On the existence and regularity of the steady-state

solutions of the Navier-Stokes equation

By Hiroshi Fuarra

§1. Introduction.”

The present paper is connected with the boundary value problem posed by
the 3-dimensional® steady flow problem of a viscous incompressible fluid. It is
well known [13] that in the domain R of the 3-dimensional Euclidean space Ej
occupied by the fluid with the density p=1, the flow velocity u={wu, us, #s} and
the pressure p satisfy the Navier-Stokes system

(1.1 —vAu+t(u-Pu-+pp=f,
1.2) divu=0,

where the prescribed vector function f represents the external force acting on
the fluid and the positive constant v means the viscosity. If R is a bounded
domain we impose on % the boundary condition that

1.3 u=4 on OR

with @ prescribed on the boundary @R of R. Then we call the boundary value
problem with the unknown functions  and p composed of (1.1), (1.2) and (1.3
the interior Navier-Stokes boundary value problem or simply the interior prob-
lem. On the other hand, suppose that R is an unbounded domain with bound-
ed Re, the complementary set of R. Then in addition to (1.3) we impose on %
the “boundary condition at the infinity”

1.4) U(X)—=Uos (|zj—00),

where u. is a given constant vector. In such a case we call the boundary
value problem with the unknown functions u and p composed of (1.1), (1.2),
(1.3) and (1.4) the exterior Navier-Stokes boundary value problem or simply the
exterior problem.

The object of the present paper is to make a functional analysis approach
to these boundary value problems, introducing the notion of the generalized
solution defined in an appropriate manner. Namely we study the existence,
the interior regularity, the regularity at the boundary and, for the exterior
problem, the regularity at the infinity of the generalized solutions. As a result

1) In this section we use some notions and notations whose precise definitions will be
found later.

2) 2.dimensional case will be treated elesewhere in consideration of its peculiar dif-
ficulty in the exterior problem.
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we obtain an existence proof of the strict solutions, i.e., the solutions in the
ordinary sense, under reasonable assumptions on the given data.

Here we must refer to J. Leray’s famous work [10] published in 1933 as
well as O. A. Ladyzhenskaia’s interesting work® published recently. Under
some physically acceptable assumptions Leray established the existence of the
striet solutions of the interior problem and of the exterior problem with u.=0.
For the exterior problem with %.70 his solution satisfied (1.1}, (1.2), (1.3) but
in place of {1.4) was subjected to a weaker condition

1.4y S Pultde< oo | S iy =ul® g Koo
1 g lz—yl*

with a constant K independent of 2. Recently R. Finn [3] succeeded in proving
that Leray’s solution actually satisfies (1.4) also in the ecase #.7#0. On the
other hand, in [9] Ladyzhenskaia made an approach of a character similar to
that of ours. In faet, our study possesses some features common to her study
in methods as well as in results. In the course of the present paper the re-
semblance and the difference between our treatments and those of others will
be observed. Here we note only that our approach of seemingly elementary
character is hoped to be applicable to problem of a more general type.

The contents of the present paper are as follows. In §2 we introduce the
notations used frequently throughout the present paper and then state some
basic integro-differential inequalities with some remarks. At the end of §2 we
give the definition of the generalized solution, the associated pressure and the
strict solution. §3 is devoted to establishing the existence of the generalized
solutions of the interior and the exterior problems. There we construct the
solution as the limit of approximating solutions obtained by Galerkin’s method,
which was employed with success in the recent investigations of the time-
dependent solutions of the Navier-Stokes system by E. Hopf {5] and others [8].
Also we resort to Brouwwer’s fizxed-point theorem, whereas Leray’s proof as well
as Ladyzhenskaia’s was carried out essentially with the aid of Leray-Schauder’s
fixed-point theorem. In our existence proof the results of Odqvist [12] concern-
ing the Green tensor of Stokes' problem are not needed and no increased dif-
ficulties arise even in dealing with the exterior problem. The object of the
first half of §4 is to describe some known formulae in connection with Stokes’
problem in a form convenient for the second half, where we study the interior
regularity of the generalized solution under various regularity conditions on f.
It should be remarked that the Navier-Stokes system is elliptic according to the
definition of Douglis-Nirenberg [2] and hence the regularity properties of % and
p are obtained at once by means of the known theorems if » and p are known
to be smooth to a certain extent. Therefore the main task of §4 is to improve
the regularity properties of # and p to this extent. In §5 we study the
regularity at the boundary of the generalized solution making use of the Green
tensor of Stokes’ problem. §6 and §7 are devoted to the investigations of the

3) It is the author’s regret that he did not know the existence of [9] in advance of
completing the present work.
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regularity at the infinity. We give a simple proof that u really satisfies (1.4)
under a weak condition on f. Then assuming more of f we derive more detail-
ed results with the aid of the integral representations with the kernels con-
structed from the fundamental solutions of Stokes’ and Oseen’s system. The
use of these kernels are common to Leray’s or Finn’s treatment and ours but
otherwise we follow a different way intending to illustrate various methods
applicable to problems of this sort.

§ 2. Preliminaries and Definition of Generalized Solutions.
I) Notations.
Here we collect some notations used frequently in the sequel.
i) For two points z={x:, 22, z:} and y={y\, 4., ys} in Es lx—y| means the
distance between x and y.
ii) For any point set 4 in E;, A and A° denote respectively the closure and
(o]

the complementary set of A. We write A-3B, if ACB, the interior of B. 84
is the boundary of 4. 7 being a positive constant, the point set w(y, 4)=w(y)
={x; z€ A and dist. (z, A)<y} is the boundary strip of A with width y. We
use the notation A(y)=A—u(r, A).

iily B(z, r) means an open sphere with center at z and radius 7.

iv) Any function, possibly scalar, vector or tensor, considered in this paper is
real-valued. V being a measurable set, the function space L.(V) is composed
of functions u with finite

o
lullo.r= Hu!!pxq lu!f*dﬂ:) :
v

Here ju| is interpreted as

/2

;l /2 3 .
lu!:(E tw) or lu|:<é>3 iuu!-) ,
=1 i =1

aceording as u is a vector {u:} or a tensor {uy}. We write simply {luliy, {lul
in place of [lulz.v, flul: and introduce the inner product (u, v) by

(un, v)=(u, 'U)V:S wvdz , (u, ve€ LAV)),

v
where

3 3

UV= D, U= WiV OF  UV= 3, Ui Ves= Uiy .

i=1 £,1=1
Here and hereafter we follow the summation convention. L, (V) is composed
of functions u belonging to L,(K) for any compact subset K-3V.
v) V being an open set, the meaning of the function classes C%( V), C# (V)
(n=0,1, .-+, 0 ; 0<h<1), is as usual. Then the notations C*(V), C***(V) are
familiar. Co(V) is the class of functions 4 whose carrier is compact and -3 V.
We put Com"M(V)Y=C»MVYNC(V), (n=0,1, ---, co; 0<h<1).
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vi) By 8w or Ouw/dx: we mean the generalized derivative of w(z) in the distri-
bution sense. The differentiation involved in F, div and other formal differen-
tial operators is interpreted in the generalized sense, if necessary.
vil) A vector function u is said to be solenoidal if divu=0. Let C,(V) be
the class of solenocidal vector functions weCHV). Then we put C.2*%(V)
=Cn VINCHY), CL(Vy=Co(VINCH V), (n=1,2, -+, eo; 0Ch<1),
viii) pu means the vector function {0.u} or the tensor function {8} accord-
ing as u is a scalar or a vector funection. H,'(V) means the Hilbert space
obtained by completion of C,'(V) with the norm lel=Fel.r. As a set it is
identical with the completion of C,'(V) with the norm |l¢ = [Fel: +lgl if
N
V is bounded. H} (V) means the Hilbert space obtained by completion of
Ci,.(V) with the norm [l¢}=|Fel.v. Any uefl\i.a(V) possesses generalized
derivatives in L:(V) and satisfies div u=0.
ix) Throughout the present paper R means the domain where the flow prob-
lem, i.e., the Navier-Stokes boundary value problem is considered. Concerning
the type of B we assume the following. Let ..» be a class of bounded domains
V whose boundary 6V is a closed surface of class C!. In the interior problem
Re.Y or R=V-—-Vi~Ve—-..—V,, where Ve .o, Vie., Vi3V, (i=1,2, -+, )
and V,—s are mutually disjoint. In the exterior problem R=F; or R=FEs—V,
— +..—V, where Vie .« and Vi—s are mutually disjoint.

II) Lemmas.

For the eonvenience of later reference we here state several lemmas, most
of which appear well or essentially well known. Brief proofs are given to
those whose available proofs are scattered in various literatures.

Lemma 2.1. Let V be a bounded domain. Then there exists a positive con-
stant ¢ depending on V such that

2.1 flaeliz v ZeiFufle.v

- o~ .

Jor any we H.H V).
We omit the proof since it is well known®.
Lemma 2.2. Let V be a domain bounded or unbounded. Let u be any func-

N
tion in H(V) and set w*()=u(yjx—yl Sfor an arbitrary but fived x. Then
we have

(2.2) Bt flo - <<20F oy .

Remark. Hereafter we may write [u(y)/lx—u»li in place of {u*|| in (2.2).
From (2.2) it follows immediately that

2.3) el x <2diPuler | (we By(V)),

for any bounded subdomain KCV with diameter less than d. (2.3) implies
s
that the strong convergence in H,'(V) ensures the strong convergence in L.(K).

4) e,g‘., see m', Otherwise (2.1) follows from (2.5) in the same way as (2.6).



Steady-state solutions of the Navier-Stokes equation 63

Proof of Lemma 2.2. It suffices to deal with the scalar case assuming
u€Co(V). We extend u over the whole space Ey setting u==0 outside V. With
any positive constants +, 72, (r1<re) let A=Az, 7., 72) be the annular domain
Biz, r)— Bz, ). Substituting J=log jy—=xl, gly)=u*y) into the familiar in-
tegral identity
of

L gas S Ffrgdy
34 ('?n A

- K 4fgdy + S
A
we have
(2.4 S lu*]%lys?S u*('y)—fx:y—» Fulypdy -+ rap(r) —ripe)
4 4 jz— ¥l
where

-

nr=plu, x, r)-zl,, 1%21dS .

7"3013(:1-.1')
Making 7:—o0, 71— +0 in (2.4) we arrive at (2.2) on account of Schwarz’
inequality.

Lemma 2.3. Let V be a domain bounded or unbounded. Then there exists
an absolute constant ¢ such that

(2.5) llulls. vy <elPulle.r

for any ueﬁo‘(V). Moreover, if K is a bounded subdomain of V, then we
A
have for any uwe Ho'(V)

(2.6) lufls. & <exliFullz,v

with a constant cx dependent on K.
Remark. If V is bounded, we have

@.7) oy < celiPulle.s , (we B (VY),

with some constant ¢ by putting K=V in (2.6). Hence strong convergence in
FAN
H\(V) implies strong convergence in L.(V) when V is bounded. (2.6) shows
that strong convergence in I/I\u‘(V) ensures locally strong convergence in L V)
A

even if V is unbounded. Also we note that if we H (V) and K is a bounded
subdomain of V, then we have u€ LJ{K), Fu€ L:(K) and hence (w-F)u€ LK)
by means of Holder’s inequality.

Proof of Lemma 2.3. Take an arbitrary scalar function veCo'(V) and ex-
tend it over the whole space by setting wu==0 outside V. Applying the well-
known formula

o 1 @

10 81 9 B
v(a)= 47;:&,3 iy, (we Ci(E),

to v=u* we have
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(2.8 u‘{fa;}:»—lAX ST sy 9. w(yidy .
T Yo dx— yP y:

We multiply both the sides of (2.8) by w%2) and integrate over E; with respect
to . After the interchange of the integration order and the application of
{2.2) we obtain

HuH&*“S u%mytc<-§~nﬁung Wl IPuly)ldy
¥zl 3 {4

Hy
S Fullt fulle® IPufe .

Hence we have {2.5) with e=({4m)/:.  (2.86) follows from (2.5) by means of
Holder’s inequality as

lile. e < Haelle & 1)1z & = (mes - (K DV ulle, v

We introduce the following notation used also in the later sections:

, 1 ,
nunuujpﬁ(»:g tuﬁdS)
e Jostz,m)

flulluer »/2V 7 is seen to be the spherical square mean of u on the spherical

surface 0B{(x, ).
Lemma 2.4.% Let V be an unbounded domain such that V¢ is bounded. If

a function weCYV) satisfies

1/2

(2.9) Fuly <K and Juip/lz—ylllyr <K

with a constant K independent of x, then there exists a constant K; depending
only on K such that

(2.10) Hulloe n S KoV, (r—sco).
Remark. Any uelﬁ‘(V) satisfies (2.9) for some K in virture of Lemma 2.2,
Jonversely, if ue(C!'(V) satisfies (2.9) and vanishes identically near 9V, then we
S
can show uw€ Hy'(V) by a standard procedure. In this sense the condition (2.9)

characterizes the behavior at the infinity of a function in ﬁo‘(V).

Proof of Lemma 2.4. We return to (2.4). It is easily seen from (2.4) that
r(1) tends to a certain constant a as »— oo and then that the value of &« must
be 0. Therefore we obtain

ri(r) L2luiz -~y wilpul e <2K3, (B'=B(x, )9,

be means of Schwarz’ inequality. Thus (2.10) holds with K,=v 2 K.
The following lemmas are concerned with the behavior of a function

ueii}u‘(ﬁ’) near the boundary. We recall the assumptions imposed on R. Take
and fix a component 0R* of 0R. 7 being a sufficiently small positive number,

5) In connection with this lemma we refer to [14].
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©*(y) means the component of w{;) adjacent to 0R*. Further p*=p*(x) denotes
the distance between 0R* and the point x€ R. Using these notations we have
Lemma 2.5. There exist positive constants yo and cs==csiys) such that

(2.11) g

= g
e Lesifullz,onm
S P72 ek

holds for any ueF/\Lu‘(R) and any v in 0<y<yo.
Lemma 2.6, Suppose that we C'w*() for some §>0. If

(2.12) Fulosey< K and %0 <K,

!‘ p* !:m‘(ss) )

then there exists a constant K, depending only on K and OR* such that

#¥r) :S ul'dS< Ky as 70,
oy

The proofs of these lemmas are similar respectively to those of Lemma 2.3
and Lemma 2.4 and are omitted here.

Finally we state the well-known [7, 15]

Lemma 2.7. Let

v(m)—:g ke, vu(y)dy, (we V)
v
where the kernel k(z, y) defined in VXV’ is assumed to satisfy
/r 1/r
(S @, pirdy)" <M and (S e, iz ) <M
1 4 v’
SJor positive constants M and r (1<r). If 1<p<ew and l/g=1/p+1/r—1>0,
then we have ve L(V) and -
Wle.v <Miullp.v,

Sor any ue L,(V).

III) Definition of Generalized Solutions.
Suppose that a vector function % and a secalar function p are sufficiently
smooth and obey the Navier-Stokes equation

(2.18) —ydu+w-Fyu+FPp=f

in a domain V. Multiplying (2.13) by a veector function ¢ in Co}(V) and then
integrating over V, we obtain

(2.19) v(Fo, Pu)+(p, (w-Fiu)—(div ¢, p)=(p, f)

after obvious partial integrations. If ¢eC; .(V), i.e., div ¢=0, then (2.14) takes
a form not Involving the pressure »: namely,
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(2.15) Wi, wy=(e, f), (peCho(V),

with
Wie, wy=vFe, Fu)+{(p, (u-Fiu) .

Conversely, it is known that under the assumption of sufficient smoothness of
u, (2.15) i3 equivalent to (2.13) in the following sense [5]. If (2.15) is valid for
any ¢€C, (V) then there exists a scalar function (single-valued!) p» which
satisfies (2.13) in V together with . Hence we say that a vector function u
satisfies (2.13) weakly in V or satisfies the weak equation (2.15) of (2.13) in V,
if Fu and (u-Fju are locally integrable in V and (2.15) holds for any ¢€C} (V).
Here the differentiation involved in Fu and (w-F)u is interpreted in the gener-
alized sense. ¢ in (2.15) will be called a test function of the weak equation.
Next, we consider the tri-linear integral form

(2.16) 7wy v, wysln, (v-Fuw) ::g U idx
Vv

where the arguments u, », w are required to possess the following properties:

1) each of them is expressible as the sum of a function in ﬁé‘a(V) and a
function in C,i(V). Hence any one of them, in particular, v is subjected to
the condition div v=0.

2) Either u or w belongs to }/‘\Ié,U(K), K being a bounded subdomain of V.

For these u, v, w the definition of .o/ (u, v, w) in (2.16) is significant. Indeed,
we have [ufisx<>, [vfix<oo by means of Lemma 2.3, whereas noting
lww @0 <X |ul- |2} |Fw| we obtain

L (u, v, wi <llulle cfvlle s Pwl. «
in virtue of Holder’s inequality. Moreover, if ueﬁ(’,,ﬂil{) we have®
(2.17) Lo (u, v, 0) ZCIPulle kvl kiFwle &
by virtue of (2.6). In consideration of (2.17) we notice that

2.18) lim . o7 (", v, w)=, 5 (¢, v, w) ,

I ro0

- A - »
if ¢"->¢ strongly in Hi .(K). For any u, v, w admissible as the arguments we
have

(2.19) SV, v, W)= - O (w, v, w)
and, in particular,
(2.19y o7 (u, v, w)=0,

which are immediately verified by partial integration taking account of divv=0

6) Throughout the present paper we may use the symbol C in order to represent
positive constants, the value of which may change even in the same context.
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We have reached a stage to state the definition of the generalized solution
of the Navier-Stokes boundary value problem. Let R, f, & and u. be as in §1.
We recall that the boundary value problem is named interior or exterior, ac-
cording as R is bounded or unbounded.

Definition 2.1. Let E be bounded. Then a vector function wu is called a
generalized solution of the interior problem, if following conditions i) and iD
are both satisfied:

i) u—>b belongs to ﬁé,a{R} for some b such that
(2.20) beC,'(R), b=8 on OR.

il) » satisfies (2.13) weakly in R.

Remark. With the aid of (2.18) we can show that the generalized solution
% of the interior problem satisfies the weak equation not only for every @ in
Ci.-(R) but also for every ¢ in ﬁé,«(R) if fe Ly R).

Definition 2.2. Let R be unbounded. Then a vector function u is called a
generalized solution of the exterior problem, if the following conditions i) and
ii) are both satisfied:

1) u—>b belongs to l/I\é.a(R) for some b such that
(2.21) beC,(R), =8 on OR,
b(@)—u-=0(lz]="), Pblz)=0(lz|-?), (la]-»00).
ii) wu satisfies (2.13) weakly in R.

Remark. This time u satisfies the weak equation for any ¢€?{3_U(K), K
being an arbitrary bounded subdomain of R. From (2.21) it follows that
iPbll < oo, IKb(y)—uw)/lz—yll=0(2]-"/?) in virtue of the obvious inequality

(2.22) S =0l , (] o).
ay lw—yl2lyl?
Thus according to Lemma 2.2, the generalized solution u satisfies
2.23) Wule <K and [“WZ%) g
I le—yl |

where K is a constant independent of z.

Definition 2.3. Let « be a generalized solution of the Navier-Stokes bound-
ary value problem, interior or exterior. Then a scalar function pe€ L:(R) is
called the pressure assoctated with u, if u and p satisfy (2.14) for any @€ Co'(R).
(2.14) is called the defining equation of p.

Remark. When a generalized solution % is given, the associated pressure
is unique except an additive constant. In fact, suppose that p: and p: are the
associated pressure. Then we find (div ¢, pi—p2)=0 for any p€Co'(R). Sub-
stituting ¢=VFh, h € Co~(R), we obtain (dh, p:—p:)=0 and note that p,— p: satisfies
the Laplace equation weakly. According to a theorem of H. Weyl, this implies
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that pi—p: is harmonic in V. In particular, from (div e, pi—p:)=0 follows (¢,
Fipi~p:3==0. Thus we have F(p:—p:==0 in R and hence p,—p:==const. in E.

Definition 2.4. Concerning the interior (exterior) problem a pair of a vector
function u and a scalar function p is called the strict solution if ue CHRYNCYUR),
p €CYR) and (1.1), (1.2), (1.8) (and (1.4)) are satisfied. However, the vector fune-
tion u alone is also sometimes called the strict solution.

§3. Existence of Generalized Solutions.

We establish in this section some theorems concerning the existence of
generalized solutions of the interior as well as the exterior problem. Our ex-
istence proof will be accomplished along the following scheme: (1) existence
proof of the approximating solutions u~ in Galerkin’s method, (2) derivation of
a bound of {[Fuxil, (3) construction of a function u* from u~ by a limiting pro-
cedure, (4) verification that u* is the desired generalized solution. At the stages
(1) and (3) we resort to Brouwer’s fixed-point theorem and Rellich’s choice
theorem™ respectively.

Our main result concerning the interior problem is the following

Theorem 3.1. Assume that R is bounded and f€ L.(R). Then there exists
a generalized solution of the interior problem, if one of the following conditions
1) and 2) 1s fulfilled:

1) B s the boundary value of a function b*€ C,\(R) with small |b*| or [FV*| in
the sense of (3.15) to be given below.

2) B is the boundary value of a function b*€C,(K) expressible in the form
b¥=yota, ac CYR) and OR is of class C>.

Remark 1. In the theorem we may replace the assumption fe L:(R) by a
weaker one that f—Fhe L:(R) for some heC!. Furthermore, under the con-
dition 1) B may be an arbitrary bounded open set.

Remark 2. Let m: be the “out-flow ” from the i-th component dR; of OR,
ie.,

3.1) m;:& 8.dS (i=1,2, -, 8),
'l)l?f

where 3.=#-n and n={n:, n:, ns} is the unit outer normal® to 0R. 1f A is the
boundary value of a vector function in C,'(}), then the ©total out-flow” m
=P T b e tms; must be 0. On the other hand, if 7 is the boundary value
as in 2) of the theorem, then

3.2) me=0, {1=1,2, ---, 8.

Conversely, if 3 is of class C* and OR of class C? and if (3.2) holds, then we
can construet a b* as stated in 2).

7) (Rellichscher Auswahlsatz). e.g. see [1], II, p. 489 and p. 513.

8) A normal vector to 8V, the boundary of V under consideration, is called inner or
outer, according as it is directed toward V or Ve, For instance, if V is the exterior of
a sphere the outer normal to 3V is directed toward the center.
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Proof of Theorem 3.1. Firstly we introduce the notion of Condition (B):
namely, a vector function b is said to satisfy Condition (B) if

(3.3) beC,H{R), b=fF on R
and if
3.4 Lo, w, wil Cajfwl®

is valid for any we Cs.o(R) and with some constant « in 0 a<y.
Now, suppose that we are given a b satisfying Condition (B} and then we
seek a generalized solution of the form

/\I 7 Y
u=v+b, (ve Hy, »(R).
We introduce and fix a sequence {¢"}r., of functions in Ci..(R) such that
- . /\ . - -
its linear hull _7is dense in H} ,(R) but for convenience we normalize it as

1, =),

. "M’ ]j ::6 pomad R .
(3.5) g =ay={y (I

The linear hull of the first N functions of {¢”} is denoted by . /~. Referred
to this base a function ux=v+~+b is called an N-th order approximating solu-
tion if the following two conditions are fulfilled:

(3.6) Vy=ux—b€E_~'n.
3.7 Wip, ux)=uFp, Fux)+. 3 (@, ux, ux)=(p, )
holds for any ¢€ . '~, or what comes to the same thing,
(3.7) Wi, un)=({t, ), (1==1,2, ---, N,

Concerning the existence of the approximating solutions we state

Lemma 3.1. [f b satisfies Condition (B) and f€ L:R), then the approximat-
ing solution wu~ exists for each N.

Proof. During the proof of this lemma, we fix N and write simply %, v in
place of ux and v~. We put

(3.8) u=btv=0+E P+ Ep? 4 - HEFPY
with a numerical coeflicient vector £={&, &, ---, Ex}. Obviously W(e, b+v)
=yiFp, Po)+viFe, Fhy+ v (@, b, 1)+ 27/ (¢, v, b+ 257 (@, v, v)+. 5@, b, b). Hence
the substitution of (3.8) into (3.7) gives
N
3.9) ,EI{”W"M’ PP+ o7 (b, )+ o7 (@, P, by o7 (P, v, P14,
=(t, f)—v(Pgt, Pb)— o/ (¢, b, b) .

In order to rewrite (3.9) as an equation with the unknown N-vector £, we in-
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troduce an NXx N-matrix T(&)={Ti(¥)}, depending on £, and an N-vector 7
={n;} by

(3.10) T r=vdigtaly +aiy +asE), p=pd—p?,
where

dig== (PP, 7Py, alf =/ (P b, ¢, aiy= 0/t 1 b),
af®) =7 (9, BES ).,
V=t £y, nB=p(Pdt, Fb)+ o7 (Pt b, b) .

Then it is easy to verify that (3.4) is reduced to the equation

(3.11) TEE=n

for the unknown £. From now on we regard £ as an element of N-dimensional
Euclidean space E=FExy and use the notation ] and £-7 to denote the norm of
£e K and the scalar product of £, y€ E. We shall show that T(£)" exists so
that (3.11) is reduced to

E=F(E),
where
F&)=TE&) 'y .

To this end we estimate &-7(E){ for arbitrary £ and £ in E. Associating the
vector functions v, we _# v Ch (R) with & € E by v=Et +E? 4 - - - +Ex?
and w=C Pt +89%+ - - +€nd¥, we observe that

&-TEZ=vIPwl*+. .9 (w, b, w)+ .o (w, w, b)+.5/ (w, v, w)
=yllFwlr—. o7, w, w)

by virtue of (2.19) and (2.19Y. Hence we have by (3.4)
3.12) (=) Pwlt<I1C- TEL <ICHTELT .
On the other hand, by means of (3.5) and Lemma 2.1, we obtain
Il =Jwl <e:Fwll .

Combining this with (3.12) we are led to (v—a)If1*<Ce2I]-1T(EX! and hence to
I <kl TE!, where £=c¢:*/(v—ca). This implies that T(£)-? exists and

(3.13) ITE " <x

holds, where the left hand side means the norm of the linear transformation
TE in E. Since 7 is a constant vector independent of &, we thus see that
the inequalities

IFENSITE - 9l <xlyl=d
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hold for any £€ E. In particular, the closed sphere Sid) of E with center at
the origin and radius d is mapped by F into itself. Since the continuity of
F.Ey in E is obvious, we are able to apply Brouwer’s theorem and conclude the
existence of a solution £ of the equation E=F(&). This proves the lemma.
Concerning the approximating solutions obtained above we have
Lemma 3.2. There exvists a constant K such that pex|| <K.

Proof. Making use of (2.19) and (2.19) we have easily
Wiv, v+by=vifel2+piFp, Fby— o/, v, v)— 7h, b, v)

for any ve C{ .(R). Hence, setting ¢=vy and ux=b-+vx in 3.7) we immediate-
ly obtain

vlIIPoxiP— 87(b, vx, vw)=w, [)—viFox, PO+ 270, b, vx),
whence follows by virtue of (3.4) and Schwarz’ inequality that

(v—a)Por < C hon | +C iFoall <ClPon|]

with appropriate constants C’, C”" and C. Consequently we have [Funx||<C/yv—a)
=K.

Since }Fwv~l| and, therefore, |lv~! are bounded, we can apply Rellich’s theorem

Fas

and are able to choose a subsequence {wx’} of {vs} tending to a v*€ H{ .(R) in
the sense that va’—v* strongly in L:{R) and Fvx'->Fv* weakly in L:(R). We
shall show that w*=b4-v* is the desired generalized solution.

If ¢ is a fixed function in Cy .(R), we have

(3.14) Fo, Poa'i->Fe, Fv¥), o7 (e, va’, va' )= 7 (@, v*, v¥)

as No>oo, Fix an arbitrary positive integer . Then for any N>»n we have
Wi, b+va")=(¢m, f), whence follows by making N-seo Wign, b-+o¥)=(¢, f).
Further, we notice that Wie, u*)=(¢, f) is valid for any ¢ in . . Then take
an arbitrary ¢ in Cs ,(R). Since _.7 is dense in ﬁé_g(R), we can find a sequence
{¢"} such that ¢*€ . /” and ¢" converges to ¢ strongly in I/-}Zw,q(li’). Taking the
limit of Wig?, u*)=(¢*, f) we arrive at Wi, u*)=(gp, f) by virtue of (2.18).

At this stage it has been proved that a generalized solution exists if there
exists a function b satisfying Condition (B). We shall show that the condition
1) or 2) in the theorem is sufficient for the existence of such a b. Firstly we
deal with 1). Let M, and M, be constants such that |b¥x)l<M. and [Fb*zx))
<M, hold for any z€ R. Then by means of Lemma 2.1 and (2.19) we have

Lo/ (b, w, w)l <Mojlwll - IPwll < M [[Fwlf?
and
|.o7 (0%, w, wl <M lwl*< M Fwlf?

for any we€C),(R), where ¢ is the domain constant in (2.1). Therefore b*
itself satisfies Condition (B), if either
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(3.15) v> Moy or vy>Medt.

We turn to 2). We note that Lemma 2.5 is applicable to each component
of AR and (2.11) remains valid with an appropriate constant c¢; if we replace
¥ by olry=w(r, R) and p*(z) by olz)=dist. (z, 0R). We construct the desir-
ed b in the form of V**=rot (h{p)a) with a scalar funetion k of a single vari-

able [6] defined by
h(t)zlw(g”jcwds / g"'j(s)ds) , (t>0),
Q 0

where j(s) is a function with the following properties: j(s) involves two param-
eters v and « whose values are contained in 0<r<ye, 0<e<1/4 and i) j(s)€
C{0, o), i) 0<74(s)<1/s, (s>0), iii) j(s)=20, (0<s<ey, (1—K)r<s), iv) jls)=1/s,
(2ey <$<(1—=2x)7). Obviously, he C[0, o), and

1, (0<t<cy)

kmz{o, (17 <0).

Moreover, as &0, £ h’(t) tends to 0 uniformly with respect to r and ¢. There-
fore, by means of the well known formula

(3.16) rot (ha)=hrota—axFh=hrota—axh’(p¥Wp,

we have b**=b*==8 on R, b**=0 outside a(y) and b**eC,Y(R), because p* is
now of class C? Furthermore, for any £>0, we can make [ph**(x)| <& valid
everwhere in R by a suitable choice of «. Then we have in view of Lemma
2.5

L7 (b, w, w)l <|. o7 (pb**, w/p, W) <E\w/pllw- IPw|le<Ecs||Fwl?

for any we C} .(R). Thus b** satisfies Condition (B) by a suitable choice of x.
This completes the proof of Theorem 3.1.

Remark on the Uniqueness. The generalized solution of the interior prob-
lem is unique, if AR is sufficiently smooth and the “ Reynolds number” is
sufficiently small. For instance, assume that f=20, f€ L.(R) and 8R is of class
C*. Then we can show the uniqueness of the generalized solution, provided
that

v >eet| f1,

where the constants ¢ and ¢: are those in Lemma 2.1 and (2.7) respectively.
By the way, in such a situation the equation (3.11) can be solved by the iter-
ation T(Emtinfe =y,

Concerning the exterior problem we state

Theorem 3.2. Let R be unbounded. Assume that fe& L:(R) and f' € L.(R),
where f(@y=1x|f(x). Then there exists a generalized solution of the exterior
problem if one of the following conditions 1) and 2) is fulfilled :
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1) B—u~ is the boundary value of a wvector function b*€ L(RYNC,HMR) with
sufficiently small ib*| or |Fb*| in the sense of (3.22) to be given below.
2) B is the boundary value of a vector function b*eC,4R) expressible as b*
=rota, (a€CHR)), and 8R is of class C2.

Proof. Again we introduce the notion of Condition (B’): namely, a vector
function b is said to satisfy Condition (B") if

3.17) beCoH{RYN\LAR), b =f—u.on oR \
b'(x)=0(xl"), Fb(x)=0(xl-?, (] 00},
and if
(8.18) o7 (b, w, wi<affwi?

holds for any we Cj ,(R) and some « in 0<a<y. Supposing that we are given
a b’ satisfying Condition (B’), we seek the generalized solution of the form

431
u=b + Ut , (ve Ho o(R))

in the same way as before. The notations {¢”}, . #», ../ etc. keep their
meaning unchanged. But this time the base {¢”} is chosen so that the follow-
ing conditions are both satisfied:
i)y ¢neCy.(R) for every » and (3.5) holds.
ii) When an arbitrary ¢ in Cs -(R) is given, we can find a sequence of ¢p*€ _/,
such that ¢7—¢ strongly in ﬁ&,,,([() and the carrier of ¢* is included in a fixed
bounded subset K.

The existence of such a base is easily shown. A vector function uy=5
+ux+vr is called an N-th order approximating solution if the following two
conditions are satisfied:

(3.19) vwE _ N
(3.20) Wi, ur)=(¢, f) for every g€ _#~.

Similarly to Lemma 3.1, we have

Lemma 3.3. If b satisfies Condition (B’) and f the assumptions in the
theorem, then there exists an approximating solution wy for each N.

N being fixed, the carriers of functions in . ./~ are contained in a fixed
compact set. Hence the proof of Lemma 3.3 is quite parallel to that of Lemma
3.1 and is omitted here. Correspondingly to Lemma 3.2, we have

Lemma 3.4. There exists a constant K such that {pv~l< K.

Proof of Lemma 3.4. The substitution of ¢=vy into (3.20) gives

v[[Poxlit— 76, v, va)= (s, )+ 07, Uy va)+ 70, 0, vn) ,

whereas we can estimate as
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I v, I I TTTON - " "
K?},«vyfﬂﬁ( - Ifcff)i < 2l s L CP e

Ed e

[ o/, vw, ool <aliPoni®,
Lo/, 0, va)l <SCH{be by H - v L ClFua |,

o/, e, vl ZCIY T Poa < CliPex !

with resort to Lemma 2.2 and Condition (B"). From these relations follows the
inequality (v—a)iFpn)i2-ZCiFuxl and consequently {Fuxll<Clly—a)=K.

We have proved that lFv~x} is bounded. However, it should be noted that
Rellich’s theorem is not applicable directly to R, since R is unbounded. We
put Ki=R{\ B0, i) for every sufficiently large integer ¢. Then according to
(2.3), there exists a constant ¢: for each K: such that llvs|lki<lc:. Henece,
Rellich’s theorem is applicable to each Ki. Furthermore, by means of a standard
diagonal procedure we can choose from {w~} a subsequence {v»'} tending to
?)*eﬁ}),u(R) in the sense that Puy’—Pv* weakly in I.(R) and vx"-+o* locally
strongly in L:(R).

Then we turn to verify that w*=b"+u..+»* is a generalized solution. The
proof that w* satisfies the weak equation for every ¢ in ./ is entirely the
same as before. Furthermore, in view of the condition ii) imposed on the base
{¢”}, we can show by an argument similar to the previous one that w* satisfies
the weak equation for every ¢ in Ci .(R) and, hence, is a generalized solution.

It still remains to show the existence of b’ satisfying Condition (B"). First-
ly we deal with the case 1). Let My and M, be constants such that

(3.21) le—xol - {b*¥() < My and  |z—a®- [PO¥a) <M,

hold for any z€ R, where xv and x, are some fixed points. Then we have for
any weC) (R,

Lo/ (0%, w, w)l=|. 57 (reb*, wfre, w)l << My fw/rell - [Pwll-Z2My [Fwl*
[o %, w, w)l =1 o/ (w, w, b1 < My w/m | aMIPwli®

where ro=lz—x] and 7i=|x—a. Thus b* itself satisfies Condition (B"), if
either

(3.22) y>2My or v>4M/ .

We turn to the case 2). We note that S8—u. is the boundary value of
v e C,(R) expressible in the form b* =rota’, a’ € CYR), since the constant
veetor u.. can be written as #we=rot (1/2-u.xx). Making use of the same device
as before, we can construct b** =rot (h{p)a’) satisfying Condition (B’) for an
arbitrarily small @>0. Thus the theorem has been established.

Remark 1. In Theorem 3.2 we may replace the assumptions on f by
weaker ones that fix)—Fhe LAR) and |x|(fle)—Fh)€ L:(R) for some he(C'.
Furthermore, under the condition 1) B may be the exterior domain of an
arbitrary bounded set.
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Remark 2. If B is of class C* and 9R of class C?, the condition 2) is
equivalent to (3.2).

Remark 3. Concerning the exterior problem we can show the existence of
the generalized solution even if the total out-flow m from the boundary OR is
not 0, although m is assumed to be sufficiently small. As an example, we con-
sider the simplest case. Suppose that R is the exterior domain of a compact
closed surface of class C? enclosing the sphere B0, A) and B is of class C*? and
f==0. Introducing

1

a(m):m~7~- , (mz B dS),
47 x| OR

we put B=B~u.—(the boundary value of ). Then we notice that
g [?ndSrO
IR

and hence § is expressible as the boundary value of rotd, a€ C*k). Therefore
we can construct a vector function b with compact carrier such that be C,(B),
5:f9 on OR and (3.18) is valid for b’ =b and any fixed @>0. We seek the generalized

solution of the form u=b+o+u.+v, (ve I/-}é.g(R)), along the way in the proof
of Theorem 3.2. Then it is made clear that a generalized solution exists if
v>|mlf2rA.

§4. Regularity in the Interior.

I) Preliminary Considerations on Stokes’ System.
In the first part of this section we describe some formal relations concern-
ing Stokes’ system [12]

du~FPp=—f, divu=0.

For the moment, V means a bounded domain with the smooth boundary oV

and the functions u, v and p, ¢ are assumed to be sufficiently smooth in V, un-
less otherwise stated.

With a pair of a vector function u and a scalar function p we associate a
3x3-matrix funetion T{u, pl={Tulu, p]} by

a1 Tifu, pl=—(p+div u)al,+( s | -@i‘i) )
6:1:; ox1

Then by means of Gauss’ divergence theorem we obtain
4.2) S (o du—Fp)—u(dv—Fg)+q div u—p div v} dV
1 4

- Sa T, plu—uTlv, gin)}dsS
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where 7 represents the outer normal vector with unit length. If divu=0 and
div v=20, (4.2) is reduced to

4.2y S {v(du—Vp)—uldv—Fg}dV
v

= ‘ {vT{u, pln—uT[v, ¢n}dS .
v

We introduce the fundamental solutions of Stokes’ system [12, 13], name-
ly, the following 3x3-matrix function E={E,;} and 3-vector function e¢={e;};

(4.3) Ezjf—f—(azjdm »w‘»?'«—)a) ., e wP 4 (i, =1, 2, 3),
6:816:1;; 33:;

where @=|x—y|/8zx. More explicitly,

5,4 Gmyd@—y) ) 1 oy

1
Biy=— 7 , = .
Y Y lg—yl* ] an la—yl?

{1
8 |la—y

We notice immediately Ejz—y)=FEulz—y)=Eif{y—x)=Es{ly—2z) and efz—y)
=—e y—z). Also the following inequalities are obvious:

""/ {
1 O0&m i

[Eyl <Cle—yl-t, lefdZCle—yl-®, 196 Ei | 2Cle—yl-t.
We can easily verify that

(4.4) O gy=0, 2,0, ()
0s Yy

and that

(4.5) A;Egj'--*@“ejf;—aiﬁ(x-—'y) , dvEtj+’,\a‘*ez2—3:‘;5(3:—-1/) ,
Ozt OY;
where 6(z—17) means the dirac delta function, because
0 ;
A By e y=00;4°0
0x:

and since —@ is the fundamental solution of the biharmonic differential operator.

Hereafter we may use the following notations in connection with formal
integral transforms, if no fear of confusion arises; let T={T%;} and ¢t={t;} be
a 3x3-matrix function and a 8-vector function defined in VX V respectively and
let ¢ be a 3-vector function defined in V. Then vector functions T¢, T*¢, and

scalar functions ¢ and 29") are defined by

T@J(f«:):g T, wlydy , T*sb(y):g d(@)T(x, ydx ,
Vv v

&
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n,&gx,\,:g tla, ydydy , toly) :—S
v

Slayt(z, yde .
v

Moreover, & being a scalar function a veetor function *h is given by

t*lz(y‘z:‘ h((zx, ydx .
.

With these notations we can write
(4.6) dE)—pedr=—¢, div Eg=0,
AE*) +FPéd=—0, div E*$=0,
for any smooth ¢. Denoting the i-th row vector of {E4} by Eu, we can

verify that

4.7 lim S wu(NT [Eix, —edndS,=uix)
OB8(r,e)

g0

for any vector funetion w=u(y) continuous near y=x[12, 13].

We define the modified or the truncated fundamental solutions of Stokes’
system. Fix a scalar function »"'(t)e C~(Es) such that »"(¢) depends on t as a
function of |t| and is subjected to the conditions

\ , <D,
-l )

v being a positive parameter, a family of functions »™'(¢) is given by

(4.8) 7V =9"(t/7) .

Evidently, »7(t)=1 if {t|<<y and »™(t)=0 if |t|>2r. We define the modified
fundamental solutions E ={E}} and e ={e;} by

EY= (5:;4 - —ﬁi—«)wm , o=~ ggm
axzaxj 0:5_1

where 07 =9V (@—y) @ =9V (x—-y) |z — yl/8z. Obviously E™ and e vanish
identically for |z—y|>2r and coincide respectively with & and e for le—yl <7y,
In particular, we have for any =z, y
]
4.9 EPI<Cla~ylt, le”<Chlz—yl-?, iaf EP < Cla—yl-2,
i {
(4,3, m=1, 2, 3), where Cy is an constant depending on 7.
In addition, a 3x3-matrix function H"={H\{}} is defined by H™(0)=0
and

(4.10) HPx—y)=8ud'0", (z+y).
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Since 420=0 for z+y and all derivatives of 7 (z—1v) vanish unless y <lz—yl<2r,
H(z—y) is a functxon of class C+= and vanishes unless y<lz—w!<27. In
particular, the function Hu is of class C* in the whole space Ej provided
that ue L;. The formulae obtained for E and e are modified and take the
following forms, when £ and e are replaced by E* and e™. Similarly to
{4.4) and (4.5) we have

(4.11) 70 Eiy=0, ; E =0, (@7 y),
and
(4.12) 4R — 0761 e/ =—8udle—y) + HY ,
4,E 4 9{?/1 e = —8,,8x—~y) - H{Y .
Similarly to (4.6) we have
(4.13) AENp—~FeNp=—P+ HV¢,  div EV =0,

AEV* 4PN P=— 4+ HV*p | div EV*p=0,

for any smooth ¢ in V, on which the integration is extended. Moreover, as
inferred from (4.12) we can derive the integral representation in V(2y)

(4.14) u=— EN(du—Fp)—e"* div u+Hru
= — EV*(dy—FPp)—e¥V* div u + H My

In (4.14) we may put p=0 because of the relations
S E®.rpdy= —S div EW-p=0..
v vV

Thus (4.14) is reduced to
{4.15) U= — BV Ay 4 H V= — EOF 4y - H ¥y,

provided that div u=0.

Finally we state the following lemma [7], which seems to be essentially
well known.

Lemma 4.1. Let g(t) stand for any one of 0.E () and e/M(t). Then for
any 0 contained in 0<0<1, we can find a continuous function {(t) with the
Jollowing properties; for any t, t' € Es the inequality

el LB @) |
(4.16) 9= g@ N <lt=t1° 2 b

holds and &(t)=0 for |t|>2r.
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IV Theorems concerning Interior Regularity.

The remainder of this section is devoted to the following theorems.

Theorem 4.1. Let u be a generalized solution of the interior or the exterior
problem, in which fe LJ*(R). Then there exists the pressure p associated
with .

Theorem 4.2. Let w be a generalized solution of the interior or the exterior
problem with fe L"(R). Let p be the associated pressure and V an arbitrary
open subset of R. Then the following statements are true;

1) If f is locally bounded in V, then weCY* V) and peC¥ V) for any 0 in
0<a<1].

2) If feCM V), (n=0,1, .-+, co; 0<h<1), then weC"¥ V) and peC** (V)
and the Navier-Stokes system is strictly satisfied in V.

3) If f s analytic in V, so are u and p.

In proving these theorems we assume v=1 without loss of generality. The
first step of deriving the theorems is to prove the following “local” integral
representation.

Lemma 4.2. Let u be a generalized solution of the interior or the exterior
problem with fe€ L*(R). Let K be an arbitrary bounded subdomain-3R and y
any positive constant. Then for almost every x€ K(2y), we have

(4.17) u(m):—-g Etv»<x~y>f<y>dy+g Ho (o pyudy
g K

K

and

(4.18)  Onuiz)= ~S OmE‘V’(m~y)f~(y) dy +S OnH (2~ yuyp)dy,
K K

{(m=1, 2, 3), where f= (w-Pyu—f and On means 0/0sn.

Remark. Since the generalized solution u as well as its generalized deriva-
tives is determined up to a null set by its nature, we may and hereafter shall
consider that (4.17) and (4.18) are valid for every z in Ki27). Also in what
follows we shall agree on the conventions of this sort.

Proof of Lemma 4.2. Take a general element ¢ of Co(K(2r)) and put
e=E"*), n=&"¢. Then according to (4.13) we have ¢€Ci (K)TCs .(R) and
do+Va=—¢+H*, The result of substitution of this ¢ into the weak equation

— g, Fu)=(p, F)
is reduced to
(4.19) (¢, wy=(¢, ~ENf+H ), (e Co (K2r)),
by means of the following relations;
(0, D=(E"*p, [)=(¢, EV])

(P, Pu)=~—de, w)=(p+Pr—H*), u)=(p—HT*), u)
=(p, w—(p, HMu).
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The fact that (4.19) is valid for every ¢ € Cy(Ki27)) implies (4.17).

In deriving (4.18), differentiation of the integrals of (4.17) directly under
the integral sign seems difficult to justify and we prefer an alternative way.
Take a general element ¢ in Co*(K(27)) and put

(p’"‘ = Efy;*(am(fb) [ T é"w(a'mﬁb;‘ .
Again (4.13) gives ¢ € Cy(K), nme Cy(K) and
A(p’" 4 V”m:amd,_ﬂ HW’*(O,-M,L') .

Sinee H™ is a smooth function and the singularity of 9.E® is O(jx—yl 2, we
have by partial integration

Ew)*(am(j’)x “"‘(6711EW))*4) and IIW)*(a/nz(‘J’J)T “"‘(8711,H(7)>*¢ .
In view of these relations we can calculate as —(Pp™, Fuw)=(d¢™, w)={(@und—Fr
‘{"’(G‘MIIW))*‘/); u)::(am‘:by u)“i“((amHW))*sb, u):‘i “(‘,”, a,:z%)";‘((,l), amHW)%). Evidently

(o™, F)=(p, (@ED) f). Thus substituting ¢=¢™ into the weak equation we
obtain

(9”; 6mu) = (‘,L’, - (amEW))f“l" (amIJI W)>u)

for any J € Cy(K(27)) and obtain (4.18).

Proof of Theorem 4.1. Let K’ be an arbitrary bounded subdomain-3R.
Evidently there exists a bounded subdomain K such that K -3K(2r)3K-=3K
holds for any sufficiently small r>0. By means of (4.17) we have

(Po, Puy=(dg, —u)=(dp, B F~H"w=(E*dp, [)—(¢, 4H u)

for any ¢€C (K(2r). On the other hand, E"*dp=—¢+H"*p by virtue of

(4.15). Therefore, (Fo, Fu)=—(¢, f)~}~(f]""*gp, f)—((p, AH““u) is obtained. From
this equality and the weak equation it follows that

(o, HVf—4H"u)=0

is valid for any ¢eCi (K(27)), while H‘“”f_AHW’u is of class C~ in the whole
space. Hence by virtue of a familiar theorem of vector analysis, there exists
a scalar function z'e C*(K(2y)) determined uniquely modulo an additive con-
stant such that

HYf—4H Y y=—Fn’

everywhere in K(2y). Then we introduce

-

p'(x)fﬂ’ix%x ee—y) fy)dy=n"—erf

K

and note that e¥fe L:{(K(2r)) in consideration of (4.9), Lemma 2.7 and
Fe Lis(K). We proceed to the verification that p=p’ satisfies the defining equation
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of the pressure

(4.20) Fe, Fuy—{div e, pl=—(¢, f)

for every ¢€C:*(K(27) and hence, for any ¢eCi(K"). According to (4.14),
Ev*dp=—p—eV*dive+H e, In view of this relation and (4.17), we can
calculate as

-~
v

(Fo, Pu)=~(do, w)=(dp, EVf—Hy)=(E"¥dp, f)i—(p, JH 1
=—(¢, H—(em*div o, H+H>*p, Fi~(p, 4H )
=—(p, i—(dive, eVf)+lp, HYf—dH My
=—(¢, H—W@iv e, enf)—(p, Fr’)
=—(¢, N+Wive, 7'—enf)=—(p, HH+Wive, p).

Now let § be an arbitrary positive constant and set Ks=R(&y1 B0, 1/8).
In every Ks we construct a scalar function ps satisfying (4.20) for any ¢ € Co*(Ks)
Just in the same way as we have constructed p’ in K. Evidently 0<38”<é”
implies Ks»<~ K5+ R. Then by the reasoning in the remark below Definition
2.3 it is made clear that ps'—ps~=const. in Ks. On the other hand, ps involves
an arbitrary additive constant. Therefore we can choose this additive constant
so that psr=ps - in Ks for any 6, 6 (0<67<d’). Then we define pe L:*(R)
as the inductive limit of ps as 8--0. This p satisfies (4.20) not only for any
p€Ci(R) but also for any ¢eCy'(R), because any function in Co'(R) can be
uniformly approximated together with the first derivatives by functions in
Co{R). Thus Theorem 4.1 has been proved.

The following proposition has been established in the course of the proof
of Theorem 4.1.

Lemma 4.3. Under the same assumptions as in Theorem 4.1, the associated
pressure p 18 expressible in the form

(4.21) p(m)zrr(:vHS e(z— ) fly)dy
K

Jor xe€ K(2r), where K is an arbitrary bounded subdomain-3R and = is a certain
Junction of class C=.

Proof of Theorem 4.2. Let K be an arbitrary bounded subdomain-3R. Then
on account of (4.17) and (4.21) we notice that the regularity of % and p in
K(27) is implied respectively by that of

4.22)  wz)= LE‘”(x—y)f(y)dy , q(ﬂ:):gK ez~ fydy .

On the other hand, the types of the sigularities of E% and e, which are
identical with those of E and e, are familar in potential theory and the follow-
ing proposition is essentially well known: if feC»*K), (n=0,1, -+, oo; 0<h
<1), then veC™*K(2r)) and ¢eC""'(K(27)). From this proposition we im-
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mediately arrive at the following

Lemma 4.4, In addition to the assumptions of Theorem 4.2, assume that
SeC ™V (n=0,1, -+, 00; 0<h<l) and ueC* V). Then ue€C"¥V) and
peCY V),

We recall (2.23) and note that

(4.23) Wulle<C, lufiz—yliz=C,

K being an arbitrary fixed bounded subdomain of R. Our task is to improve
the regularity of u starting from (4.23) so that Lemma 4.4 is applicable. For
this purpose, we establish the following series of propositions:

1) uwe LAK2)if fe LK),

1) Fu€ L. (K2r) if feL«{K) and ue LAK).

iil) Pue L.(K(2), if fe Ly(K) and we L.(K) and Fue LK.

iv) FueCYK(27)) for any # in 0<0<1, if u, Pu and f€ L{K).

Once these propositions have been established, the wanted improvement of
the regularity of u can be achieved by successive application of them in con-
sideration that y is an arbitrary positive constant.

Proof of i). We put

v'(w)zﬁ:m(u-muzg EW(@—y)u-Puy)dy
K

and similarly
@”:E“”f s h=Hwqy .

According to (4.17) u=—v+h=—v"4+2"4+h in K(27). We note that h is of
class €'~ in the whole space. By virtue of (4.19) and (4.23) we have

o ()] <C S Ll AP g Clutgyfie—pllic - IPule <C
x le—uyl
and
@) < Cllz—yl x|/ e <Clf I =C .

Consequently, we€ L.{K(2)).
Proof of ii). Putting

InE (@ —y) fdy , (m=1, 2, 3),

K

() :rS

we have Fou(x)= —v™(x)+0.h(x) by means of (4.18). Ouh is of elass C~ in the

whole space. Under the assumptions of ii) f=(u-Flu—f€ L:(K). By means
of (4.9) we obtain

g |07’1E<*/)110/7dy<6§ !mn-yl‘“‘”dy*(Cr‘” ,
K@y

B{x.2v) ‘

which enables us to apply Lemma 2.7 with p=2, ¢=5, r=10/7. As the result
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we have vl xen <Ci fllz.x, which implies obviously Fue L{(K{2y).
Proof of iii). By virtue of (4.9) and Hdélder’s inequality we have

ot <C] L ay<Citr—ui -1 Flox <CIF 1

where B=DB{x, 2r). Hence v"¢€ L.{K2y)) and thus Fue L.(K{2y).
Proof of iv). It suffices to show that »»eC¥K(2y). This follows from

fe L.{K) with the aid of Lemma 4.1. Namely,

sl

{?)7"(9:)“7)’"(?6’}1fCIOJ“iL"lgS fEa=y , Ca'=y) }dxg
g Uz g0 o/ —yloe

gClx—x’l"S le—yl-*0dy<Cla—a’l®.
B{z,2vy)

Just in the same way as in the proof of iv) we can show that ¢(z) in (4.22)
as well as p(x) 1s of class C? in K(27) if fe L K).

From the results so far obtained, 1) and 2) of Theorem 4.2 have been estab-
lished. Finally we deal with 3). If f is analytic, «, p are of class C~ in V
according to 2). They satisfy the Navier-Stokes system

~du+(u-Vyu+Fp=f, divu=0,

which forms an elliptic (but not strongly elliptic) system with four unknown
functions u:, %2, s, p. Examining the structure of the Navier-Stokes system
we notice that a theorem due to Morrey [11] and Friedman [4] concerning the
analyticity of solutions of such a system is applicable and we obtain the desired
analyticity of u and p. Thus Theorem 4.2 has been established.

§5. Regularity at the Boundary.

This section is concerned with the regularity of a generalized solution u at
the boundary of R. We shall prove

Theorem 5.1. Let u be a generalized solution and p the associated pres-
sure. Let OR* be one of the components of R such that O0R* is of class C2t»
and 8 is of class C** on OR* for some h in 0<h<l. If f is bounded near
OR*, then Fu and p are Holder continuous mear and on AR*. Moreover, u
assumes the boundary value B on OR*.

Before entering into the derivation of this theorem we state some proposi-
tions concerning the interior problem obtainable by combining this theorem with
the preceding theorems. The corresponding propositions concerning the exterior
problem are found in the next section.

Theorem 5.2. In the interior problem we can identify the generalized
solution with the strict solution, if f is bounded and Holder continuous in R
and if OR and B are of class C*** and of class C'** for some h in 0<h<1,
respectively.

Theorem 5.3. In addition to the assumptions in Theorem 5.2, assume that
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one of the conditions 1) and 2) in Theorem 4.1 is satisfied. Then there exists
a strict solution of this interior problem.

As the preliminaries for the proof of Therem 5.1, we deseribe some resulfs
of Odqvist [12] concerning Stokes’ problem. Let V be a bounded domain with
the boundary 0V of class C?*(0<h<1). In this domain we consider Stokes’
problem composed of Stokes’ system

dv—-Vg=—f", divv=0,
and the boundary condition that
= on 0V

for an unknown vector funetion v and an unknown scalar function ¢ with
given 7 and /. Odqvist developed an analogue of potential theory with
respeet to this problem and deduced the following results:

i) If f7=:0 and B €C'** is subjected to the subsidiary condition

S Bu’dS=0
bl

then the solution {», ¢} exists and is analytic in V. Then it is known also
that ve C**(V) and qe CH V).

il) There exist a 3x3-matrix function Gz, ¥)={Gu(x, ¥)} and a 3-vector fune-
tion g(z, ¥ ={gsx, ¥)} such that

5.1) v<x>:(:f'<m>z§ G, 9 @Wdy .
q(’m)ng’(sc)‘:gvg<x, I ydy

furnish the solution of Stokes’ problem with the homogeneous boundary con-
dition f’==0 for any smooth f'. v and ¢ in (5.1) are known to satisfy the
conditions

peCHVINCH™M V)Y, qeCHYVINCHV),

provided that f* is Holder continuous in V and bounded in V. The kernel

Gz, 1) is formally symmetriec. If k(x, %) stands for any one of Gulz, ¥) and

Kz, ¥) stands for any one of gz, ¥), 0Gi(x, ¥)/0zn, (1,5, m=1, 2, 3), then
(5.2 lk(z, HI<Clz—yl-' and |K@, yi<Cla—y!-*

for any a, y€ V with an appropriate constant C. Moreover,

2 Rl
dllog di _,_SLE

5.3 |Klx, y)—Kz’, n)<C >
r 7

y;dllo?gdl +
Lo

for any =, @', y€ V, where r=min {le—yl, lz'—yl}, d=lz—2'|.
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Proof of Theorem 5.1. We may assume p=1 without loss of generality.
According to Theorem 4.2 u is of class C? (0<#<1) in an suitable open set
surrounding dR*. Draw a smooth closed surface S through this open set so
that S encloses and bounds away OR* from the other components of 0R. Here-
after V means the annular domain between #R* and S. Therefore 6V =0R*
+8.

Let w” and p” be the solution of Stokes’ problem in V with fr=0 and 3
such that 3'=3 on OR* and 8’=u on S. Then taking a general element ¢ in
Ce(V), we put

¢=Gd=G*), n=g.

As stated above, ¢eC.'"*(V) and ¢=0 on 9V and we ecan easily show?
N
p€ Hi (V). Hence we can substitute ¢=G¢ into the weak equation

—(Pp, Fu)=(p, F), (f=(u-u—f),

after extending ¢ outside V in the natural way. The results of the substitu-
tion are reduced to

(5.4) (P, u—u +Gf)=0

in consideration that dp—FPr=—¢ and by means of the following relations to
be justified later'®:

(5.5) (@, Fin=(G*¢, Dv=(, GF)r,

(5.6)  Fo, Fuye=Fp, Fu)r=Fp, Flu—uN+Fe, Fu')
=—(de, u—u)—(p, du)=(p=Fr, u—u)—(p, Fp’)
=(¢, u—uw)+{dive, p )=, u—u’).

The fact that (5.4) holds for every ¢€Co*(V) implies that
(5.7) w@)=u'(x)~ Gf=u(x) — S G(x, ¥)fydy
14

for almost every ze€ V. We can differentiate (5.7) under the integral sign, for
the resulting integral converges absolutely and locally uniformly. Hence we
have

amu(x)zamu”(a:)-g é{?‘ G, 9)fiydy .

v

By means of these integral representations and with the aid of lemma 2.7, the

9) The pxloof 'c/>f this fact is not so trivial because of the subsidiary condition div ¢=0.
It will be treated subsequently with some lemmas of the same sort.

10) In general, 4G¢ and pg¢ are not smooth on the closed set V even if ¢ is smooth there.
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following propositions are established in the same way as for the corresponding
ones in §4:

iy weL{V)if felL{V).

iy PuelLiVyif fels(V)and veL V).

ity Pue LiV)if fel V), wel.LV)and Fue L,(V).

Since we assumed fe€ L.{V), we see by successive application of these
propositions that f=(u-Fru—f as well as Fu is bounded in V. In order to
show that Fu is Holder continuous in the closed set V, it suffices to show that
a function w(x) defined by

5.8) w(a:)xj Kz, phdy , (he L.(V)),
Vv

is Holder continuous under the assumptions of (5.2) and (5.3). Let z and 2z’ be
two arbitrary points in V and set d=ijx—z’|l, B’ =B((z+x)/2, d), V=V-B".
Evidently we have

|w<x>=_w<x'>1g§ |K(z, y>k(y>ady+g K@, wh(y)ldy
I u

+S |K(, ¥)—~ K, - 1hy)ldy
|44
wmLile)+ L)+ Lz, 27),

whereas we easily obtain [i(x) << Cd and I(z’)<<Cd and obtain Iz, z)

(5.9 lw(x)—w(z")| <Clz—xz'|*
for any x, z’€ V with constants C, & independent of x and z’.
Concerning p we can give the integral representation

(6.10) p(x):const-+p’(x)~§ olx, ¥ fady
”

by verifying that the right member satisfies the defining equation of the
pressure

e, Pu)+(e, H—@ive, p)=0
for any ¢€C*(V). In fact, we have by means of (5.7)
(Fe, Fu)+(¢, HH—@ive, p'—gf)
=—(do, w+(p, [+, Pp))+(g*dive, )
=—(dg, w—Gf)+(p, F)+(e, Vp)+ (g*dive, )
=—(p, ' —Vp)+(G*dp+g*dive+e, f)
=(G*dp+g* divo+o, f).
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On the other hand, G*Jp+g*dive+¢=0 because we have (GFdp+g* div @, h)
={de, Gh)+dive, ghy=(p, 4Gh—Fgh)=—{p, h) for any smooth k. By the way
we note that if f is Holder continuous, then #€C?, peC! and the verification
of the defining equation of pressure is more simply carried out by showing that

—.dzc-i»V(’p"—-gf):wf:.

We see from (5.10) that p is of class C* if gf is, whereas (5.9) vields the
Holder continuity of gf" by virtue of (5.3) and (5.8).

Now it remains to justify the formal calculations in (5.5) and (5.6). (5.5)
is legitimate according to Fubini's theorem. Putting %=u—u’ we have

(5.11) e, Piy=Fe¢, Pium+Fe, Fil)ry
0o

= (P, Pithuy +(dh 1‘0*'“’+S (5ra—rii)is
avey) \On

with an arbitrary small positive constant 7 by means of the necessary partial
integrations. Evidently (Fg, Fit)or,—0 and (¢, @W)rwm—{P, @)y as r—0. We recall
that S is contained in R and %, ¢, = are smooth near S. Noting that %=0
on S, we have

[ (@a— nﬂn,)dS«»O , (F—0),
REGS]

n

where S(7) is the component of 9V(y) adjacent to S. Next, we note that @ is

s
expressible as @=w+b with we H;,,(V) and smooth b vanishing on #R*. Hence
using the notations in Lemma 2.5, we have by means of Lemma 2.5

g li/p*dy <K and S Paldy < K
wH(y)

w¥v)

(0<r<7s), whence it follows that

am:S lul*dS—0 , (7->0)

ptey

according to Lemma 2.6. Consequently we have

[S (@"ﬁ** mln)dS§ < CVilr)-0, (r—0),
[Jormy 67& i
since O¢/0n and 7 are Holder continuous near dR*. In this way we ascertain
that the surface integral in (5.11) tends to 0 as 7—0. Thus (Fp, Vi)=(J, %) is
shown by making y—0 in (5.11). On the other hand, the verification of (Fe, ru’)
=0 is carried out by use of an appropriate sequence ¢ such that ¢”€C) (V)
N\

and ¢"—¢ (n—oo) strongly in H; (V).

Combining these results the calculations in (5.6) have been justified and
hence the theorem has been established,
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§6. Regularity at the Infinity.

This and the succeeding seection are devoted to the study of the behavior
at the infinity of generalized solutions of the exterior problem. The main ques-
tion is whether the generalized solution u really satisfies the boundary condition
at the infinity w{x)-»u., (Jzl-»0). This question was essentially resolved with
the affirmative results under the physically acceptable assumption f=0 for the
case #.==0 by J. Leray [10] and for the ecase u..70 recently by R. Finn [3].
We shall give another proof of this result, which has some features distinet
from those of the proofs by Leray or Finn and is possibly applicable to prob-
lems of more general types. Besides, some results a little more detailed will
be obtained. With a view to presenting various devices we adopt different
methods according as #..=0 or u./0, though the method applied to the latter
case is conveniently applicable to the other case. Our main results are the fol-
lowing two theorems, which are essentially independent of each other.

Theorem 6.1. Let w be u generalized solution of the exterior problem and
assume f€ LX (RN Ly(R). Then u(x)—u. as |x|—oo.

Theorem 6.2. Let w be a generalized solution of the exterior problem and
p the associated pressure. ILet V be an unbounded subdomain of R with smooth
compact boundary 8V. [ is assumed to be Holder continuous in V and to pos-
sess the following properties;

(6.1) FeL(VINLAV), freLiV), (f(x)=lzlfx)),
Slx)y-0 as |z|—oo,
Then we have

6.2) w(xy->u.., Fula)-0, (lz)-—o0),

and p(x) tends to a constant p.. as |x|->c0, Furthermore, we have the follow-
ing integral representations'V:
i) If v=1 and w.=0, we have for xeV

6.3) u(:v)z——S E(o—) fdy +s)
‘f

(6.3Y p(x):f:p«»wg ele— ) fpdy +o(x)

¥

where f=(u-Pu—f,
Si(.‘l?)":S {Eo:T[u, plo—uT|Eiy, —ejn}dS, (1=1, 2, 3),
h3%

a(m):g {eT{u, pln—uTle, 0Jn}dS

av

and where E and e are those given in (4.3).

11) For any v>>0 and ww, similar integral representations are possible [13].
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1) If v=1 and wu. is normalized as u.={2, 0, 0}, then we have for x€V

6.4) uax)zu.:—S j/ﬁ’(:vuy)f(y}dy%su;),

¥

(6.4) pix>:px-g elx—yi fundy + o)

¥

where f=(w -Fiv—f, v=1u—u.,

s;(x):g { & Ty, pln—vT[ &, —en—2( L svmdS,
av
(i1=1, 2, 3),

a(:c)zs {eT[v, pln—ovT[e, 2¢.]—(ev)n:}dS
oV

and where & and e are those given later in (7.3).

Remark 1. The conclusions concerning u and Fu of the theorems remain
valid if the assumptions on f are satisfied by f—F® with some @€ (C".

Combining the theorems so far obtained in connection with the exterior
problem we have

Theorem 6.3. As to the exterior problem we can identify the generalized
solution with the strict solution, 1 f f is Holder continuous in R, bounded near
OR, fe L(R) and if @R and B are of class C*** and of class Ci+* Jor some h
n 0<h<l, respectively.

Theorem 6.4. In addition to the assumptions of the preceding theorem, as-
sume that one of the conditions 1) and 2) in Theorem 8.2 is satisfied and that
lwlfx)€ Lo(R). Then there exists a strict solution of the exterior problem.

In the remaining part of this section we shall deal exclusively with the
case u..==0. The other case will be treated in the next section.

Proof of Theorem 6.1 for the case u.=0. We assume v=1 without loss of
generality. We know that u satisfies the inequalities

(6.5) IPulle<K and [u@)/lz—~yllln<K

for some constant K. On the other hand uwe C!+* (0<8<1) according to Theorem
4.2. Hence we have by means of Lemma 2.8 and Remark to Lemma 2.4

lulle. <K’

with another constant K”. Now, by means of Lemma 4.2 we have for x € R(2)
u(x):vSE“’(x—y)(u-V)udy+SE”’<a:~y)f<y)dy+SH“’(x~y)u(y)dy

==y (x)+ v (x) +h(x) .

In view of (4.9) and (6.5) we can estimate as
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lv’(x)l"‘Cg MB—U—MEVuIdyijiC%Eu(y‘}/lxv:yi£|n~EEVu!Eu:".’C%WuSin )
Ju Ja —yl

|rv~<x>z,~:cX WO g Cltz— gt 1 Lo CIF U

slz—yl

where B- Bz, 2). Hence we have v'(x)-0, v'(x)—0 as |z|->»=. Also in view
of the properties of H % stated in §4 we have

thiz)l < CHH @ llsss, 1 lulls a <Clulle.n

where A=B(z, 2)—B(z, 1). Hence in virtue of u€ L{R), we have h{z)-0.
Thus u(z)~>0, (lz]->0).

Proof of Theorem 6.2 for the case u.=0. Again we assume v=1 without
loss of generality. Under the assumptions of Theorem 6.2, u and p are smooth
and satisfy the Navier-Stokes system

(6.6) Au~szfz(u-V)u~f, div u=90

in V as well as the inequalities (6.5). As seen from (4.2 and (4.12) the
integral representation

6.7 u(x)::——g Ev@—y) fly)dy + S H>(@—yyu(y)dy +s(x)

is valid for a2 € V and sufliciently large 7.
For the moment we assume f=0 so that fz(u-?)u. Then we put

wwy=| Be-pfvdy = | vy

and note that the integral on the right side is absolutely convergent and dimin-
ishes when |al-»ee, In fact, with sufficiently large N we set Va= VN B0, N),
Vy'=V—B{0, N)=BO, N)» and split »(z) as v(2)=v+(x)+vx"(z), where

m(x):g El@—y)u-Pudy , v’(a:)zg E@—y)(u-Piudy .
VN VN’
Since V~ is a bounded set, the inequalities
. (- Pl C S P
A< C dy < ¢ Puldy < ————
ox @) = SN prar S|, e nudy < e

hold for some constant C» and any € Vy'. On the other hand we have by
means of (6.5)
[

loa(2)] \CS Nl P G Clluflo— gl e 1Pl 5 < CUP Ul e
vy eyl
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whence follows that v»"(2)—0 (N-sc0) uniformly with respect to . Thus for
any positive constant € we have [v(@)}l<<& when we make N large and then
make [z] large enough. Namely we have

(6.8) v{z)—-0, {lz]-> ),

(6.8) will follow from (6.7) if we can show that

6.9) S Ev(@—y)f)dy — X Ew—pFupdy=vie) ,
V Vv

(6.10) S H(@—y)u(y)dy—0 as 7-»co.
v

Putting K’ =E{V— 9" (x —y)E:;;, we observe that the matrix function K™
={KY(x—1v)} vanishes identically unless y<|z—w|<2r. Concerning H and
K we need

Lemma 6.1. With an appropriate constant C independent of z and y we
have

(6.11) |HP -yl <Cr, (r=>c0),
(6.12) K @—yl<Crt, (o).

The proof of this lemma is quite easy if we recall (4.9) and (4.10). We need
also the relations

(6.13) ”Vuilz{(z.y)“‘)o ] ”uuA(Z.‘Y)i;CT ’ (T-—)OO)

where Az, 7r)=B(z, 27)—B(z, r). The first of (6.13) is obvious by means of
(6.5). The second follows from (6.5) by virtue of Lemma 2.4. Now, by means
of (6.12) and (6.13) we have

Sva(x—wf(y)dy : —(Tl

g ul - Paldy < S - 17ula
4 s
<Clrulla—~0, (r=>00; A=Alz, 1)).
Also writing B’ in place of B(x, r)°, we have
| -~ | ~ .
[, @=miay|<c| iBa-viifwiay=c| 1 ay
iJv 1 B 5’ I:IJ**’_II}
<Cllu/le—yls - Pulw < CliFul-0, (7> 00),

on account of (6.5). Thus we obtain (6.9) because EV—E=(KY—ypWE)—~ K",
In virtue of (6.11) and (6.13) we have

'S Hw><x—y>u<y>dyig—%§ uldy< S 1 lul
v i 7T Ja T

<Cr-2-p¥ty=Cr/i-0, (r—o0),
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which proves (6.10). In this way we have established the integral representa-
tion (6.3) for the case f==0. We have also remarked that w»(zx)->0. On the
other hand, s(z)=0lx]-") is clear because of E=0lz—y|"), T[E, e]=0{z—yl"*).
Consequently we have proved u(z)—0 for the case f=0.

We turn to Pu. By differentiation it follows from (6.3) that Onu(w)= —0.v(x)
FOns(z), (x€V, m=1, 2, 3), where d.v(x) and Ju.s(z) are obtained respectively
from v(x) and s(z) by differentiating the integrands under the integral signs.
Then Auslz)=0(z}-%) is apparent in view of

(6.14) 6,,,E::ég—~ Elx—1y)=0(z—y-*)
and
a Iy Y L
T{Ewy, —e]=00z—yl*), (Jz—yl->00).
(’)xm
Putting
(6.15) vmng OB —1) Sy ,
n(x, 1)
,,}*,n(x)zg OBl — ) )y , (V@)= V— B, 1)),
y

we note that dnu(x)=—v"{x)—v**(x)+0nxs(z). Since ye€ V'(x) implies |x—yl=1,
(6.14) gives

vole—yit T T Y lm—yl

Hence we obtain v*"(x)—0 similarly to (6.8). Therefore —¢*”+8.s is a bound-
ed function which vanishes at the infinity. For convenience we denote such
a function by one and the same symbol d(z). Setting

avttE(m—"y\) y (!ﬁ)‘“?]!<1),

k(x— )=

we consider the integral transformation
w’(:c)::S Ea—ypwlydy , (2 € B:).
Hl

Here B, is a sphere and B: is another sphere concentric with B, such that the
radius of B: is less by 1 than that of B:. Then just in the same way as we

(6.16) Hw'lls, 0, <Clawle.n, 1w o, 5, <Cllawlls. 5, -

Furthermore, a being an arbitrary point sufficiently far from the origin, we
put M(@)=llu)ls. ma.n. Then by virtue of u(x)—0, we see that M(a)—0 as |al-—co.
Noting
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1 o0 = 100 P 0 a0 < M@ Tl i
and applying (6.16), we are led to
el ma. o, << CMa) iFull na < CMa) .
Taking account of Gnu=—v"+d we thus have
IPulls nanCM (@) and | f s nwo<CMia),

where M'(a) is another function of e tending to 0 as |a|-»>.
to (6.16) and see that

A T Clif s, Be.0 <CM(a) ,

whence follows |@nttlle s o CM (a) and, namely, Fu—0.
We turn to p. Putting

m:):S ex—pfydy ,

93

Again we resort

we notice in view of (4.5) that dv—Fz=—f. On the other hand we can easily

verify 4s—Fo=0 with the aid of the relations

de;=0 y AzElj = P

——6*~€j R AzTg[Ei:ky “‘ei] =- a;' T!I[er O] .
axy

Consequently, du—F(—n+0)=f==(u -Vu. Comparing this with (6.6) we have

(6.17) plx)=const.—n{x)+a(x) .
This implies (6.3)", provided that
(6.18) —al{x)+o(x)—-0,
In fact, o(z)=0(z|-?) is obvious. We ascertain
(6.19) m(x)—0,

as follows. Write n(z)=n"(z)+=""(&) with

7;’(3:3:5

B{z.1) ¥ ix)

(lz]-s00).

(I.’EI“"N‘Q)

do—iudy, (@) ~S ey fy)dy .

It is easily seen that n”/(2)—0 similarly to v*® in (6.15). ='(x)—0 follows from
f“z(u-V‘}uﬂO and {n’(:z:)l:\'Cn}‘;;m_mz,n. In this way we obtain (6.3)" for the case

Jf=0.

Reexamining the above arguments we notice that the validity of the theorem
will be established for the general f subjected to the assumptions in the theorem,

once the following relations are proved.
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(6.20) [, mow sy Bawpsa, (o),
(6.21) SV Exz—y) flydy—0, (I} e0),
(6.22) Sv TuFlz—y) flydy--0, (lx|->00),
(6.23) XV elz—y) flydy-->0, (x| 00),

The proofs of these are as follows. Noting (6.12) and [lz—yl- A</l
el f == Mix), we have with A=Az, r)=Blz, 2r)— B, 7)

’S K (@—y) fandy <Cr-la—yl- s lla—yl [ <Cr-2M) ,
1Jv t
fly

Y
v ~neevy 12—yl

|
S (E—1"E) )y < C S
v
<Cllz—yl*llv-s- Ne—yl flv-s=Cr-""M2) .

These estimates give (6.20). (6.21) is obtained by means of (2.22). Namely,

i i \
620 || Be—ysway|<C o 1= 0
N V U eyl -yl
If we put
I(ﬂ?)f::fS A Wl dy‘—fg 1 ay ‘*S AL Sdy=I'(x)+I"(x),
v le—yl* seey 1€ =yl v e — yl®

then the proof of (6.22) and (6.23) is reduced to the proof of Kx)—0, (Jz}->oo).
On the other hand,

|I/(93)|&:C”f“m_l}(r,l)‘“)o y (lzl->0)

in virtue of the assumption f(2)-+0. And |I”(@)!=0(z|-*/*) is shown in the

same way as (6.24), because y € V'(z) implies [z—yl<lo~-yl%
Thus we have established Theorem 6.2 for the case %u..=0.

§7. Regularity at the Infinity (Continued).

The object of this section is to prove Theorem 6.1 and Theorem 6.2 for the
case #./0. We divide this section into two parts. The first part contains
some preliminary considerations concerning Oseen’s system and its fundamental
solution, which are employed in the second part.

I) Preliminary considerations.

In proving the theorems in question we may assume v=1 and %.={2, 0, 0}
without affecting the generality. Indeed, a suitable choice of the coordinate
system permits us to take w.={lu.l, 0, 0} and then the scale transformations
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w=ufk, x'=kx, p'=k¥, f=kf with k=2/|u.} changes the boundary value at
the infinity into the one mentioned above.

For a while, suppose that u and the associated pressure p are smooth and
v=1, #.={2, 0, 0}. Then v=u—u. satisfies

(7.1 (d—200v—Fp=@ -FPlo—f, div v=10.
When the non-linear term in the first equation of (7.1) is dropped we receive
(7.2) (4d—-200w—Fp=~—f, dive=0,

which is called Oseen’s system. The fundamental solution of Oseen’s system is
explicitly known owing to C.W. Oseen [13]. It consists of a 3x3-matrix funetion
¢ ={& 1y} and a 3-vector function e={e;} given by

(7.3) iy y)z(«w— _ Y
axiaftj
b 8\,
e 1Y) = — e — 9 2 \y ,
& e»(a, ?/) 0:1:; <A 20131)
where

atfxm-y):élsq“e't dt and e=|c—yl—(m—y) .

wle ¢

Similarly to §4 we sketch the properties of this fundamental solution. The
following relations are verified by straight-forward caleulations:

(7.4) (d:—20/0x)¥ =1/4dn|x—y) ,

0\ . 0 y
(42“2 8 ") 2‘57!1““5;; ey=—0,6x—y),

X

0 . 0
4,4+2-2) - = — 810~y
(w+ 61/,)(( i ayjef 150(x—1y)

. 0
—m G072 () and — \/5* ={) ’
e (a5 oy} <y

where & is the dirac delta function. In view of (7.3) and (7.4) we notice

-0 1 1 a5y
(7.5) o= Oxs dnlz—y|  4n lz—y®

which shows that the ¢ under consideration is identical with e introduced in
§4. The singularity of 2" is similar to that of E in §4. In particular, (4.7)
maintains its validity if FEu. is replaced by # .4, the i-th row vector of .
Hence we can derive integral representations with the kernels constructed
from & and e by means of a certain integral identity. This integral identity
is analogous to and obtained from (4.2) and takes the following form:
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(1.6) S {o(du—20u—Ppy—u(dv+20w—Fg)+q divu—pdive} dV
v
:—-S {vTu, pln—uTlv, qln—2uvin.}dS .
av

Here and for the moment u, » and p, ¢ stand for any smooth vector and scalar
functions. We have also the integral representation for z€ V

(7.7 'v(:c‘)rft«-»g { & (e—y¥dv—-20w—Fp)—e(x—1) div v}dy +s(x),
14

where s(x) is formally identical with that in (6.4). The corresponding integral
representation for p(z) in the case divv=0 is

(7.8) p(x)::—g e(x~—yXdv—-20v—Vp)dy+alz) , (xe V),
v

where a(z) is formally identical with that in (6.4). As noted above, 7 behaves
like ¥ when jz—y|->0 but behaves somewhat differently when {x—y|-—o2. The
following inequalities are known:

(7.9) | & ile—l<Clz—yl~', lefe—wl<Clz—yl-?
both for lz—yl—0 and |[x—yl-— .
(7.10) 10w &5 sz — ] <Cle—yi-?, {lz—yl—0),
10m & i@ — )l <Cla—y|~**, (lz—yl—>e0).

We introduce the modified or truncated fundamental solutions of Oseen’s
system similar to those of Stokes’ system introduced in §4. Namely, 7 being
a positive parameter we put

:)’(7):_-: a1 -—s———m“——)y/W) , AV — ‘A(A““z . 7_)(1/(7) ,
& iy < i e €5 oc; B
where ¥ =3"(z—y)¥ and ™ means the same as in §4. & ¥={7} and
e ={e;} coincide with ¢ and e for [z—y!<y and they vanish identically for
le—y|2r. Another matrix function S ={S%°{V} is defined by & (0)=0
and

.11) = Pa—y) = w(amz %)yﬂw : (J5—y1#0).

X1

Then we can derive the integral representation

(7.12) v(m):MS zf,;‘<w(x—y>uv-2m—pp)dy+S Sy dy
,

Vv

(x € V2y)), provided that div v=0.
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We need some knowledge about the asymptotic behaviors of S¥°™ as y—oo,
This estimation is a little more difficult than the previous one concerning HY’,
inasmuch as the formal differential operator appearing in (7.11} is not of homoge-
neous order and the asymptotic behavior of derivatives of z:=|x—y|—(x:i—u1),
lt—y| tending to oo, is a little complicated. We state only the result in the
following Lemma 7.1 without proof.

Lemma 7.1. For any differentiation D* with order l«f, we have

(7.13) | De5F? 0| L Cay =t 120/2 (y-—00),

uniformly with respect to x and y.

As an application of the preceding lemma we deduce

Lemma 7.2. Let v and p be of class C* and of class C' in the whole space
and assume that the homogeneous Oseen’s system

{(4—20)v—Fp=0, divo=0
1s satisfied there. If
(7.14) “U“Q(z.ﬂ‘“"o , (1> c0)

for every x, then v==0 and p==const..
Proof of Lemma 7.2. By means of (7.12) we have

v(x)= S S (x—ywydy , (x € Es),

B3

and then

D%@W:S DeSE Yy ,
E3

D~ being an arbitrary differentiation with order laj=2. With resort to (7.13)
we have

WMM£%S o(uldy < <
T 7

3
A(x.v)

2Y \
Smmwww

Y

< C max [vloey . (A(z, v)=B(x, 2r)~ B, 1))
¥Sr<3y

The last term tends to 0 as y-—co by hypothesis. Hence we have D®v=0 for
any = and for any D* with la|=2, which implies that »: is a polynomial with
degree 0 or 1 (=1, 2, 3). Taking account of (7.4), we conclude »=0, whence
follows moreover that Fp=0 and thus p==const.. This proves the lemma.

1) Proof of Theorem 6.1 and Theorem 6.2 for the case u»+0.

Proof of Theorem 6.1 for the case u.+#0.

We assume without loss of generality v=1 and %..={2, 0, 0}. We put v=u
—u. and recall the inequalities

wolle<K and llv)/lz—yllz<K,
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where K is a constant independent of xz. According to Theorem 4.2 ve(C!+®
(0<#<1) and according to Lemma 2.3 and Remark to Lemma 2.4 we have
v€ Ls(R). On the other hand, we can derive the integral representation

R

v(m):wg 25”“>(:c—y)(v-r’)vdy+§ E;‘”‘”(x~—y)fdy+g SV x—ywdy
R

i

for v € R(2) just in the same way as we derived (4.17). Since the sigularity
and the regularity of 7' and S#°" are the same as those of K% and HW,
we can show #(z)—0 by the same arguments as in the proof for the case %.=0.

Proof of Theorem 6.2 for the case u..#0. We assume v=1and u..={2, 0, 0}
again. We fix a scalar function A(z) of class C~ in the whole space such that

1, ((x € V(28)),

Ma={y" e Vid)= Es— V(0),

where § is a sufficiently small positive constant. Using A{z) we extend v and
p over the whole space by setting

v(x)=h{x)-v(x) and P (x)=h(z) p(z) in V,
v(z)=0 and p(x)=0 outside V.
Evidently v and p’ are identical in V(268) with v and p respectively. Also we

have |Fv'lln,<< K\ and v/ (y)/|lz—ylls,<K: with a constant K, independent of z.
This implies, according to Lemma 2.4, that

(7.15) v lew.n—0, (7> 00),

In general, v" is no longer solenoidal, though divv” is a function with compact
carrier included between 9V(28) and @V(8). Because this situation is inconvenient
we introduce

?)”:U"”V(O, p,/:p”+'2alq7““div ,Ul
where

(7.16) ela) = __MZ!L-‘ uduw___}_f: d,

¢
dn ) p,lz—yl

By virtue of divFPe=dp-==dive’, v’ is solenoidal everywhere. Hereafter we
write ¢ in place of V(28). Now we put

(7.17) F=(d=20 0" —~Fp’" .

Then we notice f"=f in G, since

I =(d—20)v' —FVp)—F(p’ +20,0—div v")
=4V — 2000 — Py’ =dv—20w—FPp=f=(v-Plo—f .

Here use has been made of the fact that v'=v, p’=p, de=div v’ =divv=0 in
G. We now put
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()= _S & @ iydy
By
and observe that
(7.18) w{x)-0, {lx}->o0).

Indeed, putting

w,'<x>:m5 L& @—w Sy, w/ (@)= ~S & (—-ye-Medy ,

(4 G

wa’(x)zg & (@ fdy ,

g

we notice w’' =w," +w: +ws” in consideration that f”’::f in G, w/(@)=0(x]",
since G°¢ is a bounded set and (7.9) is known. By means of (7.9) and (7.15).

w:(2)—0 can be shown similarly to (6.8), and ws'(x)->0 can be shown similarly
to (6.12). We then prove the identity w’=v"". Introducing

(@)= — S e(x—y)f (x)dy

B3
we note that the equation
(Ad—20)w —Fr'=f,  divw' =0

are satisfied. Recalling (7.17), the pair {w'—v"’, »’—p”’} is seen to obey the
homogeneous Oseen’s system. On the other hand, (7.15) and (7.18) give

lw —v"|loen=1w—v+Folgen—0, (r—e0),

because of Pe=0(z|-?). Here Lemma 7.2 is applicable and we obtain w’'—v""=:0
as well as n’—p’=:const.. In G the equality w =v"=v"—F¢ is reduced to
v=w +Fp. We already remarked that w'-0 and Fe—0. Consequently we
arrive at

(7.19) ()= u(x)— U0 , (Jz|->o0).

Differentiating v'=w’+F¢ by 2z« we obtain

amv(x): _'wm(x) +dm(x) ’ (x € G)’
where
wm((l?):Sy On g’(m~y)(v7)vd’y ' (BxB(xv 1))1
(7.20) d""(:v)ZVam(p(x)—g O @ fdy +S On & fdy
[ [

- S O & -(0-P)ody
-8B
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with 9 7¢ =0n 4 (x—y)/@2n. By means of (7.10) and (7.15) the last integral
in (7.20) diminishes at the infinity similarly to »* in (6.15). @.Fe=0dz{"%) is
obvious. The second term is O(lzl-%?) in virtue of (7.10). The third term can be
dealt with similarly to (6.22). Hence we have d"(x)—0. Then we resort to the
iterative consideration employed in deriving Fu-—0 for the case u..==0 and obtain
dwv(ay-»0. Thus we have Fu=Fy—0, (lg|l->oo).

We turn to the pressure. Rewriting »'—p’ =const., we obtain

p’=div v —20¢+n"+const.,

and hence for z€ (G we obtain

(7.21) plx)—const. = —2d,¢(x) MS e(a:——y)f"(y)dy .

23

Obviously @@=0(lz|"%). In consideration that f’=f in G the second term of
the right hand side of (7.21) is written as

S elx—1) frdy +§ e(:v*-y)(v-V)vd'ng elz—y)fdy
¢ a Jo

=+ —(s ,
while it is clear from (7.9) that ¢.:=0(jzl-?. And we can prove g¢.—0, g:—0,
{(lzl-»>00) by arguments similar to those employed for (6.19) and (6.23). In this
way we see that the right hand side of (7.21) tends to 0 as |z|-»>o and conclude
that p(x) tends to a certain constant p. as |z|—oo.
We turn to the integral representation (6.4) and (6.4)). We note in view
of (7.16) and (7.5)

Fo AS ele—yydivedy .
Hy

Hence the equality v =F¢--w’ can be written as

w{(x) v(L)“S {e(x—y) div e — & (x — ) f Hdy

By
:S Aelw—p) dive’ — & @ —y)f)dy ~S ¢ (- f dy
[y G

for any 2 in (5, because f'=F and divv’=divv=0 in G. On the other hand, let
¢’(x) be a function defined by the same expression as s(z) using G in place of
dV. Then we have

(7.2 [, e dive— &5 @ Fdy=sw),

whence follows in view of the above obtained equality
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(7.23) vx)= s’(x,‘;cg < (e—yifdy, red).
a

The derivation of (7.22) is easy if we use two equalities obtained in the follow-
ing way. One is obtained by applying the integral identity (7.6) to the domain
G° and to the pairs {v"*, p”"}, {." s, —e:} and the other is obtained by apply-
ing (7.6) to the same domain and to the pairs {—TF¢, 20.¢—dive’} and
{0 s —e:}.

Moreover, G and G in (7.23) may be replaced respectively by V and 4V,
since we can show

S o (@—fydy =s(x)—s'(@)

V-a

by applying (7.6) to the annular domain V—G and to the pairs {», p} and
{ & s, —eir. Furthermore, the result is true for any = in V and implies (6.4),
for ¢ is arbitrary. In deriving (6.4 we put

rr(x):X ele—y)fdy .
14

In order to establish (6.4)" it suffices to verify that —= 4o satisfies

(7.24) (4200 —F(—~r +a)=f
and that
(7.25) () +a(x)—0 , (Jx]->00).

(7.24) is immediately ascertained by means of (6.4), (7.4). (7.25) is shown in
the same way as (6.18).
Thus we have established Theorem 6.2 for the case u..70.
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