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Introduction. The mathematical investigation concerning the existence and
the uniqueness of the solution of the non-stationary equation for the motion of
incompressible viscous fluid (Navier-Stokes equation) was originated by J. Leray,
and several remarkable results have been obtained by many authors—especially by
J. Leray 7107, 113, [127, E. Hopf [5], A. A. Kiselev, O. A. Ladyzhenskaia |[8],
[97 and J.-L. Lions [137,[14]. E. Hopf [5] proved the existence of a weak solu-
tion of the equation for any #n-dimensional domain and infinite time interval, while
A. A. Kiselev and O. A. Ladyzhenskaia [8] proved the existence and the uniqueness
of the solution for 3-dimensional bounded domain and a finite time-interval, and
extended the result to the case of infinite time-interval under the assumption that
the exterior force has a potential and the initial Reynolds number is small. J.-L.
Lions [137, [14] obtained more general results on the existence of the solution by
an entirely different approach. O. A. Ladyzhenskaia [9] proved also the existence
and the uniqueness of the solution for any 2-dimensional domain and infinite time
interval. In any of these papers, the differentiability (in usual sense) of the solu-
tion is not proved, and the solution takes the boundary value zero in certain
generalized sense.

Recently P. E. Sobolevskii [21] has reported the outline of hig construetion of
a classical solution of the non-stationary Navier-Stokes equation for a bounded
domain, taking the boundary value zero, in a finite time-interval. The most
essential part of his method is based on properties of fractional powers of differential
operators established in [18], [19], [20] and on properties of Green lensor con-
structed by F. K. G. Odqvist {15]. But, as far as we know, detailed argument
for Sobolevskii’s method in [21] has not yet been published.

In the present paper, we shall prove the existence and the uniqueness of
classical solution of the non-stationary Navier-Stokes equation for any bounded 3-
dimensional domain with a sufficiently smooth boundary, in a suitable finite time-
interval; the solution has as many continuous derivatives as enter in the equation
and takes given initial value and boundary value in usual sense, where the boundary
value is any function satisfying a certain smoothness (THEOREMS 1 and 2). Our
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method is also based on some properties of the Green tensor given in [151, but
entirely different from Sobolevskii’s. We shall also show under the assumption
of Theorem 1 that our solution coincides with Kiselev-Ladyzhenskaia’s if the
boundary value is identically zero.

The author wishes to express his hearty thanks to Professor K. Yosida and
Professor T. Kato who have encouraged him with kind discussions, and to Dr. H.
Fujita whose suggestion on the result of F.K.G. Odqvist [151 has meant so much
to him throughout the present paper (especially the proof of Lemma 3.2 is due
to Dr. H. Fujita; the author’s original proof was incomplete).

§1. Fundamental notions and main results. Let D be a bounded domain in
the Euclidean 3-space R? whose boundary S= D- DV consists of a finite number of
components each of which is a simple closed surface of class C*. For any two points
z and y in B3 r,, denotes the distance between z and y; for any point 2 on the
boundary S of the domain D, n=-n(x) denotes the unit veector with outer normal
direetion at x. Throughout this paper, we consider spaces of real valued or real-
vector valued functions defined in subdomains of R®. For any =0, we shall use
notations C,"(D) and C'(D) as usual, and denote by C’(D) the union of C*(D’'Ys
for all domains D’ containing D. We shall denote by C7(D) the totality of R
valued functions u(zx)={u'(x), ' (x), 4 x)) each component u/(x) of which belongs
to CH(D). CJ(D) and C?(D) shall be defined analogously.

For any R3-valued functions u(x)={u'(z), v (z), u¥(2)) and v(w)=<{v!(x), v¥(x),
v¥(x)>, we shall use the following notations (whenever the right-hand side of each
formula makes sense) ;—

@) ru={ 0 g k=12,3),
L o gud(x)
9 ca{x)= NV
(1.2) divu(x) P R
(1.3) du@y= S D g g8
4
(1.4) (o)) = X} w/(x)v’(x),
iz
15) w-Fw) = S w@) 200 o1, 3)
) AECE N g TS,
Boogw(x)  ovi(a)
e G G N N
(16) (rlt . Ff))(ﬂz) j,-[-(—:kl ox* ox’

1) D denotes the elosure of D as a subset of R°.
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1.7) (u, v)= ‘;_ & w{xh (@),
RER IS
I o 12
(1.8) =,y =N ;u;(;.:):fd;s}
( S
and

Jee(a) = max (@),
(1.9) { LSS

T sup‘!u(:r)! .
FRa S

Even if u is a function of both the time { and the point v ), we operate ™, div
and 4 to 1 as a function of x for each fixed £. In the case where u(x) and v(x)
are R"-valued functions, for any given positive integer =, the notations (u, v),
Huil and 'u' shall be defined analogously. For example, if #(x) and v(a) are RS-
valued functions, then we have

[ du'(x) Ov(x)

P

(1.10) Fu, m):}m JRPSE RS
whenever the right-hand side makes sense.

We denote by © the totality of R%valued measurable functions u{z) on D
satisfying lull<oo (see (1.8)). Then » is a real Hilbert space where the inner
product is defined by (1.7).

We extend the definition of 7 and div. Let D, be the totality of v< D such
that there exists a sequence {v,}CHNC!(D) satisfying

(1.11) IFo.l<co (n=1,2---) limv,~v}=0
and
(1.12) lim |0, — ] =0

for a certain R°valued function © defined almost everywhere in I» with finite
norm [jo). Then we may easily show that ¢ is uniquely determined by ve®y
and independent of the choice of sequence {v,}. Therefore we may denote such
o by Fv; thus I© is extended to any v&®r. Accordingly we may define divv for
any vedy,.

For any vector function u=u(t, z) (¢z0, 2 D), we define the following nota-
tions : (u(t)=u(t, -))

{ ful,= sup fu()i,
tor>0

luli= sup fu(t)—u(t)l- |ti—tl 32607,

I S T

Hul,= sup [u(@)

fulf=sup Tu(t)—ut:)i- it —t.l
Ly >t2>0
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For any vector function b=b(t, #) (¢0,2&S) and any relatively open subset o
of S, we define /b, » and 1.5/ o as follows:

b g sup jb(¢, o)},
fizTal, el
| biia= sup 1Bty @)= b(te, D)l -t
2l 0, 2 D

It is well known that
(1.13) j divud:c*:i (u-n)dS
I S

for any weCHIYNCYD) such that divae L'(D). Hence we have the following
Lemma 1.1, If ueCUNNCYD) and divu=0 in D, then
siy(u-n)d‘S:O.

Conversely,

LEMMA 1.2, If b is an R-valued function of class C' on S and satisfies
S‘(b-n)dSr:»O, then b is the boundary value of a vector function ueCi(DYNCYD)
s;tisfy-ing diva=0 in D.

Proof of this lemma is essentially contained in the proof of Lemma 2.9 stated
later; so is omitted.

Lemma 1.8, Assume that ue$ and veC¥(D), and that

(w, 40y=(0, %)  for any  ¥eC{D).

Then i) ueCY(D); ii) if especially uc CYD), ulseCXS) and veD, then [Ful loo.
This fact may be proved by means of properties of the Green function of
the first boundary value problem (for instance, see [6; §107).
Now we consider the non-stationary Navier-Stokes equation :

ou
ot

(1.14) ey u--Fp+f >0, x=D)

with the equation of continuity :

(1.15) divu=0,

initial condition:

(1.16) ul, =a (a=a(zx); zeD),
and boundary condition:

117 5= (b=b(t, x); t>0, 2€8S)
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where u={'(t, @), w1, x), u¥t, x> and p=p(f, &) are unknown functions repre-
senting the veloeity of the fluid and the presure respectively ; v (positive constant)
ig the kinematie viscosity and F=J4¢, x), S, @), F(¢, o) is the exterior force.
(The density of the fluid is assumed to be one.) It is natural to assume that

(1.18) diva=0 in D and ai.= b0, «)

and, in view of Lemma 1.1,
(1.19) v (b-n)dS=0 for any ¢>0.

We also assume that®™

f is expressible in the form
F=Fyt, ) +Fat, x)

1.20

( ) where fyt, ©)=DpNCHD) (r>0) and ¢(t, +)cCHD) for any t=0 and .Ff),
Hfetr, I divfyl and ['divf,'/ are finite for any ¢>0,

1.21) acCYD)NCHD), dacHnC'INY,

(1.22) beCH([0, o0 [ X S)

and
for any xv< S, there exists a coordinate neighboxhood 2 of x in the surface
S for which || 00 [l 88 0 LGB g 00

(123) or w i “"36:" Xl[ q’ \ G:’OH ‘v\, 0 i“ it{)"’ i:11 i ’\iﬁ‘-] %‘1 I, %

=], 2) are fimte for any t>0 where (&84, &% denote% a local coordinate

around .

QOur main results in the present paper are stated as follows.
TurorEM 1 (Existence theorem). Under the assumptions (1.18)-(1.23), there

exist a positive number T and a solution {u(t, x), p(t, 2)} of (1.14) (1.17), in the

. . . . . oul(t, x Gu(t, x
region: 0<t<T and xseD, with following propertics: i) ¢ &t ") ' U(«:(NL)
1] L alii

t K ) . . . o
and - up( 2 {7, k=1, 2, 8) 1n usual sense exist and are continuous n (0, Tyx D,

and they sat@sfy (1.14) and (1.15) in the regiom; 1i) u(t, x) s continuous in the
closed region [0, TIxD and saiisfies (1.16) and (1.17) in usual semse; iii) u

. . . du t . lu(t o t' . )
=u(t, *) has 1tts strong derivative (JE‘) in D and »dzg ) == m—l;! ) s iv)
28 it (L

i i ,
| f;: | <oo, IFue<oo and p(t, *)—¢olt, )& LYD) (see (1.20)) for any te(0, T).
i .t
7 2) Assumptions (1.20)-(1.23) may be replaced by slightly weaker ones. But these are
complicated; s0 we assume (1.20)-(1.23).
3y (1.18), (1.21) and (1.22) imply fa <co by Lemma 1.3
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Troresm 2 (Uniqueness theorem). If {u, p} and {v, ¢} are solutions of
(1.14-17)  satisfying all conditions stated in Theorem 1, then u(t, x)=v{t, 2)
and Fp(t, z)z g, x) in (0, T)x D.

Proofs of these theorems will be given in §§6 and 7. We shall also remark in
§7 that our proof of Theorem 2 is available in case {u, p} is our solution stated
in Theorem 1 and {v, ¢} is Kiselev-Ladyzhenskaia’s solution in [8] if (1.18), (1.20)
and (1.21) are satisfied and 5=0 in (1.18). Hence, under these conditions, our solu-
tion coincides with Kiselev-Ladyzhenskaia’s. Accordingly, combining our results
with those in [87, we may conclude, for example, that

THEOREM 3. Assume that (1.18), (1.20) end (1.21) are satisfied and b=0,
that F has a potential (nemely we may put f=0 in (1.20)) and that the Rey-
aolds number gl the initial moment (t==0) is sufficiently small in the sense of
Kiselev-Ladyzhenskaia’s paper [8]. Then the solution {u, p} stated in Theorem
1 (with b:=0) exists in the infinite time-interval : 0<t< oo,

§2. Preliminaries. Let £, and ©, be subspaces of the Hilbert space $ (see
§1) defined as follows:

2.1) Di={F¢; ¢eC(D), Feed}
(the superscript e denotes the closure operation in 9), and
(2.2) £y =99, (ortho-complement of H)).

Then ;

LemMya 21, If ueHNCH(D) and (U, v)=0 for any veCi(D) satisfying
dive=0 in D, then there ewists a single-valued function ¢eC*(D) such that u
=["¢,. (See I5; pp. 214-2151)

LeMmmA 2.2, Let {D,} be a monotone increasing sequence of subdomains of
D suel that U D= D, that the boundary S, of each D,, consists of a finite number
of com 1)071(’7;’;310(1,615 of which is a simple closed surface of class C* and that
the sequence {S,.} approaches to S smoothly, and assume that veCY{D)NCYD),
vig=0 and dive=0 wm D. Assume also that ¢cCH{D) and that at least one of

[Feif<oo and (¢ <o (see (1.8) and (1.9))

holds. Then

(2.3) lim (v-F¢yde=0.

PO 1),”

Proor. For any m and any x<8,, we denote by n.=n,(x) the unit vector
with outer normal direction at x. Then the assumption of this lemma implies that
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-~ ~

(2.4) v-roda=\ (v-n)edS
o Dy CEFN

and that

(2.5) lim sup [(v-n.,)(@)=0.

R e N
(IS

Hence we get (2.3)if ¢ '<oe. In case: II'¢i< oo, we may prove that there exists
a constant C, for sufficiently large N such that

@) dS=|  e(@idS+Cyirel for any m>N.
45, ISy

Combining this relation with (2.4) and (2.5), we obtained (2.3), q.e.d.
LemMa 2.3, Under the assumption: ucCH{DINCYD), u(x) belongs to £y if
and only if

(2.6) divu=0 in D and (u-n)=0 on S.

ProorF. If ue$, then (divu, ¢)=-—(u, F¢)=0 for any ¢eC,'(D) and hence
divu=0 in D. On the other hand, any function ¢y(x) of class C! on S may be
extended to a function ¢@)cC' (D). Hence we have

S (u~n)¢,"‘0dS:j (u-nypdS—(divu, ¢)=(u, F¢)=0;
S N

this implies that (u-n)=0o0n S. The converse follows immediately from Lemma 2.2.
LEMMA 2.4, Assume that veC'(D)NC(D)NHND, vls=0 and weCHD)
NCYDYND, and that ¢=CY(D), ¢ <o and u=[¢—_Jw belongs to . Then

2.7 v, Fw)=(v, u).

Proor. Let {D,} be such a sequence of subdomains of D) as stated in Lemma

2.2. Then we have
2.8) j (l7w~[70)d:r:§ <f"‘f-u>ds—j Fe—u)-v)ds.
D S, \OPRy, i

1

On the other hand, it follows from the assumption of this lemma that divo=0 in
D by Lemma 2.3. Hence letting m-—co in (2.8) and applying Lemma 2.2, we
obtain (2.7), q.e. d.

Assume that u=C(D)NCYD), that divu and (u-n) are Holder-continuous in
D and on S respectively and that {divul<co. Then it follows from (1.13) that
the solution ¢=¢, of the second bhoundary value problem :

Dop

¢ r—div ‘(l"'v.‘ foes .
2.9 de=divu, on 'l (u-n)
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exists and is unique up to additive constant, and accordingly F¢. is uniquely
determined by #. In fact, if we denote by Kz, ¥) the kernel function of the
second boundary value problem (2.9) (see (7)), we have

(2.10) ¢ ()= MS Kz, y)ydiv u{y)dy»{hx Kz, y)u-n)(y)dS,+const.
2l S

For any ucD,nCYD), (1.13) still holds and ¢ () defined by (2.10) satisfies o,
&8, ; these faets may be seen from the definition of div in generalized sense
(see §1) and properties of K(z, y) given in [7T].

We denote the projection of D onto 9y (resp. ;) by P, (resp. P,). Then we
have the following

Lrmma 2.5, If we define ¢, by (2.10) for any ueDNCYD), then Pu=u—ry,
and Pu=0¢,.

Proor. We prove this lemma only in the case where dive and (u-n) are
Hélder-continuous ; general case may easily be reduced to the case. If we put

v=nu-[¢,, we have divo=divu— _J¢,=0 and (v-n)=u -n)-— (g:l‘ =0 by (2.9). Hence
vedy by Lemma 2.3, Since u=v+f ¢, and F¢, <9, it follows that Pu=v=u

¢, and Pu=re,, q.e.d.

e CHD) satigfying Je=divu in D.
Proor. For any ¥ <CP (D), we have Fdiv¥e®D, and rotrot¥' &9, by Lemma
2.3. Hence

@10 (P, J4)=(Pu, 7 div ¥ —rot rot ¥)
;:(uy Fdiv ([’)::([— divu’ Q) ,

here [T divueC(D). Hence PuucCH{D) by Lemma 1.3. On the other hand, we
have (P, ©)=0 for any vaCyl(D) satisfying dive=0 in D (since any such v be-
longs to $, by Lemma 2.3). Hence, by Lemma 2.1, we obtain that Pu={¢ for
a suitable ¢ezC(D) and accordingly that (J¢, )= ¢, =@~ P, ¢ =(div u,
¢ for any JaCi(d). Hence dy=dive in D, q.e.d.

Let Kyx, ) be the kernel function of the Neumann problem in the interior
of the solid sphere Qy={x; r.0=1} where O denotes the origin of R®. Then,
for any z& RP and any p>0, the function
2.12) Koo, y; o b A(Q Tz y““)
ll) '()

‘()

is the kernel function of the Neumann problem in Q.(0)={x; r,.<p}. Using this

fact, we shall prove the following
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LEMMA 2.7. Assume that <{t, YeCX(D), el <o and [Felfi<on for any
t>0. Then—

D of ¢t 2)=0, then [yt x), CO¢, ) and (FT¢E, ) are Holder-conti-
nuous in the interior of (0, )xD;

i) if d¢(, @) is Holder-continuous in the interior of (0, o)X D, then so is
Felt, x).

Proor. i) Let z be an arbitrary point in I, and R be a positive number
such that Q.(3R)c D. Then it is sufficient to prove the Hélder-continuity of Fy,
e and FEF¢ in (0, o) X @.(R). Since Jy¢(t, )20, we have

. T oo (E, ¥)

(L, :v):u&p)lx:(x, Y on, ds,
for any >0, x=Q.(R) and p> R, where S(»)=0Q.(M={y; r,.=p} and 0(1 denotes
the normal derivative on S(o). Hence, if t>1'>0 and 2, 2'€Q.(R), it holds that

(2.13) redt, ©)—re’, a9l

car o
il\ df’\ VK, g ¢, y) = F et mldS,”
R J2R J S
1 3R
) d.nj 17K, s 0)—F K, g )l P e, wldS,.
J2r Ko

On the other hand, it follows from (2.12) that
sup  {(FKi(x, y; oS K=, y; b}

2R p IR
is finite. Applying this fact and the assumption ([FF¢l, <o and |F¢li<eo) to
(2.13), we may easily see that /¢ is Holder-continuous in (0, {)X Q.(R). Similarly
we may show the Holder-continuity of "7y and that of FFP7y.
ii) Let z and R be as stated above. Then, for any {>0, 2c@.(R) and p> R,
we have ¢(t, x)=¢,(t, )+ ¢:(t, ¥) where
ot == K, yi 0350, iy
J QL m
and
gty x)‘—:s K, y;0) mféi’ " s,

Sim #

The Holder-continuity of F¢,(t, «) in (0, o)X Q.(R) may be shown from that of
A¢(t, ) and properties of the kernel function K,(%, ), while the Holder-continuity
of F¢u(t, ) is already proved above. Hence 7¢(t, x) is Holder-continuous in (0, o)

4) The subscript © to  means to operate [ to K.z, y; vy as a function of =.
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* @A), q.e. d.
If A, )=0 in (0, oo) x D, we have also that

¢(t, .x)——j Pz, y; p¢(t, y)dS,  for any a€Q.(p)
S<py

where
7% e

P yio=" 0 2@, yeSe).

Hence we may prove by the similar argument to the proof of Lemma 2.7 that
LeMMa 2.8, If d¢t, 2)=0, ¢l <co and lgili<eo for any t>0, then "¢ is
Holder-continuous in the interior of (0, o) D.
Finally we modify the equations (1.14) and (1.15) to the following form:

(2.14) 2 s doFo)-Tg
)

(F.(-) will be defined later) and

(2.15) dive=0,

and reduce the initial-boundary value problem (1.14)-(1.17) to the case: a=0 and
b=0.

LEMMA 2.9. Under the assumptions (1.19), (1.22) and (1.23), there exists a
veetor function Uy=Ut, &) C%|0, co)x D)y with following properties: i) Uyt, *)
eCD), divUy=0 in D and Uys=b for any t=0; ii) the following quantities
are finite for any t>0:

(UO

i g |
WO, UG, WU, IF U, 14U, 14U, Rty PR I
i ot !c ot |,

and i) FU, and AU, are Holder-continuous in the interior of (0, co)x D.
Proor. It follows from the assumptions (1.19), (1.22) and (1.23) that there
exists a function ¢ig(t, 2)cCY[0, co) X x D)) such that

@.16)  ¢(t, YeCAD)NC(D), J¢=0 in D and ‘5;; =(b-n) for any >0
- 1S

and

@17 FCel, LFFel, | o Pl | and o ¢l are finite for any t>0;
i Ui

this faet may easily be seen if

(%) beC3([0, )X S),

and this condition () may be replaced by (1.22) and (1.23) by virtue of Schauder
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estimates (interior and near the boundary) for seclutions of linear elliptic equations
(see 1] and [2] for example). Similarly we may show that there exist vector
functions u=u(t, 2)=C%0, «o)x D) and v=v@)eC(DHNC(D) such that

(2.18) u(t, -)eCD)NC* (D), du=0 in D and us=b—b-mn for any 20,

~ oA

@1 Fru, FFul, 'Cut Fu - and [Ut Fu. are finite for any i>0
B [ vl ¢

and

(2.20) =0 1in D and vi.=n.

Furthermore, we may easily construct a funetion '=C(Dyr CHD) satisfying

(2.21) ¢ls=0 and (i& =1
on

We put

(2.22) w=rot [uA( o)’

(where fuAv] denotes the ‘ vector product’ of u with v). Then

(2.23) we CO[0, o) x D),

(2.24) w(t, YsCYD)NCYD)  for any >0,

C e . , owt fow

hwie, wl?, (Fwi,, (Fwl, idwl, i dwil], —; - and |-~

(2.25) Wi, fiwli, Wl (Fwii, fidwl,, [dwl, 7,0 and [
are finite for any t>0

and
(2.26) Fw is Holder-continuous in the interior of (0, oc)x D

(since ['F"¢ and [ are Holder-continuous in (0, oo)x ) by means of Lemma 2.7).
Futhermore (2.22) is written as follows:

(2.22%) w={u-ydol]— (v -Mu+divifo)-u—diva- o).
Applying (2.16), (2.18), (2.20) and (2.21) to the above formula, we may show that
wis=b—(b-mn=>b-("¢)!..
Hence, if we define U= Uy(t, ) by
Uy=w+Fe,

4

then U, satisfies i), ii) and iii) required in Lemma 2.9 (div U, =divwdivi¢
=div rotfun(fw)]+ 4¢=0; the other properties are obvious).
Now we put

(2.27) Ut, x)=a(z)+ Us(t, z)— U0, z).
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Then it follows from (1.18), (1.21) and Lemma 2.9 that

(2.28) UcsC0, co)x D)  and U, 2)=alr),
(2.29) Ui, ye®nCYD), divU=0 in D and Uly=>b for any ¢t=0,
L \(s ! ’lif/y VU;L; ;VU1,5 ;:AU ty “—/IL;L",y
(2.30) ! ('U | and t (:U are finite for any £>0
i ot e Loty
and
(2.31) U and 4U are Holder-continuous in (0, o) x D.
Hence
AU )
J v Al "7 (U Ues, dvU-P)U=U : P U)
(2.32) oU

and div 4U=div ° ot =(} for any t=0,
J

and hence, applying Lemma 2.5 to £, (see (1.20)) and Lemmas 2.6 and 2.7 to 4U,
0(};1 and (U-I)U, we may see that there exists a function ¢,(£, %) on (0, co)x D
su)c(h that ¢,(¢, -)eCY(D) for any =0 and e, x) is Holder-continuous in (0, o)
% I} and that

anrr
(2.33) Py {fov{v-JU— 0(,;(; -—(U-V)U} =g,
Accordingly, if we put

5

(2.34) W=P, {f@Jr AU~ ’7U —(U‘L")U},
then
(©.25) { TWil, and |Wi/<co for any £>0, and
e Wi(t, ) is Holder-continuous in (0, co) X D.

Now we put u=U+v and p=¢,+¢,+¢ in (1.14)-(1.17). Then we have

[ ‘()L’ ::',.-JU“§ E(U)M[”q (Cf (214));

236 ot
(2.36) l div o0 (ef. 2.15)),
vl 0220 and vly=0

where Fy{-) is a nonlinear mapping defined by
(2.37) F.(o)=W(it)— (0 -7)YUR®)~ Uy -Fo—(v-F)v.

Hence, in order to prove Theorem 1, it is sufficient to show the existence of v
=v(f, x) and g=¢(t, ®) which satisfy (2.36) and have properties corresponding to
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those of # and p in Theorem 1.

§3. Green tensor and its eigenfunctions. F.K.G. Odqvist [15] constructed
the Green temsor {G7*(x, y), h'(x, ¥); §, k=1.2 8} for Stokes’s boundary wvalue
problem, with properties as follows ;

19 G, =Gy, x) (v, yeD; axy);

2°) each G'*(z, y) is of class C° in a=D—{y);

3°) each hi(z, ) is of class C' in z&D—{y}
o G 8G @, )
4°) X175 =0 for zeD—{y} and G/ (x, 4)=0 for 2c=S (for eaeh k and

=1 va’

any fixed ye=D);
5°) there exists a constant C>0 such that

s

. . C 1 0GH ) .
G, w)i<-, if' A(mAy) < C and [Af(x, p)I< C .
o Ozt T, 7%,

By virtue of 57), the formulae

3.1) Gy =1 G, wuty
L Jnp
and
(3.2) (Hu)(z)= ﬁ_‘.f A, ot (y)dy
K D

define respectively a bounded linear operator G in © and a bounded linear mapp-
ing H of § into L*(D), and we have, for a suitable constant c,

3.3) 17 Gull < C'l|uj| for any ued.

The following property [15] is most important :
6°) if u is Holder-continuous in D, then GueC:(D)NCH (D) and HueC e
NC(Dy for some >0, and
8.4) divGu=0, [Gu]ls=0 and v- 4Gu—~F Hu=—u
where v is the constant which appears in the Navier-Stokes equation (1.14) as
kinematic visecosity.
We shall investigate some properties of eigenfunctions of the operator G.
LeEMMA 3.1. G is symmetric, positive definite and completely continuous.
ProOF. The symmetricity of G is obvious from 1°). For any ucCy\ (D), we
have GueC¥D)NCY(D)N Yy, HueCAD)NCYD) and u=0 Hu~yv-IGu by 6) and

Lemma 2.3. Hence, by Lemma 2.4, we have

(Gu, w)=2(FGu, ¥ Gu) =0,
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which implies that G is positive definite since C,'(D) is dense in . The complete
continuity may be proved in the same way as the case of usual integral operators
in the I*-space of scalar functions on D.

LeMMa 3.2, The closure of the range N of G coincides with 9.

Proor. The relation 99, is obvious from (3.4) and Lemma 2.3. In order
to prove that =%, we first show that any acC,"(D) satisfying diva=0 belongs
to 9. (sueh u clearly belongs to ©,). If we put w=—Ju, then weCy*(D) and

AGw-F Hw-= —w=Ju (by (3.4)),
and hence, we have
— M (Gw—u) 2= (A Gw—u), Ge—u)= Hw, Gw—u)=0
(the last equality may be shown by means of Lemma 2.2). Therefore Gw—u is
constant. Since (Gw) y=ul=0, we get u=GuweN,;. Now suppose that veDH NG,

and take arbitrary we Cy7(D). Then the above result can be applied to u=rotrotw,
and hence (v, rot rotw)=0. Therefore

(v, Jw)=(v, F divw—rot rotw)=0.

Hence vezC(D} by virtue of Weyl’s lemma [16]{17]. Furthermore (u, v)=0 for
any ucCy (D) satisfying divu=0 (since such u belongs to )i, as proved above). Hence
ve$H, by Lemma 2.1. Thus we get v ©NH; which implies v=0, g.e.d.

It follows from 5°), 6°) and above two lemmas that there exists a system of

eigenvalues and eigen(vector)functions {4, g.}.1,2..-. of G with following pro-
perties:

(3.5) 9.=4G9,CD)NCHD),

(3.6) divg,=0, g.15=0,

(3.7 0<h =g 54,5 -+ and lim 4, =00,

(3.8) {g.} is a complete orthonormal 7g§§tem in &,

(3.9) v dg,—~Fp.,=—2.0, where Pa=AHg,.

We shall denote the components of g.(x) by gi(2); §=1,2,3.
LEMMA 3.3. If we fix @ point yeD and k, end put w'(@)=G"*(x, y) (j=1,
2. 8), then wslul(x), w(x), w?(@)) e Dy.
Proor. For any >0, we put Q,={z;7,.<0} and define v,={2,'(x), v,°(2),
v, x)> by
3k
we=| 7 Tmzebng

-1
where &% denotes the Kronecker’s delta and cp-:(S dz) . We further put
pNaQ,

¢
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u,=Gv, namely

=1, 2, 3).

o~

w, (x)= { Gz, 2)e,dz

JDno,
Then, by Schwarz’s inequality,
Sagairs] ( G, ;:)5‘3(',,(12-“ e dz.
7 T Jona, Jnno,
Integrating both sides of the above inequality over D, we obtain by 57) that

(3.10) gzu_,,zsfgac-‘g ridds (<o) for any 0>0

JUp

where R is a positive number such that Qr.2D. For any weCXD~—{y}), we
have

(w, u,,»u):\ d’bj S ()G, 2)— G, W) Yedr,
JD

Dty g
and the distance between @ and the carrier of w is positive for sufficiently small
po. Hence, applying 57) to the above equality, we get

(3.11) lim (w, u,—u)=0.

P
Since Co(D—{y}) is dense in », it follows from (3.10) and (3.11) that

(3.12) lim (w, 1, —u)=0 for any we9.

£-0
On the other hand, u,=Gv,€9: by Lemma 3.2. Hence we may see by (3.12) that
u@@o.
LEMMA 3.4.

43

Lagi(z) 1#
(3.13) 1 ﬁ g,“(’r,), !

3
| =:\1j Ghe Wiy (=12, 3);
1 )nn i k=1J4D

k23

the series in the left-hand side comverges uniformly in sz D.
Proor. We fix a point 2= D and j, and put u={(G*(, -); k=1,2,3>. Then
ueHy by 1°) and Lemma 8.3, and accordingly
i‘l(u, y,i)gzi!ttllzzbijg IG*(x, y)i*dy by (3.8).
P2 L JD
On the other hand, (8.5) implies that ¢i(x)=2.(u, g.). Hence we obtain (3.13).
N
Furthermore S1igi(x)/4.2 (N=1,2,--+) and the right-hand side of (3.13) are con-

7=l

tinuous in z=D. Hence the series in the left-hand side of (3.13) converges uni-
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formly in ze D).

Lemwma 85, g, sC4,, g, 2CL and ! p, 2C'4°% (n=1,2,---) for some
constant C'.

Proor. We may see from (3.5) and 5°) that

N C i
(3.14) Nl 2<3j d%) 190 2Ciy
D rr_,;
(by Schwarz’s inequality) for some constant C;, and accordingly that
a2 3C gerg. = C
D 7‘1’:/

for some constant C,. Since p,=2,Hyg,, it follows from (3.14) and 5°) that !p.|
=Gl for some constant C;. Hence we obtain Lemma 3.5 by putting
C’==max{C,, Cs, Cs}.

LrMMA 3.6.

=0, (Kronecker’s delta).

T V k4
(3.15) <F"’ - )

rrTRE
Proor. By virtue of 6°) and (3.5), we may put in Lemma 2.4
V=g, W=rfn, ¢=A.Hgn
and accordingly u=r¢- Jw=2,g,. Hence we get

V(ng Fgm)mzm(gm gm)z}\msmn (by (3'8))

which implies (3.15).
LemMa 3.7, p.=C(D) and Ap,=0 in D (n=1,2,---).
Proor. Yor any ¢&Ci(1)), we have by (3.9)

(D )= Dy )= (0 G0+ 2n@n, )=, F v+ 2,4)) =0,
Hence p,.c:C7(D) and dp,=0 by Weyl's lemma [16] [17].

It follows from Lemma 3.4 and 5°) that there exists a constant M such that

(3.16) < [ 2@ f

=M* for any zxeD.
FTEER An

Integrating both sides of (3.16) over the domain D, we obtain that

(3.17) \w‘ )1 < oo,

Furthermore, since

(3.18) ABe ML (B/e)3t 8 for any positive 8, 2 and ¢,



Non-stationary Navicr-Stokes equation 119
and since

e .
(3.19) S e ita, g ()]s {}_‘ Abe Yint
=N AN

g(l:) 2\1«2; \\:‘ : 2} 12
/t;; iJ \uj\fl;c

(by Schwarz’s inequality) for any sequence {w.}, we have

M@G/ept 5 (3 el if 30
(3.20) NS e it g (D) { -
7l

9e-:1

where the series in the left-hand side converges uniformly in &, )&ty oo)x D

for any t,>0 by virtue of Lemma 3.4, if i}a’,f<oo. Similarly we may prove that

PIEER
(3.21) ;} e ‘g (@) g.(Wls Mt
and
(3.22) S:‘ et p ()l lg =Mt (see Lemma 3.5 and (3.18))
=1

for some constant JM’; the series in the left-hand side of each of (3.21) and (3.22)
converges uniformly in {, 2, y) &{t,, «0)x Dx D for any t,>0. Hence we can define

(3.23 Gt =Y e ngl@ew) (5, k=1,23)
and
(3.24) HAt, o, =X e n'p (m)giy)  (k=1,2,3)

=

for (¢, x, >0, o)x Dx D, and, for any fixed t>0, the formulae

(3.25) ga(t)ujz.«x)m]ﬁ}j' Gt &, y)u (y)dy
e== 10 I

and
37

(3.26) (:H@)u}(:c)::gj H(t, x, yu'(y)dy
=S RN

define respectively a bounded linear operator G(t) in © and a bounded linear mapp-
ing H(t) of D into L¥(D). We call the system {G(t), H(t)} a fundamental solution
(of the Stokes’s initial value problem) in view of the following

LemMa 3.8. If we define u(t)=G(t)u, and p(t)=H(tu, for any u,c:H, then

€D

- l; =vdu—0p, uls=0 and liml|ut)—aql=0.
7.0

D

We shall not use this lemma in the sequel, so omit the proof.

§4. Some estimations concerning the fundamental solution. Let w(f) be a
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Ho-valued function of £2:0 such that jw], and Jw]! are finite for any ¢>>0, and put
ol

(4.1) v(t)ﬁj G(t—w(=)dr ;
4]

the right-hand side is understood as Bochner integral [3][4], and it may be seen
by Fubini’s theorem that each component »/(¢, z) of v(t) is equal to the following
function defined by means of usual integral of real-valued funections:

¢ b r
(4.2) jfﬁ\tw%~ax4mwmymﬁda
1] l =1 0 B

It follows from (4.1) that
4.3 v(t)=v,(t)~v.t)

where

vi(t)= th(twr)w(t)d:‘: ‘Glownd:s  and
(4.4) » e
va(t) = LG(zﬂ-){w(t)-w(f)}d'

Since w(t) is expressible in the form:

4.5 wi)= Y atg,  where  Nla 0=l

TR P

we have (see (3.23) and (3.25))

o e p T A
vi(O)=uvt, )= }—; — () () and
qe=x § i
(4.6)

s !

vy = v, x) _}_j ¢ D e (-, () g (x)dr;
el G0

these formulae make sense in virtue of the following

LumMma 4.1, The series in the right-hand of each equality in (4.8) converges
wniformly in [0, )X D for any £>0.

Proor. It follows from (3.19) and (3.16) that, for any zD,

@ o =il . ('z)l <w ug 3 ";(’) } <M-jw|,
e N in "
and
(1.8) m g'e dutts ﬂ{“’tz(f) « !(T)} g,,(x)ldr
g.(2)

o8 12
}d:‘

4 ) () —w(c )EI{ 2

\
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ot -
;;\ e’“‘giwiig’(t——r)“’f’ir”""‘dr-{ S 9 (")
JoO RN
AR N
::e‘liiwfi’{ : “(L)' SMze V-l
(s \

Hence we obtain Lemma 4.1 by means of Lemma 3.4.
From (3.5), (3.6), (4.3) and the above lemma immediately follows that
COROLLARY. v(t)eC(D) and v(t)is=0 for any 0.
LemMA 4.2, There exists a monotone function &(t) of ¢t>0 independent of
w and such that
bolcsa@Cwl A lwi) and lime(8)=0.

[N
Proor. From (4.3), (4.6), (4.7) and (4.8) follows that
Yol < MUlwl, + e~ Ywil) for any t>0.

Hence it suffices to prove that, for any #>0, there exists %==7(e)>0 such that
Ho (w4 wll) whenever 0<t<7. For any ¢ >0, there exists N=N, such that

4.9 { }_} ;f,{;@)‘ “} < ;i for any ae D

(by means of Lemma 3.4). We put 7=(2M=z1.) 'e. Then, if 0<t<y, we have
l—-e ¥ vt <e/2M, and hence

N=1] e int
(410) }:}l ‘*""}' a’n(t)gn(fs)
N fra \_1 2y i/
{\‘(1 en)a,,(t)} { l(](l) }
x 1
sSA—e WYlwll,-M < ; flw
and
Nelptoo
(411) S j ]g‘m“'”{an(t)—-zvn(r)}g,,(x)ldt’
w=1Jp

< {o{v ()= (5) }I{N‘;‘ 9.()

= =] )‘n

2y 1.2
} dr

gM&vllw{[’S (=)t de s Matytlwli<--Jwll  (by (3.16).

It follows from (4.6-4.11) that
Loisiodh v

& . ee , d
< (5 Wwller—y? ot )+ (4 Hwli+ | o

.,
¥4
t
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Zellwl, - fwil) whenever 0<t<y
Lemma 4.2 is thus proved.
Lumma 4.3,

and such that

There exists a monotone function &(t) of t>0 independent of w

v geO0wl jwil)  and ligl &x(t)=0.
tio
Proor. We first prove that
4.12) polls Me ' wil, +8lw]) for any i>0
>0 and ¢>0:

By means of (3.20), we have following estimations for any a2 <D whenever t,>¢.

\‘ ]‘*() Jpltyvas
ey }n
(4.13) -
2

w0 M-,
ettt () g.(a))s
1

P

(B EMe Hwl, (fat0) TS 2e)  Mwlf, t5 e
o 1—ginte . . .
(4.14) 2 e lev,(t )"“n(ti)i"gri(m)lgjv[§:w[ B =t 17551
=1 i
r ©a
St
7?:1

L
Sﬂle tllara=o oy () — (D)} gul) dr
I3

S Me(tst0— ) Hwl{(t— ) 2cde
[

t
gMeﬂuwugg (t—)"12 12 dr £ Mze
44

¢ AT = - H :It,y
=) t ‘
E &‘ ',2‘n0“2n(ll»a—:‘{N’"(t)““(l/,,(f)} gu(x)ld"
n=1J0
"t
(415) j‘icr‘:M(i%—'ﬂw‘r) i’wm(t")l‘ -1 d'
1]
flia ot
=de iniw{ifH +\ I(H g—7) Vit
A IR
<de* M| {2’ ba) oids +§ (t+a—2)3 ‘)_l’“dv}
of -1 . \ 5 ’f L e
£ - ! [IM ¢
sde M!w;{t(%r) \3 42571 (3 }
S17e *Miwllo 2t 1= (t>0),
(4.16) <o

__“e‘,l,;{l
AF?

g e AT L (8) = ()} = {e () — ()} -l gu(@)id
{

5) Here we use the fact

i”':z(tl) - (l’;;(tg)g '!gn(x)!
%1’ e = 1

L300 =1

30t)1 /%,
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SM-lw(t)—w(t) S M- i~

and

2 ty
4.17) st g e T () — ()] gL () d s

n=1J¢,

Ly
gg Me (t—o) Hwl! (t—o) o 3 ds
Ji,
i
éM@"’iin{,S (ti—<) Vi 20 Ml (F— 1) 2,
s

It follows from (4.13) that the function

r mpintiata)

(4'18) vi(th t-’; g, ‘T)Z }.:l }7 T ("rt(tl)gzt(m>

is differentiable in #>0 and satisfies

601@1 B A O',Vf}')

oo

E@2e) 'Miwl, {52572,

Hence
foy(ty, Lo, ti—1s, 2)—0,(t, L2, O, )}

{n«e?
<
JO

Combining this inequality with (4.14), we obtain (see (4.6))

vty 1., o, ”C)

N do < Me™ ), [t~ bV 2t5 V2.
(23

i(ts, 2)—v.(ts, DS Mle™Wawll,, - fwl] )it — 17tV (>8>0,
which implies that
(4.19) Lo s Mle wll - wil).

Similarly it follows from (4.15) that the function

oo "¢
(4.20) valt s, )= 33 S e i L, (1) = ()} g ()
0

[T
satisfies
os(te; ti—12, ) —0alle; 0, )| 3de "M w1, Pt VA

Combining this inequality with (4.16) and (4.17), we obtain (see (4.6))
[0ats, 2)—Uo(ts, ) (Bde 2+ 14 20 M lwll! |4 —ta12212,
which implies that

(4.21) o [T jwii.

From (4.19) and (4.21), we obtain (4.12). Accordingly similar argument to the
proof of Lemma 4.2 may be applied to estimations (4.13-17), and it may be proved
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that, for any ¢>0, there exists 7=7(¢)>0 such that "v.//<«(lwl,+ ] w}!) whenever
0<t<#. This fact and (4.12) imply Lemma 4.3.

LeMMA 44, vay and [Pol, v i 0w, .

Proor. By virtue of the orthogonality relation of the system {g.} and that
of {g.} (see (3.8) and (3.15)), we have

f oeo i =)

[[IANG PPN ST - ; Vot (Y0
PN e Ta (g £ 03 Ta()
forese A i i

<

and

S e D ey -0 S e by 319,
il gez N

s o
fa =y

t

Hence F’v(t)ug \)‘ Ty (F g.dr is well defined (7 is understood in the

generalized sense deﬁned in §1) and
o)) <(2e) ”"‘ﬂiwﬁly'(t~—r)"'”dr:gu"'"?t"’?iiwii( )
0

which implies (|Fvl, v 2 wl, q.e.d.

LemMma 4.5. [[Poli<sy 2wl +5lwi).

Proor. By similar argument to the proof of Lemma 4.4, we obtain from
(4.6) that

ij, 1“‘8“271( V i3 : z‘
Foy= 5 170 ) 79 = iy D 1-,27- Wi intt-o
2= A Aa' = =1 0

and

Fo(t)= \‘ S et ey (Y — v, ()} - /g,, dr.
T

n

The following estimations are obtained by virtue of the orthogonality relation
(3.15) of {Fg.} and by similar computations to those in the proof of Lemma 4.3:

i: > "o 72 29
(4.22) | S et () O !'<(2c~) 2wl a1,
=1 4y
(4'23) ; }.J {“ (tl)m“u(f )} s,g, ‘ / 2pmAnameid - t<2l ((’ ) 1"‘”")#, ity—t2 1
o M i
4.29) | N \ 7200 L () e )1 ¢z
TS ]

d 3 N 802 . o R o
S} pV e — )8 i (E— )V e i d
éf(ZC) (b0 =) Hwli(t—o) 21 2d

Jo

H/\

¢
=321 *‘:wvuj L (T e Y Py

0

LN e [T [PRIEE
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H s ‘e
(4.25) i~ g e s ) a9} T A
n=1

§( (2e2) VA(te— o) VWl i — 1 Rt

S2V3er) bl -t
and

Lo . :

wee 3 [mrenc e -a@ s

S213(e) a0, (8 Pt DS 2 e) el ity ],

It follows from (4.22) and (4.24) that vi(t, t:; o, -) defined by (4.18) satisfies

i i
oo Fu(ty, ts; 0, ) <(20/) Hwlle o

and that vs(t, , -) defined by (4.20) satisfies

HE ) u
Y f e egoa, —qsm -
|y Poslte; 0, 1) Sem w7

Hence
WToy(ty, 2 6y —ts, )T Uity t2; 0, I S(@/e) 2V wl, [t —t:!V
and
1P0s(te; ti—ta, ) =P UL, 0, M £2e7 3z wlll, 61— ]2
Combining these inegualities with (4.23), (4.25) and (4.26), we get

Zo i< 73wl A fwll)
and

HZ2Y - T R 11
Hence we obtain
IPolisy 2t (lwl +5lwl),  g.e.d
Next we put

(4.27) a(t) :X:H(twr)w(r)dr

and

q:(t) ZSIH(t —w(t)d = \AtH(r)w(t)d:
wss) { 0 Yo

qg(t)=§:H(t-r){w(t)—w(?)}dr.
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Then
(4.29) q{t)y=q:(t)~q:(t)
(ef. (4.1), (4.3) and (4.4)), and we have (see (3.24), (3.26) and (3.2))
. O 1““0”2"[ - & ~ 1
GO)=qit, )= 3 = atp )= HL X (1= ma,()g.1(x),
7oz} ‘n TR |

(4.30) {

A
e Iy (B~ (D)) pula)d s
0

q:{t)= qult, @)= }3

7= 1

ey

e HT N

:

t
g Rue D L ()=, ()} g, () ;
0

Ly

these equalities make sense by virtue of the following relations:

e 172
{31 wed swl<o
(4.31) { - i
\ (S e O fa )~ (}]F) dee i< oo
g 9o 7
(ef. (4.7) and (4.8)). Hence we have
fall ST H - jwl; and le:ligme W HI - wl!

where §H| denotes the norm of H as a bounded linear mapping of D into L*(D).
Similarly we may show by the same argument as the proof of Lemma 4.3 that
lgdli=I H (e lw],+wl})  and la:li =TI H |- [wii.

Thus we obtain that

LEMMA 4.6.

tel. SV H-(wl +=e Yewi)  and fqll! =1 H (e lwll +-8lwl?).

§5. A solution of the equation Gv/ft=v_Jv+w—Fq and some properties of
F(v)., Let w(t) be a given Hy-valued function of t=[0, T) where 0<T= oo, and
assume that {el, and Jw) are finite for any t=(0, T). We consider the linear

equation
G.1) ~—(—§;~:p-dv+w~=—ﬁq 0<t<Ty,

and we shall show that a ‘ weak solution’ {v, ¢} of (5.1) is given by

(5.2) v(t)= rG(t» Sw()ds
v Q0
and

(5.9) q(t)zﬁﬂ(t»:)w(ad.-
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and that, if wt)=w(t, 2) is Holder-continuous in (0, T)x D, the system {v, ¢} is
a classical solution of (5.1).
LeMya 5.1, Assume that w=u(t) be a Oyvelued function continuous in

telty, t.] with respect to the norm in 9, and put

uy(t)= \‘{: Bg.  where  3.(0)=u), g.).
RS

Then
hm sup s () —u(®)] =0

ik Py Y

(namely {u~(t); N=1,2,--} converges to u(t) as N-»oo uniformly in ¢ with re-
spect to the norm in £,).

Proor. The function {uy ()= \,,9,,(t)- is continuous in te[4, t.] for each
N, the sequence {{uy(t)j* N=1, 2,- } is monotone increasing and converges to
lu@®l* for any fixed ¢, and |lu(®)l® is also continuous in te[t,, t.]. Henece luy ()
converges to fu(f)|* uniformly in t&[t,, t.]. From this fact and the orthogonality
relation of {g.}, it follows that

\hm lux(O)—u@®)i*= Hm {la® "~y @O} =

and the convergence is uniform in t<[t, £,], q.e. d.
We put, for N=1,2,.--,

(54) Wy (t) = '— Ulu(t)gn where (Eu(t) = (ll)(t), gn),
(5.5) oy () = ‘.tG(t-r)wl\«-(:)dr
JO
and
I3
(5.6) v () :LH@ — s ().

Then, by Lemma 5.1, it holds that
6.7 lim lwy—wil, =0
Neoo

and accordingly

(5.8) Jim Noy—v,=0 (by Lemma 4.2)
and
(5.9) Al,im (FPox—=Fol,=0 (by Lemma 4.4)

for any ¢. Further we have
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“t

(5.10) "‘(”“\‘150 D, () gad,
Nt

(5.11) vall)= ::,S e it () ghad
7 [

and
N t .

(5.12) qx(t)= )]l Soe"""’”an(r)p”dr

Hence each vy(t) has its strong derivative duvx(t)/d¢ in 9, and

. ’\/
(5.13) oo S 20 a,@gdet Yo,
3 [T 1 Ge=1
N 2 \
= \‘_“. S e’ /’,uih:)(}'”(.’)(u-dgl Vpn)d"‘w (t ,Z(f)g, (byt(g,g))
w=1J0 n
=y AUt Wy—F @y .
We have also that
R N N e
(5.14) GO - S o ma g S | e (=)} g
ETER n=1J0
On the other hand, we may see by means of (4.13) that
(5.15) v(t)— \j C I”t(l:z(t)gn+ b3 ‘5 Ae” A"a__){“fu(t)_(ln( )J’gn
is well defined for any t«={0, 7') and satisfies
(5.16) 1ol =llwlf+=e wl! for any t(0, T).

Furthermore we may prove from (5.15) and by similar eomputations to those in
the proof of Lemma 4.3 that

(6.17) 16li=e Uwil.+8lwl!  for any t=(0, T).

Here we show the following
LeEMMA 5.2, The function v(t) has its strong derivative dv(t)/dt in ,
whenever 0<t< T, and satisfies that

; i o
(5.18) dv <o and | »dqrrii <oo  for any t<=0, T)
)) dt it i dt Lt
and that
l
(5.19) lim sup | —dv‘(t)r - gy(t) v;_O whenever 0<t,<t.<T.
Noeo tyhrstzl  dE dt |

Proor. The function v(t) defined by (5.15) is strongly continuous in [ty t.]
by means of {5.16) and (5.17). Hence, by Lemma 5.1 (see also (5.14)), we have
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(5.20) lim sup 20O

Newor trctmes dt —u(t) =0.

It follows from (5.8) and (5.20) that v(¢t) has its strong derivative dv(t)/dt in D,

whenever 0<t< T and dev(t)/dt=0(t); this fact implies (5.18) and (5.19), q.e.d.
LEMMA 5.3, 1) ¢®)=C(D) and dg(t, -)=0 in D; i) Fqt, 2) is Hiolder-

continuous 1n (0, T)xD; iii) hm sup tgxB)—qd) =0 whenever 0t <t. < T.

ProOF. By virtue of (4. 31) Ije{;r;;r;a 4.6 and Lemma 5.1, we may show part
iii) of this lemma by the same argument to the proof of (5.20). On the other
hand, each ¢y(t) belongs to C~(D) and satisfies dgy(¢, -)=0 in D by means of
(5.12) and Lemma 3.7. Hence

(o), 4)=lim (gx(1), 4¢)=0  for any  ¢=Cr(D),

which implies part i) by Weyl's lemma [17]. Accordingly we obtain part ii) by
means of Lemma 2.8 and Lemma 4.6.
LemMa 5.4 (Fundamental lemma I).

d dv 0\ . .
e Y o o =y /8 Y e ([ A
(5.21) di 0, ) <dt'q/’ (o, 4 +(w, UY—(Fq, )

Jor any ¥eC(D) whenever 0<t< T
Proor. The first equality in (5.21) is obvious from Lemma 5.2. The second
equality is proved as follows. We obtain from (5.13) that

(40, ) =stos, A0+ @y, D)t ax, div?)  (N=1,2,-).

Letting N--»co and using (5.7), (5.8), (5.19) and Lemma 5.3, wet get

(G5 7) =0, I+ 0,04 AV E)=s0, )+, 1)~ 1), q.e.d

LEMMA 5.5. (Fundamental lemma II). i) v(©)eCYD)NCYD), v{)y=0 and
divo(t)=0 in D for any i<, T); ii) v, x) and Fo(t, ) are Holder-continuous
wn (0, TYXD; m) if especially wit)=w(t, x) 18 Holder-continuous in (0, T)x D,

dv o 2y
then P nd - ot

PrOOF. v(t)EC'O(D) and v(f){s=0 are already proved (see Corollary to Lemma
4.1). Let D,, D, D, and D; be arbitrary subdomains of D such that

(7, k=1, 2, 3) exist and are continuous in O, TYX D.

DycD,cD,cD.cD.cD,cDyc D,
and let w,(x) and w:(x) be functions of class C~ in D satisfying

w@)=1 in Dy, w{z)=0 in D—D;
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and
on{@y=1 in D, wa(x)=0 in D—D,.
We put
(5.22) K(t, o, y)=(d=et) ¥ 2w (@)wly) exp(—713,/dvt) (t>0;z, y=D)
and
0
l‘ud,;,— ot “'K(t, x, ¥)¥ (t>0)

(5.23) J(t, x, )= {
0 (t=0).

Then J(¢, @, ¥) is of class C” in the region {—co<t< oo &, y=D}. We may see
from (5.21) that each component »/(t, 2) of the vector function v(¢, x) satisfies

0
o

Y K{t—=, &, y)v'(z, y)dy
J D

= i ;T(t ~1, %, (s, z/)dy+j- K-z, z, ) {w-’(r, ¥+ O‘Q(‘i’,yl} dy.
v I Il

oy’
We fix arbitrary ¢,=(0, T') and assume that ¢>t,. Then, integrating both sides
of the above equality in the interval: t,<z<t, we get

t

(5.24) (¢, x)r—‘j Kt —to, &, 1)v’(L,, y)dy‘%g drS J(E—z, &, Yw(z, y)dy
n, Jto D,-D,

2
[las] Ku-rz, w{wi v+ a‘lﬁf«'j?‘)-«»}dy for z& D,
to Jp, oy
by virtue of (5.18) and part ii) of Lemma 5.3. Hence by virtue of the fact that fwl,
and {w}! are finite and by the arbitrariness of D, and t, we may see that »/(¢, -)
eC!(D) for any t<=(0, T). On the other hand, v(t) clearly belongs to £, by (5.10).
Hence dive(t)=0 in D by Lemma 2.3. The Holder-continuity of v(¢, z) and that
of Fe(t, x) in (0, T)X D also follow from (5.22-24) and the arbitrariness of D, and
to. Finally assume that w(t, x) is Holder-continuous in (0, T)xD. Then w(z, %)
+0q(z, ¥)/0y’ is Holder-continuous in (0, T)x D for each 5. Hence it follows from
(6.22-24) that dv/0t and &°v/0x'0x" (4, k=1,2 8) exist and are continuous in
(te, 7YX Dy and accordingly in (0, T)x D, q.e. d.

We next investigate the nonlinear mapping F.(v) defined by (2.837). Let w(t)
and ©(t) be -valued functions stated above (the Hélder-continuity of w(t) assumed
in part iii) of Lemma 5.5 will not be used), and put

(5.25) (t) = F ).

6) The subseript # to J means to operate J to K{#, z, y) as a function of .
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Then
LEMMA 5.6. m)e® for any t<{0, T3, and we hove
(5.26) Ml ST WAl e o+ U ile+ v e,
and
6.27) i IW LU o+ F U v 4+ U irel - U el
+ivl el e Pl

This lemma immediately follows from (2.30) and (2.35).

LEMMA 5.7. There exists a function ¢=¢(t, x) on (0, TYXD such that ¢(t, -)
eCHD), Pup=ry¢ and d¢=200U Fov)+{Fv:Fv) for any t.

Proor. We define w+(?) and vy(t) by (5.4) and (56.5), and put @y ()= Fex(t))
(N=1,2,--+). Then divey=0 and #H:)—WE)eHNCYD) by (2.29), 3.5), (3.6)
and (5.11), and accordingly

(5.28) div (iBx—W)=20U:Fo)+Fvy: FeyneC(D).
Hence, by (6.8) and (5.9), we have

(5.29) Lim | By— =0

and

(5.30) }Vims div(@y— W)— (2@ U: Fo)+ (o : Fo)dde=0  for any fixed t.
—o JD

It follows from (2.34), (5.28) and by Lemma 2.6 that
(5.31) Piipy=P(iy—W)=F¢x

for a suitable function ¢y=¢xy(t, 2) such that dey=div({@y— W) for any {. Let
Q.(p) and K.(z, y;p) be as defined in §2 for any z& D and p>0. Then, if Q.(3R)
<D, we have

¢ut, y) ds
on, Y

oxtt == Ko, yi ) divi@att, - W iyt | Kiw yip)

Dz S

for any z€Q.(R) and p>R where S(p)=0Q.(») (see the proof of Lemma 2.7), and
accordingly

IR
putt, )=—p- | dp| Ko, yi pivimatt, )~ Wt )y
2R S

3R
or S dp § K, y; (P (®)-n,)(0)dS,
°R Sie)
since —%%3"—=(V«;‘_V-n,,):(P,iB‘V-n,,) by (5.31). Therefore, if we put
4
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R¥
ealty D= | do| K ys 0 EUG: PO+ o0 PooIwYdy

k74
%1jd4 Ko, y; p)(Pid(t)-n,)()dS,,
1{ F&4 Sio)

2
we may see that
(5.32) CaaSCHQR)) and de. =200 : Fo)+v:Pv) in Q(R)

for any t (since FU and Fv are Holder-continuous in 2 by (2.31) and part ii) of
Lemma 5.5), and also that

limFey(t, 2} ¢.u(t, 2)[=0 for any <, x>0, T)X Q.(R)
Ao

by means of (5.29), (5.30) and by similar estimation to (2.13). On the other hand

lim {F ¢y —Pupl = lim | P& v— @)1, =0
N N

by (5.31) and (5.29). Hence we get
Piio=V¢., whenever 2 Q.(R).
Since z is an arbitrary point in ), we have
PipcC'(D) and div Piip=20C U :Fv)+Fv: o) for any ¢
by (5.32). Hence, by Lemma 2.1, there exists a function ¢=¢(t, 2) on (0, T)XD
such that
¢(t, ye=C¥D) and Pig=r¢ for any ¢
and accordingly that
de=div Pig=2F U Fo)y+(Fv: Fo), q.e. d.

COROLLARY. Pyio and P are Holder-continuous in 0, T)x D.

Proor. It follows from (2.80), (2.81) and part ii) of Lemma 5.5 that & and
¢ are Holder-continuous in (0, 7)xX D. Hence, by Lemma 2.7, P,io=F¢ is Holder-
continuous in (0, T)x D, and accordingly so is Pig=&—¢.

§6. Construction of a selution of the Navier-Stokes equation. Let w(t) be a
o-valued function of t=[0, oo} satisfying |wl, <o and jwj/< oo for any >0, and
put

v(t)::S:)G(t—r)w(f)d: and  (t)=F(v(t)).

Then, by means of Lemmas 4.2-4.5, we have
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v,
v
o,
A

(6.1) FEEOCw )
where £(t) is a monotone function of >0, independent of w and satisfying

(6.2) lim «(t)=0.

7L

1t follows from (6.1) and Lemma 5.6 that

(6.3) NS WU+ wDOF UL+ U )+ e (wl - lwell)?
and

6.4) @S IWF @Gl A+ iwiDUF UL+ i UL UL U ) 200 (wl -+ wif)

for any t>0. We put

(6.5) A=IWL+irU)+ U +1
and
(6.6) A=W+ UL+ U 4 U+ U 2.

Then A; and A{ are finite for any £>0 by (2.30) and (2.35), and increase when ¢
increases. Hence, by virtue of (6.2), there exists a positive number 7 for which
e(TYS(Ar-+3A%2) "t holds. (We choose such 7' as large as possible.) Accordingly,
from (6.3)-(6.6) immediately follows that

LeMMma 6.1, If |wl,<A, and lwl; <A}, then |@llr<Ar and |@r< 4} .
Next, let w.(t) (n=1, 2) be Ds-valued funections of {€[0, o) satisfying [w.]l,
<eo {w,l{<oo for any t>>0, and put

v,(t)= k‘(G(t“r)w“(r)dr and &,.(t)=F{v.@) (n=1, 2).
Jo

Then it follows from (6.1), (6.3) and (6.4) that

6.7 @@l =@ (we—w o+ fw—w DU U+ U
+e(t)*lw,—wil + [w: —w [ Hwe -+ w4+ L w4 Twid )

and

6.8) @i~ Bl S e we—wi i+ Jwa—wi ) FU Y+ [ 7 U e+ U AU )
+26(t) (Jlw~wi ||+ we — w 1wl + w1+ w4 w1

for any t>0. Let 4, A/ and T be as mentioned above. Then

LEMMA 6.2. If w.lr<Ar and |w,i:<A4r (n=1,2), then
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. e m e ey, L B 4 5
6.9) $iB: — 81 o+ 10— 5,17 < 7 (lwy—w, v+ we—w, ||7).

Proor. Since {waflr+ jw.li+ lwl 1+ w4 <2(Ar+ A%) (by the assumption), we
obtain from (6.7) and (6.8) that
N~ 0l r (TP Ul r 4 U p4+-2) (o —wy | 7+ o —wy i)

and
(1~ W e 2e(TYWNP U+ WU N+ L U e U P a(w—wll -+ [we—w,}5).

Hence we have
&8s~ Bl o+ | B2— 18, 1%
=(Ar+3ANT QU+ 2 Ul (P U 54 Ul 4 8)(lwe—wy | p 4 | wa—w, |15).
Since Ar+3A%={Wip+3| W\ +4 U+ 47U +31F U4 +81 U4 +17, the above
inequality implies (6.9), q.e. d.

Using the above results, we shall construct a solution {v, ¢} of (2.36) and
prove Theorem 1. We first define two sequences {v.(t)} and {w,(t)} of Devalued
functions on [0, T'] by means of successive substitution as follows :

(6.10) v,(£) =0
and
w,(t) =Py (v.,(1))

(6.11) } (n=1,2-..).

vn(t)=j':G(t—r)wn(r)d:

Then we may see by means of Lemma 6.1 and by mathematical induction that
(6.12) lw.)r< Ay and {w,|< Ay (n=1,2--),

and accordingly, by Lemma 6.2, that
. . 6
(6‘13) ”wlu I“wnn T”l‘ “lvnq 1"'wn”,7§7 (”wn“w;a-ln T"*‘ ”wn_wnalug‘)-

Hence there exists a ©y-valued function w(t) on [0, 7] such that

6.14) fwilr<4y,, fwlly £ Al
and
(6.15) lim jw, —w|z=lim jw,—w]); =0.

Therefore, if we put
(6.16) v(t):j‘G(t-:)w(r)d: and ()= F.(v(t),
0

we have
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limv,—v'y=limv,.—v =0

PrER T Pt
and

mifv,—Fel=limilfv,—Fei=0
B, s

by Lemmas 4.2-4.5, and accordingly

limllw,— Pyip!l = limlw, — P04, =0

= 2y

by Lemma 5.6 (The difference w,— Py does not contain the term W). Hence we
have, by (6.15),

(6.17) w(t)= P,i(t) for any te{0, T

Furthermore, by Lemma 5.7, there exists a function ¢;=¢:(¢, @) on (0, T)xD
such that

(6.18) ou(t, YeCHD) and Pip=F¢, for any ¢.

We define q(t)=q(t, ) and q(¢, z) as follows:

(6.19) Gt =| Ht—owed:  (see (5.3) and Lemma 5.3),
v
(6.20) qlt, 2)=4q(t, 2)+¢u(t, 2).

We shall prove that {v, ¢} is a solution of (2.36) in usual sense; this fact essentially
implies i) and ii) in Theorem 1 as is shown in §2. By means of Lemma 5.4 and
part i) of Lemma 5.5, we have that

dv .\

(621 S w =G V) =, I+, =G, )

for any ¥ =Cy¥(D) whenever 0<t< T and that
(6.22) v(yeCD)NCHD), vis=0 and dive=0 in D

for any te(0, T). On the other hand, it follows from (6.17) and Corollary to

Lemma 5.7 that w=w(t, z) is Holder-continuous in (0, T)x . Hence, by part iii)
Pl favi
of Lemma 5.5, 2‘; and 7(]1:) . (4, k=1,28) exist and are continuous in (0, 7)

ox'ox
x D. Therefore

d dv ov A\ .
o [/ A / i T S i Y e 2
dt(v’[) (dt’l> ((%,l) for any ¥ <=C3(D),

dv L , . : iy
7 T denotes the strong derivative of v{t}=vif, -} as a H,-valued function of t<{0, 17,

-
while “Z? denotes the usual partial derivative of vit, 5 as an R%valued function of {f, z;
0

{0, T)xD.
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while it follows from (6.17), (6.18) and (6.20) that
w—lq=%-F¢.~Fq=F@)~Fq

Henece (6.21) implies that

do(t)  ou(t, ) dv _ , §
i S and g = Adv+F(v)—Fq.
Thus we have proved (2.36).
If we put
(6.23) u=U+v and p=¢itei+g,

then it is clear that u(f, x) and p(t, ») satisfy 1) and i) in Theorem 1. Since

1 dv | }
|dv t <o (see Lemma 5.2) and ||Fvl < for any t<(0, T), we obtain that

I i

! dt it

Tu(t) on(t, - - i ) . .

(t;i) -~ W;t A«—)-ESQ, % Z’: f <oo and [Full,<eo for any t<(0, T). Hence it remains
4 i oAt Uy

only to prove that pmg‘o;célﬁ(l)), namely
(6.24) OO+ () + Gty LA(D) (see (6.20) and (6.23))

for any t=(0, T'). However q(t)e L¥(D) by Lemma 4.6, while it follows from (2.33)
and (6.18) that

V{e)+¢.)}ed

which implies ¢(8)+¢:(t)= L3 (D). Hence we obtain (6.24). Proof of Theorem 1
is thus complete.

£ 7. The uniqueness of the solution.

LeMMA 7.1, For any weCYD) satisfying w]«=0, there exists a sequence
fw, Y CH(D) such that

(7.1) lim jlw,, —w} =0 and Hm ! Fw,—Fw)=0.

FHe--r 00 [ZEREN]

Proor. Let {D,} be such a sequence of subdomains of D as stated in Lemma
2.2, where we may assume that the distance between S,, (=86D,,) and S is between
2}"; and '32.‘ for any m. Then, for each m, there exists a funection ¢,=CH(D)
such that ¢, (@)=1 in D, and F¢ulsdm. We put w,.(2)=¢.(x)w(x). Then, by
virtue of the assumption: weC'(D), we may easily show (7.1).

LeEMMA 7.2, Assume that weC{DINCYD)NHNDy and wis=0, and put

N

(7.2) wy=a,g, where o, =W, g,).

ED ¥
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Then

(7.3) limlwy—~wli=0 and lim {Fey—Tw]=0
Noewos N

ProoF. From (7.2) immediately follows that lim jeey—wi=0. Since I p,—vdg.
=2,0,CYD)NCHD)NH, and | p. <o by (3.9) and Lemma 3.5, we obtain by
Lemma 2.4 that

(Fw, g )=, 4,8,.)=2,,.
Hence

i‘.z’.m'igpﬂ Fwit (by Lemma 3.6),

STy |
accordingly

Hm jFwy—Fwy. | =0,
NN weo

Hence it follows from the definition of generalized I” (see §1) that

Im [ Fwy—Fwll=0.
Noesuo

LEMMA 7.3. For any weCIWNCUINNDNDy satisfying wls=0, there
exists a sequence {fx}CCy(D) such that
(7.4) i}"vr}r}w!iz“é‘vaiI =0 and \hnl W@y —Fwl==0.

Proor. We define wy (N=1,2,--+) by (7.2). Then w,’s are in C(D) as so
are g,'s. Hence, by Lemma 7.1, there exists #,=C,/(D) for each N such that
Wby —wy]| <1/N and | Fioy—Fwy}<1/N. Hence we obtain (7.4) by Lemma 7.2,

LEMMA T7.4. Assume that u, v and w belong to CY(DYNCYD), that divie=0
in D and that at least one of u, v and w vanishes on S. Then 1) ((u-I"v, w)
=—{((u-F)w, v); ii) if especially v=w then both sides of the above equality are
equal to zero.

The assertion i) may be proved by means of partial integration. The assertion
ii) immediately follows from i).

LEMMA 7.5. If {u, p} satisfies all conditions stated in Theorem 1 and if
weCH{DINCDIND,NDy and w|s=0, then

(7.5) (CCI;:, w)+»(l7u, Fw)={(u Fw, u)y+(f,, w).

Proor. By Lemma 7.3, there exists a sequence {#y} <C,'(D) satisfying (7.4).
du(t) ouf(t, )

a5 , we have

Since {u, p} satisfies the equation (1.14) and since -
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(7.6) v dJu—U{(p—@y)= ((l;:—{-(u-V)u«fg.E@ (see (1.20)).

Hence, letting N-—-oo in the identity :
(v-du—"(p—-¢y), By)=—Fu, Fis)+(p—¢,, diviby),
and remembering iv) in Theorem 1, we obtain
(v du—F(p-—¢p), W= —1(Fu, U w).
On the other hand, since ((u-Fju, wy)=—((u-Fwy, u) (N=1, 2,---) by Lemma
7.4, we have ((u-Fu, wy= —((u-V)w, u). Hence it follows from (7.6) that

" dn

—u(Pu, [/“‘w):( dt’ w)——((u-V)w, w)—(f, w),

which implies (7.5).

Now we prove Theorem 2 (uniqueness theorem) as follows. Assume that
{n, p} and {v, q} satisfy all conditions stated in Theorem 1, and put w=u-v.
Then, for any fixed 10, T), wcC{DINCHD)ND,, divw=0 in D and w!=0,
and accordingly we:9,. IHence, by Lemma 7.5, we have

(1.5) (fé‘t‘ , w\ o (P, Pw)= (- F)w, u)+(f,, w)
and

/ dv
(7.5") k'dtﬁ’ w>+v([7v, Fw)=((v-Iw, v)+(f;, w).

Subtracting (7.5””) from (7.5’) term by term, we get
N dw .
(7.7 < gt w) +ulFwi={(w-Fw, u)+(v-Fw, w) ;

here the last term vanishes by part ii) of Lemma 7.4. By virtue of condition ii)
in Theorem 1, C=:5u’, is a finite constant. Hence

(@ M)w, = Cluwl [Pl siFwl+ - jw?
for any t=(0, T). On the other hand, it is elear that

' dw wj_“lﬂ,.fd’ lwli®
Vae0)=g g 1ol

Hence it follows from (7.7) that

d H Hig C H na
dt é!w(f)ii";'g; ()} o<t<).
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na

Since l’m(} tie(t) =0 (see ii) in Theorem 1), the above differential inequality implies
dae(t)i =0 for any t&(0, 7). Hence we get u(t, v)=0v(t, ) and accordingly Fp(¢, &)
=0q(t, x) in (0, T)X D. Theorem 2 is thus proved.

Finally we show that our solution coincides with Kiselev-Ladyzhenskaia's
solution [8] under our assumptions (1.18-21) with b=0. Let {1, p} be the solution
constructed in §6 and {v, ¢} be Kiselev-Ladyzhenskaia’s solution. Then, for any
fixed ¢, u®)=C{DYNCUYDYIND,NT, (since u;s=0) and accordingly Lemma 7.3
may be applied to u(t), while it may be seen from the argument in [8] that
there exists a sequence {v ()} C!(D), for almost every (0, T), such that

lim [oy(O~2®1=0 and lim | Fox(t)~Fe(®)] =0,

Hence, if we put w(t)=u(t)-v(t), there exists a sequence {@()}cC,'{D) satisfy-
ing (7.4) for almost every . Hence we obtain (7.5') for almost all t, while the
results of [8] implies (7.5)"" for almost all £&. Hence, as we have shown above, it
holds that

(il;?) s w(t))é——i Hw(t)® for almost all ¢

{C=luljy<oo since 1 is our solution), and accordingly

g (ol dw@) N, G e oy
s t)] ”Jf( ) ,w<.>)dk§2yjonu<~>“ de (<< T).

Sinee lim w(t)}I=0, the above relation implies [w(t)}=0.
tio

Combining this result with Theorem 1 and Kiselev-Ladyzhenskaia’s result
(8], we may easily derive Theorem 3.
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