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Introduction.

Let X and Y be given topological spaces and f: A—Y a map of a closed
subset 4 of X into Y. X and Y may have common points, but in that case we
assume that X . YcCA, XY is a closed subset both of 4 and of ¥, and that
fIAY® is the identity map. Then we can construet a new topological space
Z as follows: the points of Z consist of the points in X—A and in Y, and its
topology is the identification topology determined by the map F of Y'Y into
Z which is defined by :

F(x)=x for z= X~ A, Fly)=y for yY and F(x)=f(z) for zcA.

Notice that Y keeps its own topology and is a closed subset of Z and also
X—A keeps its topology. We shall say that Z is formed by attaching X to Y
by means of the map f, and we shall call f the attaching map. In this paper,
we shall be concerned with the particular case that X is a closed n-cell™®, V7%,
and A is its boundary sphere S”-'. In this case we shall denote the above Z
witjh Y’Le", where ¢” is the interior of V. Now define the map f of V" into
Y ~e" as follows: f(x)=x for z=e® and f(x)=f() for z&S"".

Clearly f is continuous and fle™ is homeomorphic. Were gard the map f as
a map of the pair: (V", 8" H—(Y ¢, Y) and call it the characteristic map for
e".f Consider two maps f,g: S" =Y S}}Ch that f is homotopic to g. Then
Y ~e* has the same homotopy type as Y ~e*. (ef. [23]“, Lemma 5, p. 219).
The,refore from the stand-point of homotopy theory we may identify ¥ ~'¢* with
Y‘i’e”‘. We shall denote Y‘f“e" with Y-Ze”, where « is the homotopy class of f.

One of our purpose is to describe the homotopy groups of S” Ze¢" by homotopy
groups of spheres and properties of the class «. For example, if a=0 we may
regard S™Ze” as the subset of S”x 8% consisting of the points in e} xS~ S§" x e}
7“77(71“‘) fAAi’ déﬁoié Wthei map obtained from f whose domain is restricted on 4.Y.

(2) XY denotes the space, which consists of the points of X and Y, and in whicha

subset K is closed if and only if K X and K.Y are closed subsets of X and Y, respectively.
(3) V= is the subset of n-dimensional euclidean space consisting of the points (xy, z,
»

-+, @,) such that S ai=1.

i=1
(4) The number of brackets refer to the bibliography at the end of this paper.
(5) S"xS" denotes the cartesian product of S" and S".



606 Seiya SAasao

=287V 8", where ¢ denotes the base point of S, Then we have 7(S" «"-'e")::y};x,,(S”a),
where #. is the dimension of a basic produet of weight n, and the sumamation
runs over all basie products. (ef. [71, Theorem A, p. 155).

Sinee ={S") is zero-group for i<m the above fact means that it is sufficient
for our purpose to consider the case r>n.

The case r=n+1 presents different features from the other cases. For example,

if roudl H(S Lo, Z)=H(S"Ze', Z)y~HA(S" Ze’, 2)=2

o«

and HA{S" e, Z)=0 for i=0,#n, r.

@ @

if rensl HS*Se, ZY=Z, H(S"~e', Z)=Z,, where m

is the degree of wc=,(S™), and H/(S" Zer, ZYy=0 for i+0, n.

So we shall distinguish these two cases in our treatment: Chapter I will be
devoted to the case r>n-+1 and Chapter II to the case r=n+1.

Suppose that ¥>n--1>3 and « is an element of a finite order m. Let z,, ¥,
be generators of H.(S’, Z) and H,(S" e", Z), respectively. Then there exists a
map g: S —S" e such that g.(z,)=v., where g. denotes the homomorphism of
homology groups induced by g.

Define a map §: S"VS—S*Zle¢" such that j(x)=x for z&S" and §x)=g(x)
for z=S”. Then g, is an ¢,,*“-isomorphism and therefore =,(S” ~¢") is (,-isomorphic
to = (8"VvS") for all 7. (ef. [17], Theorem 3, p. 276). This leads to the conclusion
that if a primary number p is not a prime factor of m the p-primary component™®
of =/(S*Ze) is isomorphic to the p-primary component of =(S"vS"), and also
=.(S"Ze’) contains an infinite cyelic group as a subgroup for infinite many i.

Now the groups =:(S") (i>>n) are the finite groups except for =.,.:(S"), »n even.
(ef. 1167, Prop. 5, p. 498). Thus we are interested in the case S"Ze*, n even.
In the case, « is an element of ., (S") and therefore « has the Hopf invariant,
say m. Let K be the order of [«, ¢, 1 in the quotient group of =4,_:(S”) by the
image of the homomorphism w, : 74,28 ) ~>7,,.+(S"). Then as the main Theorem
I of Chapter I, we shall show that =,(S"Ze>) is (*i.-isomorphic to the direct sum
of =: (8" and =,(S*") for all 4. For example, let #, be the Hopf ¢ map for
n-4, 8. (See [197). It is known that S*Ze?, S5 ¢' are the quotanion projective
plane #., and the Cayley projective plane /T respectively. In the former case, it
is known that m=k-=1. Hence from our theorem we can obtain that =.(2,) is
isomorphie to the direct sum of =;_(S% and =,(S") for all i. In the latter case,

(6) ¢, denotes the class of finite abelian groups whose order are divisible by only prime
factors of m. (See {17])

{7) See page 265 of [170.

(8) [a,¢,] denotes Whitehead product of o and a generator of =,(S%).
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m is 1, and we shall prove k=2-3 (1<1<8). Hence we see that if a prime number
p is neither 2 nor 3 the p-primary component of =;(/7) is isomorphie to the direct
sum of the p-primary component of =,.,(S7) and the p-primary component of =.(S%).

Next if r=n-+1 we shall denote S"Ze” with X,*, where p is the degree of
ac,(S%). X,” is a kind of Moore space and its homotopy group =.(X,") is a p-
group for all 7. Since we may regard X, ! as the suspended space of X," the
suspension homomorphism E is defined so that E: =/(X,")—=..:(X,"""). It is known
that E is an isomorphism onto for 1<2n—2 and a homomorphism onto for ¢=2n—1.

(See [117). On the other hand Serre has proved that the sequence,
0 2 (SNRZ, — 7(X,)") — 7 (S92, — 0

is exact for 752n—2. (Cf. [17], Propn. 9, p. 283). Barratt has then proved that
the above sequence is splitting for odd prime number p. Namely if i£2n-2,
=(X,*) is isomorphic to the direct sum of (=S} and [z «(S)],, where *{G],
({G1,) denotes the kernel (cokernel) of the endomorphism ¢,: G — G which ¢,(g)
=pg. (See [17). In Chapter 1I, we shall define two homomorphisms H,, H. such
that

ay Hi: Z‘-’:m:(Xan) - Zﬁ ’

H:: =zl X Z,,

b) the sequence, 0 zs,.:(X,") LA Fanea( XY U 2y (X)) x Tane (A7)
K‘»Zp — :z,ZM,(X,,")fi::g,L(Xp"’“) — 0. is exact for odd prime number p.

Then the Theorem II of Chapter 1I will assert that if » and p are both odd
numbers H, is onto and H. is trivial, if » is even and p is an odd prime number
H, is trivial and H: is onto. From these facts we can deduce that

1) E: 70Xy — 72.o(X," ) is an isomorphism onto if » and p are both
odd numbers.

2) the group m.,(X,") contains Z, as a subgroup if # and p are both odd
numbers.

3) E: 7mu(X,") = 72a,1(X, 1) is an isomorphism into if n is even and p is odd
prime.

4) the sequence, 0— mo,.1(,") — 720, o( X, ) — Z,—0, is exact if n is even and
» is odd prime.

In Chapter III, we shall consider complexes K of the form Sn e Lenrran,
For example, the n-sphere bundles over r-spheres W are complexes of this type.
(cf. {147). By the homotopy theory of fibre boundles, =W, S") is isomorphic to

(97) & denot.rersi the tensor product and % the torsion product.
(10) See page 265 of {17

o a 8
(11) We denote (Smle)len™ with Sn—erentr,
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={8") for all . As a generalization of this fact, Theorem III of Chapter IIT will
assert that if r<n-1 there exist two integers m and k such that =-(K,S% is
Crmisomorphic to =,(S’) for all 2. This implies that if a prime number p is neither
a prime factor of m nor k the p-primary component of = (K, S") is isomorphic
to the p-primary component of =, ;(S’). Moreover Theorem III of Chapter III
will give a solution to a problem proposed by I.M. James. (ef. [13], p. 376).

The author wishes to express his hearty thanks to Prof. S. Iyanaga, Dr. I.M.
James, Dr. H. Toda, Mr. T. Nakamura, and Mr. A. Hattori for their kind discus-
sions and valuable suggestions during the preparation of this paper.

Chapter I. The group =(S™Ze®").

o

In this chapter, L{w) denote a complex S*Ze¢", (n>2) and k be the Hopf
invariant of «. It is known that 2,~2,=kx,,"”, where x, and 2., are generators
of H'(L(w), Z) and H*"(L{w), Z) respectively. (See [187).

§1. Preliminary.

Let @ be the characteristic map for ¢*, i.e. a€ . (L{w), 8*). Since =j,.(L{a),
S") is the direct sum of @. =3, (V?", §3* )% and an infinite cyclic group generated
by [&, ¢.}s, (See [8]), every element 3 of 73, 1(L(«)) determines an integer m and
an element p of =5, (V*, §*"°!) by the formula: j.()=m[a, ¢.],+dcp where j
denotes the inclusion homomorphism : z/(L(a))—=:{(L{x), S?).

Let a map f: S*'-»L(x) be a representative map of the class 5. Denote
the mapping cylinder of f by B, so that S**-!cB.

Let I be the space of maps 2: I-»B such that A(0)&S* !, where I is the
interval 0=7¢t=x1. We embed S**! in F so that a point x&S8%! corresponds to
the path t-(w, t) under the identification map of the mapping cylinder. Consider
the projection P: K— B which is given by P()=i(1). Let F=P"(e), where e is
the base point of B. By a result of Serre (ef. [161, Prop. 4, p. 479) P is a fibre
mapping. Since the inclusion map « : S%'— K and v : L(«)~— B are both homotopy
equivalences they induce isomorphisms of homotopy and homology groups. Hence
it is sufficient to consider groups =.(F) and =,(B) instead of groups =«{(L(s)) and
=(S*1, Thus the following lemma (1.1) is the key to the proof of the main
Theorem.

Lemma (1.1) F is (n—2)-connected, H" {F, ZY=Z and HYF, Z)=Cwm for

izn.

(12) 2,“~w, denotes the cup product of z, and z,.
(13) a0 denotes the composition of & and p.
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This lemma will be proved in the next section. Now we shall suppose that
Lemma (1.1) is true, and derive Theorem I. By virtue of Lemma (1.1) =. (F)
is isomorphic to Z by Hurewicz Theorem and the universal coefficient theorem.
Now let a map ¢g: S*!—F be a representative map of a generator of =, (F).
It follows from =, (E)==, «(S* )20 that icg is contractible to a constant map,
where i: F'— E is the inclusion map. Let E be a mapping cylinder of i-g, so
that S*"'c E, and let G be a homotopy between i-g and the constant map. Define
a map H: E—F as follows:

H{z)=2z for s F and H(x, )=G(x, t) for xS+t and t<1.

It is clear that H is well defined and continuous, and moreover the image of S*-!
by H is a point. Thus we may regard H as a map of the pair: (E, §* Y (F ).
LEMMA (1.2). =x(F, S*"') is isomorphic to the direct sum of =(E) and =, ,(S" 1)
for all <.
For let w denote the inclusion map: E—FE, and j the inclusion map of the
pair (&, «)—(E, S""Y). Then the following diagram is clearly commutative.
‘l(E') e ‘g(E)

e Lo

i .
T’l(E) -”u:-’ &z(E)

Since (H!E). is the identity and w. is an isomorphism H,j. is an automorphism.
Hence j. is an isomorphism into and its image is a direct summand., The Lemma
(1.2) follows from the homotopy sequence of the pair (E, S*-1).

LeEMMA (1.3). =z{E,S8*") is Cin-isomorphic to =(E&, F) for all 4.

For, let » be the retraction: E—E such that »(@)=x for z&E and »(,t)
=g(x) for xS !, Thus » is a map of the pair: (&, S* ) — (&, F) such that
r|S*!=g. Since 7. is an isomorphism onto and g, is an (,,-isomorphism by
Lemma (1.1) we have Lemma (1.3) from the five lemma of ¢-theory. (See [17]).

Combining Lemma (1.2) and Lemma (1.3) we have

THEOREM I. If there is a map f: S* " !'—L(a) such that j.(f)=m[a, ¢, ]+ @op,
where p is some element of =4, (V" S¥™ Vi (L(w)) I8 C).-isomorphic to the direet
sum of #(S" Y and =,;.,(S*") for all 4.

In the next section we shall prove Lemma (1.1) as a consequence of a series
of lemmas.

§2. The cohomology of F.

Consider the cohomology spectral sequence, (.74, d.), associated with the fibre
space (&, P, B) in §1, as defined in [15]. The ecchomology group of B is free,
and B is simply connected, since since B has the same homotopy type as L{a).
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Henee the first invariant terms of the spectral sequence, E»"7, can be expressed
in the form H#(B, Zyx>H*F, Z) in view of Prop. 8 of [16]. (p. 458).
LemMMa 2.1, HYF, Z)=H"\F,Z)=Z
HYF, Z)=0 for 1#0, n—1 and =2n-3.
Proor. Sinee F has the same homotopy type as S°®' ! we have
LeMMa (2.2). HYWE, Z)=H" YE, Z)=Z
HYE, Z2)=0 for 1#0, 3n—1.
HYB, Zy=H"B, Z)=H"*(B, Z)=2Z
H{B, Z)=0 for ¢£0, n, 2n.
Since we can easily see that ¥
=0 for 0<i<n—1, r=2, E»? is isomorphic to E)*' for i<n—1. On the other
hand, £%% is a quotient group of a subgroup of H'(E, 7). Hence we have E'
=0 for 1<n—~1 by (2.2). This means H{(F, Z)=0 for 0<t<n—1.
Next consider the following sequence,
Byt s O B s 100

I
L

the homomorphism EJ.!— E%" ! is an injection by d.E;™?* =0 and the homo-

0% hag no-coboundary other than zero and d.E.%°

morphism E, % E»9 is a projection by d.E,"°=0. Therefore this sequence is
exact. Since d,E,”""""=0 we have

A T Bl and BN EZZ0.

Thus we obtain H" " YF, Z)=E»" '=E %" 1xE "%=7,

By the same technique we can easily obtain H(F, Z)=0 for n<i<2r—3.
This eompletes the proof.

Let «i(p, q): ‘B> E>" be the canonical homomorphism defined on the
subset, *E., of E." on which d,,d, .1, ---,d. ; are all zero, (c0ozs>7r). Then
it is easily seen that the following diagram is commutative,

‘R‘E,-‘”' i"(?{\ng,‘j;"q; e ey SE;ﬁ DL Qg
(0, O, @) ]xii(p+p’. q-+q")

Y ey 3 .
E;‘)Y 'I\E‘E.;')' [ TR ES;H—;) Lq+q

(2.3

where — denotes the cup product of the cohomology spectral sequence. (See [4]).
Since we ean easily see that
(l,x‘Ef”. [ g (Z,-E,«N Py Ere2 dr,-E,»”' 0;:d"E, v, r-1 ;_:dlEro,vq :d,‘Erfu»r, 7“1:0’
for 2=r<n, we see that «i(n, 0), «2(n, n--1), 5(0, n—1) are all isomorphisms onto.
On the other hand, we can show that the cup product ~: E,"°®E." " 1— E, -1

is an isomorphisms onto, (See [167). Henece we see that E,™""! is an infinite cyclic
group generated by «i(n, n -1, X))~ (13y..1)), where y,.; is a generator of
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HYF,Z).
LEmMma 24). d.(G(n, n—1)((2.21) (1% Y.1) = £kei (20, 0)(22,51).

For, d. («i(n, n—D((2, 21~ 1&y, ) =d. (&0, O, 21~(0, n— D15y, )
=+xi(n, O, S~k (n, 0)(x,.81)=tcin, O, ~x,)R1)
=+ kui(@n, 0)(2:,21).
LEMMA (2.5). H**"3F, Z)=0, H* YF, Z)=Z, and
H{(F, Z)=0 for 2n<i<3n-3.

Proor. Sinee d.E.*Y d,E, %% are both zero we see that **1J 350 200
and «;.,(0, 2r—2) is an isomorphism onto. And moreover it follows from d.E," *!
=d,E, """ 2=0, (r2n+1), that «* (s, n—1) is an isomorphism onto. Hence we
have E/\"'=0 by H** YK, Z)=0. Thus there exists an exact sequence,

26) D s B ey ot s B0y B30 ),

On the other hand, we have EJ.3 “=0 and F“‘L:“’:’:E"'?""*i!H‘-’“”f(F, Z). For,
kY0, 70 s EXE - ES%% ig an isomorphism onto by d,E.% % =0, . E;merd
=0, (r=zn-1), and E®* =0 by H* (¥, Z)=0. Hence E? i *=0. By the same
way «3(0,2n—2) is an isomorphism.

Thus the sequence (2.6) is transformed into the exact sequence

2.7 0 —— H> XF, Z) —> Z—~~>Z s F720,0

> 0.

Combining (2.7) and Lemma (2.4) we see that H 2o Zy=0and EXi°=Z,. Next
it is proved in the same way that there exists the following exact sequence,

@89 Eg3 — Bt — B0 — B,
Here we have

70:2n-1=( from d. B> '=0, (rz2n+1) and K2 1=(
E20=0 from d,E. 77" 1=0, (rz2n+1) and EZ2%%=(
E 0= E240 from d,E.2" 77 1=0, @n>rzn+1).

Hence d.,. is an isomorphism onto and we have E5;*" 1=2Z,.. Since it is easily

shown that «3,(0,2n—1): E,.2" ' ES*™ 1 is an isomorphism onto we have

H» WF,Zy=Z,. Lastly we can easily obtain HYF, Z)=0 for 2ns1<3n—-3 by
making use of (2.2). This completes the proof.

Let ("E.,”7,d,') be the spectral sequence of the cohomology group associated
with the relative fibre space p: (&, S)— (B, S*1), (S=p YS* 1), as defined in
[171, and let ""«i(p, @) be the homomorphism defined in the same way as «/(p, q).
Since we can express, ''E,™", the first invariant terms of the sequence, in the

form H#B,S¥', Z)YQHYF,Z) (see [17]) we have ""E.»%=0 for p#n, 2n, 3n.
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7t -

Hence, "'«3(p, ¢) is an isomorphism onto for all p, ¢, and we see that ""E.*
and "E "9 are infinite cyelic group generated by "'«i(2n, n—1)(E..&y,..)"" and
i (Bnm, 0)(&,,1) respectively. Then we have
LEMMA (2.9). d/<i2n, n—1D(E0n&y, )= £m' kA (3n, 0)(E:,.81).
, Al ER2R, v D) (En Sy ) = A (K Cr, n—1)((3:,21) 12y, )P
— ..L_d//(/f,(:(gn O)(Jﬂ /1)\//IK (O n— 1)(1x/y, x))

4+ (20, 0)(E., E1)~d, k20, n—1)(1%Yy, 1)
== 42 (3n, 0)(F2, " Tn)@1) = 2 m' k% (3n, 0)(5,&1)

where the last equality is the result of Lemma 2 of [15]. From "si("E,"* %)=0
we obtain an exaet sequence,

(2_ 10) O — QI/E.":’},:I;!‘{ B S r'EnE!n PRI SN IE“\)'.'

PES)

It is clear that /x2°'(2n, n—1) and "‘«%;'(3n,0) are isomorphisms onto. Hence,
from Lemma (2.9) we have

Lemma 2.11). "E2»* ' =0 and "E}»0=Z, .
And we have moreover

LEmMmA (2.12). H»NE,S,; Z)e¢, and H*(E, S; Z) is C-isomorphic to Z,, .
For it is easily proved that two sequences,

0“‘"’”E;;::n'n_l““’Hangl(E,S;Z)‘_’”Eg’?n‘l and ”Egn,ign'-l“’”Egif’o“*” 2.;3)711;(1)__.0

are exact. On the other hand, Ev»*-'= H*(B, S¥1; 2YQH WF, Z)=ZR 7= Z,.
Therefore "E2**"' and ""E#;**! are belongs to the class ¢, and moreover
"rei"(3n, 0) is an isomorphism onto by d) VE % C=dl "E 3120, (r22n41),
ie. "BV From El =0 for i+7=38n, i>3n we have ""E3"0= H"(E,
S Z).

Hence the proof is completed by combining these results and Lemma (2.11).
For our purpose we need the following algebraic

Lrmma (213) In the following diagram we suppose that

1) 4, B, C, D are all abelian groups and Z is the group of integers
2) maps are all homomorphisms, and i=jk, 6,p=Pd,, P=7rq

3) pk, oP is identity, and ¢ is onto

4) the sequences: 0 — Z - B —> A and
» J

(13) ¥ denotes a generator of H(B. $%-1; Z) for i=1, 2, 3.

(15) '~ means the cup product between the relative cohomology and the absolute co-
homology.
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0

> Z-[» B—(C and D — Z. —0 are all exact.

01

Then if Dec A is C-isomorphie to Z,,.

0
l
A . Z
\ fe 5
B Z 0
’5x £ {5‘-‘
0 C Z

P
«,-\\Zm g=modm
tl\
D

PrRoOF. First we have mZc 1 40). For, since B is isomorphic to the direct
sum of 071(0) and p(Z) from 3) we can uniquely express k(1) in the form xz+sp(1),
where s is an integer and px=0. Then s=1 and mx=0, for 1=pk(l)=pr+spp(l)
=g and 6,(mp(l))=pd(m)=1rqgd.(m)=mrqo,(1)=0, i.e. there exists an integer ;¢ such
that mp(Q)=pkQ)=p{z+p1)}. Thus we obtain u=m and px=0. Now, i(mZ)
Cik(mZ)C jime+mp))=7p(1)=0, L.e. mZCi Y 0).

From the sequence: ¢ 1(0)=47'(0) ~p(Z)=(P6:) Y (0)=P Y0) we see that the
homomorphisms 6:0k|i7'(0) is an isomorphism of the pair (¢ 0), mZ)— P }{0), mZ).
Consider the following exact sequence, 0— 1 ' (0)/mZ —Z/mZ—Z/i"'(0)—0. Then
it is easily seen that i-}0)/mZ= P '(0)/q (0)=r"1(0). Hence we have A=Z/11(0)
=Z,.

Cn
LeMma (2.14). H*'(F, Z) is C,~isomorphic to Z,.
Proor. Consider the following diagram

H™YE, S;Z)
3'*
H»>~YF,Z) _ _ H™VE Z)

‘\'5* ‘7* o*
J* > HS"'I(S, Z) Han«-x(s:;n—x;z)

{o (P1S)*
0 e HGn(E', F;Z)-—__HM(B’ Ssu-l ; Z)
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where p* denotes the homomorphim induced by a map p: S%'—S§ defined by
the formula: p(x, 0)(t)=(x, 0) for tcl, &S ' and %, j* are appropriate inclusion
maps. Then it is easily verified that this diagram satisfies the conditions of
Lemma (2.13).

In particular, from H* Y(E,Z)=Z and H*" (E,S:Z)eC, we see that j7%:
Hv YK, 8; Z)—H" (K, Z) is a zero-homomorphism. Thus Lemma (2.14) follows
from Lemma (2.13).

LEmma (2.15). H*» *(F, Z)e,.

Proor. First we have

LeMMA (2.16). H*3F, ZYy=ES % 2= E0 2= B, 032,

For, this isomorphism «i(0, 3n—2) follows from d,E,%*?=0, (n>r=2). Then

consider the following sequence

- 0,312 ., BT 0,302
0 > vl ’ Eu

7, Zi~1
> B, .

This sequence is clearly exact and it follows from FE.-*""1=Z; that E, ! is
belonging to the class . Hence E}%'"? is (;-isomorphic to E,>%: On the
other hand, we see that «I;%0,3n—2) is an isomorphism onto by d,E,%3" 2=0,
@n>r>n). Thus we obtain (2.16).

Secondly we have

LeMMA (2.17). E, " l=Z=E > "1,

For, the first part E., " 1=Z follows from d,.E 3 >"732=0, 2n>r=2), and
d.E2" " 1=(, Let D™? denote the subgroup of H”*YE, Z) consisting of elements
whose filtration does not exceed p. It can be easily seen that E.*""! coincides
with *""! and two sequences ;

0 ey E.E“’ [ SN D?i, 21 -1 > Ezﬁ_ FATRES ] > 0
and 0~ D2t s H3NE, Z) s H3U(F, Z) —— 0

are exact. Hence if E2*" =0, D" is isomorphic to E*:*"1 but this contra-
dicts to H**"YE, Z)=Z, since EX*! is a finite group by E.,***'=Z, and also
HYYI, Z) is a finite group by Lemma (2.14). Thus we obtain Z=EZ?" " from
EoertzmpDrerte Zo It is easily shown that the sequence,

(2.18) Ef¥s — B3t s B3t — BRI — 0

is exact.
Hence, since we can obtain E§.3 =0 by H¥ % E, Z)=0and d,E,>3" =0 for
r22n+1 it follows from (2.17) and (2.18) that there exists an exact sequence,

0

s EG —— Z— Z— 0.
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Thus we have E23=0 and Lemma (2.15) follows from (2.16).
LeMmya (2.19). HY{F, Z)eCw, for 1=3n.

Proor. Making use of (2.2) we can inductively construct an exact sequence,
A.—HYF,Z)— B, where A, and B; are both groups of the class ¢+, and 123n.
Now Lemma (2.19) follows from the definition of Cum.

Thus Lemma (1.1) follows from a series of Lemmas (2.1), (2.5), (2.14), (2.15},
(2.19).

In particular we have

Corollary (2.20). =.(L(«w)) is ¢i-isomorphie to =;_(S"1) for i<3n—4, where k
is the Hopf invariant of a.

§3. Applications of Theorem 1.

We shall consider the Cayley projective plane 7. It is known that /7 has
the cell decomposition®® S3Z e, where oy denotes the Hopf map: S¥-S% Since
the Hopf invariant of o5 is 1 it is important for us to find the least positive
integer m such that mlas, & asema(S1).

By Theorem (1.8) of [13] m must be divisible by 3. Moreover we can prove

LeMMAa (3.1). m must be divisible by 6 and must be a divisor of 24.

Proor. Let E* denote the k-fold suspension homomorphism, and let 7., o;
denote E ()", E'8(ag), respectively. Then we have

mas, ts]=m[es, ts]o(—E(o5)o E¥(es)) =m[ es, tg]o(—o1500)
= —m((2as— Er)oo;)1?
:"m(20'3(715‘—E‘?700'13):W?/ETTO()'“,“—Z’"?,(THOO'“
:ErSO’mo’m~n‘3(0~2 'nl(fl;';).
Since this expression is unique by Prop. 5 of [17] (p. 281), m coincides with the
order of r;er;;. Hence it follows from FEz;,(S?) being isomorphic to Z.+ Z., that
m is a divisor of 24. (See [20]).
Now consider the generalized Hopf invariant,
H: Z;(S") s ?I'i(Sf"' ))
as defined in [10]. Then we have

LEMMA (B.2). H{z:)=7%1, where H: =, (S7)—=,(S1H).

(16) See [25].

17y 721 S*—8° is the Hopf map.

(18) See [12].

(19) =: denotes a generator of =, (S7)= 2. {See [6]).
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For, it is known that the sequence,
1S - 7ulST) - 2148 =12(S"*) - 715(87)
is exact. (See [207)

By H. Toda E: 7(S%—=u(S7) is an isomorphism onto (see [20]). Hence H
is onto. Since =(S') is isomorphic to Z; generated by %3 we have H{(z:)=7.
Thus we obtain H{rromy)= H(z:c Eoys)= H(z:)sau="N0a1 from (3.2) and the formula;
H(xsEy)= H(z)oEy. (see [117). And moreover it is known that 73¢7;, is not zero.
Therefore we obtain H{rrems)#0. Since zu(SY¥) is isomorphic to Z:+2Z. m must
be even. This completes the proof.

Combining Lemma (3.1) with Theorem I and Corollary (2.20) we have

COROLLARY (3.3). (/1) is (’s-isomorphic to the direct sum of =; (S") and =,(S*)
for all .

COROLLARY (3.4). =) is isomorphic to =;.,(S7) for 2=20.

REMARK. If we notice that = (7, S =dFsoz,(V1%; 8P for 1=22 and =/, S¥)
~(Z[7, Lg],) +dsomss( V1% SP) it is seen by making use of the homotopy sequence
of the pair (/f, S?%) that

m{IDN==, (8" for 1=21,
zas(I) = 7(S)/(z0014),
and ; zes(I1Y=2 Z—group of order 480.

Next S* denote the reduced product complex of S”, and S} the (3n—1)-skeleton
of 8.

It is easily shown that S} has the cell decomposition, S+Ze™ such that « is
the Whitehead product [, ¢,]. It is known that if = is even [¢,, s.] has the
Hopf invariant —2. (see [22]). By means of Jacobi identity of Whitehead product,
(ef. [211), we see that 3({e., cu), co)=0 for even n. Consider the part of the
homotopy sequence of the pair (S2, S%),

[TF P I(S:!) i > Tga- I(S*_’"r S“) =5 zﬁrc(S"‘)-

Since 0@LA, 6, 1,)=80a, e, 1, =3T¢,, ta], ¢, 1=0 there exists an element of =;,..(S3),
say . such that j7,(3)=3[&, ¢, 1. Thus we have

JOROLLARY (3.5). If # is even =.(SX) is (sisomorphic to the direct sum of
Zoa087 Yy and =(S¥ ) for all <.

COROLLARY (3.6). If % is even ~(8}) is ¢'s-isomorphic to =; _;{(S*™) for 1<3n—4.

ReMARK :  Since it is known that =,(SJ) is isomorphic to =, (S*"*) for 1£3n
—4 we see from Corollary (8.6) that =, (S""1) is ¢.-isomorphic to =;.«(S""!) for
i<23n—4. Of course this is a special case p=3 of Prop. 4 of [17]. (p. 280).
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Chapter II. The group - (X))

§1. Reduced product complexes.

In this section, we shall give a risum¢ of the theory of James (cf. [10)) for
convenience of reference. Let A be a countable CW-complex in which a’ is the
only one vertex. The m-fold topolegical product A m=1,23,--+, is represtnted
by infinite sequence in A, ¢”=(a,, as, +++,a,, ---), such that a,=a® if r>m. We
“identify A° with a® and A" with A in the obvious way.

If a»cA™ let p.(a™) be the (finite) subsequence of a™ consisting of those term
which lie in A—a? with the same relative order as they have in a”. Let A, be
the set of sequences in A-—a® which have not more than m terms, with the
identification topology determined by p,.: A"-—A4,. It is clear that inclusion
function 4, : A.— An,1 is continuous and that 7,A4. is a closed subset in A4,,,;.
Then the reduced product complex A. of A is defined as

‘AWZA()\/AIVAZV' * '\/Afkl\//. v

where a set F'C A., is closed, if and only if F A4, is closed for every m=0.
Thus points of A. are the finite sequence of points in A—a. Clearly A" is the
union of disjoint product of cells from A, e/ Xe:X---Xe, X+, such that e, is the
vertex if »>m. Each of such product cells is mapped homomorphically into A,
by 9., and the image of two of them either coincide or are disjoint. Hence A.
is a complex whose cells are the products of cells of A—af,
ey Xe X Xe,, (r=0,1,2, -, m).

Since A, is closure finite and p,, is cellular, it follows that the reduced product
complex A. of A has this cells structure. (See [24]).

James has proved following two theorems about the homology groups and
homotopy groups of A..;

1.1). \‘H(Aw, Z) \‘G’" where G™ is inductively defined by
G"=G& G- 1»LG*G’" 1 G‘M\‘H (A, Z).

(1.2). there exists the canomcal isomorphism, between the homotopy sequence
of the pair (4., A) and that of the pair (2, A), where £ denotes the loop space
of the suspended space of 4.

§2. On the generators of J/,,(X}).., X;) and =20, (X )y X7,
As stated in §1, (X} has the ecell decompositions ;

(X]/l - _‘60\/671\/6 *1\/6271\/6‘3 i+l\/e F*l\/e‘l it ’\./e)l\/

and the homology groups in lower dimensions are given by (1.1) as follows:
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LEMMA (2.1). H(XD., Z)=Z
H. (X, Z)=H. (X)), Z)=H,. (XD Z)EZ,
HA((X})., Zy=0  for other 1<3n.

From (2.1) we obtain H.(X})., X}/ ; Z)=0 for 1<2n and Ho (X))o, X3 Z2)=Z, .,
By Theorem 2 of [17], p. (274). We have

LEMMA 2.1) m2.(X})e, XF)=Z,.

Now let fu.i, fi..1, fho1 be characteristic maps for e**1, ej"*!, e3"*!, respec-
tively, and ¢.: V*—S" a map such that ¢.le” is a homomorphism and ¢,[S*"'is
a constant map. Then fi..., f3..; are represented by tne formula

.f;’:z;z,}(tly t_: ct e, ():: 2):(¢”(t1, t‘.{; Cty t’/z)!f’nél(tlr';l’ R tﬂnel))
fim(t;, [ZNERENS 7Y = ?):(f.-;fl(tx, R R 9”u(tm2, t, oo, tena ).

Define two maps v: V¥ 1V tand «: (X).—(X]) by

lv(i'l’ ] t‘lnﬂci):i(trui!r th*l}; ] tanin, tiy Tty tvul)

(i, Tay w0y To) = (Woy Tuxy <05 T2y X).
It is easily seen that r is well defined and continuous. From definition we have
LEMMA (2.2). tr=identity and fi.i=rofliaov.

Since v is a map of degree (—1)"'" and rle*" is a map of degree (—1)"° we see
from (2.2) that 0¢¥ i=(—1)"0e3"**'= xpe*", where 0¢' is the homology boundary
of the ccll ¢t. This means that the group of cyeles, Zo..:((X})., Z) is an infinite
cyelic group generated by ef* '-++(—1)"e" L

By 2.1) H.,,((X})., Z) is isomorphie to Z,. Hence we obtain 8e? =+ pletttt
4 (=1)"ei ).

Deseribing these result in terms of the homotopy theory we have the following

LEMMA (2.3) 7.0 ((X2), Xi~¢*") is the abelian group generated by {fi...}
and {f%,,0¢" in which only relation mp({fi. .} +(—=1"{f%..1}) being zero holds
for all integers m.

LEMMA (2.4). 0°%0) is isomorphic to the cyclic group of order p generated
by ({fl o} +(=1)"{f3..1)), where 0-'(0) denotes the kernel of the boundary homo-
morphism of the homotopy sequenece of the triple {(X})., X e, X]}.

And moreover wehave

LEMMA (2.5). Let 1, be the inclusion homomorphism :

Zow (XD XN = 7o (X X2e%). Then if p is odd 72 (X)), X7) is iso-
morphic to the cyclic group of order p generated by 7 such that 2.()=({fi..1}

(21) {7} denotes the homotopy class of f.
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(=D { L)

Proor. Consider the homotopy sequence of the triple as above,
b 7’-‘2‘;1+1(X;vegn: X;;) > Tan !l((X;)“ﬂy -XT') i:‘ Tl 1((4¥-:’)~ X;:\/C:u) “5’ :Z«a(XS\-/C‘:H- ‘Y’;) >,

Since won. i (XP).., X7) is the p-group by Theorem 2 of [17] (p. 274) and

o (X e*, X3 is isomorphic to =..(S*)=Z, by Theorem II of [2] (p. 198),
i, is an isomorphism into, i.e. =2, ((X}).., X]) is isomorphic to ¢°1(0). Hence (2.5)
is obtained from Lemma (2.4).

£ 3. Definitions of H, and H;.
In this section, let p be odd. Consider the part of the homotopy sequence of
the pair ((thj)cn (X;), 7327“2((X;)w: X)?)“":B'IHX(X;F N ’z:rul((Xi’;),-:)'“;.T"f:sz:»L((‘Y‘r;‘)au
%

i
XI;I}“—“’:?.N(X;?)?T')::rz((X}? ﬁ)AF’ﬁin«*}(;})m; -Xj;l)—“)::in¥1(‘¥1?)“;*“’7'::n—1((X‘»$l)¢»). On the
other hand,

By (1'2>v T2, l((Xpn)\»)zri’.n+‘2(Xpn”) and 7221((X5')w)z-’-’:’2;3&1(4 f;)n “l)- By Lemma
2.5) and (2.1), Fanei((X ey XD Z 72 (X)), X)=Z,. And moreover by another
method we can prove

Tone 2(('X_'f:a)i«>7 X;)l) = Ton+ 9(—)(512“ ”) = 0'

Thus we can define H; and H; by 7% and j% in the obvious fashion in the
above exact sequence. Then, since it is known that 4, is equivalent to the suspension
homomorphism, we have the exact sequence as stated in the introduection. Now
it is sufficient for us to determine whether ¢7=0 or not, where 7 is the generator
of w2un((XJ).., XJ7) metioned in Lemma (2.5).

Consider the following commutative diagram

Tonet((XpMw) Xp"€") - o X" €F)

1 T a ”L’*
7~'Zn+l((X;/n)oo) Xyn) 7r2n(Xpﬂ)
F] 43

Jx —~ 77272*1(Xpnve2n' XP")

The vertical sequence of the right hand side is exact and m, . (X;)~e™, X]) is
isomorphic to Z.. Therefore ix is an isomorphism into. On the other hand, %07
=514 = 0{ s} +(— D" {f31} and 8{fL, . }=7.0{fi.1},*" where v, is the
homomorphism induced by the map /X ~e¢*". Thus we denote G{fi..:} by «and
we have

8.1 tat=a-+(—1)" e .

(22) See (2.2).
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Now apply «. to (3.1}

o (=1 e 1 807 = 0 = (- 1) e
i.e. (=1 b e w4+ (=1 e (rate=1)
(=1 e (=1 at (-1 ).
Thus we have
LEMMA (3.2). (L= (= 1" Y+ (— 1) ) =0

Hence if n is even we obtain 2(w—r.a)==0, l.e. 21,07=0. Since ¢. is an isomor-
phism into and =..(X}) iz the p-group we have §7==0. From these arguments we
obtain

LrMmMa (3.8). If n is even H. is onto.

In section 5 we shall consider the case where n is odd.

§4. Separation elements.

In the following &5, we shall need some results on separation elements as
introduced by James [9], of which we shall give a résumé.

Let (K, L) be a pair of CW-complex such that the complementary of L is an
open n-cell ¢*. That is to say, there is a map of the pair (V* S*°%) into the
pair (K, L) so that fiV*—8*!is a topological map onto ¢*. Now let S"! be
the equator of S* which devide S* into two hemispheres, E?, E?, ie. E!, (II)
is the subset of euclidean (n--1)-space consisting of the points whose coordinates,
(1, T2, ++», Tusy) satisfy the conditions, Y12?<1 and 2,.120 (2,.:50). Let p., p.
be the orthogonal projection defined by the formula,

P&y, @y e, )= (a0, 2o, 000, 2,) for z,,,20
23 (mly Loywr vy Loy l)i)’ ("Els Loy * v vy xlé) for X, ~!§0-

Clearly we may consider p,(p.) as a map of the pair (E7..,, S""!) into the pair
(V7, 8% Y such that p.|S" '=p,]S" ! is the identity map of S" L.

Let X be a topological space, and let #, v be two maps: K— X which coin-
cide with each other on L.

Define a map « of S into X as follows:

k‘(xh Fzgmt, xza+1):71*fp+(x1; Loy, xlwl) fOI' :\2,,“;0
k(xy, o0y, my) = 0f0 (@), €200+, Tnat) fOr o, =0,

Since p, |S" t=p 1S*! and u|L=v!L k is well defined and continuous.
We shall denote the homotopy class of k& by d(u,v) so that d(w, v) is an
element of the group =.(X), and we shall call d(u, v) the separation element of

{23} Notice that -, is identity on i.-image from definitions.
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% and . Now we have a series of lemmas.

Lemaya (4.1). Let u, » be maps of K into X such that u]L=v/L. Then
d{(u,v)=0, if and only if » is homotopic to v with relative to I.

LevMma (4.2). Let u, v and w be maps of K into X such that u!L=v|L=w|L.
Then d(u, v)=d(v, w)+d{u, w).

LEMMA (4.3). Let u be a map of K into X, and let § be an element of =,(X).
Then there exists a map of K into X, say v, such that w/L=v{L and d(u, v)=4.

LEMMA (4.4). Let u, v be maps of K into X such that w|/L=1|L, and let h
be a map of X into a topological space Y. Then d(hu, hv) is the image of dlu, v)
under the homomorphism induced by h.

Lemma (4.5). Let (K, L) and (K', L’) be pairs of CW-complexes such that
the complementary of L and L’ are both open cells ¢" in K and K’, and let g be
a map of the prirs (K, L) into the pair (K’, L’) which maps the complementary
of L onto that of L’ with degree p. Let u, v be maps of K’ into X such that
u|L'=v!L". Then d(ug, vg)=pd(u, v), i.e. d(ug, vg) is a p-multiple of d(u, »).

Lemma (4.1) and (4.2) are easily obtained from definitions, and the usual
construction of homotopy.

New let u be a map of K into X and 6 an element of =,(X) and a map g¢:
S§"—X a representative map of 4. Since E7 is contractible there is a map G: S*
—X such that G is homotopic to g and G|E?=ufp,. Define a map v: K— X by
the formula,

v{z) =u(x) for xeL
v(y)=Gp'fHy) for y f(V").

If f(@")=f(y' )=z and 2’'#y’ f(z')is contained in L and ', 3’ are points of S*-!,
Hence GpZ'(@)=usfp.(x)=uf(x)=u(z) and also Gp='(¥)=ufp,(y")=ufly)=ux),
i.e. v is well defined and therefore v is continuous. On the other hand, we have
by definition

Glx)=ufp.(x) for x=E?

G@y=vfp_(x) for xc= E™ .

Since the homotopy class of G is ¢ we have d(u, v)=4. This shows Lemma (4.3).
Next, let K., (i=1, 2) be copies of K and K the complex obtained by identifying

points of LCK; with those of LCK.. Since S* has the cell decomposition,
Er—S*"~E" we can define a map F: S*— K as follows: Fa)y=fip (x) sck?
and F(x)==fp (z) x=E?. Let %, v be maps of K into X such that u|L =0
Define a map k(u, v) of K into X by the formula,

k(u, v)i{x)=u(z) for xe K,

k(u, v)(y)=v(y) for yekK..
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Then it is clear that the homotopy class of E(u, v)oF is d{u, v). Namely d(u, v)
=h(u, ). {F'}, where {F} denotes the homotopy class of F. Let & be a map of
X into Y. Since we have klhu, hv)y=h-k{u,v) by definitions d(hu, hv)
=K, hv)o {Fy =hode(u, v)o{F} =hed(u, v). This shows Lemma (4.4). We shall
proceed to Lemma (4.5).

By assumption it is easily shown that there existsa map ¢, of the pair (V*, S*°)
into the pair (V* 8"°") with degree p» and the following diagram is homotopy-

commutative.
(K, L) —— (K' /L")
R
(V80— o (V8"
P

Define a map ¢,: S*—S8" as follows:

¢p@)=pile,p (x)  for z€ kY
¢(E)=ple,p. () for s k",

Clearly, ¢} is a map of degree p and the following diagram is homotopy-commu-
tative.
K- K
7l g I I

where ¢’ is defined by ¢/Ki=¢g=¢’|K,. Then we have

d(ug, vg)=k(ug, vg) {F} =k, v).0:{F}{¢})}
=k(u, v)«(p{F})=pk(u, v);{F}=pd(y, v).

This completes the proof of Lemma (4.5).

§5. The proof of Theorem II.

Lemwma (5.1). [e, o, ]=0, where ¢, denotes a generator of =, (X)).

Proor. Since n is odd we have 2[¢, n]=0. However =, (X)) has no 2-
primary component other than zero. ie. [, < 1=0.

This lemma means that X! is a retract of X;~¢*. Now we have

Lemyia (5.2). There exists a retraction »: X;w¢* — X} such that r.=r.rs,
where r, denotes the homomorphism of the homotopy groups induced by 7.

Proor. Let p, 6 be any two retractions, and let d(p, ) be the separation
element defined in §4. If we notice that p, 4, pr, and pr, agree on X we have

d(o, p2)=d(p, H+d(5, o) from (4.2)
—d(8, o7y=d{pr, pr)+d(nz, §) from (4.2).



On homotopy groups of certain complexes 623

Thus  d(o, pr)~d(s, ir)=d(p, 8)+d(B, p2)+d(pz, p2)+-d(oz, §)
=d{(0, p)-+d(gc, pr)+d(@, §)=d(o, H+d(oz, pr)
=d{p, 9)+(—=1)"d(5, p)=2d(p, H)

ie. d(p, p)=d(p, )+ 2d(0, p).

On the other hand, since =:.(X) is the p-group, and element of = (X ) is divisible
by 2. Let # be an element of 7».(X}) such that 2x=—d(g, 5r). Now if d(3, pr)
=0 4 is homotopic to pr by (4.1). i.e. f,=g.7.. Hence it is sufficient to put 7
=g. If d(g, 9r)#0 we can choose a retraction p such that d(p, 9)=2. (By Lemma
(4.3)). Therefore we have

d(p, pr)=d(p, pr)+2d(0, )= —2x+2x=0.

Thus in this case it is sufficient to put r=p. This completes the proof of Lemma
(5.2).

Let r be a retraction such that r.=r.r,. From 4,07=a+c.« we obtain
PelaO)=Tra+1eTea=2rya, 1.e. 87=2c.«. Thus 67=0 is equivalent to r.a=0, i.e.
X} is a retract of the complex L= X ~e el "t~ However we hove

Lrmma (5.83). If p is a prime number, there exists no retraction of L onto
X,

Proor. If such retraction p exists, the cup product of z,.; and z, must be
zero®®, where ,,1, z, denote generators of the cohomology groups, H (XY,
Z,) and H"((X}).., Z,) respectively.

Let d, be the Bockstein operator mod p, (see [57). It is easily seen that
O (T =2,.1 and 8y(x,.1)=0. Hence we have z,.;~2,.;=0. Now let ¢ be a map:
X7~ 8"t such that ¢|S™ is the constant map and ¢e"*! is a map of degree +1.
Clearly ¢ induces a map ¢. of (X}). into S:*! such that ¢.(z, 22, - -, Tp) = ((Xy),
¢(x), -+, ¢(@x). Then from cell structure of (X7). and S**! we see that the
homomorphism ¢%: H*(S"*1, Z,)— H*(X}).., Z,) transforms generators of the
former into generators of the latter at each appropriate dimensions. Of course
CE(Yne)=%,.1, where ¥,,; denotes a generator of H"*}{Sn+t Z,). Hence from
naturality of the cup product we have %,,1™~2, 1= ¢5(¥u )% Yn o) =@ Yot~ Yur1)
=20%(Y2,., )Y #0. Thus 2,..~%..1=0 contradics to this fact. This completes the
proof. In particular we have

COROLLARY (5.4). If p is an odd prime number X is not a H-space for all
n>1.

ProoF. If n is odd this is an immediate consequence of Lemma (5.3) and

(24) Consider the exact sequence, 0-— H **{((X 7)., Z)——H P 7).

(25) See page 488 of [16].
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Theorem (1.8) of [107. If % is even this faet follows from [}, ¢4]=0. This com-
pletes the proof.

From Lemma (5.3) we can easily obtain

LEMMA (6.5). If p is an odd prime number H. is trivial.

Now combining these lemmas we have

Theorem II. If p is an odd prime number

H, is trivial and H. is onto for even n,

and H, is onto and H. is trivial for odd =.

Remanrk. The part concerning H, is an easy consequence of properties of
[e),¢50, and H, corresponds to the Hopf invariant of the group m,.:(S"). (See [117]).

Chapter II1. The groups =:(X, S™).

§1. Preliminary.

Let K denote a complex S"C/ek‘gze"”‘, (r>n+1), and let 7, denote the inclusion
homomorphism : z(S"Ze) - m(S"Ce", 8. As stated in §1 of Chapter I, there
is a unique integer m such that 7.(9=mla, .], +aop (p€mu, (V7,871). Let P
be a map of "¢ into S” which transforms S” into ¢!, and ¢’ homemorphically
onto §"—¢?. Then we have

LemMMma (L.1). P.5=E(0p), where & is the boundary homomorphism and E
denotes the suspension homomorphism.

Proor. Consider the following diagram

a
Tayr-1(S™€7) - Tnyr-1(S7)

*J* V
(1'2) ﬂn-ﬂ‘-—l(snverr S") P’* E
& Z,

Tner- I(Vry Sr»l) ﬁn*r—i‘(srnl)

where P/ is the homomovrphism induced by the map determined by P in obvious
way, and %, is defined by ¥.=Pla.
In the diagram (1.2) we can easily prove that P,=P/Jj, and %,=E¢. Then

Po(8)= PLju(B)=Piml&, o,], +aop)=Pla.(0)  from Pl{a,,],=0
=4 (0)= E(0p).
This completes the proof.
Since 7,,..:(S") is a finite group by r>n-+1 and Prop. 5 of [16], P.(5) has
the finite order, say &. Then we have
LemmA (1.3). There is a map ¢ of K into S” such that ¢i(S™)=e? and ¢le”
is degree k.
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Proor. Let ¢" be 2 map: S™—8" of degree k and consider the map ¢"<P:
S"Ze—S8”. Then
(PoPYu(3) =150 Pi(i3) = ¢ (E(G0) = K E(G ) =k Py (9)=0.

Hence (<P is extendable over K by Lemma 7 of {237, (p. 225). This completes
the proof.

Now let ¢ be a map whose existence has been just proved by Lemma (1.3).
Clearly we may regard ¢, as a map of the pair (X, S”) into the pair (8", ¢,). Let
B be the mapping cylinder of ¢., and E the space of maps 1: [— B such that
NOc K, where I is the interval 0<¢<1. In §1 of Chapter 1, we have defined
the projection p: E— B in case where B is the mapping cylinder of the map f:
S-1_, ], We now consider the corresponding projection p: E-+B for ¢, and
the fibre space associated with p: E—B.

Since p(S")=¢ (8" =e, the embedding of K in E carries 8" into F. Thus
we have the following commutative diagram (1.4), in which p’ is the map deter-
mined by p in obvious way, and %, v are inclusion maps.

(K, 8" --— (8", €?)

(1.4) uj » @l

(E, 8% ‘;‘;" (B, e)

The inclusion maps u, v are homotopy equivalences, Hence they induce isomor-
phisms %, v+ which transfer ¢+ to p%, as shown in the following diagram.

Tff(K, S) m—— FZ';(S)
(1.5) u*l @J
7B, S§) ~ =d(B)
4
Consider the homotopy sequence of the triple (&, F, S"),
1.6}

> ﬁi(Fy S) - zi(Ey S) - Hi(El F) —é“" 7:i—1(F7 S) e

Jx T
Since pL, in (1.5), can be factared as follows
7l E, 8)—— mi(E, F)—z(B)
Tk Dx
where p, is the homomorphism induced by the fibre map, it follows that the
sequence (1.6) can be transformed into an exact sequence,

(1,7) 3 E'i(F, S") — ﬂi(K, Sﬁ) I Tfi(B) —,

Thus the study of 7.(F, S™) is important for us, on which we shall prove the
following key lemma to our Theorem IIL
LEMMA (1.8). ={F,S™, (r>n-+1), belongs to the elass ¢k, for all 4.
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If we assume that Lemma (1.8) is true we can easily obtain

Theorem I1II. (K, S™, (r>n+1), is Cn-isomorphic to z(S") for all 7.

COROLLARY (1.9). If a prime number p is relatively prime to ml, the p-
primary component of 7,(K, S*) is isomorphic to the p-primary component of =i (S7)
for all 4.

By Theorem 2 of {177 (p. 274) Lemma (1.8) is equivalent to the following lemma.

LevuMa (1.10). H.(F, S"; Z) belongs to the class Cp,, for all <. By the universal
coefficient theorem this is again equivalent to

LemMA (1.11). H{F,S; Z) belongs to the class 'y, for all . We shall this
lemma in the last §3 after some preparations in §2.

§2. Spectral sequence.

Let A=N"A be a filtered graded algebra over integers with a differential
operator of (i:egree 41, and let A™" denote the subset of A consisting of elements
whose filtration does not exceed p and whose degree is p+q. Suppose that A»!
=0 if g<0 and A%"=="4. We use the usual notations (r denotes positive integers):
C.»7 : the subset of elements of 4" whose coboundaries are included in A2*7 771,
B,”1 : the subset of elements of A”7 which are coboundaries of A” " 4""~1,
C."%: the intersection of cocycele of A and A",

B.7": the intersection of coboundaries of A and A”.

Epa=Cra/(Cr vt Bray and  EL2=C0/(C0 1 g BL7),

If we put D??=C.»%7/B_ ™ then (D"%) defines a filtration of H*(4, Z), and we
have E. Y= Dri/Dr*ue-t Now we denote by u»9: D?»41—E. " and +7»7: D"7—
H"(A, Z) the projection and injection mentioned above, respectively. The cup
product, ~, in &, is defined by the multiplication of representatives in each class
so that E,7i@QFE R v’ The eup produet, ~*, in H*(A, Z) in the same
way implies the cup produect 2. D»QD?-4'— Dr+e.2*  Thys we have the
following diagrams of which commutativity is almost evident.

D e L ey DR AR
(2.1) { PRI D E NIy

HYA, D)QH (A, Z) = H" (4, Z)

N

DD — PPy
(2.2) ! JGEN T - ‘;,zl’*P’,qw

E T iQE o FPEDatar

o o

Let «): B2 E2% be the canonical homomorphism defined on *E,? ¢, elements
of K, "¢ whose differentials, d,, d,,, -+-,d,_; are all zeros (co=s>#). Since
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“PE,PIRE, Y — B P P97 is gssured by the formula d.(x™~y)=(dix)>y
A+ (=D~ (dy), (i=1,2,---). Thus we have the following diagram.

sEg/=q®sE;1‘,<g' — SE?_J‘:}?',A;%Q'
a ~ L
(2.3 | K Ry S

Es""“@Esp"q’ o — Es;n«_;,'%g‘-wq

Now we suppose that D# L3 i= Pyl -l ferrshare-i=(, Then it is clear
that u??, w?»% and p?*7-7*7 are all isomorphisms. Hence we obtain the following
homomorphisms,

h(p, @ =i2uN) s B0 HW WA, Z)
h(p', @)= () BE7(A, Z) -~ H"Y (A, Z)
W(p+p/, g+q)=ePPhar O (ur ety RPirhatt s Jrrrtiti(A, Z)

Combining two diagrams (2.1) and (2.2) we have the commutative diagram.

ErigEs . Y s LA
(2.4) A, QB ) [P, a+a)
H7 (A, ZYSH? (4, 2) “i= A7 C¥(A, Z)
Let (E, B, P) be any fibre space, and (E,”*) the associated spectral seqnence
of the cohomology ring over the coefficient group Z, suppose that
a) HYB,Z)=H"(B,Z)=Z and H(B, Z)=0 for other 1,
b) n>qe+1>3 for some g;.
It is easily proved that E,"°=<E,? E.%%="F%% gnd FE,>"="FE""% and
Dbtz Dlt-l=r+b @o-1=(), Then from the preceeding argument we obtain the
following diagram

E" 0RQF,% % Eynio «e EZ%
* Ki@"_‘a/v/’/ ‘ h(n, go)
Ez QRS 1 - H™(E, Z)
{ (n, YDA, q@/
H™E, Z)QH%(E, Z) —A

1t follows from diagrams (2.3) and (2.4) that

ko= o(kA®K2) ~o(h(n, 0)hO, go)=h(n, qu)e~.
On the other hand it is seen that A{(n, 0)ex® is equivalent to'™ p*: H'(B, Z)—
H™(E,Z) and h(0, go)ox® is the inverse homomorphism of the inclusion homo-
morphism : HY(E, Z)—H"(F, Z). Since B is a homological n-sphere we have the
Wangs sequence, "

(26) See [16].
(27) See p. 471 of [16].
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— HE(I, Z) L H(E,Z) e H(F, Z) o Hi-" YR, Z)—,
(1951 - i
Since we can express elements of Ey»% in the form 18z for « of H%(F, Z), we
have
B vay- 1(@) =Ry 1(1E ) = R0, qo)ox(1Z22)
= M prQy—at (m) = pH ()~ Ha) .
Namely we have
LEMMA (2.6). A,y (@)= p*(D)~0% Yz).

§3. The cohomology of F.

In this section we use the same notations as in §1. We shall calculate the
cohomology of F' and prove Lemma (1.11).

Since E and B are homotopy equivalent to K and S respectively, their co-
homology are as follows:

3.1 HYE, ZY=HYE, Zy=H(E, ZY=H"(E, Z)=Z
HilE, Z)=0 for other 1.
(3.2) HYB,Z)=H"(B, 2)=Z

H{(B, Z)=0 for other 1.

Since B is a homological r-sphere we have Wangs sequence associated with the
fibre space (K, B, p),

(3.3) o H(E, Z)— H'F, ) H " (F, Z)

»HUYE, Z) —.
™ (E, Z)

Then it follows from (3.1) that

Lemwya (3.4). HUF, Z)=H*""YF, Z) for i>n+r.

Lemma (3.5). it H(E, Z)-H{F,Z) is an isomorphism onto for i<r—1.
From these we can obtain

LrmsmA (3.6). HYF, Z)=H"(F, Z)=Z

HiF, Z)=0 for r+1gisn+4+r—2

and i<<r—1, 0, n.

Thus, by (3.4) it is sufficient for us to caleulate H' (¥, Z), H'(F, Z),
H© W F, Z) and H"(F, Z). For these cases we have two exact sequence which
are the part of Wangs sequence,

3.7 O H"YF, Z)— HYF, Z) ; —H'(E,Z)—HF,Z)—0,

r—1

O~ H""YF,Z)>H"F,Z) - H"”E, Z)y—- H*"F, Z)—0.

Lran-1

It is easily scen that the homomorphism %, ; is equivalent to the homomorphism

(28) 1 denotes a generator of H(B,Z)=2Z.
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p*: H' (B, Z)— H'(E, Z). (See p. 456 of [161). Since p* is equivalent to ¢7f:
H(S",Z2)— H"(K, Z) by the argument of §1 of this Chapter we see that i,
transforms a generator of HYJF, %) into k-times of a generator of H'(E, Z).
Thus we obtain

LEMMA (3.9)., H YF,Z)z0 and H{F,Z)=2\.

As to h,.,; we notice that the argument of £2 of this Chapter is applicable
to this spectral sequence and we have by Lemma (2.6)

(3.10) Bowerl@) = p*) 0" @) =k(w,~w,

where z, and y, denotes generators of H*(¥, Z) and H'(B, Z) respectively, and
; denotes a generator of H(K,Z) (t=mn,r, n+7r).
Since by Lemma 2 of [15] we have w,~w,=nw,., we obtain

LeEMMA (8.11). H 7 YF,Z)=0 and H"'(F, Z)Y=Zn.
Combining lemmas (3.4), (3.6), (3.9), (3.11) we have
LEmmaA (3.12). HYF,ZY=H"(F,Z)=Z
Hsv-v(F, Zy=Z,  for all integers s=0

Hswr-vin-r (B 2N Lim for all integers s=0
H{F, Z)=0 for other 4.

Now Lemma (1.11) can be obtained from Lemma (3.12) and the cohomology sequence
of the pair (F,8").

COROLLARY (3.13). (i 7K, 8"y — =:(8") is ¢ ,-isomorphism onto for
i<r+n—2 and is Cy-homomrphism onto for i<r-+n—2.

Proor. From Lemma (3.12) and the universal coefficient theorem we have
H(F, 8% Z)Yco, for i<r—1+4n. Hence ».(F, S"y=; by Theorem 2 of [171. (p.
274). Then Corollary (3.13) is a consequence of the sequence (1.7).

University of Tokyo.
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