal of F.

For two g-lattices ¥, Pt in B, we say that L is equivalent to M if there exists
a regular element ¢ of the ring (B) of endomorphisms of B, such that L.o=M.
Suppose that € is of the form (*) and also M is of the following form, with a
suitable basis {y:} and an ideal b in F

9)2:(]?/1"” v +ﬂym—l+Bym B

Then, we know that £ is equivalent to Mt if and only if a and b belong to one
and the same ideal class in F.

Let € be a g-lattice. Put .i4(8) (ring of endomorphisms of € over ¢)= (%),
then ©(Y) is a maximal order in _i#(8). () is called the right order of ¥. lLet
A be a g-lattice in (B), 1. e., a free Z-submodule of (W) of rank m?*r such that
F)=u(8). Put

O={oe HB)ACA} and O, ={cec MDY AU} .

The 2, and 9, are orders and called a left and right order of U, respectively.
We know that £, is maximal if 0, is so and vice versa. Such a g-lattice N in
23() is called normal.

£, M be g-lattices in V. Put A=Homy (¥, M) (module of homomorphisms of £
into M over g), then A is a normal g-lattice in J1(B) and its left and right orders
are O() and O(M), respectively. Let O be a maximal order in 3(DB) and A 2 g-
lattice in () whose left order is O (called a left O-lattice in Si{()). Let € be
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a g-lattice in B such that C(Q=0. Put A=, then M is a g-lattice in V and
A=Homg (¢, M). Therefore, for fixed 8, left O-lattices N in 4P} and g-lattices
M in B are in one-to-one correspondence. We say that, for two left O-lattices
A, B in (W), A is equivalent to B if there exists a regular element o of V)
such that

o =B,

By this eguivalence relation, we can classify the set of left O-lattices in ()
for a fixed maximal order © in (). Then the number of classes is equal to
h (the class number of F).

Now, B=B2n, F)=Fz+---+Fz,. BEvery o= %) defines a matrix o={s;,)
by putting z;6=3]0;,;2; So we identify .u(®) with the algebra .1.(F) of all
m-m matrices in jF Hence the set of all regular elements GL(B) is identified
with the general linear group GL(m, F') over F.

LEMMA 1.1. Let & be a g-lattice in BL=D(2n, F'). Let P(, ) be an F-bilinear
non-degenerate alternating form on B. Then, & has the following basis {w, ¥:};

gqul‘}‘ S +gx"+[hyl+ e ’f"ﬂnyh ’
P(x'{y y;’):aij) P(xis mj):P(yi’ y]):to

the a; are ideals in F such that a,D---Da, and are uniquely determined by ¢
and P(, ).

The ideals a; are called elementary divisors of ¥. A basis {z;, »:} of ¥ such
that

P(x, y;)=0y, P, x)=P(y:, y,)=0

is called a canonical basis of B.

We say that a g-lattice £ is maxzimal if the elementary divisors of ¥ are equal
to one and the same ideal a; so ¥ can be expressed in the following form using
a canonical basis {z, ¥}

ngxl“{“ e +ﬂxu+ay1+ e +ayn .
We denote, for ideals 6;, ---, by, in F,
[by, <« Dan ] = {{by,~ - -, B2, ) EV2n, F )b, b} .

2. Let {G:} be a collection of locally compact groups for icl, I=I.Ul, a
set of indices with Io=(i,---,4,) a finite subset of I, U denoting a direct union.
Let H; be an open compact sub-group of G, for every i1y, and G,=H, for i==1,,

<+, %, Put

G=1I' Gi={z=(--,2;,- - )] Gi|lx;€ H; except for a finite number of i}
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and
H=11H,.
We denote
G=G X Gy with Ge.= 1l G, Go=11'G,,

L=y o i€t

and

H: H:(:— X H() With Hu, ::G ) HO:: [l’ Hg .

icty

We introduced the direct product topology into H, so that H becomes locally
compact, and the topology into G so that G/H becomes discrete. This topology
is uniquely determined and G becomes locally compact. We call G with this topol-
ogy the restricted direct product of {G:}ier.

Let F and g be as in the preceeding section. For a prime ideal p (finite or
infinite) of F, we denote by ¥, gv the p-completion of ¥ and g, respectively. Let
A; and J» be the adele ring (ring of valuation vectors) and the idele group of F':
namely A, is the restricted direct product of {Fy}y<~ with respect to {gv}vces.
Fu* denoting the multiplicative group of Fy, J, is the restricted direct product of
{F*}y<o with respeet to {up}pce where up is the group of p-units. (If p is infinite,
then wy=Fy*.) Put 4py=1Tg and Ju=1lu,.

As above we decompose

A[-‘:AIV"C\()XA[J}O, J]‘:Jl".:»;«XJF‘Q )
A«,’(:Aq,w X Ag,(-, and an.]u,m X Julo ,

where Jp o= dn o and Apw=Adg ..

We identify as usual the principal adele and idele with F and F'* respectively,
and denote them again by F' and F'*.

For an element y=(y) of Jpr, N (p-gpNF) is an ideal of F, denoted by ().
This ideal is determined up to Lhc‘multmhcatlon by elements of Ju. Conversely,
for an ideal a of I, there exists an element Y of Jr such that a=(y). Hence we
have an isomorphism (with topology)

&Y = Jp/du

where G(F') is the ideal group of F. Furthermore, denoting the ideal class group
by G(F'), we have the isomorphism
G(F) = FoJp/Js.

The order of G(F) is h, the ideal class number of F,
Let € be a g-lattice in V=B(m, F'). Put L=g.-¥. Then ¥ is a gp-lattice in
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B{m, Fy). Ly is called the p-completion of L

The following Lemma is well-known, but for readers, we shall state its proof.

LEMMA 2.1. For every v, let Y be a gu-lattice in V(m, F) and M be a p-
lattice in B. Then there exists a o-lattice | such that Nup=NY for cvery p if
and only if My=NPY for almost all p.

Proor*. We shall first define an ideal S0 of F for every torsion g-module
9. Let

M= DMy - DM == {0}, MW/ : simple

be a composition series of M. Then M, /M, is isomorphic to g/p, with a prime
ideal p; in F. Put g(M)=p,---p,. Then we see that
BN/ = ML/
holds for any g-modules M, M.
Proof of *only if”’ part. Since SN/ M)p= 3N +90/M), we see that N,
=Rp=NP for almost all p.
Proof of ““if”’ part. Put Ji=nNN¥Y. Then there exist «, 3 such that ¥
<My and FPHLCRY for all p. He;‘lce aNeN and M. Thus % is a g-lattice.
We shall show T=MY, It is obvious that TR, Conversely, for zeNw,
there exists «+0 in ¢ such that azeMM. Let (a)=p"-q with (,¢)=1. Take an
element 3 of g such that A=1(p) and PF=0(). Then FxeNP and Fr=(3/w)ux
where F/acqp for p’ such that plg and axeM. Hence fxeTy <RP. For p'lq,
we see
Brey e for xWy .
Hence fzeM. Since F=1(), we see zcNy. Hence
RPNy, q.e.d.
The following Lemma is also well-known.
LEMMaA 2.2.
n HNY) =¢.

N
In the following, ¥ will denote the “‘finite part’ of ¥. ¥ is determined by
¥ by Lemma 2.1 and Lemma 2.2.
3. Let B=B(2n, F') and P(x,y) be an F-bilinear non-degenerate alternating
form defined on B. Put
G, P)={oeGL{B)|Pza, yo)=m{s) P(z, ¥)
for z. y&®B with some ms)e F*},

*/ This proof is due to Shimura’s Seminar on “‘arithmeties of algebras.”
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and
8, PY={a=G(B, PYm(~) i3 a unit in F}.
m(s) is called the multiplicator of ». Further, for a g-lattice £ in B, put
I'¢, Py={s=G(, P)iloc¥}
and
'@, P)={s=G(3, P){Xo=Y}.

Now by Lemma 1.1, the matrix of P(xz,y) can be transformed to J:<—~(1) (1)>

Ly choosing a eanonical basis. Then, we write G(8,J) and GO, J) instead of
G(B, P) and GY(B, P), respectively. Similarly, we use notations I'(¢, J) and I"%(¢, J)
for €.

Two g-lattices M, N in B will be called G(B, P)-equivalent (GY(TV, P)-equivalent)
if there exists v&G(%B, P) (€GB, P)) such that Ma=N. The I'(€, P)- and I, P)-
equivalence for M, N and G(By, Py)-, G(By, Py)- and I8y, Py)-equivalence for
ae-lattices My, Np in By will be similarly defined. If Dyap=Ny, we denote by
m(M:9) the ideal in F determined by the idele (---, m(ay),---) of F.

4.

LEMMA 4.1, Let t be a principal ideal domain and k its quotient field.
Let P(z,y) be a k-bilinear non-degenerate alternating form defined on T=B(2n, k).
Let €, M be maximal v-lattices in B such that

e R R TR R 7R e s
Plu,v;)=0, P(us,u)=P(v;,v,)=0

and

Me=ruf+ - bvus+arvi+ - - Havy),
Pul, v9)=46, Pul, w))=P(v], v})=0.

Then &, M have the following basis {x:;,¥,};

N R R Zaat ¥ e s o4 P
‘)Jf:-’- (hr'xl“}‘ e +”'ntm7t+igltyl+ et +1371ry13 ’
Pz, y)=0d:, Pz, x)=Py;, y)=0

where
wdi=a and arDaaD.- Da,IDF, D DFaDfT.

This Lemma is well-known and rewritten as follows.
LEMMA 4.2. 1, k being as above, let o be an element of GL(2n,1) such that



On the Hilbert-Siegel modular group and abelian varicties 17 441

ad'o=aJ with a=v. Then there exist elements u, v of Sp(n, OV={usGL2n,1)
luJ u=J} with the following properties:

u(f’v:diag ((r!,y HRN ¢ o;h ity I;n) 3
g, ET, g =a

and
XD DA, tDFr DDA

diag (@, -+, any 81, + +, Fn) i3 called the diagonal form of a.

For every p, gv is a principal ideal domain, so putting r=q», and k=F,, we
can apply the Lemma to our case. It is easily seen that a g-lattice ¥ is maximal
if and only if gp-lattice ¥y is maximal for every p, where Pz, ¥) on B(2n, F) is
extended to a form Pu(x,y) on B@n, Fy) for every b.

We put

O={%| maximal g-lattice in B(2n, F') such that B2n, )DL}

Then by the maximality of ¥y, the matrix of Pu(z,¥) is avJ, apEgp and y=
[y, +++, 0v, oy, - -+, App] with a suitable canonical basis.

LEMMA 4.3. A g-lattice £ belongs to © if and only if, for every p, B(2nr,qy)
and Ly are I'(B(2n, gp), J )-equivalent.

Proor.

B2n, gu)=qu@ 4+ + + QT+ WY+ F WY
and the matrix of Pp(x, ) is J. Since & is contained in ©,
ﬂ;;:m,x{—f— e +Qp$,’.+(lvﬂv?];+ e +a;.m)y,{ Ap&EQp

and the matrix of Pyp(a’,y’) is ayJ.

Take a matrix oy such that

F=xop=3 8wy, and  Yl=yop=2 Y00,
J

then ov&I"(B(2n, gv), J), mlay)=ay and B2n, gu)opr=4. The inverse is obvious.

Now put B{g)=B(2n, g), s0 B@)p="L(2n, q)» can be identified with B(gy) =V(2n, qu).
Let € be an element of . Then by Lemma 4.3, for every p there exists ape
I'(Blay), J) steh that Blgp)oy=%% and opdiay=m(sp)J. By Lemma 4.2, there exist
uy, & I(Baw), J) such that

updv?)p:diag (al.i’) ety Eny, 191,3)9 MY Bn_l’) P

A D D QOB D - D ey

and
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;e = mi{gy) .
Then we write
(B@): Vyv=(arr,v,- 5 @, Bru -y Bup)
and
(B :¥)=(-, (B@: Y, --).

For two elements ¥, M of ©® such that £29%, (:9M) is also defined: namely
since B(qu) DLy DMy, there exist elements ap, 7y such that B(gy)ry=2 and Lyry=M.
Put %W ay=9y. Then Blgv)ayrvo ™' =N, so as above, we can take uy, vy such that
up(ovrprn) wo=diag (@, - -, @ap, B, - oy Bu)

Hence we can write by a suitable canonical basis {z,, %}

B@p=gp1+ -« +Qu,+ QoY1+ - - -+
and
D= pos -+« -+ o, v+ Br oY1+ - -+ Y
Then putting z/=x,0y and y,=Yy.0y, we have
Lo=qal+ - +aoti+myi+ - - +oyl
and
My = s vqp{ + - - « + o vWT0+Bogeyt+ - - -+ B vyl
This means that the diagonal form of ¢y with respect to {z/,y!} is
diag (i, @pvy Bipy ooy Fup) -

Thus (£; M)y is defined as (o, oy B - oy Fup)

Furthermore we see
8\1/9}(1‘ = ‘l‘(ﬂ)})()’p/sjn{,(flw = EB((I);\/?D?{, B

»» being the normal exponential valuation at every p, we define the invariant -
factor of ¥&@ by the set

inv (Q{(ﬁ) :2)1‘: {)‘_)bp(m» p)’ cee, Di‘p(“n. p‘! pl'pﬁﬁx, u)’ ceey, pnl(ﬁu. p)} .
Put
inv (Bg) : )=(-- -, inv (B(g) : Oy, + - )

and call it the invariant of V(g)/L&. In the same way, for two g-lattices £, M in
¢ such that €5, we can define inv (¢:M) using

(8 : ‘}H)l‘:(d'l.i" HRRFR S PR Y ‘31,l’y ft 37!.1‘) .
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LEMMA 4.4, Let 8, M be two g-lattices in V. Then & and M are GB, J)-
exuivalent if and only if € and M are Gy, J)-cquivalent for every p and the
ideal m(8: M) is principal.

Proor. ““Only if’’ part is obvious. “If’’ part is proved as follows.

By Lemma 2.1,

C=qx1+ - Hu 0+ -+
and the matrix of P(x,y) is J on ¥ with suitable basis {z, .}, and
M=gquty+ -« b qUn+bvy+ - - - 10,0,

and the matrix of P(u,v) is J on M.
Then

Ro=qp@i+ -« Qe+ Qi+ -« o a0l
Put @/=2,ry and y/=y,-7v, then

My=Yprp=qoi+ -+ - - +Qrh+ a1yl 4+« + oyl
A0 SRR S (VM o 0 RO S S o BT\ Y V7% %

where
Tp=m(rp)=m¥y: M)
and the matrix of P(x,y) with respect to the basis {xf, #//7y} is J. By assumption,
n (Tnmrl;m) = (1)
is a principal ideal. Put ()= with r=g. Hence by the uniqueness of the
elementary divisors a,, b, we have
Ta;, = b for every 1.
Hence we have

M=guy+ - oo +qu,+00,4 - 0,0,
:ﬂul‘*‘ M +Qu7a+7’ﬂlvl+ Lo ’F?‘nuv/z .

Take a matrix & such that
L7 o= U; and Yo =7,
then
adto=rJ  V=m{s) and o=, Q. E.D.

For two ¢-lattices in B, we say that they belong to the same genus if their
g-completions are G(By, J)-equivalent for every p, and they belong to the same
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class if they are G(B, J)-equivalent.

Now, for a given ideal a in F,, we can construct g-lattices &, 9t such that a
=m(:M), by Lemma 2.2 and Lemma 4.1. Therefore by the above Lemma 4.4,
and the isomorphism G(F )= F*\J./Ju, we obtain the following

THEOREM 1. The number of classes contained in a genus 18 the ideal class
number h of F.

5. We shall define Hecke ring attached to G(B,J) in the next section, so we
shall quote the results of G. Shimura [1] in this section to prepare for it.

Let G be a group and [°; a subgroup of G for every / in A, A being a set
of indices.

Let & be a subset of G with the following properties:

(HI) 2 is a semi-group containing I'; for every ie A.

(HII) For every o of £ and for every 4, u€ A, ol ;07! is commensurable with [.

Denote by M. the Z-module generated by I'hol; for e2; so an element of
Nyus i8 of the form

el l3)
L

with ¢;€Z and o, 4.
We define a bilinear mapping of I, XN, into R,, as follows.
Put
s=loli=Vo. I} (disjoint)
and

#=lrL=ynl,  (disjoint) .
d

For every element pel,rI,ol), the numbers of (4,7) such that «;o;I;=pl;
is determined only depending on 6, ¥ and F=I,pl, and not depending on the
choices of {s,}, {r;} and p. This number is denoted by p(¥-6; 7). Put

teo=2u(t-6;0)0,

where the sum is extended over all =TI, pI; contained in I,zl,0l;. We extend
this product - by linearity to a bilinear mapping of R, xXN.; into R.i. Then, it
is seen that for geW.., 6&N,,; and r&N,,,

7.(6-0)=(:-5)F
holds. In particular, R;;=N;=N(I}; £) is an associative ring for every /.

6. Let J; be the idelization of G=G(B, J); namely the restricted direct prod-
uct I’ G(Q, J)» with respect to the system of locally compact subgroups~I"%%, J)u}.

o
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Put o= II I"(BR), J)». We can regard J: and ly, as G(R(2. 4,),J) and
I"(B(2n, Ag‘o),pj T respectively. Denote by J; .. and Ji., the infinite and finite parts
of Ji;, respectively.

For any acsJ; o, U; and allya™! are commensurable. Hence we can define R=
Rl J50) which is called the Hecke ring attached to G.

ProrosiTiON 6.1. The ring R is commutative.

Proor. By Proposition 1.2 in Shimura [21, it is sufficient to show that there
exists an anti-automorphism a—a* of the group J;o such that (Heelly)*=1all,
for every a. To prove this, we may assume that a belongs to I'(%(2n, Aa,), J).
Then there exist u, v of I'(B(2n, Agy), J) such that

uav=diag (ay, -, Ony B1,** ) Fr)

where a;#;=m(a) and a,4e;D -+ Danda s DFnds oD - D Any.
We define a* by a*=m(a)a"!. Then, m(a*)=m(a) holds. In fact, by definition,

Po(za, ya)=m(a)Psx, ¥)
and Pylza*, ya*)=m(a*)Polz, ¥). Hence, Py(za*, ya*)=Pllam{a)a !, ym{a)a )=

mla)*Polza™', ya™t) and ma@*)Pylx, y)=m(a)’Plza™!,ya™t). Put xa =z, ya =y,
then we have

m(a*)Po(x’a, y'a)=m(a)* Po(z’,y’) and m(a*)m(a)Po(z’, y")=m(a) Pola’, y')
and so m{a*)=m(a). Next we have (¢*)*=a. Infact, (¢*)*=m{a*)a* *=m(a)m(a) ‘a
=a. Thus a—a* is an involution.

Now we may assume that a=diag (ay,- -+, @n, 81, -+, Fr). Then a*=m(a)a *=

diag (81, * «) Bns a1, - -, an), hence there exist elements u’, v/ of I'(B(2n, ds0), J)=1
such that

w'a*v’ =diag (ay,- -+, tny Bry -+ ) «
So we have (Upall)* =all, for every aeJ;,. . Q. E.D.
For peJse, put T(p)=U;-p Uy Let T(p)z‘Ulugpi be disjoint sum, where d
e
means the number of left cosets of T(e) by U,. This number d will be denoted

by d{T(r)] in the following.
ProPOSITION 6.2*. d{T{(p)] is the number of LYo&6y such that

(%(Q) : S)Uz(al,vy ety iy, BI,U; Tty f?n,l‘) »

where 6, i3 the finite part of O defined in section 4 and diag (@i p,* -+, .y, fiy,
ooy Buy) 18 the diagonal form of py.

*! These Propositions and their proofs are the same as that given by Shimura in his Komaba
lecture ‘“On Siegel modular group.”” For a subsequent papar, we shall state here.
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Proor. For Ws-p, put Blg)e-rn=Y:. Then ¥y, belongs to 6 and
(B : ¥)p= (s 0,0+, nv, B -y Fnp) «

If Bg)o- 1 =B(go)- p; holds, then we have B(g)e-pi o7 =DB(g)o and so p;-p;! be-
longs to U;. Hence, we have the proposition.

Prorosition 6.3*. Let p, o, ¢ be elements of Ji;o and their diagonal forms be
diag (et 9(0), * + «5 @ p(0), Bro(0), =+ -, Bup(P)),  diag (g v(a), -+ +, e, p(0), Bry(0), - - -, Bn,1(0))
and diag (ay(r), - -+, aap(z), B1,0(z), - - -, Bap(e)) respectively. Put T(0)=Uyplly, T(s)
=lUgo- Uy and TE)=WerlWy. Then, {T(p)-T(s); T(z)) ts the number of L, such
that £,€6y, (B(): Qo= "{(cv1,1(), -y 0, o(0); B1,p(@), -+, Bap(P)) and  (L:M)p=(a, p(o),

sy (), By p(a),c -y Bun(m)), where Nhedy is fized and (B@): POv=(a; o(z),- -,
@, p(2), F1(E)s -+ oy Ba ()

Proor. Let T(P)-- U W,-p0;, and T(o)= U 110 -o; be disjoint sums. Put B(a)e-
=¥ and 1 g=p;t-U,- pz, whlch equals F”( O,J)

We have

pit o007t Tlo) oo 07 Mo o= _U P o pi ot ap:

Henee, putting o/ T(o)p;=T(s) and pla;pi=0', we have 1, T(s) 1, 0__ U ; g}
and Y o0 =B(@)e- 0 0700 = Boosp. Now, T(z)=Uylly and Smo R(Q)o
w(T(p)- T(ry: T(r)) is the number of (4, j) such that

Woa;0, = g,
which latter condition is equivalent with B(p)ge; /=My, or with &, oai=My. If we
take such an (¢, j), we obtain €, such that D) 2L 6 D>Ms, (B(a): Vp=(a1 (), - -,
@ nlP), A (), -+, Bup(0), putting € 0-0'=NMWy. The diagonal form of &, coincides
with that of o. Hence (¥ ¢:Mop=C(csp(a), ", annl@), B v(a), -, Bup(a)) and 7 is
uniquely determined by giving one 4. Conversely, if there exists £,&8, such that
YoMy and (€M)= (ar,w(@), - =+, @ w(0), B1,0(0),+ -+, Fu(a)) and (B(g) : Lp= (1 p(0), - - -,
@ w(@), Be,p(@), - Ba (@), then we have ¥o=(g)s-p; for some ¢, and ¥5-ai=; with
o for the 7. So we obtain our Proposition.
ProvosiTioN 6.4, Let p, o be elements of J;p and diag (a,(0),- - -, aa(©), 3:(0),
< 300, diag (evy(), « - -, vula), Bilo), - - -, 3ul0)) be their diagonal forms, respectively.
Put r=ps and denote by diag («w:{pe),-- -, a(pa), Bi(0a),- -, Fp7)) its diagonal
Jorm. Then for every i,

v(a(0a)) Sep(i(0)- ai(@))  and  1o(3:(00)) <ev(B:P) - Bi(a)) .
In particular, if (m(0), m(s))=1, then for every 1,

v (po)) = vi(ee(0)- i)y and  y(3{00))=vp(3:p) 3:(0)) .
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Proor. Let B(@u=qpx1+ - - +0p, +G¥1+ « - - +0v¥, with canonical basis {x;, ¥.}.
Put

Koy p(OWty+ -+ - F @ o(OW2,+ By w080+« - B (0060

Myp= ay o)+ - - - +N'n,v(1‘)ﬂuxn +i91,b(?)ilv.?/1+ o “1“37»,31(7)%?!.’:
and
Lp=an p(@)a, (o) 'guits + + - 4 6, 1(2) ek, 1(0) @+ 30281 1(0) Y+
b +i;n,¥‘(7)3n,b(d)ulﬂt‘yl .
Then,
(%(ﬂ) : g)v—’z(ﬂ’x,h(.‘))y ttty “’n.l‘(p)’ 5‘91,1\(4‘7), ey 3;;.&*((’)) s
(B@) s MYyp=(avr,u(z), * = =, (@) Brp(e)s s = oy Bupl(2))
and
(»8’ :‘ZDI)K):(“'I,D(”)) Tty “n,U(a)t lgl,l’("'); ttty I§7L.l‘((7)) .
We have
LU E;Jz (s, p(O)an U ey, () ey p{o) Yan)xy -+ - - - +
(B1p()ae U B (@B ola) Yan)y+ - < -
and

Ly N = (e, w(P)8p N ey, p()ers p(a) Yguia + -+ - +
(B1,(P)a8 N BLWDALE) a0+ o0«
And we have

LU L/Lo= /8N,

hence obtain the first part of the Proposition. If (m(p), m(o))=1, we must have
Lu¥=Y and L=,NL. So ¥ contains ). But, since this holds for ¥, ¥/ instead
for €, ¥, we have ¥,={,. Hence, there exists only one component T(z) contained
in T(¢)T{(s). By Proposition 6.3, it is seen that the multiplicity ,(T()- T(s); T(=))
equals 1. Q.E. D.

ProposITION 6.5. Let p be an element of Juo whose diagonal form is
diag (ay,« -+ +, @y, Bry o -y Bn). Put T(py=WplWs. Then, the diagonal form of
diag («,- -+, @)- T(0) s diag (awy, -, wdn, B, -+, @fF,).

ProrosiTiON 6.6. Let €, M be two g-lattices in B which belong to 6. Then
inv (B(g) : Q) =inv (B(): M) holds if and only if L and M are IYB(g), J)-equivalent.

Proor. If & and M are I'(B(y), J)-equivalent, there exists an element & of
I"(%8(q), J) such that Ls=9N. Then for every p, we have & 0=, where «+ is
considered as an element of I"(B(g)y, J)=Up. Taking elements ry, gp of I'(Blady, J)
suech that B()p-zp="2p and B()p-pp=My, we have ryo=py, and so for every p, the
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diagonal forms of r,, py coincide. Hence, inv (B(g): L=inv (B(g): ).

Conversely, putting B(@y-rv=% and B(@p-pp=Tp, let the diagonal form of
rp and 7 be one and the same diag (a;,v, -+, @uy, Bivr° -7, Bap).  Then there exists
an element ap of G%By, J) such that Yyop="M,. By Lemma 4.4, there exists an
clement o of G, J) such that Lo="TM. Then, for every y, rpo=py, where ty, Oy
belong to I'(B(@)y, J). Take an element ay of gy so that o;=ayo is contained in
(B, J). Putting appr=p1p, we have ryoi=pp. Let diag (ai(cv),- -, anlcy),
Ailzi),++, Bulzy)) and diag (a{m1), -+, o), Bulas), - - -, Bufa1)) be the diagonal forms
of r» and g, respectively. By assumption, the diagonal form of g is

diag (ary, - - -, ap) diag (a,(zp), « - 5 (o), Bilzy), ey Balzw)
=diag (apay{ty), - - -, aper{Te), apBi(T), - -, apfalzn)) .

By Proposition 6.4, it holds that for every 1,

v{erp) 4+ p(a(t)) S viai(zp)) +op(ada))
and

bilen) (B < a8 o)+ u(Bi())
Hence, for every 1, wvp(ap)<yp(a(oy)) and rp(aw)<up(Bi(o1)). Then observing that
m(a,)=ayp, we have

ap=a;(0;) = fi(71);

namely the diagonal form of o, is diag (ap,---, ap). Hence, the diagonal form of
o i8 diag (1,---,1), which means that o belongs to I'*(B(g)h, J) for every b and so
belongs to I'(B(y), J). Q. E. D.

Now for fixed B(g)y we have a one-to-one correspondence between gp-lattices
& and Wpay, mpy& Jiy, by putting B@pop=Ly, hence U\Js, is the genus to which
V() belongs, and cosets 1\Jy0/G are classes contained in that genus. Therefore
we have the double coset-decomposition

3
Joo = U We2iG.
i=1
7. In what follows, we shall use the decomposition
3
J(;YQ = U Gx,;llo
A=l

for conveniences. This amounts to considering the identification of aplly with ¥y
=Wy oyt with B(g) fixed.
Now we define the set
& ={¥| maximal g-lattice € such that L2B()}.

Let 829N be two g-lattices in ©;,. Then there exists an element ay& J;: v such
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that Su-op=(g)y for every p. Put Dyop=W, and M'=NER,NY). Then M’
belongs to 6. We define (2:9) and inv(2:N) as (m(g):mz"’) and inv (B M7,
respectively.

ProrosiTioN 7.1. Let ¥, M be two g-lattices in O, Then inv (L:BQ) =
inv (M V() holds if and only if € and M are I'*(V(), J)-equivalent.

Proor. ““If” part. By assumption, there exists an element o of I'(R(), J)
such that Yyo=M) for every p. There exist integral elements =, pp of Jsp such
that

8;\ Tp= Qg(ﬂ);v and M, Op :‘:glt(ﬂ)n .

Hence B(@)y-pp'-0 ' =B@ly=y' and gplo  npea (B, J)=Up. Since o belongs
to i, for every p, we see that

Ty & II;.pv le .

Hence diagonal forms of = and pp coincide and inv (€:8(g)=inv (M B(@)).

““Only if 7’ part. For every p, there exist integral elements ay, rp such that
Loy=(gh and My-zp=Vlgh. Put Y [=V(@)p-af =L -mlsy) and M[=B(g). rj=
Mpm(cy). Then £ and M are contained in B(p)p. By assumption and by Proposi-
tion 6.6 for £'=nNE,NDB) and MW'=NMYNV) we can prove the existence of s
(R, J) such %chat o=, Byv assumption m{op)=m(ry) holds for every b,
hence 8a=M holds. Q. E.D.

Put &; y=B(a)p-27} and ¢;= Q(L’,:,;;ﬂ‘ll). Here we put ©,=(---,1s,,+--) so that
£,=B(g).

Put

W0 = 2, ey

for every 4. Then we have

uz,o = 1'0(&?’0, J) .

Q,"'ﬂ
Oy = yOyre e, 00
Gy g

be non-equivalent maximal orders in u(2n, F') and I";=G%B, J)NLY; for every i
(Here, I'i=1I"%g),J).) We see easily that

Dy=I%%;, J)= O(H;,;, nG).

Let

Define
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#;={¥| maximal g-lattice such that ¥5¥,}.

Let €59 be two g-lattices in &;, so &MLy for every p. There exists
an element gy of Gy such that

Loaspan = B@)y.

Put W= z1p0p and W= ﬂ (MNYB). W is contained in 6. We define &:m
and inv (:9M) as (Bg): Pt and inv (B(g): P}, respectively.

By Proposition 7.1, we can show the following

PROPOSITION 7.2. Let €, N be two g-lattices in ©;. Then inv (¥:¢;)=inv MN:¥;)
holds if and only if & and M are I-equivalent.

Now we shall show the following approximation theorem.

ProPOSITION 7.3. Let o be an element of G. Then

Wear =W, =T uall;.
Proor. u;y being an element of W,y put
5.,,2 p¥z, ux#p AUy p= S)](\p .
We may suppose that €, ,DMy for every p. Then, as Lupaul,y=Ny holds,
we have
inv (€: 8, a)=inv (L1 M) .
Hence by Proposition 7.2, there exists an element #; of I such that £.aa;
=M. For every p, we have
Wep 'y auy p=8epar=BV@vripas;,
hence there exists an element vp of I"°(B(p)y, J) such that
Ve oy =aplp attay .

Henee, xupvpiycoi=auzy and aup& il oo,

Therefore, .l contains W.all;. Since W.al is contained in WM.all,, we have
Weee =1Ly,

Next, for a*=m(w)e"!, we have in the same way 1, a*W,=W; a*I.. Observing
the proof of Proposition 6.1, we obtain W.all;=Twall;. Q. E.D.

8. a; and 11, being as in §7, we can define W;,. with I3, -+, I'. and G, since
they satisfy the conditions (HI, 1I) in §5.

ProrosITION 8.1, Let 3, « be elements of G. If (DALY aly= c{lTT})
then T(e;px)T(@7 axy)= \"c Tlx:'7x,)-

Proor. Let Nalu= U m[ ', be a disjoint sum. Then by Proposition 7.1, and
as I is contained in U, we have
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d
Wally=Tall,= U all,
=1

and this is a disjoint sum. For, we have

a d
zillexy e orn'= U axdlorrt and Welzilaz,)le= U (@7lae)il .
i1 d=1

P
If z7'a 2 =27 @llo, then at llo=wzlls, hence aly=ul,. Since I=NW.1NG,
pos - 3 xS
we have w,l,=a;l, and i=7.
7 5
In the same way, I 3= U (3,1 being disjoint, we have Ux; 821l = U a3,

=1 J=1

and this is a disjoint sum.
Now
Tz ) T ow ) =Wz ' e Mol ax o= s W, Al U,

J
= U :17;1;9_,11;“%,.110: U ﬂ;:lﬁjtl’ix/«uo .
=1 i

Let 7 be an element of Ialaly. If Budu=rlu then Fulle=rll, and
B Agr it =7z lez;! and so
(z7'Bx)(@ w )l = (x5 T m)ll, holds.

Conversely, if the last equality holds, then we have Fu ;. =7I,. Hence by
the proof of Proposition 6.3, the multiplicity of I'7I} in (IB)(hal}) and the
multiplicity of T(zcrex,) in T(x:'Bx:) T(x7 wx,) are the same, so we have Proposition.

Put e=inv(Z:M) with ¥, MM in ;. For every p, there exists an element
el (8, J) such that Lry=My. Now (m(ry) is an ideal in F and uniquely
determined by e, so let it be denoted by N{e). If e=inv (¥;; L) with oG, we
denote

T(e)=Wexjlazly and Tle)=Tul}

where T(e) was denoted by T'(z;'wx,) in the above. Then by Proposition 8.1 yields
that if T:Z(Q)Tl.”(f)zz ckTrl‘(gk)v then

T@T(f)=>c:T(g:) .
Let a be an ideal in . We define
T(@) = > T(e)

where the sum is extended over all invariants e such that N(e)=a.
Let T{e)=Wprlly=Wez3 ezl be an element of R(lls, G). Then T'(e) =7 Munll;z;t
For every p, we have

Lrp/Lupa=B@r a7/ Bl arha.
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Since (m{«)) is principal, there exists an element o of G such that ¥;0=2,a.
By Proposition 7.3, o is contained in I3. Hence
Do 'y = ealy

TI,ZA(G)
and e defines Tui(e)==Iuwl:. By Proposition 8.1, we see that ( ) is the

representation of Ti{e). T.::.(€)

Here we notice that for given p, 4 is uniquely determined, observing the ideal
class of a.

§ 2. Construction of abelian varieties
We shall define the space .9r(n,r) as follows:
Let ZY be a symmetric n-n matrix for every i=1, ---, # and
L=(ZV,e, ZY,
Define
I, ¥y={Z=(Z, -+, ZWIm Z*® >0 or <0}.
J(m, r) is non-connected and has 2" connected components.
We define an operator on .J/(n, r) for every element o of J;« as follows:
Z-0[Z1=( (L), 0V Z0]),
oV ZP)=@ P ZP D) P Z P +d Pyt for every 4,

N a{is b(z’) . . . .
G.u)___. (Cu‘) d(z‘))a'“)’ b(z)’ C(t)’ dct\,e‘ﬂ[(n’ R) .

For a g-lattice € in ¥, there exists an element r of G such that
Q=g+, 8,01, +, Qa7
by Lemma 1.1. Put
Iy, )= {ror Yo 'L, J)}.

This group is called the Hilbert-Siegel para-modular group of type (a5, ---,a.).
Then the following facts are well-known. I'%ay,-- -, a,) operates discontinuously
on Ji(n,r) and I'%a,,---, 0, )\ (n, ) is of finite measure, where the volume element
dv is given by
* d(Re Z)d(Im Z©
ReZ"=(ay}), d(ReZ")=1ldzf),

»pQ
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Im Z0=@), and d(lm Z)=lldy.;.

nEg

2. Let A be an abelian variety and ¢ a polarization of 4; namely for a posi-
tive divisor X on A, ¢={X’| positive divisor and mX=m’X’ with positive integers
m, m’} contains an ample divisor on A. A couple (4,¢) is called a polarized
abelian variety. Let (4,¢) and (4’,¢’) be two polarized abelian varieties and 2 a
homomorphism (an isomorphism) of A onto A4’. Then 2 is called a homomorphism
(an isomorphism) of (4,¢) onto (A’,¢’) if there exists a divisor X’ in ¢ such
that 1"'(X’) is contained in ¢. t being a ring having a finite basis over Z, we
understand by a polarized abelian variety of type t a triplet (4, ¢, formed by a
couple (4,¢) and an isomorphism ¢ of r into .i(A). A homomorphism (an iso-
morphism) 2 of (4, ) onto (4’,¢’) is called a homomorphism (an isomorphism) of
(A,c, ) onto (A’,C’,¢) if 2 is compatible with ¢« and ¢, that is,

At ()= )+ A for any ae= i(A).

Every divisor X on A such that X=0 defines a point CI(X) of B, the Picard
variety of A. For every element « of .i(4), an element 3 of _i(B) is defined by
B3(C1(X)=Cl (¢« (X)). The mapping «—f is an anti-isomorphism of . i(A4) into
Ji(B) and extended to an anti-isomorphism of #({A4) into Ao(B). The mapping ¢
of A into B defined by ¢+(t)=Cl(X,—X), for t€4, is a homomorphism of A into
B. ¢y is onto if and only if X is non-degenerate. If so, every ac A(A) defines
an element a* of _%(A4) by ¢x'-B-¢x=a*.

Now two non-degenerate divisors on A define the same involution on . i(A) if
they belong to one and the same polarization of A; so every polarization of A
defines an involution of (7(A).

Characteristic being 0, let C™/4 be an analytic model of A of dimension m.
Fixing an analytic isomorphism of A onto C™/d4, every non-degenerate positive
divisor X on A corresponds to a non-degenerate Riemann form on C"/4; by a
non-degenerate Riemann form on C™/4, we mean as usual an R-valued R-bilinear
form on C™"XC™ satisfying the following conditions:

(RD) Ex,yyeZ for every z,y&d,

(RII)  E(x,y)=—E(y,x),

(RIID) E(z,y—1y) is symmetric and positive definite.

Let F be a totally real algebraic number field of degree r, as above. t being
an order in F, we shall consider a polarized abelian variety (4, ¢, of type v with
the following properties:

a) (1) is the identity of .17{4),
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b) The involution * on _2(A) which is determined by ¢ is the identity of
{F); namely (w)*==ca) for any v F,
¢y r= L FYN (A
Every element ()= iy(A), acF, corresponds to a complex matrix of degree
m, which is denoted by the same letter (). As F is totally real, it follows from
(a), (b) that «(«), considered as a representation of F, is reduced to the form

a1,
eer) == . for every weF,
w1,

where, in particular, it can be seen that m is divisible by » and so we put m=mnr.

LeMMA 2.1, Let 2, for i=1,---,2n be 2n vectors of C"". For every i, put
we= (i, -+ o, 2{”) with vectors z¥ in C*. Let w; j=1,---,7 be a basis of F over
Q. Then the vectors

— l((l)j) 0 ’
(xiy xi)( 0 (((l)j),),

are linearly independent over R if and only if

250 F
det< )#:0 Jor every j.
) TN

Proor. See [4].

We have proved the following Theorems in {4], with some change of notation.

THEOREM 2. Let F be a totally real algebraic number field of degree », I
a free submodule of B2n, F) of rank 2nr over Z. Let uy, ---, us, be 2n vectors
of C* such that

I U:(e)

det & v ff(i)

)#:O Jor every i, where UV, VP& %i(n, C)

h vw, ... gm
(l:lgn> B ( Vo, .., Yo ) .

Let P be an element of GL(2n, F) and put

are defined by

£ {(d’l, e, ()‘gn)i g ) :((l’l, sy, ((2,,)69.]2} s

, 13

U 5\ U( U(?‘) =
¢ b
where (ay, -+, u,:n)( g means ((a,(ln, . ,,g;))( V“)>’ cen (a0, aiﬁ)(V"’) ) which
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s a vector in C*. Then C*' /4 is a complex torus.
Furthermore, define a bilinear form E(x,u) on C*"XC* by putting

r
Ef@, 5)= X1 @1, -, a0+, 15

with

) l]ﬂ} ) . LTU'\,
x=<(x}x>’...,x;gg<vm e (@S, e, 28 o

. Uvq; , . U(i‘?
Y= <(yiny s ZIS.‘%«»))<V(D>, Ty (?fx )" “ ?/5::{ (If(r))) .

Then E(x,y) is a Riemann form on C*/4 if and only if the following
conditions are satisfied:

and

>
(GI) E (aj(li)? M) “4(21-’3)P“)£<B(11)9 Ty l—?gz‘fz))ez fo'r every (“’l! Ty ”’2:1)5 (lalv s ["21:)

1=1
in M,
(GII) P=-—'P,
(€3]
(GIII) (lU(i}lV{i))tP(i)Al(g(i)>=0 f0¢r every ,i’
77
(GIV) *x/il(‘U‘“‘V“’)‘Pm"(gm)>0 Sfor every 4.

THEOREM 3. Notation being as above, let : be the representation of F of

degree nmr defined by
w1,
o) = ( . ) Jor wsF,
a1,

ST oy
Take M, <gm’...’gm> and P satisfying the conditions (GI, II, 111, 1V).

Put r={oc Fl«®MNcM}. Let E(x,y) be the Riemann form defined in Theorem 1.
Then there exists an analytic isomorphism of the complex torus C/4 onto an
abelian variety A defined over C. w— da) gives an isomorphism of F into Jiy(A)
such that the properties a), ¢) hold. E(z,y) determines a polarization ¢ of A
such that the property b) holds.

Conversely, (A, C, ) being a polarized abelian variety of type v such that a),
b) and c) hold, then ¢ reduces to the above form and A is obtained in the above
manner from a lattice M, 2n vectors uy, «++, U, and an element P of GL(2n, F)
and ¢ i8 determined by the Riemann form E{(z,y) given in Theorem 2.

Thus the data M, U, V, P determine a triplet (A4, ¢, ¢ of type r, r being an
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order in F. We denote (4, ¢, 0=, U,V, P).

3. Let(A4,¢, 0=pMU,V, P)and (A7, 7, /Y= p(OW,U', V', P') be two polarized
abelian varieties of type r of the same dimension.

Let C*'/4 and C*"/4’ be analytic models of A and A4’, respectively. If (4,0, ¢
and (A’,C’, ') are isomorphie, then the following conditions are satisfied:

(i) There is a C-linear mapping 2 of C*" into C*" such that 4-1=2',

(ii) For any « in F, 2. {w)=dw)4,

(ili) There is a positive ¢=Q such that E'(z2, y2)=cE(z, y),
where E and E’ are Riemann forms on C"/4 and C"/4’, respectively, having

the principal matrices P and P’.
A, as considered the matrix corresponding to 2, reduces to the form

/Z(I)
= ()
A‘\'i’)
with complex n-n matrix A©,
We have proved the following Theorem in [4].
THEOREM 4. (i) PORU,V,P) and POV, U, V', P') are isomorphic if and
only if there exists an element o in GL(2n, F') such that

Mo =N, UVi=(aU +bV YU +dV')"!
and

aP''e=cP with some positive ¢c=Q,

_<ab>
a = (,‘d .

(i) If v=q, then Py, -, a0, Z) and Play,-++, a5 2", for Z, Z' < 9i(n, r) with
ImZ>0 and Im Z'>0, are isomorphic if and only if there exists an element

o= (:: 2) of 100 'y, e, 07/ {21Y such that

where

Z=(aZ' +b)eZ'+d).

where b denotes the differente of F.
Play, -+, 0, Z) is defined as follows:
Consider £, U,V, P). By Lemma 1.1, (M, P) is reduced to the canonical form

‘Dixgxd- M +&Wn+ﬂx?l1+ bl +an?/n ]
Pz, y)=6.;,
Pz, x)=P(y, y;)=0.
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Hence HM,U,V, P) is isomorphic to HOR, U/, V', J) with some U’, V'. From
Riemann’s eonditions (GI, II, III, IV) for U’, V', we see that V' is non-singular.

I3

Put Z=U’'V’".. Then we have (f ) instead of (g)VI Thus we obtain

PN, Z, 1, J), which we shall denote by Play,-- -, a,; Z), isomorphic to PO, U, V', J)
by Theorem 4, (i).

4. Let G be the subgroup of GL{2n, F') which consists of elements o such
that oJ's=m(s)J with elements m(s)< F; namely G=G(8@n, F), J).

Let J; be the idelization of G. An element D=D..x ) can be written as the

following form;
A(lv Bu> Au') Bu‘)
Dm:((cm Dm)! Ty (Cu’) Dm))

with elements A%, B, C©, D of Mn, R) for every ¢ and considering J as

( ..... < 0 1~> ..... >
1 _1” 0 y 13

Ji={De A|DJ'D=2aJ, xcJ:},

we have

where A is the adelization of 3(2n, F’). z is denoted by m(I).
For DeJ,, we define

Up=(/=1TAP+BP ... J-1A"+B")
and
Vo=({=1CV+D®V, e J=1C7+ DY,
so they are both complex n-nr matrices. Put B(g)==B(2n,q) and
Mp= Q‘B(g)p-D;’ NB={(ers,+ o+, ) EB) (g, o+, ) Do B()}

Then, M»y is a g-lattice in B by Lemma 2.2, and has rank 2nr over Z.
Put

e {(m, . 61%)(5::) (e e ‘JJén} .
I

As above, for an element « of F, put

a1,
t(er) = ( )
a1,/ .

Then dp- ()T dp for every acqg. By Lemma 1.1 of §1I and by definition of D,
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dp is a discrete subgroup of € and so C*/4y is a complex torus. Put a®'=

m(D), where D' means the i-th part of D., and let 7 be an element of F

such that a5 is positive for every ¢, where 7 is the 4-th conjugate of 7 A
Since

( B“’)(J 1.1, —J=1-1, <¢:1-1“ —x.ff:‘i‘-l,,t\*l( 0 1,i>
co po )\ 1, 1, ) 1. 1, /) \=1,0

><Z<x/:‘1 1, —y-1 'L-.)‘" ‘<v’l41 ‘1, —y-1 -1n>"’A“’ B“’)

ln 173 1” 1‘1‘; \C'(E) D{i}
_ 0 _a(l)ln \
“\—a®1, 0/

holds for every %, we have

/ i1

JUip l_/) 0T (L ziyo( 0 ey

l\.;‘V;‘)i) Vi ﬁ',/““l,l 0 tgw tyw a1, 0
\ 2 ¥

and

—
/ "1 = lom(i
<U§f’ _;;,w> - 0 —7'%27-(1,(’ 791, <Um :Vm> < 0- ,;,mln) .
IC)D vy N/_},amﬂvml 0 Uy Vi -7’1, 0
v 2 "

Taking the inverse and transpose of both sides, we obtain

U

@) gocup vy
Vl))

)::O for every 1,

Ty

GIV) =1y CUR VYT (o

>>0 for every 1.

Now we see that, with a suitably chosen positive integer ¢,
(G1)  MonpdIMicd holds.

Taking ¢pJ to be a principal matrix, this defines a Riemann form on C*" /4., so
we obtain (Mo, Un, Vi, ¢5J). By Lemma 1.2, there exists an element T of G
such that Mo={[g,--,q,0,+-,a,]7T and TepJ‘'T=J.

Now we define an abelian variety £ (Mo, Up, Vn, 7, J) by the condition (GIII’),
(GIV') and MpJ Mpcd. Thus we obtain P(lg,--+,¢,a;,++,0,], Un,Vn,7,J) which
is isomorphic to PORn,Un, Ve, enJ). Furthermore, by (GIV'), V»p is non-singular.
Putting Zn=UnV7}), we see that 7Im Z» is totally positive, hence m(D.) Im Zb is
totally positive.

Thus we obtain P(ag,- -, a,; m(D<)Zp) which satisfies the following conditions:
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(L) [ g, 0000+, g,a1, -+, 0,]CD,

(II) Zvedgs(n,r) and m(D..) Im Zp is totally positive.

Conversely, we shall show that for a given polarized abelian variety O, U, V, P)
of type g, there exists an element D of J; such that P(a,---,0.; m({P)Ze) is
isomorphic to PR, U,V, P).

Firstly, we shall reformulate Theorm 4 in the language of J.

For two elements D, D’ of J, D.=D holds if and only if Un=Us and
Vo=Vp. Furthermore we can sece that

(*) Dw and D, determine one and the same Z& . 4/(n, r) if and only if there

exists an element K of GL(n,C) such that Up=Un-K, Vo= V:-K hold.
If such a K exists for Upr, Vi, Up, Vir, it follows that

KUHRET UK -K),

(45 B8 (43 By 2 2
C},” D(Ii)) - C,(,i') D‘f} MJMI(K<i;wK<;;) Kni)+K’xf>
TAEEK !

holds for every 1. Hence putting K=S—/—1 T with real S, 7, we see that

. n (ST S T
() D.=D. <_T s)’ (__T S>eJu,w.
. . S T
Conversely, if there exists an element <_m T S) of Ji . such that D=
D;( __ST §>’ then we see that Un=UnK, Vp=VnK hold with K=S—J—17T.

Therefore by (*)
D.. and DV, determine one and the same Ze& Ji(n, r) if and only if (**) holds

. T
with (_.ST S)EJc,m.

Furthermore we see that m((_ST g)) is totally positive by (*) and so m(D..) - m(I}.)
is totally positive.

S
Now <~T S

and we have operated Do to y—1-1, to obtain the space . (n, 7). Let ¢; be any
one of 2" elements (&1,---, +1). Then we can see that the element Do .

- . T A S T
‘hi —1- [ 3 4 );;;2 b,ﬁ \‘ I
which move &3y —1:1, to 4 ~1-1, is of the form L (8,:,( Ty ) with (mT S)

> does not move 4 —1-1, under the operation defined in 1, §11,

&Js ~, and it follows that

8 TN\ _ S T N
m((gﬁ(_‘_T) S))»_sﬁm«_T S)) hold for every sz,

Hence we can say that Zu=2Zsn holds if and only if there exists an element K=
( F-S T

T g ) of Ji» with totally positive m(K) such that D..=I.-K.
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Let {z,y.} be a basis of M for a given Py, Up, Vp, ciJ). If we take the
bhasis {x./¢7, y:} instead of {2, %}, the principal matrix becomes J; namely we get
PNy, Up, Vi, 4, J) which is isomorphic to p(Mp, Up, Vi, ¢4J). Putting Zp= UpVy,
we get P(My, Zp, 1,9, J) which is isomorphic to £ (Mp, Up, Vp, 4, J).

In the following, we shall consider abelian varieties of this form §(Mp, Zp, 1,7, J).
If 9p=Ny holds, then for every p, Myy=My holds. Hence we have Mp,
= B(@p Dyt =My y=BV(uD;' and there exists an element oy of I'(B(g),J) for
every ) such that m;[);’::D;;‘. Conversely, if there exists such oy for every b,
then My p=IMyp and My=My by Lemma 2.2. Therefore, Mp=Np holds if and
only if there exists an element sy of I'(B(a)s, J) such that Dyoy=D{.

Now let Py, Up, Vi, 4Pp) and P My, Uy, Vir, Pyy) be two isomorphic polar-
ized abelian varieties of type g obtained from two elements D, IV of J,.. As is
already seen, P(Mp,Up, Vi, Pp) is isomorphic to f(ay,---, a,; m(Dw)-Zp) where
{4+« 0, a1, -+, 6] is the canonical form of Mp. Since Mp and My are equivalent,
the canonical forms of them are the same, by the uniqueness part of Lemma 1.1.
Hence {2 (Wy,Up, Vi, Pp) is isomorphie to £ (ay,--+,a,; m(D.)-Zp). By Theorem
4 there exists an element o of I'([g,+-, 0 an,* -, a,],J) such that

Zp=(aZp+b)cZp+d)!
where
‘a b
7= (c d) ’
Since Mp» and Mo are equivalent, the ideal determined by m(D,) is equivalent

to that determined by m(D;). Hence there exists an element % of F' such that
m(y)=7-m(D}). Then, taking elements 7', 77 of G such that

SJ?D::: Lﬂ) AT R TR RN all] T s EUED'—‘: [ﬂy Qe ﬂ?(] T’

and
TPp'T=J, T'Ppy'T'=J,
we have
Tl (T T Y=yJ .
Hence
T el 'eG.
We define
&858 T

Ro= {D\\E .L:,Nle:< ) and m({D.) is totally positive},

65(“9‘) S
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and put ¥=§..x,.

Therefore, if P(Mp, Up, Vp, Pp) is isomorphic to £ Mp,Up, Vi, Piy) then D,
D’ belong to the same double coset of G\J,/%.

Conversely, we can show easily that if D, I’ belong to one and the same
double coset of G\J./&, then H(Mp, Up, Vi, Pp) is isomorphic to P (Mo, Un, Vi, P,

Lastly, we shall show that (a;, -+, ,;%Z), where Im Z>0, can be cbtained
as P(Mp; m(D=)Zp) with D of J;. Since 7Im Z is totally positive, ‘!‘2“1 wNZ—Z)
igly‘1H>0, hence we can write ‘?;la"‘H:"f?"‘al,,V“‘ with VeGL(n, C) and
asJp, a>0. Put ZV=1U, then Z=UV", We have “‘fglﬂﬂl('U‘V)"J‘%gu)

=al, and furthermore by symmetricity of Z, we have 7 Y(U'V )‘J“(i)z().
From this it follows that, with U=y—~1A4+B, V=/<1C+D,

‘A B>< 0 r,ln><‘A fc\_< 0 a1,,>
e o)\, o)\ b ={_a1, o)

also we can see m(Dx)=7%-a has the same signature as that of 7 and m{(D«)Im Z
>0. Hence putting De.== <g g), we see that Do belongs to Ji ..

Now we can see that with a suitable Dy,

(@, 0, ah...,nn]zQ%(g)v.]);,ln% holds.
Put D=D.xDy with D, D, chosen above. Then I} belongs to J.. and we have
Plag, -+, 0,3 92)= P (ag,+ -, 0; m{Dw=)Zp).

Thus we have the following
THEOREM 5. Let D=DoxD, be an element of J;. Put

AW Bw A® B
D°°::<(Cm Du;)""’ <Cm Dm))*

Un _<<\/-1‘A<1)+B<U> (N’;‘l A”"“FB“'*))
ve) " \\y=Tcw+pow) " \YZ1gwepo))

Mo= NB()y- D;in®y .
»

and

Let Zo=UnVy' and q,, ---, 0, be the elementary divisors of Wn. Put

Zn

AD: {(“’1,"',(4’27;)'(1

i
>:({XI;"'1 “2/1){:«:{“1“ oy Oy, e ',an‘}}-

Then, C*/dp is a complex torus and [g,--+,6 a1+, 0.0, Zn, J determines a
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polarized abelian variety P(ay,---,a,; m{D:)Zov) of type q, where

iiﬂ,”',g,ﬂl,"',(LJJ['ZQ,'",ﬂ,ﬂl,"',ﬂ,,q‘cb

B

and
m{D)-Im Zp is totally positive.

Conversely, a polarized abelian variety PN, U,V, P) of type g is obtained as
Plag, -, a,; m(Do)-Zo) with DeJ; in the above manner.

THEOREM 6. Let D, DV be two elements of J, and P o= pMn, m{D:)-Zn),
P o= P o, m(ID.)-Zn) two polarized abelian wvarietis of type g obtained in
Theorem 5. Then P 18 isomorphic to Po if and only if D and D’ belong to
one and the same double coset of G\J:/5.

By Theorem 5, 6, we have the following

CoroLLARY. The isomorphism classes of polarized abelian varieties of type
a4 parametrized by Ji(n,r) and the double cosets of G\J./® are in bijective cor-
respondence.

§ 3. Isogenies defined by Hecke operators

1. z; & U, being as in the preceding sections, let D; be an element of J;
such that

Dl,{) = X2,
Do.=D; for every 2
and

m{l .)=a has the same signature as pF.

Now we take x; so that ¢; is of canonical form. We obtain h polarized abelian
varieties of type q:
Ar= P eZ)
with Z= UV defined by D, and Li=[qg,---, g, a5+, a,].
We define an abelian variety A as
A=A, X -XA,.
In the following, we shall show that every element of the Hecke ring defines
an isogeny of A.

2. Let a be an ideal of F. We denote by h.(a) the set of a-section points on
A;; namely

@ ={te A;lt-{w)=0 ac<a}.
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Let X; be a divisor on A; corresponding to J. For esF with o”>0 for
every i, we use the symbol ey; (s,8) for s, { such that s-«0)=0, s-()=0 de-
fined by

-
ex,\.,&(s, )=exp. <\2:{—: 1! a:““:z”‘J’y“‘)

(3581

where z=(@®), y=(y'") are vectors in C*" corresponding to s, ted; (Weil [5]).
Let H be a homomorphism of A4; onto another polarized abelian variety 4”== (¥, Z")
of type g of the same dimension as A;. (#) being a principal ideal in F, let 4(H),
the kernel of H, be contained in h;((«)).

ProrosITION 2.1. Notation being as above, for every s, t&WH),

e,x»,;’,,(s, =1

holds.

Proor. Denote by the same letter H the matrix of linear mapping of €7
into C"" corresponding to the homomorphism H. We see that there exists an
element « of GL(2n, F') such that

(1)7=o(3)

observing that 4, -Hc4'. Moreover, since H is compatible with polarization of
A;, we have oJ'o=5J. But we may take a=3. Because, for every p, we have

G =2)/Ls0
= ap/ ey, mar® -+ + + O/ (o, NS0/ Brv)me@ -+ O/ (B )0

where diag (cs,p,-* s @y, Bivs* o+, Buy) is the diagonal form of + for every p, o
heing considered as an element of Gy. By assumption H0H)C0:((er)), we see i vfiy
=u for every 4, p. Hence «=p and

aJlo = aJ.
Then for s, te(H), we have, observing that J is principal matrix for A== H (¥, 27,
ey, (s, t)=exp <2rsyf'¥-i 3 m"'"/r‘“J’y”))
_:exp <2f\"“‘“’1 2_: x(nﬂ_(z;Jfﬂ(n !y(:»>
=1

=exXp <2;V«"_1 3 m’“‘ny"“>r:1 ,

¢ 1

where z, y correspond to s, t and z-o =2/, Yo =y e,
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PROPOSITION 2.2.  Let r be an element of I'(8y, J) such that the diagonal form
of x vz, 18 diag (g, e, t fr oo, B with o, JicJae.  Assume that (m(z))=(w)
18 o principal ideal in F,

Then the cosels =1, of Wuelly and subgroups U, of W{(w), As) such that

00 v =/l s < Dan/ () Oau/ (3 a0 - - -/ (B v,

i) ey, (s, )=1 for sty
are in one-to-one correspondence.

Proor. Take a coset =1, of Weoll; and put &, == ﬂ&’; p7ipNW. Then by Lemma

2.2, €., is a g-lattice which contains ¥, and ¥, ;;:*:‘J, priy for every p. Put §,

Y.,/8,, then 2, 18 a g-invariant finite subgroup of A,. By construction we have

r)‘,},l«;,p»‘_“'g/,:,;,u/gﬂ‘p
=0/ Lpp i
=B/ B )70
Now the diagonal form of z7\r;p®sy is diag (s p, -+, @wp, Biys e+, Fup). Hence we
have

02 w22/ (e w)apkD - - < Dap/ (evn wme@ap/ (35, w)anD - - Bau/ (B0} «
Since (m(r))==(m(z))= («) is principal, we see that ii) holds for s, tel)?,; by Proposi-
tion 2.1.
Conversely, assume that a g-invariant finite subgroup 0, of C""/4,= A, satisfies
i) and ii). For every b, there exists a gp-lattice €.y such that
I)f..avzg;l,@,l'/glf.L'
v/ (v o) - o O/ Cern )@/ (35 e - - Tiop /(B0 w)w «
We take an element ry of Gy such that the diagonal form of )\ rvaiy is
ding Gropy e oy s By ooy Aun) and Lopvrip=Liy for every p.
Putting L= ﬂw pNY, we have a g-lattice ¥,,. Since we have

i‘:e.f,x»/-i/s.x@: Lorip/Lpy
= “(ﬂ)h'lep i, v/\“\ﬂ)p T”ﬁ,:&%ﬂ)u/‘“(ﬂ)p ’U l’ T, P&y,
there exist wyp, vp of D(B)y) such that
wp v pvpe=diag. (s @ B, Buv)

for every p. By Lemma 4.4 without J, we can take an element 4, of O(¢,) such
that Q.,0,=%. But by condition ii), «; satisfies
(§$) (f,‘JétT»; = (t'J.

Hence, it may be considered that =:,» belongs to Gy, and wy, vy belong to I™(B(a), J).
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Therefore, = 1l; is a coset of H.r1l;. It is easily seen that the above correspondence
between 0§’ ; and 7 ,11; is one-to-one. Q. K. D,

We say that «, in (¥2) corresponds to r..

ProposrrioN 2.3. Notation being as in Proposition 2.2, there exists a homo-
morphism H., for every 1, of A. onto some polarized abelian variety of type g
contained in A; such that the kernel of H, is ¥ ..

Proor. Notation being as in the proof of Proposition 2.2, we take a g-lattice
8,; for every 7. Then there exists an element ;&G such that

Leio=% and mz)=a.
Putting «.{Z1=Z;, we can form a polarized abelian variety H$( ., 2., 1L, a0 ')

for every 4. Then there exists a complex matrix H; such that n;(f):-:({{")-ﬂ;.

Then the mapping @ —2zH, defines a homomorphism of C*/4= A, onto C7/d,

where 1,=%,; <?> .

Denote by the same letter H; the homomorphism of A, onto the abelian va-
riety whose analytic model is C"/4,. By ii), we see that H; is a homomorphism
of A, onto polarized abelian variety $ (& Zo 1L, o 8). P&, Z, 1 1) is is0-
morphic to P, a-m(s)Z,). Therefore for every 4, there exists a homomorphism
H,, whose kernel is §i,, of P& aZ) onto P&, a-mls)Z)).

By Proposition 2.2 and 2.3 we have the following

ProrosiTiON 2.4. Notation being as above, put W.zil;= LIJ ;. Then, there
exist d polarized abelion varieties P&, a-m{a)Z:) of type g (;n]d o homomorphism
H. of £, Z) onto P(L, a-mlo)Z:) for every 1 such that the kernel of H, is
b, where o, Z1=2Z; and o: corresponds to r; as above.

3. We defined a polarized abelian variety

A:AIX"'XA/,

of type qa.

Let ¢ be an ideal of F and T()=>3)T{e), where the sum is extended over all
invariant e such that N(e)=¢c. Let ¢ be given as e=inv ({;: ¥ur{e)) with (e},
for every A. (Notice that for a given 2, s is unf{quely determined.) Then 7T(e)=
Wer'(e)ily with z/(e)=2a;'-v(e)-3;. Let llor’(e)ll.,r:ip}I 7’(e); 1y be disjoint sum. Then

of
ze oz e(e) s Mo = U zprle) oz o Wz
i1
and

ol
W,er(e) W= U z(e)n,: s with t(e)y =zpr(e) 27!
PE3 |
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is disjoint. Since =Yzt for every s and (m(z))={(«) is principal, we can

apply Proposition 2.2, 2.3, and 2.4 to Aull.c(e)l; for every 2. Therefore, putting
die)
W =(e) = U vle),, s,
z=71

we obtain d(e) polarized abelian varieties (2, a-m(s(€)s)Zs.(e)) of type g for
every s, and a homomorphism Hy(e) of (€ aZs) onto D8, a-mlae) )2 (e))
whose kernel is B.(e), where Zu [{e)=a{e)ulZ,} and o(e).; corresponds to <(e)s,.
For every s and i, 4y .(e) is a g-invariant subgroup of A. satisfying i), ii) in Propo-
sition 2.2. Put P, a-mlr(e) V2. ()= Apde). Thus we have die) polarized

X« H, ey of A onto A, .(e)x -+ x Ay de) such that the kernal of H{e) is I (e)
sc- e xbinfe). Since we obtain Hie) for every e such that N(e)=e¢, T(¢) can be
represented as a colleetion of isogenies T'(e) of A.

4. Let 7, be an integral element of J,,o and

d
uni“@uo = 1J ml]o
i1

qoe

be a disjoint sum.
We defined A, by Dy=D, -xDeJ; with D,g=x,. With the D, put D,=
D ¥ Dy, for every . We can define one-to-d eorresponcence

(%) Fey; D — Dy, Dy,

where, since Norolly=1loz Loz, Uy with w&G, ¢ is given as e=inv (2;: 8ua). F(e)
is called a Hecke operator.
o
Take a D, in (#). Since Wyrolly== U ;M we have
71

o
g wp s e Weayt= U asllpar?t, with a;=x.v;27".
1

Henee D= Dy o Xatesa; Dy .

By D,..xxy Do, we constructed A;=P(E;;aZ), a=m(D).

Let ¢ be an ideal in F°. Then, the number of z¢ such that (m(z))=¢ is finite;
let {c4(e), -+, #5(0)} be the set of all such ’s. We define a correspondence

T©): D (D), o, D), -+, i)« -+, DE())
where (Di@),-«-, D} (v)) is defined with respect to
d; .
n(! Tiji(c) uﬁ = U] Tf(e) 1[0 ) D{(l’) = D;;.\) X ?7(\‘.) . Dl,u

Q-

¢

in the above manner. 3(¢) is also called a Hecke operator for e.
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We obtain the following

THEOREM 7. Let ¢ be an ideal in F and {z}(),-++, =)} be the set of all -'s
such that (m{zo))=e¢.

Let diag (a)p, -+, by, Bip, -+, 30y be the diagonal form of ti(t), and ¢=
inv (Qe: L)) where ti=x.0' 27" with «'€G.

Let 3(e") be a Hecke operator defined with wrespeet to the disjoint sum de-
composition llgré(e)ﬂozﬁ 2Oy and put A= P&y m(D ) -Zn,). Then (') acts
on A=A x---xX A, as lf‘(le‘). Pul o = 7l x; with « . €G. Then there cxist
d, polarized abelian varieties

Al=Aix . o x4,
where
Al =P, m(Dy )m(el ) 2,y and  Zp=al [ Zn,]

and a homomorphism H,=H,,X--+-xH,, of A onto A, whosc kernel
18 De=Yh, %o XG4, for every 4. B, satisfies 1), i) in Proposition 2.2 for
dlag (a'i» Ct “fu lgiu sty ;93)-
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