On the Hilbert-Siegel modular group and abelian varieties

By Koji Karavama

1. The Hilbert-Siegel modular group was first introduced in C. L. Siegel 6]
and treated systematically by Pyatetzki-Shapiro [2]. In his paper [1], W. L.
Baily gave the compactification of the Hilbert-Siegel modular space which is
the generalization of Satake’s compactification [3] to the ease and proved that
every meromorphic function on the Hilbert-Siegel upper-half plane invariant
under the Hilbert-Siegel group can be represented as a quotient of two auto-
morphic forms with Fourier developments, except the case of elliptic modular
functions. On the other hand, G. Shimura has developed the general theory on
automorphic functions and abelian varieties, in |5}, and showed that if the
system of polarized abelian varieties parmetrized by suitable meromorphic fune-
tions (fi,-++, fu) is complete” with respect to a subfield K, (with some properties)
of C, then the field K(f.,---, fu) and C are linearly disjoint over K {|5]
Theorem 2). In [4], he constructed the system of abelian varieties attached to
the Siegel’s (para-) modular group and proved that the system is complete with
respect to Q. Therefore, by Baily’s result mentioned above, (in particular, in
the case of Siegel), it has been shown that the field of Siegel’s (para-) modular
functions is defined over . Also, in [5], he has constructed the system of
polarized abelian varieties whose endomorphism rings are isomorphic to an
order of a guaternion algebra over @ and proved that the system is complete
with respect to Q.

In the present paper, we shall construet systems of polarized abelian varieties
whose endomorphisn rings are isomorphic to an order in a totally real algebraic
number field and prove the completeness of the systems with respect to @, in
the sense of Shimura, when the order is the ring of integers in that field. This
implies also, similar to the above result of Shimura, that the field of Hilbert-
Siegel (para-) modular functions is defined over @, by the above mentioned
Baily’s result and Shimura’s Theorem 2 in [4].

In section 2, we first recall the theory of Shimura [4], [5], which is funda-
mental for the present work. In section 3, we shall learn the back-ground from
the theory of lattices and give the key Lemma 1 due to Shimura. In section 4,
we shall define precisely the Hilbert-Siegel para-modular groups. In section 6,
we give the characterization of abelian varieties of our present purpose and
construct the system of abelian varieties from the data obtained (Theorem 1,
2). In section 8, it will be given that isomorphic elasses of our abelian varieties
and points of the quotient space of the generalized Hilbert-Siegel upper-half

0) For the definition of completeness cf. G. Shimura [5], p. 124, and also Theorem 4
in this paper.
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plane by our group are in one-to-one correspondence (Theorem 3). In section 9,
we shall obtain the eompleteness of our system with respect to ¢ (Theorem 4).
In section 10, we shall show that the field of Hilbert-Siegel (para-) modular
functions is defined over (¢ (Theorems 5, 6). Their proofs are quite analogous
to that of Theorems in Shimura [4}], [5] corresponding to our Theorems.

I wish to express my hearty gratitude to Prof. Y. Kawada and Prof. G.
Shimura for their kind advices and encouragements.

Notation:

We denote by Z, @, R and €, respectively, the ring of rational integers,
the fields of rational numbers, real numbers and complex numbers. R* and C*
denote the row vector spaces composed of all n-tuples with real and complex
coefficients, respectively. We denote by % the complex conjugate of u, where
u may be complex number or a matrix with complex entries. A being an abelian
variety, we denote, as usual, by  "/(A4) and . i(4) the ring of endomorphisms
of A and the algebra . (4) @, TFor every algebraic variety V in projective
space, ¢(V) denotes the Chow point of V. X and Y being divisors on a variety,
X:2Y means that X is equivalent algebraically to Y.

2. Tirst, we recall the theory of G. Shimura (4], [5].

Let V be a complete algebraic variety, non-singular in codimension 1, and
X a positive divisor on V. We denote by %7(X) the set of all positive divisors
X’ on V for which there exist two positive integers m, m’ such that mX=am/X'.
If an ample divisor Y is contained in %’ (X), we call &’(X) a polarization of
V: a positive divisor Y is called ample if the linear system determined by Y
gives a birational biregular imbedding of V into a projective space.

%~ being a polarization of V, a couple (V, &) is called a polarized variety.
1f V is defined over a field K and %7 contains a divisor which is rational over
K, then we say that (V, &) is defined over K.

Let o be an isomorphism of K into a field K/. (V, %”) being defined over
K, we denote by @77 the polarization & (X“) of V" where X is a rational
divisor in ¢ over K. Let (4, &) and (A’, ©7/) be two polarized abelian
varieties and A a homomorphism (an isomorphism) of A onto 4’. We say that
A4 is a homomorphism (an isomorphism) of (4, &) onto (A’, «”’) if there exists
a divisor X’ in ¢ such that 4(X”) is contained in % .

Let r be a ring having a finite basis over Z and A be an abelian variety.
We understand by a polarized abelian variety of type v a triplet (A4, %7 o
formed by a polarized abelian variety (A, ©7) and an isomorphism ¢ of t into
O7(A). We say that (4, &5 ) is defined over a field K if (4, %) and all
elements of «1) are defined over K. (4, &) ¢) being defined over K, let o be
an isomorphism of K into a field K’; then we obtain a polarized abelian variety
(A%, ", ) of type r by putting < (f) «f). If s is the identity on a subfield
K, of K, we call {47, %>, %) a generic specialization of (4, & ¢ over K.

Let (4, &« and (47, &, ) be two polarized abelian varieties of type r.
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A homomorphism {an isomorphism) A of (4, &) onto (A4, &) is called a
homomorphism (an isomorphism) of (A4, &7 0 on to (47, &, )V if A-(f )= (f)- 1
holds for any fer.

Let 4 be an abelian variety defined over K in a projective space &V and
¢ an isomorphism of t into &7 (A) such that «r)) is defined over K for every ¢,
where {r:}" , is a basis of r over Z. Take a (N1, N11) matrix (f;;) with in-
dependent variables t;; over K and h independent generic points wi,---, ur of A
over K(t:;;). Let A. be the transform of A by the projective transformation
o; ()~ (3 t:; x) of &7 let a be the Chow point of Aq; then K{a) is regular over
K. Let W: be the graph of the rational mapping z—¢le(ride {x)+ui] of Au onte
itself and 2z: the Chow point of W:; then Kia, 2z, - -, 21) is regular over K.
Denote by % (A, ¢) the locus of a <2z 227 -+ 2z over K. The variety &% (4, ¢)
does not depend upon the choice of K, (f:;) and u.. A being an abelian variety
in a projective space, and %~ being the polarization of A defined by hyperplane
sections, let (A, ¢ 1) be a polarized abelian variety of type v. Let F be the
smallest field of definition for (A, ¢) and K a field of definition for A, 7
and ¢ containing F. Then, F' has the following property.

{8S1) o being an isomorphism of K into a field K’, (A4, &, ¢) is isomorphie
to (A%, &7, ) if and only if ¢ is the identity on F.

F does not depend on the choice of a basis of r. Characteristic being 0,
we call F' the field of moduli of (4, & o).

Let A and A’ be abelian varieties in &7, & and &’ the polarizations of
A and A’, respectively, defined by hyperplane sections, and ¢« and ¢/ be isomor-
phisms of v into . (A4) and o (4’), respectively.

(S8 2) Suppose that neither of A, A’ is contained in any hyperplane and
that the linear systems on A4, A’ defined by the hyperplane sections are complete.
Then, (4, & ¢) is isomorphic to (4’, &7, ) if and only if (A, )= (A, ).

Let 4 be a diserete subgroup of €™ of rank 2m. In order that the complex
torus €™/4 has a structure of abelian variety, it is necessary and sufficient that
there exists a non-degenerate Riemann form &'(x, ) on €™/4; by a non-
degenerate Riemann form (2, ¥) we mean as usual an R-valued R-bilinear
form on C"xC" with the following properties:

R1) &z yeZ for every z, yed:

(R2) &, n=—8&y, 2):

R 3 iz, v1 1y is symmetric and positive definite.

Let X be a positive analytic divisor on €™/d4. Then, there exists a holomor-
phic function 6#(so-called theta-function attached to X) on €™ such that (/)= X
and

O(z-+d)=0(x) exp [2n/ 1 {H(d, z)+1/2H(d, d)+bd)}] for ded,
(1) Ho(u, v)=Hv, u),
H(d,, ds)==Hy(d:, d>) mod Z for di, d:€4d.

Putting & (z, ¥)=H(x, y)—H(y, «), we obtain a Riemann form & (z, ¥) (Riemann
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form defined by ¢; on €/ d. & {x, y) depends only on X, so we denote & (%, ¥)

# Xz 1f H is skew-hermitian and b is R-valued, ¢ is said to be normal-
ized. Fvery non-degenerate Riemann form on C7'J is obtained from a positive
non-degenerate analytic divisor on C€™/d and every positive non-degenerate
analytic divisor on C"/J defines a non-degenerate Riemann form on C™. 4; hence
if A is an abelian variely isomorphic to C”/J, every non-degenerate Riemann
form on (/4 defines a polarization of A.

Let w.,---, 4w be a basis of 4 over Z. Put

Hy o\

Yoo

1 is a (2m, m) matrix with complex entries. Then there exists a matrix P of
degree 2m such that

(w2, iy xPly for x, ye R,
Then, (R 1), (R 2) and (R 3) are equivalent to the following properties:

(Ge 1) The entries of P are integers:

(Gl: 2) []) = p-

(G ) QP VO 0

(Go 4) v 1 QP 1t2>0 (positive definite hermitian matrix)."

Let 61, -+, d» be m positive integers such that
a1, 5il i 1-sm-1;
put
. f;x Y
() {) . - » - :
Ps. ( . 0) with a diagonal matrix o . .
12 .
! (;m fl

Put 2 m){4eGL{im, C); 'Z Z and Im Z>0}. Denote by 45(Z) the discrete

’;

. . , A
subgroup of C” generated over Z by the rows of the matrix < 7). Then, we
a

(",<L<< ) . y( i)) xPs'y for », yeR™
[£ o

is a non-degenerate Riemann form on C™/Js(z): so the complex torus, with the
form . has a structure of abelian variety. Then, for each 4, there exists a

see that

1 In our case, the equivalence between (R 1), (R 2y, (R 3) and (G 1Y, (G 2).(G 3, (G 4)
will be shown.  See section 6.
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system of abelian varieties A:(%) parametrized by holomorphic fnnctions
Oolg, 2y, - L O0x{u, Z)

on C” - S77{m) satisfying the conditions (S 1), (82) and (8 3} in Shimura [5]. p.
115. We denote be ©s{u, Z) the point

(O, LY, -~ , ((u, 40

in &%, Then, the system 1As(Z); Z¢ S (m)} has the following properties:

(S8 3) As(Z) is an abelian variety in <" whose hyperplane sections define
a complete linear system and whose degree is independent of Z. There is no
hyperplane containing As(Z).

(SS4) For every Ze 27 (m), the mapping u->0s(u, Z) gives an analytie
isomorphism of C" d5(Z) onto As(Z).

{SS5) The polarization of As{Z) determined by the hyperplane sections
corresponds to the Riemann form given by Ps.

Let X be a non-degenerate positive divisor on A and ¢ an analytic isomor-
phism of A onto C™'J. Then, #(X) is a positive analytie divisor on /4. Put
(X)) #(0(X)Y. Let Y be a non-degenerate positive divisor on A; then ¥i(X)

3 Y) holds if and only if XY,
Moreover, we have
(SS6) The mapping Z—e(Ax(Z)) is everywhere holomorphic on S27°(m).
(Theorem S in [5])

3. Let k be an algebraic number field of finite degree and o the ring of integers
in k. We denote by % (m, k) the row vector space of dimension m over k. By
a lattice in %97 (m, k), we shall understand a free Z-submodule M of ¥ (m, k)
of rank ms. If oMM, we call W an o-lattice. We know that every c-lattice
9 in 2 (m, k) has a basis {&:, -+, £.) such that

M ey b A,
where a,-- -, a. are ideals in &k and moreover M has a basis {#, -, ¥} such that
(2) Mooy i - L0 Ymat QY ,

with an ideal a of k. We say that two o-lattices IR, W are equivalent if
there exists an element M of GL(m, k), the general linear group of degree m
over k, such that MM=:-0. Suppose that MM has the form (2) and another
lattice 9’ has a basis {y\/, -+ -, ¥»') such that W= 0y’ + -+ i oy. 1 0'ya’. Then,
WM is equivalent to M if and only if a and o’ belong to the same ideal class in
k. For m ideals m, ---, an of k, we put

{tn, <, ] {lay, - an)€ Z(m, k)l a, €} .

We denote by End 2" (m, k) the endomorphism ring of #"(m, k). Put
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D= {MeEnd & (m, ky; MMM .

Then, © is a maximal order in End %7 (m, k). If W=[ai, ---,an]l. © can be
written in the form

a, bz - - bim
bz 0 . .
bm‘ ..... ]

where bij-=a: 'a;, and bi; =b;;-'. Then O will be denoted by Dy, -, an).

Lemma 1. Let O be an o-lattice in 7 (2n, k) and P(z, y) a k-bilinear non-
degenerate alternating form which is v-valued on M. Then, there exist n ideals
a in k and a basis{z:, -, Zn, Y1, <+, Ya} 0f F(@n, k) such thet M=ox:+ay.+
e OZ el Qa0 - Daw, Plxi, 7)== Plys, ¥5)=0, Plxi, y;)=0:; (Kronecker's
delte). Moreover the ideals a:; are uniquely determined by P and M.

Proor. Tor z in I, a.= Pz, M) are integral ideals in k. Among these
ideals 0., take a maximal one and denote it by ai. Then, a:=P(z,, V) for an
element z in M, and o Pz, a,t M). Therefore, there is an element . in
a; "t sueh that Pz, y)=1and a .M. Put 6=P(M, y0); then a:ib— PO, auyp)
=a.  If byo, then PO, awy)+a:.. Hence, there would exist an element ¢ in o
which is not contained in a:, an element z in M and an element a in o such
that P(z, ay)—c. Put. d-—P(z:, 2), which is in a;. Now, we would have
Plei4-ay, z—dy)——c and Pz b ay:, ayi)==a.. The elements x:-+-ay: and z--dy
would be contained in M. Hence, P(zi-+ay:, M) would contain an ideal (a, ¢)
which contains strictly ai, and so it contradiets the maximality of a;. Therefore,
we must have b0 and POX, y)=—o. Put M'=={x; zeM, Pl, ) -Ply:, x)=0}
Take an arbitrary element z of W and put P(wi, 2)=:f, Py, 2)==g. Then, fea
and geo. We have P(x, zigui fy)=0, Py, z2+ge.i—fy)=0. Hence, weW’
and z—w- gt fy: is contained in M’ -Lox t-aiyi. Thus, as it follows easily
that the last sum is direct, we have

W=px by =M (direct)

We shall prove the lemma by induction on n. In case n=1 we have M'=0 and
the lemma holds. For arbitrary =, using the induction assumption on M/, we
have

ﬂ)h””“r’ﬁxz'{‘ﬂzyz e 0% 0t Anlfn

where 0oa: -« - 0w, P, 2=Py:, ¥))=0 and P(xi, y;)=46:; for 4, j=2, .-+, n.
Thus it suffices to show that a:Da.. For elements z, weM’, a€a: and beo, we
have Plri-tz, ay: +bw)—a bP(z,w). Hence, P(z:-+z, M) contains a:+ Pz, W)
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which contains a:;. By the maximality of a:, we have Pz, W) a. From this,
it follows easily that o, Do,

Let » be a prime ideal in k, &* and o* the p-completion of k and o, a:* 0%-a:
and MF %M. Let P, ¥) be the alternating form on 7'(2n, k% obtained
by the extension of P{x, y). Then, by the first part of the lemma, we
can write MFo%rp b @M yptoc 0 0% @ 0.0y, where P, yig) o6,
PHai v, 25,007 Pyip, yip=0 and a;€v® for every ¢ and by the well-known
theory of elementary divisors for a principal ideal domain, an* are uniquely
determined by W* and P* and wo®a*  Since this holds for every I, we see
that a; are uniquely determined by " and P. q.e.d.

We call the basis {x:, ¥ in the above lemma a canonical basis of the
couple (N, P).

CoROLLARY. ZLet W be an olattice in 27" 2n, k) and P a non-degenerate
skew-symmetric matriz such that xPyec for x, yeIM, where ¢ is an ideal in
k. Then, there exists an element T in GL(2n, k) such that

MWe=To, -0, car, -, )T

and TP J , where J ( ,01 10” ) '

This follows easily from the above lemma.
Let a be an integral ideal in k. We denote by v/a the quotient module of o
by a. The symbol i will mean the direct sum of modules.

Lemma 2. Let ai, -+, au, by, -, 0n be ideals in k such that
(1) @m0 - a0,
(i) b - ChaCo,
(i) ofas - -Gofan and o075 Tofb,, are dsomorphic as vmodules.
Then, there exists an integer t such that o i for 1<7701 and ar o, by 0
for j>t.

Proor. b being a prime ideal, we consider the set
Ay = {zed/ai - oofan; pra-0 for some v>0}.
Then, Ap = o/t &0/vve, where p¥i is the p-part of a; and
(3) M-SV R ST
In the same way, putting
By =iz eo/tB- - Eofbn; prx=0 for some v>0},
we have By~ o ofpre, where p*e is the p-part of b: and

(4) i 2
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By (iil), we have
(5) /73 - TR pY /ot ot

Let o* be the p-completion of o and v¥==0*p, Then, o/p*=*/p™; and »™ is a
principal ideal for every 4. Therefore, by the theory of elementary divisors,
ordered sets {v;} and {#:} coincide, after removing the »; and # which are equal
to 0. As this result holds for any v, we obtain our lemma.

For a later use, we write the following

Conrovrary. Let ay, -+, au, by, -, by be ideals in k such that sOu>2 .- Daa,
0 Uby see - b, and

b4 E2
Co(ofas /a0 (o/b 0/Bs) .
2 =1 RS ]
Then, we have o, b for every 4.

This is an immediate consequence of Lemma 2.

4. Let & be a totally real algebraic number field of finite degree s over @, o
the ring of integers of k, and k' -k, -+, k' the conjugate fields of & over Q.
Let Z™ be complex n-n matrices for 2-1. ---,s; and let us denote Z--(Z'V,.--,
Zey, We write 'Z ~(PZ0, -1 Z9) and put 577 (n, s)=={Z; Z="Z and Im Z Y >0},
where Im Z - Y>>0 means that Im ZV = YV is positive definite for every 4. For
MeGL®2n, k), we denote M*~(Mw, ..., M*), where M™ is the 4-th conjugate
of M. Put

Spln, 1~ M; MeGLEn, k) MIM-T1, where J-( 1 1),

For every Me Spin, k), we define an operator on .27 (n, s) as follows:
(6) Z s MEZY (MUZYe, -, MWIZE), Ze 7 (n, 8)
‘?l,lv,'\‘,!'Z]()\'z {A:,\)Z‘M i"B‘)“)([C“MZ“\‘! : [) ,\;)‘1

A B
e M-
where (C n

n over k. Let 9 be an olattice in " (2n, k) and Plx, y) a k-bilinear non-
degenerate alternating form which is ¢-valued on M with an ideal ¢ in I
Define a skew symmetric matrix P by Plx, y)=—=xPy. Put

) with A, B, C, D in _Z«k), the total matrix ring of degree

P, M--{MeGL2n, k); MP'M-~P and W3- .

By Corollary to Lemma 1, there exists an element T of GL{2n, k) snch that
M ofoo -0, e, )T and TPT=J. Put

Pfear, -y a0 ={TMT-'; Mel'(P, 1)} .

Then, 1@, «--, ca)=Spl, BN, ---,0, ¢, -+ -, ¢an). It is easily seen that
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Lylar, -+ -, a.) and I'y(by, - - -, b,) are commensurable. /o{cay, -+, ca,) operates dis-
continuously on 9% (n, s) with the operation defined by (6). [f M, M:e
Iy(tas, -- -, ca.) define one and the same operator, then we have M= M. (ef.
C. L. Siegel [7}).

We put [(cay, - -, can) =1 6(car, - -, aa)/{ {1z, - -+, 1)} and call it the Hilbert-
Siegel para-modular group of type (cai, ---, ). In particular, ', ---,0) is
called the Hilbert-Siegel modular group.

Being s=1 (the classical case), let "X be a lattice in " (2nr, @), and P an
integral non-singular skew-symmetric matrix, such that «P'y is contained in Z
for , y€ M. Then, there exists a unimodular matrix 7 such that

M={Z, -, Z, 6. ---,0.Z1T

and
TPiT=J,
where the 4; are integers and 416:ds|---16.. Put
ds 0
. 0 !
0=
0 Gy

Then, we have

P, M Yy={MeGL(2n, Q@ ; MPM=P and MM=M},
and
T((5y), -+, @)={TMT-"; Mel(P, M)}.

This group was defined as a kind of para-modular groups in Seminaire H. Cartain
1957/58 and denoted by I'(6). In particular, 7'((1), ---, (1)) is the Siegel modular
group.

5. Let A be an abelian variety. We consider the relation between polarizations
of A and involutions of .07,(4).

Let B be the Picard variety of A. Every divisor X on A which is algebrai-
cally equivalent to 0 defines a point Cl(X) of B. For every element « of .7 (4),
there exists an element g of o7 (B) defined by ACHX))=Cl{a"(X)). # is called
the transpose of a and denoted by ‘«. The mapping a—'« i3 an anti-isomorphism
of o7(A) into .07 (B). We extend this to an anti-isomorphism of . 7(4) into
73(B) and denote it also by the same letter ‘a.

The mapping ¢v of A into B defined by ¢.(t)=CHX.—X) for te A gives a
homomorphism of A into B. X is non-degenerate if and only if ¢x(4)=B. X
being non-degenerate, for every a€ 97,(4), define an element o* of _W(A) by

pr o oa =at
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The mapping « ¥ of 57A) onto itzelf gives an involution of &7%iA4); and if
a suitable positive multiple of X is ample, we have

triaa™; >0

for every «7 0 of &7 A), where tria} means the trace of l-adic representation
of @. Two non-degenerate divisors give the same involution if they are con-
tained in the same polarization of A; so every polarization of A4 defines an
involution of .&/.(A). Characteristic being 0, let a complex torus €74 ke an
analytic model of A of dimension #. Fixing an isomorphism of A onto C*/d,
every positive non-degenerate divisor X on A corresponds to a non-degenerate
Riemann form & '(x, ¥y on C*/4 and every element a€ /(A4) corresponds to a
malrix Ml«) of degree », then we have

(7) &M, y)= ¢ (w, yM(a®))

for the Riemann form corresponding to the non-degenerate X.

6. k being a totally real algebraic number field of fiinite degree s over @, let
{A, ¢’) be a polarized abelian variety of dimension m defined over € such that
there exists an isomorphism ¢ of k into .7(A4) and the following conditions are
satisfied :

a) (1) is the identity of _o7(A);
b} The involution * which is determined by %~ is the identity on k), i.e.,
Af Y=« f) for any feky

Take and fix an analytic isomorphism of 4 onto a complex torus C"/d of
dimension m, where 4 denotes a discrete subgroup of €” of rank 2m. Every
element of _©7i(A4) corresponds to a matrix of degree m with complex entries.
We denote by the same letter «f) the complex matrix which corresponds to
d(fre (A" Then, «(f), considered as a representation of k, is a sum of
representations f-f™ for 1< i< s with suitable multiplicities. In view of a),
no O-representation can be included. As is well-known, the sum of : and its
complex conjugate is equivalent to a rational representation. As k is totally
real, we observe that the multiplicities of f—f™ in ¢ are the same for al] i
It follows, in particular, that m is divisible by s; put m=ns.

Thus, after choosing a suitable basis of C"=C", we may assume that «f)
is of the form

fm 1a 0
(8) o(f)= '
0 f‘f‘c.Y N 1:;

2) This follows from the condition that * fixes (k) as a whole,
3y Namely, oz, Z)-«(/)=0@-«( /), Z) for ez, Z) given in {SS4).
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for every fek. Since 4 has rank 2ns over Z, Q4 is a vector space over «k) of
dimension 2n. We can write

(9) Q1= k)

d

with 2n vectors u; of C™*.

Prorosition 1. Let wi for i=1, ---,2n, be 2n vectors of C". For every ¢,
put we=(r; 0, <., 1) with vectors u™ in C*. Let w;, 7=1, -8, be a basis of
k over @. Then, the vectors

- fdwy) 0 ) e e
i Mg , 1<2n, 13«3,
(i, 1 )< 0 o) 1 JEL

are linearly independent over R if and only if

; Ilu\; xl-;)\)
10) det : : 20 for every A.
x;n‘“ o

Proor. We have

2 wiMai;1a
J .
3 dwopaiz=

j

DT TH 1a
J

b;“’ 1a

bi‘”'ln
where aij, bV =Y o;Vai; € R.
4
Therefore, >(u, ﬁ;)(fk("") 0
i.J 0 !((1)j)
=0 holds for every 4 From this, our proposition easily follows.
Coming back to (9), as 4 is diserete in €™, we have

)a;,-:O holds if and only if 31(t™, r:M)-bi -1,

xl(M I,I(M
det] - . +0 for every A.
g;n(M 1{2”(1\)

by Proposition 1. Hence, putting

1y
. z‘Um tU.’Z),,,t Tisy
(1) g(zvm erm_,,sz)

H2n
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with U, Vve 7Z.4C), we have

(12) det(l s

SN ) 0 for every i

Let =’ (z, ) be a non-degenerate Riemann form on €+ 4.
Consider a polarization % of A; take a divisor X which corresponds to a
Riemann form ¢ (x, y) on C**/d. By the property b) of % and (7),

(13) o f), e (e, g ) for m, yelm.
Put

M) N S FEn R (Faen S e

where (f,, ---, fz:;)( :g) means a vector

P s AU !U‘” o o lU;s)
((]1”", A (‘Vu‘)’ TRV AR fﬁj{)<tvns) >)

in €. Then, M is a lattice of ¥ (2n, k). Put

e) r=c'[dl)N v (A)];

then, r is an order in k and v={fek; MM by (14).
We write z, y€ Q4 in the form

. U , A
(15) o=fun () vt e )
with f5, giek. For (f\, -, Fou) (g0, -+, g2) € 7 (20, k),

put AL o e (g, o gea))

then, 1 is a Q-bilinear mapping of 27" (2n, k) into @ by (R1). By (13) and by
using the fact that any @Q-bilinear mapping 2 of k into @ can be written as

A FY=tre oS ) .

with an element { in %k, we have

(16) A oy < or Fondy (s -0 gon)) =tray <(f.,~-,f2,?)P ‘ )
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with P={(p:;)€ GL2n,k).
Then, we have, by (R 2),
(G2 PP,

By (163, we have

S g
&, = \}:’;{‘h A, f‘;‘-?)P"’\}
g:ti /

for the vectors », y given by (15). Note that the set of vectors (S, --

for fek is dense in Ki*. Therefore, we have

t(;‘;;(:ﬁ, y):; ‘\_: l”)\:'[)"\\['.}“‘
AL

fOl‘ A , n~)\. e RZH, and

(e G (o (80 v ()

t VAT

[Vv)n

t l]u\i

Putting a* =y ( o

) and y‘-"::nw( > we get

N VAT ST N ’ R IESERN )Y
(™, W’)mt“(,vw fV‘*')’ (™, U"\’):""‘((V.A fV!*i)'

gy rl‘]?m

¢
i '?‘*»‘) has the inverse; denote it by (

By (12), the matrix <
Then

3 t oA RPN 7 Al NP Y PYIN
K, =D {ah, aM) S VY A W A .
- T et ’ 4 Foirr Jyin Fav Jun y‘m

Fix a 2 and consider the vectors z and y such that 2™ =—y¥ =0 for v /2.
the properties (R 2, 3) of % imply that, for every 4,

X 2 };71<A, F}U\; , Flf,\p FSY,\I yEAA
A ot EATY oo  p LAY iAG { .
,[1 («L' ’\’, y A ) (d/ y at ) ( .P‘QE)“ F‘Q'M )P )\)( Fgf)‘) I"’A‘M ) ( ‘yg)“; )
has the same properties; namely,
(%) E™(@™, v —1y») is symmetric and positive definite.
As the following treatment holds for every 4, we shall omit 4.
We have then

UF\+4-VFy=1, UFs+VF,=0, UF,:VF:=0 and UF:i VFi=1

Ty j'u;)‘)

P‘lu\) 14"354\)
Fan ],’42:\;)'

Then,
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and taking the conjugates of the above first two formulae, we have

determined uniquely by the above relations. Thus, we have

(o v) =G 2

Putting S::‘<1‘1 [‘1)1)<1'1 Fl) L“<»Sx Sz) . we get

Fy Fu ¥y F: Si S
A O F
(B, Ry P, Se=(F,, 'FyP( L',
o ( ! ) (Fz) ( 2) (Fz)
Fy

Sy (1 FY, '1?‘-3)1)< ) and  Si=(F), %)P(?).

2

I,
As P is real, we have
Sl:;g; and SzfﬁS;

V=11, 0

) is symmetrie, so that
0 —y =11

By (), s(

(ﬁ) Sl‘:'St, “““t82=1:572
Now as S is skew-symmetrie,

Sl = ““£81 .
Therefore, in view of (#), we have

S1 i"-~S; =0,

Put S:=H; then, we have S‘ﬁ(]g. g) and
0 “\/“1H>('?/
v—1H 0 v
::—2 Re (i!:\/**l H[I/) ¢

By = 1=( ) ):A\/—l (wH G H)

Therefore, by (¥), it follows that
(88) —+/—1 H is hermitian and positive definite.

We have
(tUt“ﬁ)(o H)(U V)___P
WV J\H 0 J)\U v/~



N
el
[

On the Hidbert-Siegel modular group and abelian carictics

and
ULV U 0 ‘H:
e !f) t oo N
(,U V) ("V ‘”V) ( H 0 )
Thus,
(G 3) (Uayayrpra ,is :)U for cvery 4

and by (#8),

Y 3 . / (RO FAPSAIF ¥ N / ![j:l\ e/ 4 [ SR
((:r 4) W 1‘\U V' ) I IQtV“\' A -1tH '

is hermitian and positive definite, for every 4.
By (R 1), we have
(G 1) tren, OMPGCZ; if ve=o, W is an vo-lattice and MPHINC I !, where d is
the different of & with respect to Q.
We have thus shown that a polavized abelian variety (A, % ¢) which satisfies
¢ rUm rUm
and element P of GL(2n, k). Now, we shall construct a triplet (4, &7 ) which

satisfies a), b) and ¢) from these data: a lattice W of 2 (2n, k) and matrices
t iy tf s

<g)~(§3> and P such that (G1), (G2), (G3) and (G 4) are

satisfied. Let the real representation :(f) of k of degree ns be determined by

(8). Take a lattice W and 22 vectors u,, -+, 1z, of C* such that

a), b) and ¢), determines a lattice M in Z(2n, k), a matrix

LETA ET A
det( u» g )() for every 2,

LY !'V’L,\,’
it
writing in the form (11).
\ 1;2,;
H
Put J_—{(f:, f)(l;) (f1r oo fr)€ me} .

Then, by Proposition 1, 4 is a discrete subgroup of €™ of rank 2ns, so €C*/d is
a complex torus. Put

(e t(T). ()

(g™

= i (fi®, oo, fEHPD
LE

1 .
A
g;"n, o
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for fi%™, gve R,
LIy i
Then, by (G2), & ((f!; - f:ﬁj( [i‘/ > , (g, -, ggn’)‘( !g>> is an alternating

R-bilinear form on (,,;'“ and Z-valued on 4. By (G 3) and (G 4), we have

( JUSIIR 72N >p[J\A.~'x<tUW 1“ﬁ:1\,)::< 0 ch,,:>
‘Ucm Vim LN {Vu\: tEAL )

for every 4, where v/ 1'H* ' is hermitian and positive definite; hence

Pidi YN 0 HiMN U VN
A,—<1V“\; rVu’n)(HiM 0 )(L’"‘" V”")’

Val; Uy
@ (xy, - -, Zan Yiy -y Yau
é(xbr, a )(tv>, (1, ,y.)<,V>)

and

AyfA}
- i“ ((:I:x.”", Ny P )
- yiy |
. Y
y tjw g A A A .
Yo

Thus, putting

tUu\, N ) . . !,U»/\,»
17 )’ U% ;:Ly‘i)\:’ T yl;\:)( 740 > !

coAx, -2y and y=@'Y, -, ¥, we have

B . .\-’ ) 4 () [1{4\1 ?ly‘.\;
€O (e A} RESTPVEON .
& e 2w, @ (Hw 0 )(fy<*’>

A o 1A 4t
a 1_0,(*,1 oo 'l’:)?\ii)(

Since

& (x, v 1y)= ‘\R:(JT:"“. :’E“")( 0 Hz/\\\( | VRN )
Xzt

~ H* ¢ /1 1 A,
— i(&?‘“, :—Ej,\,)( (‘),,,A,,V 1 Hu\z>(z‘y“m>
s V—TH~ 0 T

i}

- N (v —1 izz\sﬁu\uyﬁ V=1 &'(A’H“\”f)]""‘*)
Al
=2 ¥ Re (™ \,,fw']: H ity

A=l

we can easily show that & (x, y) has the property (R 3), on account of (G 3) and
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(G 4). Thus, we obtain a Riemann form & {x, y) on €4, henee there exists
an analytic isomorphism of €™/ onto an aLehan variety defined over €. & (z, 1)
determines a polarization % on A. Now, let v be the set of all elements f
of k such that f MM ; then, v is an order in k. For every f€k, we have
4-«f)c 4 if and only if f€v: hence, for every fex, «(f) gives an endomorphism
of C*/4: denote by the same letter «{f) the corresponding endomorphism of 4;
¢ is extended to an isomorphism of k into _4(4) which is denoted by ¢ again.
We have by the form of %' (z, ¥),

& (@ f), w)= & @, y-«F);
so, & satisfies b) and ¢). Thus, we have obtained the following theorems.

Tueorem 1. Let k be a totally real algebraic number field of finite degree
s over Q, M be o free submodule of ¥ (2n, k) of rank 2ns over Z, Wi, ---, it
be 2n vectors of C™* such that

rin Thia
det G;A gm}"ﬂ for every 2,
in wriling as
f 1y
g e ..t U
= (lV(l) ty .. .tvm>

Uen

with U»N, Vve _#(R), and P be an element of GL(2n, k). Put
. Uy, . \
a={i () U e fayem)

Then, it is necessary and swfficient for

yi/\)
& (x, ¥)= v>_<xx N, a@PL
yi‘
with mz((m{"’, sy ag) (Zg:i\) T € TR )\ (Zg::)) and

1) i1 tU{“ {8} {8) tU(M
((y‘ "‘yyl)<tVu)>. -",(?/1 L ,y (‘V“”))’

to be a Riemann form on C/4 that the following conditions are satisfied ;

g]()\)
(G1) Aé(fx"", s, S P : eZ forevery (f1, -+, Fe), (g1, ++, gau) in M

(A}
in
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e Pt

.. , e . .
(G3 Uy "11“”‘(’1/”“) -0 for every 4.
I"N'.r\;
G4y - 1 (UM VAP ’( [bV_A, )>0 for cvery 4.

Tueorem 2. Notations being as wbove, let : be the representation of k of
degree ns defined by

j.( I . li?

d{ f)= '
_f 85, 1n

for fek.

1N SERTIN] Wi, 18
Assume that W, <lgm 'gm !g“‘}
(G2), (G3) und (G4). Put v=={fek; fORCIN and let F{x, y) be the Riemann
Jorm defined in the above theovem. Then, there exists an analytic isomorphism
of the complex torus C'd onto an abelian variety A defined over C; f—i(f)
gives an 1somorphism of k into S7W(A), which is denoted by ¢ agan, such that

) and P satisfy the conditions (G 1),

a) (1) 48 the identity of 57(A);
& (x, y) determines a polarization & of A such that

b) the involution given by &’ is the identity on k)
and we have

¢) vy 7 (A) (k).

Conversely, A being an abelian variely of dimension ns defined over C, if
there exist an isomorphism ¢ of k into (A) and a polarization & of A
such that the conditions a), b) and ¢) hold for them, then :, considered as the
representation of k, reduces to the above form and A is obtained from a lattice
M, 2n vectors w, -, wew and an element P of GL2n, k) in this manner and
the polarization % is determined by the Riemann form & (x, y) given in
Theorem 1.

P is called the prinecipal matrix for 4 or & (a, ¥). Thus, the data M, U,
V. P determine a polarized abelian variety (A, &7 :) of type v, the ring v
being an order in k; we denote (4, & =%, U, V, P).

7. Notations being as in the last section, we consider a triplet (4, & )=
L, U, V, J); note that it is assumed that the principal matrix for 4 is J.
Put VvrUx- Z% for every 4 This is possible since V' is non-singular by
(G4 for J- P. Put Z- (2", ., Z#) and
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oo :;(/) Gaeee, foreml,
1, j

where (fi, -, .fz(;') = (if;“‘, R r)\‘zll ) S (N, e f)(/ \)

belongs to €,

By (G3), Z:=ViU=(Ve1Uy, -, Vo1l is symmetric and by (G4,
Im Z is positive definite; hence Z belongs to Sz7(n, 8.

Then, the linear mapping

717 14 . r./
(B, - ey :EQ«;z)k ’s )“‘—-’ (1751, T, .'L'En)( li‘/{ ) Vo @, -0y, &'m)({)

of €™ onto itself gives an isomorphism A of C*/J onto C*/J" and for cvery
fer,

A fy=ef)- 4

This is easily seen by the forms of 4 and (/). Thus the discrete group 4 is
always reduced to the form

J {\j!, -f‘.’.n)(f)y (\j.l, "',f‘?n)e\.].)t}
with Ze 2 (n, s). Then, we denote (I, U, V, J)=LM, 7).

Suppose that r--v, and consider (M, U, V, P). Then, M is an o-lattice in
> (2n, k). Put

Bz, y)y=xPly for z, Y€ ¥ (2n, k).

Then, F is d-l-valued on M. (d' is the different of &£ over Q). Hence by

Corollary to Lemma 1, there exists an element T of GI{2n, k) such that

Me=[o, -+, 0, Dy, -+, 07,17, and TPT- J. Therefore, every $(0, U, V, P)

is isomorphic to L(lo, - -+, 0, b 'ay, d-'a.), Z) for some integral ideal a, -, ta.
We denote

%(ﬁt, cy Oy Z)::ﬂj([nf ey bwlaly o b-»laﬂj’ Z) .

8. Let (A, % 0 and (4’, %", ) be two polarized abelian varieties of type v of
the same dimension. As was stated in section 2, 2 homomorphism 4 of A onto
A’ is called a homomorphism of (4, %, ¢) onto (A7, %7, ) if there exists a
divisor X’ in %"’ such that A4 YX’) is contained in & and A-/(f)=f)-4 holds
for any fer. Isomorphisms are used in the similar meaning. Let (4, & ¢
=QOR, U, V, Py and (&', &/, )=, U, V', P'). Put

lb"

J{(f S f“>< v

); (fi-- fz,,)eme}
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and
¢ U/

2 g (g ) G et

1f (A, & ) and (A4’, 27/, ) are isomorphic, then analytic models C"/4 and
Cm'4 of A and A’, respectively, satisfy the following conditions:
(i) There is a C-linear mapping A of C" onto itself such that

d-A=d,
(ii) For any f in k, Ayl fy-d.
(iii) There is a positive r € @ such that
& (aA, yDH=r & (x, )

where % and ¢’ are Riemann forms, respectively, on €™/d4 and C*/4' with
the prineipal matrices P and P’. We denote also the matrix corresponding to
the mapping A by the same A. By (ii), 4 is of the form

AN
At

where A is a complex (n, n) matrix for every A. By definitions of 4 and 4/,
there is an element Ge€GIL{2n, k) such that

(U /cU/
(*V)'A”G fv'>

MG M.

a.ad we have by (1),

Now, we can find an element Go of GL{2n, k) such that G.P'G,-J. Then,
obviously, ROR, U, V, P) is isomorphic to PONG,~, U, V,J). Henece, as men-

tioned in section 7, V is non-singular. If we write G- <g g), then
(18) Y- (AU -+ BVIYCHU - DY)
Ti g s
We have, writing » fu(;l’,“’(:‘l;(::>, sy xﬁ“"(:gis:» and

t[]u) !U(a) A
{ P {ay y (A \ 39
y( yio ("V‘“) , Y (’V““)) with v, yve R

I 2’)@(3,’ !/)*‘? g”(:‘CA. 7/1) f_‘lI(MG(MP’{A;IG'u\;lna)«)
A=l
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8
Y o E I‘““’P”‘”!)"‘"
& *
A=t

by (iii). Hence, we have

(19 GP'G—rP.
A By . y . S
c I)) in GL(2n, k) such that (17),

(18) and (19) for some positive rational r hold, then there exists an element A

of GL(n, C) such that
/tU eU/
(o) 4=6(vr)

& (wd, yy=r & (@, y)

Conversely, if there is an element G (

and
doA=d

TueoreM 3. (1°) B, U, V, P) and POW, U, V’, P) are tsomorphic if

A B) in GL(2n, k) such that

3 Lf 1 l -
and only if there is an element G <C D

MG =N, tJtV-1=(A U - BV C U -+ DUV

and GP'G=vP for some positive re€QqQ.

(2°) In particular, when ve=o, Yai, - -, 0, Z) and Wa, ---,a, Z’) are
1somorphic if and only if there exists an element Mrr'(‘é g) of 'y, ---, b7 'ay)
such that

Z(AZ' + BYXCZ' - D) ',
where Z=VU and Z'=V' U,

Proof of (2°). As [v, -0, d7lay, -+, b taa}G==lo, -+, 6, d7tay, -+, Do laa], we
gee that det G is a unit of k, so that =1 in (1), so putting M='G, with ¢ in
(1°), M belongs to /'(d'a;, ---,d'a.). Henece, we can easily obtain (2°) by (1°).

Therefore, isomorphice classes of P(ay, -+, @, Z) and points of
(v 'ay, -+ -, 0 e\ 57 (n, 8) are in one-to-one correspondence.

9. First, we shall consider an analytic model of the Picard variety of an abelian
variety A of dimension m and an analytic representation of ¢» of A onto B,
defined in section 5 with non-degenerate divisor X on A. ec.f. [6]

Let C7/4 be an analytic model of 4 and ¢ an analytic isomorphism of A
onto C7/d. Let z=(x, ---, x») and ¥=(4, - - -, Yu) be two elements of C™. Let
{z, ¥> be a non-degenerate not necessarily symmetric R-valued R-bilinear form
on €™ such that



282 Koji KATAYAMA

(19" <N i, Yo <, N Ly

Hence, C* is considered as the dual vector space over R of itself, with respect
to <z, y>.

Denote by 4% the set of all vectors y€ €C” such that {z, ¥y, is contained in
Z for every x€d. Then, 4%is a discrete subgroup of €™, so we obtain a complex
torus €C™/4* of dimension m. Let 7 be the set of all characters of 4. We
identify 7" with C*/4% by the isomorphism given by

C"2y —»exp|2zy - 1'<y, >].

Let X be a divisor on A and ¢ a normalized theta-function on €"/4 such that
{#)-0(X). Suppose that X is algebraically equivalent to 0. Then, we have
#W X0, o satisfies the following formula:

d(z-td) uld)w(x)

for ded, with veT. We can see that » is determined only by X. Let &(X)
denote the point of C"/4* corresponding to v. Then, we obtain an isomorphism
0% of B onto C”/d* by putting

O CUX)) =P X) .

Thus, C/4* can be considered as an analytic model of B. X, # being as above
¢ satisfies the formula (1) in section 2. Put

@2y #z) (e u)exp|2v 1 Hu, 1))

for every ue C”. t being an element of A such that 0(¢)—u, we see that

(19%) (@)~ 0(X,—X)
and

(1924) Oz - d)~Ou(2)exp [22v 1 &9 X, d)
for de .

On the other hand, we have an R-linear mapping L of C” into itself by
putting

(19" <Ifx), y> = EX ), W) .

By (R1), (R2), (R3) and (19’), L is C-linear and maps J into 4*, so L gives a
homomorphism of €/d into C”/J4*. Then, by (198) (1922) and the definition of
v, we have

LLO()) = 0%(CH X, - X)) .
Thus, L is the analytic representation of ¢y with respect to # and 0*.

Let {4, <7 &) be a polarized abelian variety of type v defined over a field
K. Namely, (o) k). o7 (A) for (A, & =ROM, Z). Then, M is an o-lattice.
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Theorem 4. The fomily of polarized abelian carietise
Lo -~an, 2Y; Z€ ¥, )

is complete with respect to Q in the sense of Shimura; namely let (A7, &7, )
be a generiec specialization of (A, ¢5 ¢) over Q; then there exists an element Z'
of SF°(n, 8) sueh that

(A, &', =Wy, <o, an, £

Proor. Let K be a field of definition for (A4, ¥ ¢). By definition, there
exists an isomorphism ¢ of the universal domain over @ such that

(;A,.- (‘(';,7!, 5’) K (A!r’ (?;/gy 50‘) .

We denote by the same / the extension of ¢ to k. We see that (v
dyN 97 (A’) holds. Let X be a non-degenerate divisor of ¢ on A rational
over K. Let B be the Picard variety of A and ¢y the homomorphism of A
onto B defined by

ox(t)- CUX--X)
for te A. Then, we have
()0 f)¢x
for fek. We see that B is the Picard variety of A” and we have
=@ 1) 0s7

and
ox(u)= CHX."~ X)

for ue A’. Hence, we see that the involution of .84(A4’) determined by the
polarization &= %% is the identity on (/(k); Thus, we see that (A”, &7, )
satisfies the conditions a), b) and ¢) (now, v -n).

We have

(20) (kernel of ¢x) ::(kernel of ¢.).

Let & (z, y¥) be the Riemann form determined by

#( et () ()

;g
“trk/o<(fu SONSY )

g‘::r

for (fy, -+, fen), (g1, -+, gz €0, D'y, 0, D 'ae, -+ -, 0, D'a:] where J is considered
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01
—10
as e . Let X be the divisor on A corresponding to & (x,¥); and

\ 01
10
% (x, #) be the Riemann form determined by X°. Then, by the result of section

7, there exist » ideals b, ---, b, and a point Z’ of S#7°(n, s) such that

(A’l gﬁﬂ:, !’)T'\“B(bh fT bﬂr Z,) ]

and

g((ff)(f) (g, g>(f))

g1
= trigo((F1r s | )
G
for (fi1, -+, fan) (g1, -+, gan) €0, D70;, 0, D1y, - -+, 0, D~10,]. Put
M=o, d'as, o, d'ag, -+, 0, d-taa],

MM ={o, bhy, 0, D7thg, - -+, 0, D7M04],

[*]]
952:»»:{(1“,...,fg,1)e P @m, k) (fr, -, fo)| - edt for any
an
(g gm)e‘m},
and
'R
9t q{(f“ e fa)e @8, k) (-, fa)d] - |edt for any
g’ln!
(gu, -, !}z”)e‘)ﬂ’} .
Since wiv—1lz, ¥

s %2 (y, o/ —1x)  (skew-symmetricity)
= & (x, +/~1y)  (symmetricity of & (x, v —1y)
c w1y,

we can take ¥ (x, ¥) as the form {x, ¥> considered in the first part of this
section. Then, we get the identity mapping as the analytic representation L
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of ¢x, which is given in (19’). Therefore, we see easily that

\ ~ Z\ / P Z
o o~ 79
(21) (kernel of) c;,x,w).n< X ) (4 )
and
-~ rid 7 744
(22) (kernel of) g"«ﬁ’é‘))é’(f )/ ‘)JE’(AI )

We shall determine explicitly 3t and M. For any element (g1, - -, gzs) of WM,
we have

g
(fo, o, fad] - JEDT,

(4R

for (f., -+, feu)€M:; therefore, in particular for (¢, 0, ---,0) with g €0, we
have

!(])1
(fuo ooy fad) 0 |EDT

0
so f: is contained in d'; using (0, g2, 0, ---,0) with ¢g.€bd-'a;,, we see that f,
is contained in a,'.

Continuing this process, we see that (f:, - -, f2x) is contained in

fai=?, d7Y, oo, a7t b Conversely, if (fy, ---, fu) is contained in
fart, 7Y a7, DY, then for any (g, -+ -, ¢g2.) in M, we have

9 ,
(Fr, oo, Fa)d| - fevr.
é?n
Hence,
(23) Me[a?, 077, -, a7, 0.
In the same way,
(24) W = (6, b1, o, bt DY

In view of (21) and (22), we see easily

= L .
W = F(ofa:H0/a;)
i1

and
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IR 2640/ 6: 0/

Since
WM

holds by (20), we have a;==b; for every i, by Corollary to Lemma 3. Thus
(A", & o=Pan, -, tn, ')

as desired.

10. Let (A, &7 o—=W®a, -+, as, Z) be a polarized abelian variety of type o con-

structed in the above sections. Put M=o, -, 0, d7'ay, -+, D7taa) = ;S:;Z-z;; with
i1

()

2ns vectors s in ¥ (2n, k) and

W)=

o (%)
L2185 1

Then W(Z) is a complex (ns, 2n8) matrix. The group J4(Z) generated by the
rows of W(Z) over Z is a discrete subgroup of €, of rank 2ns. Denote by P
the matrix of degree 2ns whose (i, 7) entry is ¢ tr(t:J'y;), where ¢ is a constant
integer such that ¢ tr(y: J'r;) are integers for all 4, 5. Then P defines a Riemann
form on C%/HZ) for every Z€ 57 (n, s). There exists a unimodular matrix G
of degree 2ns such that
GP'G (‘_’ ")
a 0

f)‘l
where d-s
Ous
the d; are integers and d:=1, didins 1<d<ns—1. Put
WZYG=(UZ) V(Z)
with complex matrices XZ), V(Z) of degree ns. Then, by (G3) (G4) for W(Z)

and P, we have
WV(ZYo U Zy=T(Z)Ya~ ' V(Z)
and
v LIVZY T2y - TZ) V(2D
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is a positive definite hermitian matrix; from this, V(%) has the inverse; put
NVAERRUOARIEVA) for Ze 27 {ns.

Then, the linear mapping x—2-‘ViZ3' of (" onto itself gives an isomorphism
of C*'4Z) onto C*Js5(S(ZY) for each Ze 2 (n, $). Put AZ):-As(S(Z)N and
Ha, Z2)=6x-"V(ZY?, S(Z)) for z€C™ Ze 57 (n, 8). Gz, Z) is an analytic
mapping of €™ 5#(n, 8) into &2V ; the mapping x—6{(r, Z) gives an analytic
isomorphism of C*/J.Z) onto A(Z); the polarization &% of A(Z) determined by
the hyperplane sections corresponds to the Riemann form on C*/4(Z) given by
P. Since «f) is a faithful representation of & and the linear mapping ax--x-:(f)
of ¢ into itself gives an endomorphism of C/J(Z), there is an endomorphism
(fy of A(Z) such that

O, Z) el f)=z-Lf), Z)

and f- s f) defines an isomorphism of o into 7 (A{Z)) for each Z¢€ 57 (n, s).
Thus, we have obtained a system of polarized abelian varieties (A(Z), &%, ¢2)
of type o, which satisfies the conditions (SS3), (S84) and (8S5). Then, we can
construet the variety 57 (A(Z), ¢») with respect to a basis of », for each
Ze 57(n, s). Put F(Z)= F (A(Z), ¢z). Then, by (S82) we have the following

(882’ for two elements Z, Z’e€ 57 (n, s), (A(Z), &%, ¢z) is isomorphic to
(A(Z)), &, ¢s0) if and only if % (Z)= F (Z').

We restate Lemma 8 and Theorem 1 in Shimura [5].

(8S7) The variety # (Z) is of the same dimension for every Z& 5(n, 3).

(888) There exists an analytic subset & of 577(n, 8) of codimension 1 and
a set of meromorphic funections {f,, - -, f4} on S#Z(n, s) such that

1° the varieties . #(Z) for Z€ 57 (m, s)--® are of the same dimension and
the same degree: ’

2° the f:are holomorphic on 527 (n, )& and ¢( Z (£, fZ),---, fdZ)
for every Z¢€ 577 (n, s)—®.

(8S8") There exist an analytic subset (3 of 5#°(n, 8) of condimension 1 and a
set of meromorphic funetions {f1,---, fa} on 577 (n, 8) such that Q(f:«(Z), -+, flZ))
is the field of moduli of (A(Z), &, ¢») for every Ze 57 (n, s)—®.

Since our system {(A(Z), &%, tz); Ze€ 57 (n, s)} is complete with respect to
Q, we obtain the following theorem by Theorem 2 in Shimura [5];

Tueorem 5. Let (fi, -+, fa) be the set of meromorphic functions in (SS8).
Then, the field QUfs, ---, fa) is a regular extension of Q and

dimeQ(f:, -, fo)=dimeC(f, -+, fa) .

From Theorem 3 and (SS2) we have the following

PropositioNn 2. For Z, /e S5F(n, 8), F(Z)y- F(4') holds if and only if
there exists an element M of I'(v ‘e, - -, 0 'an) such that Z' ~M[Z}.
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Prorosition 3. The functions [ in (SS8) are tnvariant with respect to the
group I'{(d tay, -+, b taa).

Proor. % being as in (S88), we have
e ALYy (O, flZy, -, fdZyy for every Ze€ 57 (n, s)—&.

Let M be an element of /'(d'as, ---, d'0.). Take a generic point Z. of
S#%(n, 8) over @ such that, for every Z:€ 57 (n,s), (f«(Zy), -, fdZ))) and
(o MVZ)y, -, fdM)Zi])y is a specialization of (fi(Zs), ---, falZs)) and
(fo(M[Ze]), -+, fdMIZ:])), over @ respectively. (Such an element Z; is called
a generic point of 577 (n, s) for fi(Z) and fi{(M|Z]) over @, respectively). We
can assume that Z, does not belong to &M &]. Then, we have

C(tg(zfi)) ‘(1, .f1<Z“)r Ty fd(Z“})
and
el F(MIZ) -, fuMIZN), - -, fAM[Z:])).

By Proposition 2, we have

A F(ZLo))—e( F (M[Z:])
and
SfilZo)= fi(M|Z:e]) .

Therefore, by the choice of Zi, we have
SiAZYy- FAMIZY)

for every %, for Ze S577(n, s). q.ed.

We denote the field Q(fi, -+, fe) by &ai, - -, 0.), where (4, &% )=
Wag, <, Ou, Z4).

Pyateczki-Shapiro first treated the functions on S2°(n, s) invariant with
respect to the group commensurable with the Hilbert-Siegel modular group (para-
modular funetions on 5% (n, 8)) and proved that all the para-modular functions
on S7{n, 8) form the algebraic function field of dimension (1/2)ns(ns+1) over
C. Baily proved, using the generalization of the compactification of Satake to
the case of '(d 'ay, ---, 0 ')/ 577 (n, 8), that every meromorphic function on
S¥7(n, ) invariant by I'(d 'ai, ---, D 'a) can be represented as quotient of two
automorphic forms with Fourier developments (except the case of elliptic
modular functions) and also proved that

(B) there exist automorphic forms ho(Z), - -, hu(Z) on 57 (n, 8) with respect
to I'(d'ay, ---.d 'a) such that the mapping

VA (VAR T VAREERN TV A)

induces an isomorphism of the quotient space ['(d'ay, - -+, 07 'a. )\ SF7(n, 8) onto a
Zariski open subset V. of an algebraic variety V in a projective space &PV.
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Suppose that n>1 or s>1. Denote by Hia:, -, ¢.) the field of meromorphic
functions on S#7(n, 8) invariant by {'(® 'ai, ---,d 'n.). By the above mentioned
result of Pyatezki-Shapiro, Hai, ---, ¢») is the function field of dimension
(1/2)ns(ns-1) over € and we have {(ai, -+, 0x) “N(ay, « -+, 0a).

TuroREM 6. {las, -+, @) C-M(, -, an) and X, - -, 0.) 18 regular over Q.

Proor. (A(Z), &%, )= Blai, -+, as, £) being a polarized abelian variety of
type o, let fi be meromorphic functions in (888). Then, there exist polynomials
Py, Py, ---, Py with complex coefficients and the same degree such that

JAZ)- Pk Z), -+, hlZ)) Pkl Z), - - -, el Z))

where the h; are defined in (B).

V, Vo being as in (B), let K be a countable subfield of C which contains
coefficients of P, -0, 1, ---,d, and over which ¥V and V -V, are rational.
We shall show that the field K(f., ---, f«) contains the functions h,/h;..

Suppose that the contrary be the case. Then there exists hi,/h, which is not
contained in K(f:, ---, f&). & being as in (SS8), let Z, be a generic point of
S (n, 8)—& for the h: over K; then K{(f«{Z») does not contain h(Zo)/hdZs);
hence there is an isomorphism ¢ of K(2;(Z:)) into C such that

Sl Zo)= filZo) for every ¢
and
(24) Rk Zo)Y 1R Zo) 7 hf Zo) ho( Zo) .

Since V and V-V, are rational over K, there is an element Z’ of 57 (n, s) such
that

hAZ") - hfZ)” (0<g<M) .
Then, We have
JiZ) = flZo) = filZy) for every 1.

Let T(Z) be the graph of the law of composition of A(Z) and V(f, Z) the
graph of ¢2(f) for each feo, Z€ 27 (n, s). {w]} being a basis of v, let ¥(Z) be
the gathering of the mapping ¢(A(Z)), &0, Z), «(T(Z)) and (V{w:, Z)) for i--1,

--,8. Then, we know that the variety # (Z) is defined over QU¥(Z)) for
every Z€ 27 (m,s). We recall the determination of & in (888). By a place »
of a field K/, we mean as usual a homomorphism of K’ into a field, which
maps the identity on the identity, where we admit that p takes the value .
Take and fix a generic point Z* of 5#7(n, s) for ¥; by Lemma 6 of Appendix
of [5], there exist a finite number of elements «: in Q¥W(Z*) such that, for
every place q of Q¥ (Z%*)), the eycle o F(Z*)) is a variety if o{a:)-~0 for every
1. Put a;i—ad{Z*) with the functions a: in Q(¥). Let & be the set of points
Y where the a: are holomorphic and a:«( ¥ )+ 0 for every 7. Let Y be a point of
¥ (n, s) and a the set of all the functions F(Z) in Q(¥") which are holomorphic
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at Y; we extend the homomorphism F--F(Y) of a into C to a place v, of Q(¥)
into €, and denote by v the place of Q¥ (Z*)) corresponding to v, by the canonical
isomorphism of Q(¥) onto Q¥ (Z*)). Then, we have p(¥{Z*)-4{Y) and if Y
is contained in &', we have a.(Y) /0 for every 7 and so v(a;)+ 0 for every 1, so
that 1( #(Z%)) is a variety. Let ¢ be the generic projective transformation
(x;)-(X tijzjy of 57 defined by a generic matrix (4;) over Q¥ (Z*)) and &' the
¢
generic projective transformation (2;)->(X¢:/2;) of &7V defined by generic
2

matrix (ti;) over pQ(¥(z*))). Then there exists an extension p of b on
QU(Z*), t;) such that p(t:)=t"i;. Let wi, -~ -, ur (u/, -+, wa’) be h independent
generic points of A(Z*) (resp., A(Y)) over QUU(Z™), t:;) (resp., WQUIF(Z#5), t:)).
Then there exists an extension ¥ of p such that (u:) -w’ for every i. Put
B HAZ*)) and B’ &(A(Y)); then, n(B) - B’. Let 4 (resp., 4’) be the rational
mapping of B(resp., B’) into itself defined by

Adx) - Elex(waE a) ksl

(resp., AS(x')= E'exlwi) Y a")+u'i)).

Then we see that if (&', /) is a specialization of (z, (=)} over B, we have z.’
=2i'(x’). Let Wi (resp. Wi’) be the graph of 4 (resp. 4/). Then W W, - W’ and

WelB) v e(W) - sied Widlswe(B)xe(Wi/) s - - ie( W) .
From this formula and by (887), we have p( s (Z*)~ s (Y). Put
C( kg/‘(zk)) (17 4811 Tty /3'?)

and fu{Z*) -5 for each 1 with the functions f: in Q(¥). Let & be the set of
all points of % where the f; are holomorphic.
For Ye®, we have p(B:)~ fi(Y) and

(. F (YD we( F(ZM)) -, fulY), -, JdY).

Now, we put & 2%~ (n, §)--&”.

Coming back to our case, let Z’ and Z, be as above. By (886) in section
2, there exists a set of holomorphic funections (¢, - - -, ¢%) such that there exists
a neighborhood Ul of Z’ for whose element Z,(¢(Z), -, ®(Z)) is the Chow point
of A(Z). Let Z: be a generic point of (5#7(n, s)--&)N1 for the ¢ and the f;
over @. We take Z: as Z* and Z’ as Y, where Z and Y are mentioned in the
above recalling. Now, as the place p, we take the place of Q¥(Z) correspond-
ing to the place of Q(¥) which is the extension of the mapping F-»F(Z').

Let (47, &77') be a specialization of (A(Z:), % (%)) over the specialization
(PlZn), FAZN (L"), f{Z") with respect to p. Then, A’ =A(Z') and '
(2. On the other hand, we have

e F )=, FlZN=Q, flZo)=c( F (Z);
hence $#7'= 57(Z). In particular, &/ is irreducible. Since, by (S87), &



On the Hibert-Sicgel modular group and abelian varieties 291

and 7 (Z’) have the same dimension, we have &= 7 (Z'). Thus we
obtain #(Z'y= 7 {Z)). By Proposition 2, there exists an element M of
F'{dtay, ---, ') such that Z’-=M[Z.,). But this contradicts (25). Hence
K(fy, -, fa) contains the functions h;/'h;". This completes our proof of the
first part. The second part easily follows from Theorem 5.

Tokyo Electrical Engineering College
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