Integration of the generalized Kolmogorov-Feller

backward equations

By Keniti Sarto

We consider, in the Banach space of continuous functions, the initial value
problem of the integro-differential equation of the type
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Here a:z) is symmetric and non-negative definite (not necessarily positive
definite) at every point z, @(£.) is a bounded function coinciding with £ near
£:=0, gz, £) is non-negative, and G(d§) is possibly of infinite total measure.
In the one-dimensional case, the equation (0.1) is the temporally homogeneous
version of the backward equation considered by A. Kolmogorov [9], W. Feller
[1] and K. It6 [6]. K. Itd’s treatment is very general, but we use an entirely
different method not confined to one dimension. In the spatially homogeneous
case, that is, in the case where ai, b, ¢ and ¢ are constant, G. A. Hunt [5]
proved the existence of the semi-group generated by A.

Here we sketch our method of integration. We use the Hille-Yosida theory
of semi-groups [4, 12], and the problem is reduced to solving the equation

0.2) (@—Ayu=f

for large « and dense f. We define an operator A, from A, replacing a:(z) by
aw(x)-+1/n and cutting off that part of the measure G which lies on the 1/n-
neighborhood of the origin so that the total measure becomes finite. Then A,
is the sum of a non-degenerated elliptic differential operator and a bounded
operator. So we can solve

((U - An)un "—”:f

for smooth f. If we can prove | Aun—Arun||-—0 (n—>0), then (0.2) is solved
when the right side f is replaced by a function near f in the sense of the norm,
namely, by f—(Aur—A.ur). The estimation of ||Aun—A.,u.ll, however, is dif-
ficult in general, so that our treatment is restricted to two special cases.
The first is the case where the coefficients in A are periodic (i.e. z space is a
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circle, a torus or the like in higher dimensiong)” and moreover some of them
are constant in some directions. The second is the case where x space is a
real line and the coefficients satisfy certain conditions near +o and ~co.

The author expresses his thanks to Prof. K. Yosida, Prof. S. It6 and Mr.
T. Ueno for valuable suggestions and remarks.

1. Integration on a circle.

Let C be the set of all real-valued continuous functions on the real line
with period 27, and C* be the set of all n-times continuously differentiable func-
tions belonging to C. C is a Banach space with the norm [lull=maxu(x)|. Sup-

pose that the following integro-differential operator is given:
Aulx)=alz)w”(x)-+blxyu (z) +c(zyulz)

. + g [+ E)—ulw)—w (@ Elg(w, EYGUE) ,

where Ry=[—n, 0)U(0, ). Here we assume that
(i) a,b,ceC? a(x)is non-negative and a’’'(x) is uniformly Holder continuous:
(i) g(z, £) is non-negative, belongs to C* as a function of z, and is measur-
able as a function of £, G(df) is a measure on Ro and there exist functions
gdE) (1==0, 1, 2) satisfying

1.2) gz, £) = golE)
(1.3) ag(a"; 81 < e
(1.4) i 26D < gy
and 4
(1.5) S Eg(E)GE) < + oo (=0, 2)
(16) [, 1Eoe@n <-+o.

Since ue€C? implies Au€C, we take C* as the domain D(4). We prepare
a lemma before the statement of the theorem.

LemMa 1.1, A has the smallest closed extension A.
Proor.? We have to show that u.€C® (n=1,2,---), v€C, [u.ll—0, and
fAur—2l--0 imply v==0. Define

Au(x)= Au(x)—e(x)ulx) for ueC?.
Then [JA%»—v|—0. Suppose v+0. We can assume that v is positive at some

1 Penr"i’;)dicrity éssﬁmption was suggested by K. Yosida.
2) Suggested by the lemma of A.Jl. Benrueas [15].
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point ze, without losing generalities. There exist positive & and r such that
for any sufficiently large n

Aun(z)>€ when lx—as =7,

Take $eC® satisfying ¢(ze)=0 and J(2)> 6 >0 when » < |x—a.] <7 and put

- & - )
u.n(x):un(x)—«Eaf”(:v) . where K> max [A%D.

Pt =yt ir

Then,
Ain(a) :Amn(m«-?{‘i AO(E)> Aun(z) —E>0

when {z—x[=<7r. Thus #.{x)< max  #a(y) (Ix — x| <7), since Au(x) is not

lg-myizr

positive at the point where u reaches its maximum. This implies

Un(2e)<C max u»(y)«—}?b‘,

fo—mxgly

which contradicts that ||u.]| tends to zero.

Tueorem 1. Under the assumptions () and (i), A is the infinitesimal
generator of a uniquely determined strongly continuous semi-group {1%¢; t220}
of bounded linear operators on C. T: is positivity-preserving

(1.7 T:f=0 if f70,

and satisfles

(1.8) 1% = e
where
(1.9 r=max c(x) .

By “a strongly continuous semi-group” we mean that
Ty=identity operator,
TeTs=Tiss for any ¢, 820,
and

e f— T f]—0 (s10) for any feC and ¢::0.

Before the proof, we prepare two lemmas.
Lemma 1.2, Let
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Bulz)=plan” (@) +qleyu’ (z) + riz)u(z)

+S [l +E)— ule)—u' (@)Eh(z, EYHE)

where p(x) and hix, £) are non-negative and g Ehix, EYHAE)< +oco. If ueCy,
Ry

feC, a>f=maxr(z), and («—Byu=f, then

| 1,
flul= .
144

—B "

This lemma is easily proved by the faet that if u reaches its positive
maximum at 2, then

Bu(xo) = fulxo)

holds.
Lemma 1.3, Let {S:; t=0} be a strongly continuous semi-group on C with
the infinitesimal generator M: and let M. be a bounded limear operator on C.
Suppose that there exists a constant 8 such that
(M + Mayu(xe) = Bulxs)

(1.10) . . o .
1f u reaches its positive maximum at ..

Then Mi+M. (with D(Mi+M.)=D(M) is the infinitesimal generator of «
strongly continuous semi-group (an; t =0} satisfying
(1.11) ET

Proor. According to the Hille-Yosida theorem [4, 12], we need only prove
the following three facts for any sufficiently large a. (i) D(M:+ M) is dense
in C. (i) For any feC

(1.12) (=M —Mu=f

has a solution ». (iii) If (1.12) holds, then
1
| .
L

(i) is obvious. (iii) is proved by (1.10) similarly to the proof of Lemma 1.2.
The proof of (ii) is as follows. Since M. is the infinitesimal generator of a
semi-group. the resolvent operator Gue=(a—M,) ' is defined everywhere on C
and ||Gs)—0 (@-»+ ). Hence (1.12) is equivalent to

U—~GaMot=Gaf .

The solution of this equation is obtained by the so-called C. Neumann’s series
because {|GalM:l (<[Gal-||M:]) is smaller than 1 when « is large, which com-
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pletes the proof.

Lemma 1.3 implies that (1.12) has a solution for any « larger than 8. The
fact that the value [M:] has no influence shall be used later.

Proor or Tueorem 1. The following four facts are to be proved for any

sufficiently large a. (i) The domain D(A4) is dense in C. (ii) For any feC
(1.13) (a@—Am=f

has a solution in D(A4). (iii) If (1.13) holds, then
o 1 3
(1.14) flal= ——I1fF1.
a—y

(iv) If (1.13) holds and f==0, then u=0.

Among them (i) is obvious. In order to prove (ii)~(iv), it suffices to show
the following (ii")—(iv’). (ii") The range R{a—A), namely {(a-—-Au; ueC?}, is
dense in C. (iii") If

(1.15) (a—Awm=f

holds, then (1.14) holds. (iv") If (1.15) holds and f ™0, then % 0.
(iii") was proved in Lemma 1.2. If (1.15) holds, F -0, and u reaches its
negative minimum at ., then

Slao)=(a— Ayulx) <(a—1u(x) <0 ,

which is absurd. Hence (iv’) is proved.
In order to prove (i), define

(1.16) Awu(z)= (a(x} +i—>u”(x) b (@) + ela)ulz)
+XR [+ E) ()~ (@)E]ge, EXGWE)  for ueC?,

Duu(z)= (a(x) + ;];—)u”(x) +ba(z)w (%) for ueCs,
and

Jau(x)=c(x)ulz) +S [ulz +&)—ulx)lglx, EYG(AE) for ueC

Ry

where R.=[—=n, —1/n)U(1/n, r) and bn(x)———b(:c)-—SR Eglx, EXG(E) . Obviously

An=Du+Jn. Dy is the infinitesimal generator of a strongly continuous semi-
group. For, D. is a non-degenerated elliptic differential operator and our as-
sumptions are sufficient to apply the result of S. Itd [7, 8] (see also W. Feller
[1, 2] and E. Hille [3]). J= is a bounded operator, and (1.10) holds when M+
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M., is replaced by A. and S5 by r. Aceordingly, by virtue of Lemma 1.3, A,
(with the domain C?) is the infinitesimal generator of a strongly continuous
semi-group satisfying (1.8). Take an f from C¢ and a positive & arbitrarily.
We will show that there is such a function u€C? that

(1.17) Ha—Am—sfi<é,

which completes the proof. Up to the present we know that for a>y there
exists a solution u.€C? of

(1.18) (Cl“An)?l,n:f
and that
i - 1 § H
(1.19) fnl] =~ 1 .
a—7

Moreover, u. belongs to C* since we have taken f from C? Differentiating
the both sides of (1.18) we have

1 20) (lt’ ““An)un./ — @ U bW~ U
. S (242 4+ E)— () — (08| 9L Eiagy 57
R, ox
that is,
’ d Id d ’ /’ 4
(].21) ((!““An”“a ’“‘)U?‘b ':f WU A€ Un
dx

+ SR (2 E) = i) — 2 ()E] leg;j@(xdg) .

Let a constant K be larger than

(w22 L7, fasl Wl 167 el el S_!Eigx(E?G(dE), S EgE)6(dE) .

Take e« so large that

N <1

Since
% g2, E) o apnd o po ,
(1.24) ES!? [2ta(e +E)— ual2)] ""‘*é;"‘G(dé');i? fln é!Sﬁ IElgEYG(E)
and

(1.25) i! u,;(;mg@%éa<dg>ff<uu,ynst IE1g\(E)GE) ,
" B i Yo
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£

{
i
Hi

the norm of the right hand side of (1.21) is not greater than [ f'|-+3K|ua
+Klunl. Applying Lemma 1.2 to (1.21) we get

'} £ —2— (L1 43K )+ Kl
a—7
so that, by (1.19) and (1.23),
(1.26) b’} = ——L QP+ KD S I
a—7—3K
Differentiating the both sides of (1.20) once more, we have
{a— An)Un” =20 Un" — @ " — 20 U — B Un” — 2" Un” — ¢ Un

—25 [’ (@ -+ E)— e’ (@) — 2t (2)E) ‘?:‘?g%fjamg)
Ry 3
DL i e
a Sb [un(flt ‘{‘E)“‘un(ﬂ:)“' un'(fl)){:] Q‘QE%EQG(dE\: :‘“f” .
Use the estimates similar to (1.24) and (1.25) together with the estimate

;X (2 +-E) = ()=’ (2)E] @%—5—1 GE) |

1 ” .
=L ] S E:(E)GE) .
R’y
Apply Lemma 1.2 again. Then, using (1.22) we get
¢ 724 1 7 15 ’” ’ f
||un !!; ”f “"“"‘“K“un ”+3K“’wn “+K“’unn .
a—7 2

Hence, by (1.19), (1.26) and (1.23),
(1.27) I R ER VA ER AR
From (1.18) and (1.16) we find
'(a—A)un =f+(An—A)n

=! *31?””‘”“ g [z )~ () w @)Elg(, EGAE)

where R¢=R.N[—1/n, 1/n]. Hence,

e A=l I+ | Eote, DGED)

g(:ff"u+nf/||+ufn>(-};+—§~§uc E'9oE) 6P ),
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which is smaller than & when n is taken sufficiently large. Thus the theorem
is proved.

2. Integration on a whole line.

For a bounded continuous function on a whole line, we cannot prove
Lemma 1.2, since the maximum and the minimum are not necessarily attained
at finite points. To get the analogue to Lemma 1.2 (Lemma 2.2) we have to
restrict ourself to a smaller class of functions. Hence, in this section, we let
C denote the Banach space of all continuous functions f(z) on the real line
converging to zero when lz|—os. Cs denotes the set of all continuous functions
with compact carriers, and C” denotes the set of all n times continuously dif-
ferentiable functions belonging to C.

Suppose that A is given in almost the same form as (1.1):

Aulx)=alz)u”(x)+blz)u (x) +clx)ulx)
@D +], miep—uw—wweeigte, o6

where Ro=(—o0, 0)U1(0, + ) and ¢(f) is a fixed bounded continuous function
coinciding with £ in a neighborhood of zero. We assume the following three
conditions :

(i) a,b and ¢ are twice continuously differentiable, a(x) is non-negative,
a”(x) is uniformly Hdélder continuous on every compaet set, and moreover a”
and b are bounded from above and b, ¥ and ¢ are bounded.

(ii) g(x, £) is non-negative, twice continuously differentiable in 2 and
measurable in £. G(df) is a measure on Ry and there exist measurable fune-
tions g«(&) (i=0, 1, 2) satisfying (1.2)—(1.4) and

©2.9) S Er g EYG(E) < + oo (10, 2)
fiEr<ty
2.3) S GUEGE) < + oo (i-0, 2
TEHEN!
(2.4) S [Elg(EYGAEY < oo
By

(iii) For every =, neither +oo nor —oo is an entrance boundary, in the
sense of W. Feller [2], with respect to the differential operator

(2.5) I),,u(@:(a(m) +%)u”(m)+bu(x)u’(a:)

where bu(:z:):b(af}——g e&gle, BYGAEY and Ru=(—n, —1/n)U(/n, n).

Ry

Concerning the assumption (iii), we will only make use of the implication
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that D). is the infinitesimal generator of a strongly continuous semi-group on C.

We take as D(A) the set of all w in C* such that Au belongs to C. This
domain contains €21 Cs. The following three lemmas are proved in the same
way as Lemmas 1.1—1.3.

Lemma 2.1. A has the smallest closed extension A.

LeMMa 2.2, After changing the meanings of C, C* and Ry, Lemma 1.2 still
holds.

LemMma 2.3. After changing the meaning of C, Lemma 1.3 still holds.

TueoreM 2. Under the above assumptions ()—(iii), A is the infinitesimal
of bounded linear operators on C. This T:. is positivity-preserving and s
norm satisfies (1.8).

Define

Avulz)= (a(x) “L',,l'{)u”(m) +b(w)u'(x)
+SH [u(z +E) —ulx)—u(0)eE)glz, EXGAE) .

D(A») being the set of all u in C? such that A.u belongs to C. To prove the
theorem, we need the fact that the derivatives of the solution of (2.7) belong
AN
to C. Let C» be the aggregate of all functions in C* the derivatives of which
up to and including the wn-th order belong to C.
N

Lemma 2.4. For every « larger than ay and every f in C', there exists

one and only one solution w€ D(4.) of

2.7 (a—Adu=f.

N
This u necessarily belongs to C: Here wo 18 a constant independent of n
and f.
Proor. Define

Jnu(x):g [u(z +E) —u(@)g(®, EYGUE) .

Hp

Then J. is a bounded operator on C and An=Dn+J» where D, was defined by
(2.5). Since, by virtue of the assumption (iii), D» (its domain being equal to
D(A.) is the infinitesimal generator of a strongly continuous semi-group on C
with norm not exceeding one, so is A» by Lemma 2.3. Thus the first half of
our lemma is clear.

N
To prove the latter half, we use the assumption that f lies in C'. We
show that there exists such a constant a. that the solution in D(A4.) of (2.7)

necessarily belongs to 6 tif a>an. Firstly we observe that
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(2.8) lim sup ()= 0

Z— b 00

for, if otherwise we would have lim wu{z)=—c. Similarly,

Easy

(2.9 lim inf %/ (x):7 0,

R

Take «». so large that
210)  supbo) g W(EXG(E), S G(EG(E), S le@®lo G =%,

and take « larger than a». Suppose that wu’ takes positive local maxima at
points zi, 22, --- with 2, T + oo and that sup u’(y)\ sup w’'(x:) holds for every

large N. Here X{(N) consists of all z: such that xm>N Then, we have

(2.11) hm w{(2)=0.

{00

In fact, observing that uw€ (3, differentiating the both sides of (2.7) and making
use of the fact w'(x)>0, w”(x:)=0 and W {x)<0, we get

au’(xa)-vb’(m)u’(:ca)~gR W (i +-E)g(zs, E)GE)

~§ e+ )~ ute)—w e @N 20 g ) =12, -0
By (2.10),
gkn w(@i+E)glx, EGE) = vgggg” w(y) Sn,, g(x:, EYGE)
LA,
fgln[u(fvﬁ@ - U] a(’7%'3’—’—§)G(déf) E ‘?'—wn sup fuln! ,
and
un,,” @00 20208 6 ag) | = Lo,

so that we get

’ dn (1418 , 2 &n )
U (L) —— U (L )—— bl 4 471 —— = .
(e 3 (24) 3 a:jei‘(]}:—n)u (x5 e yfyign!u(y)l 3 % () = f' (1)

This implies (2.11), since u{x)—0 and f’(x)—0 (x— 4 o). Similarly, if w’ takes
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negative local minima at points xi, zs, --- with %, 7 + o and if inf w/(y)
YN

= inf w’(xs) holds for every large N, then lim w’(zo=0 holds. Coxhbining
i-»00

€ NN

these facts with (2.8) and (2.9), we see that u belongs to (/7\‘ when a>w,..®
Now, define a new norm {|fi=fl-+1f} for fe/(i'l. With respect to this norm,
@1 is a Banach space. Let ﬁn be the restriction of A, to the set D(ﬁﬁ) of all
w in C'1C? such that A.u lies in C‘ Take f from é\‘ and @>ax. Then the

solution % in D(A.) of (2.7) belongs to D(Qn}. Since u€C?® is obvious, we
differentiate the both sides of (2.7} and get

(a—Awyu’ —a’u’—b'u’ »—S fue +‘g‘)——u(x)-u’(:n)go(&)]@gg%g?(?(df) =f7

By

which implies

re 1 o)
(2.12) fluil= a_aKﬂf f (a>3K)

by Lemma 2.2. Here we have taken K larger than
sup b'(x), S IElg\E)G(E), S lPE)| g (EIG(E) .
= i o

Combining (2.12) with the inequality Jlull< l/a-||f], we have

= ;—_%{zlfn. .

A N\
Since D(A4.) is dense in é‘\‘ with respect to the norm {-ll,, A= is the infinitesimal
generator of a strongly continuous semi-group {7.™; t>0)} on the Banach

space 5‘ with norm | T.% | Ze*®t, This shows that (2.7) has a solution in
D(ﬁn) for ever « larger than 3K and every f in C!.

Once it is proved that u belongs to 6‘, it is easy to show that it belongs
to (/7\2. In fact (2.7) is written as

(a(x) +%)u"= —f+au-bu’—~SR [l + ) u() —u @) E)lg(e, EGE) ,

and the right hand side belongs to C. The proof of Lemma 2.4 is completed.

Proor or TheorEM 2. Define A% by A®w=Au—cu. Since we have assumed
that ¢ is bounded, it is sufficient to prove the theorem for A° instead of A
(cf. Lemma 2.3). By Lemma 2.4 the integro-differential equation (2.7) has a

solution in (/?\ * for every sufficiently large « and every f in 6‘. Therefore we
can estimate [[u’| and [u”|| through differentiating (2.7) and applying Lemma

3) We owe this part of the proof to S. Itd’s suggestion.
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2.2. The remaining parts of the proof are almost the same as those of
Theorem 1.

3. Integration on a torus.

In this section x denotes a point (zi, - -+, 2») in the Euclidean m-space R™.
Let C be the Banach space of all continuous functions f{z) on R” such that

f(ﬂfl, ey, xm}::f(x;+2nm, ey, xmﬁ‘z’nmﬂ’)
for all integers ni, -+, #m, and C be the set of all n times continuously dif-
ferentiable functions belonging to C.

Let Au be

Au@)= 37 )T 4 30} 2D 1 eyt

i=1

" S [u<x+s> u(z) - E@"”?zz]gm, EGE) ,

where Ro={E=(E, ---, En); Es€[—n, 0)U(0, z) for every i}. Let Ra={£=(&,, ---,
En); E1€l—n, —1/m)U(1/n, =) for every 1}. We assume the following three con-
ditions:

(i) aiy, b and ¢ belong to C=, aix) is symmetric and non-negative definite
at every point.

(ii) g(x, &) is non-negative, belongs to C= as a function of =z, and is
measurable in £, G(dE) is a measure on R,. For k=0,1, 2, ---, there exists a
funetion g«(£) majorizing the absolute values of the k-th order derivatives of
g(z, £) with respect to & and satisfying

S gl EYG(AE) < + o (n=1,2,--+, k=0,1,2, --),
Rn

S I ESgUEIGIE) < + o (=0, 2),

Ry Twi

and

S E Edg:(EYGEE)< 400 0

i Tal

(iiiy For 4, 371, aws depends only on 24, ay only on 2z: and 23 b: only on
Xy, X3, ++ ¢, Tm, and g only on x, a3, -+, ¥ and &.

We take C* as D(4).

TureoreM 3.1. Under the above assumptions A has the smallest closed ex-
tension, which is the infinitesimal generator of a uniquely determined strongly
continuous semi-group of bounded linear operators on C. This semi-group is

' 45 It is edsy to weaken ¢ > assumptions in (i) and (ii) by C* assumptions of some
finite k.
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positivity-preserving and its norm satisfies (1.8).
Proor. We follow the same idea as in the proofs of Theorems 1 and 2.
Define A» similarly to (1.16), that is, An=D»+J» and

0" u(r) 2 Fulx)
.Dil ( S { \ PUEEE N
we) = Ea A 31,43’0 n ,Z:; @) Oxd

+ 3 (b= | g, pown) 0,

w1 ¢

J.zu(x):c(s;‘)u(a:)+g [ulz +E)—ulx)lglx, EGUE) .
Rn

Concerning the smallest closed extensions A, and D. of A. and Da, respective-
ly, we have

3.1) An=Dy+Jn

since J». is a bounded operator. Apply the result of K. Yosida [13, 14|, S. Ité
[7, 8] or E. Nelson [10] and use the analogue to Lemma 1.3. Then we can find,
for any feC and a>y, the solution u» of

(32) (&’—' ;fn)un :f .

Let H* be the aggregate of all functions in Lo R) (R={E=(&, ---, En);
Eiel{—mr, n) for every i)) that have strong derivatives of order =k.» H=»
denotes /\H*. From our assumption (ii), we prove that x € H* implies J.u€ H*.

k

In fact, there exists a sequence v,€C* converging to 4 in I.(R) and Dv, is a
Cauchy sequence in L:(R) for any differentiation D of order =k. Since J» is
a bounded operator on Ia(R), Javp—Jutt (p—oo) in L.(R). It is easily seen that
Jwwp€C* and that DJ.v, is a Cauchy sequence in L.(R). Hence, we have
Jwu € HE,

Suppose that f is in C~. Let us show that the solution wu. of (3.2) also
belongs to C=. For this purpose, it is sufficient to show that wu.€ H> (cf
Co6oaes [16]). By (3.1), u» is the weak solution of the equation

(33) (a_Dn)un:f’{“Jnun .

Apply the differentiability theorem in [11] and we obtain u.€ H? This implies
Jntin € H® and hence the right side of (3.3) belongs to H% Using the differenti-
ability theorem again, we see u.€ H*. Repeating this procedure we finally
obtain that u»€ H=.%

For brevity we use the notation

5) We say that u has strong derivatives of order =k, if and only if there exists such
a sequence v,€ C* that v, coverges to u in L R) and Dv, is a Cauchy sequence in L,(R2)
for all differentiations D of order <k (cf. L. Nirenberg [11]).

6) In one dimension we do not need these considerations, since Dy=Dn and An=An.
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if a“;lf
o
i = E [+ !
,If” iplsk axlﬂl BN A

where p==(pi, -+, pa)yand | pl=pi+--- +pa. Take @ and a constant K sufficient-

ly large (the largeness needed does not depend on =»). Then, by the same
argument used in the proofs of Theorems 1 and 2, we can prove that

PO N O

= Bzt

%i&‘?‘xl”l -
In the proof, however, we must make use of the assumption
sional case. Similarly

for pi==0,1,
we get the following estimates for ¢, 7+41

[ o 4K (9“”“+|.unn ﬂ

oo 4.
(iii) or the like, since we are dealing with higher dimensional case

1

i

| Oun s
l\ 61:; [ ]a Oz | i i 0
| 0%un | 1T 0 | < Gun | )]
T = i+ K % s
f)xﬁxu [0x10x1§+ Iyl + el
Efsa‘un \‘ ?gQ‘f:__“ [“ ( a* un a 2 A(?__’I_{L )]
| D202 | [ 0x*0x: | s Ozt i g;l + s
and
v' 0? Un “' - ” azf 1\ ([ 0% [E l un )]
it P << | Ko e 1 ke b S wlls .
| 61:1651:; T @ [" 6;1:463:; ‘k+ | B30 1 || 0x1%0x; o+l
These estimates ftogether yield the estimate
lunlle <1l s
We omit the rest of the proof, for

which is essentially important to our proof
it is quite similar to that of Theorem 1.

If we replace the assumption (iii) by the following (iii"), the theorem
remains still true.

(iii") a4y are constants.

Turorem 3.2. Under the assumptions (i), (ii) and (iii"), the conclusion of

Theorem 3.1 is true.
It is easier than that of Therem 3.1, for, in this case, we get the

Proor.
estimates
"(’%w Fl o (Kg f [! )
=< e Kllwell
Vo2 | = a g |+ K el
and
” 6~un [ 1 (:! Bf )
Fror ey (vl R LS

for all ¢ and j.
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