Spectral sequence in the de Rham cohomology
of fibre bundles.

By Akio HATTORI.

Introduction.

Leray [6] initiated the theory of spectral sequences in the Cech-Alexander
cohomology of fibre bundles. After Leray, Serre {13] developed the theory of
singular homology and cohomology of fibre spaces. In both theories, spectral
sequences connect the cohomologies of fibre and of base to that of total space.
On the other hand, Hochschild-Serre [4] gave the spectral sequence theory in the
cohomology of Lie algebras. In this case, the speectral sequence relates the
cohomologies of an ideal and of its factor algebra to that of the algebra.

In differentiable fibre bundles we have the de Rham cohomology theory.
Results of Leray, Serre and Hochschild-Serre suggest the possibility of getting a
spectral sequence theory of the de Rham cohomology of differentiable fibre
bundles.

Our purpose in Chapter I is to give a natural filtration in the complex of
differential forms of total space to the effect that the resulting spectral sequence
relates the cohomologies of base and of fibre to that of total space.

Whereas our results resemble in their final form to those of Leray and Serre,
our method is quite similar to that of Hochschild-Serre. This analogy comes
from the fact that the complex of forms can be considered as complex of the
Lie algebra of vector fields.

Then, in Chapter II, we discuss the case where the spaces involved are all
homogeneous spaces of {ype G/D, where D is a discrete subgroup of a Lie group
G. In particular we get a homomorphism of the Hochschild-Serre spectral
sequences into ours, which leads to a generalization of a theorem of Nomizu [10].
Nomizu proved that if G/D is a compact homogeneous space of a nilpotent Lie
group G by a discrete subgroup D), then the cohomology of G/D is isomorphic
to that of the Lie algebra of G. Saito [12] treated a class of solvable groups
(“‘groupes A racines réelles’’y which have properties very near to nilpotent groups.
We shall generalize Nomizu’s theorem to the case where G is “'a racines rielles”’
and the cohomology is with local coeflicient systems of a special type.

The author wishes to express his hearty thanks to Professor S. Iyanaga,
Professor S. Araki, Mr. M. Saito and Mr. K. Shiga for their encouragement and
valuable suggestions given during the preparation of this paper.
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Chapter 1.

Terminologies and notations.

In the sequel, we shall denote by R the field of real numbers, and by E"
the vector space of n-tuples (@i,...., %), ©.ER.

Let (S, iz, M) be a sheaf on a space M [1]. Then, we put, for a subspace
UcH, ‘

S(U)=the restricted sheaf of S on U,

(S, U)y=Sp=the module of (continuous) cross-sections of S on U. If U=M,
we shall write I'(S)=I(S, M).

Let M be a C*-manifold. By a C~-fibre bundle (B, =, M, F, G) on M, we
mean a fibre bundle in the sense of Steenrod? [14, §2.4] such that its fibre ¥ is
a C™-manifold and its structural group G is a Lie group of C™-transformations
of F' and its coordinate transformations are C”-maps. The bundle space B has
a unique structure of C¥-manifold such that its coordinate functions are diffeo-
morphisms. Then the projection = :B—M is a C™-map.

For an open submanifold UC M, set

I'(B, U)=C>-cross-sections of B on U.

For UCV, let =l: (B, V)—>I(B, U) be defined by restriction.
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Similarly, for < U, =} : I'(B, U)~F.=x"Y2) will be defined by restriction.
The same notation is used in case of sheaf.

When F=R" for some n, and G=GL(n, R), the C-fibre bundle (B, =, M, R*,
GK(n, R)) is called C™-vector bundle. Note that, in this case, each fibre F.,
xz& M, has the strueture of veetor space over R, and I'(B, U) is a (left) module
over the algebra of C”-real valued functions on U.

Let G- be the sheaf of germs of C™-functions from M to G. Any covering®
{U.} of M by coordinate neighborhoods of the bundle (B, =, M, F,G) and its
coordinate transformations {g.;: U.~Us;—G} represents a well-defined element
¢(B) of HY(M, G) [3. §3-1].

Let G, be the sheaf of germs of locally constant function from M to G, and
let h:G,.—G-~ be the natural injection. h induces a function h.: H(M, G )—
H{(M, G).

A C*-vector bundle (B, =, M, R*, GL(n, R)) is called locally constant if there
exists a ce H' (M, G.), G=GL(n, B), such that h.(c)=e¢(B), or equivalently if
there exists a covering {U.} of M by coordinate neighborhoods of the bundle
such that its coordinate transformations {g.s;} are constant on their domain of

definition.

§1. De Rham cohomology with coefficients in a locally constant sheaf.

Now let M be a C*, paracompact, connected manifold” and (S, =, M) be a
locally constant sheaf of finite dimensional vector space over reals on M. We
call such a sheaf an admissible sheaf. The cohomology groups H*(M, S) of M
with coefficients in & is obtained as follows [1]. Denoting by 2(M)=£ the sheaf
of germs of differential forms on M, the tensor product sheaf 2.5 (tensor product
is always taken over reals) has a coboundary which is induced by that of £.
Therefore the vector space I'(2-S) can be considered as a (cochain) complex.
The derived groups of this complex are exactly the cohomology groups H*(M,s).

We shall now give an interpretation of this complex which is suited for our
purpose.

Let S be an admissible sheaf on M. By the hypothesis, we see that there
exists a covering {U,} of M such that, for each «, there is an isomorphism of
sheaf on U,

Ot UX R~ Y(Uy),
where U,X R" means the constant sheaf on U, defined by the vector space R".
The fact that ¢, are isomorphisms of sheaf of vector space implies that they
satisfy the following conditions :
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1.n If U~ U:#4¢, and € U ~Us, then
el ¥)=(x, 9as(2)- 1),
where gos(2)EGL(n, R).

(1.2) The function g.;:U.~Us—GL(n, R) is constant on each connected
component of U, ~Us.

(1.3) If xe U, U;~U,, then,
g(ry(x) = gufs(x) - gﬁr(x)'

In virtue of (1.2), the function g,; is a C*-map if we endow GL(n, R) with
the usual structure of Lie group. Therefore the set of functions {g.;} gives a
C*-vector bundle whose bundle space may and will be identified with S as a set.
This is done by giving R" the usual manifold structure and requiring ¢. to be
diffeomorphisms.

We shall denote this bundle by B(S, {¢.}). If we take another covering
{V.} of M and isomorphisms of sheaf

¢; 1 Vox Bz Y(V)),
then ¢.;: U~ V—GL(n, RB) defined by
erte @, W =(2, gu:(®)-y)

is also constant on each connected component of U, ~V;. Hence {g.s} and {g,.}
define the same element c(S)e HY(M, GL(n, R),.). In particular B(S, {¢.})=B(S,
{$:}); hence we may write B(S)=B(S, {¢.}). Thus

(1.4) Every admissible sheaf (S, =, M) defines a locally constant C”-vector
bundle (B(S), =, M, R", GL(n, R)) and an element ¢(S) of H'M, GL(n, R),.) such
that h.c(S)==c(B(S)).

The following two propositions are immediate.

(1.5) Given a locally constant C=-vector bundle (B, =, M, R*, GL(n, R)) and
an element ce HY(M, GL(n, R).) such that h(c)=c(B), there ewists a unique
admisssible sheaf (S, =, M) such that B(S)=B and ¢(S)=c.

(1.6) Let S and & be admissible sheaves on M. S and & are isomorphic,
if and only if ¢(S)=c(s"). In particular B(S) and B(S) are isomorphic, z.e.,
equivalent in GL(n, R), if ¢(S)=e(S).

We use the following notations.
G(M)=:F=the algebra of C-real valued functions on M.
2(M)=X=the Lie algebra over R of C®-vector fields on M.
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Elements of 2(M) are derivations of (M) and (M) is a (left) “(M)-module.
For fe 4, X& X, we denote the operation of X on f by X-f. By definition,
:X’ Y}’f‘:‘Y'{Y'f)mY'(‘Y"f}r KY! Yely j‘e’l"'v'
Suppose always that a fixed admissible sheaf (S, 7 M) is given. Then
I'=I'(B(5)) is a (left) T(M)-module. Let U be an open set of M such that & is
constant on U. Then =¥:S;—&, is bijective, and S, is a finite dimensional

vector space over K. Since we have identified B(S) with & as a set, we have
SeCI'(B(S), U). Moreover the “7(U)-linear map

1.7 apt HU)Se—T(B(S), U)

defined by o, (f®s)=f-s is bijective. Here the Z(U)-module structure on S(U)SS,
is defined by

S UR)=,fSs, f, FeHU), s&Sy.
We define the A(U)-module structure on (U )DS, by
(1.8 X (fR)=X-f®s, feI(U), s=Sy.
Then the X(U)-module structure on I'(B(S), U) is defined by
X-s=0,(X-0;Ys)), s€'B(S),U).
The following identities are immediate consequences of the definitions :

1.9 J(X-8)=(fX)-s,

(1.10) X(fe)=(X-)s+f(X-9),

(1.11) (X, YIs=X(Y-s)—-Y-(X-35), for X, YeX(I), fel(B(S), U).
iIf U>V, then,

1.12) s(Xe8)=rmh(X) -7 (s).

Take a covering {U,} of M such that S is constant on each U,. Let X&:2(M)
and s€I'(B(S)). We shall define an element X-s of I'(B(S) by
P (Xegy=al (X)) m)l ! (8)
for all U,. This definitions is licit, because we have, by (1.12),
.‘-ﬁfzﬁ:-;;(ﬂfv’,,(X)'ﬁf{,(s)):fﬁ’" v, LX)-= Ny ()
:ﬁ(,,’ﬁil\L'lg(“L‘ﬁ(‘Y) 'l,’lik's)):

for any U, and Uj; such that U, U;#¢. It is easily verified that the definition
of X:s does not depend on the choice of covering {U.)} and that the identities
(1.9)—(@1.11) hold foy X, YeX(M), feI(M), seI'BS).
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Note that, for a locally constast C*-vector bundle B on M, we may define
an operation of 2 (M) on I'(B, M) in virtue of (1.5), but it depends on the choice
of ce H'(M, G..) such that h.(c)=c(B).

Now we define a (cochain) complex which will be canonically isomorphie to
I'2-8). Set

Co=C(X(M), (BSN=T(B(S)=T,
Ct=Ci(2(M), I'(B(S))=the ¥(M)-module of
“J(M)-linear g-alternating functions from 2(M) to I’ ¢>0.

In the graded module C=Y",-C" we define an R-linear endomorphism d which
augments degrees by one. For weC*, define namely

(1.13) dw(ey, -+, z,.1)

== - 1
g+1
FN (=D (X XD Xy Kooy Xy oo, X

SU=D XX, X, X, 0)

It is easily seen that dw is in C"*' and that d’=0. We shall denote by
H*(A(M), I'(B(S))) the derived group of C by d.

If U is an open submanifold, then the complex C(X(U), I'(B(S),U)) is
similarly defined. An element weC"(2(U), I'B(S), U)) is an J(U) linear q-alter-
nating function from 2(U) to I'(B(S), U). Hence it follows easily that the
element w(X,, -+, X,)(%) of B(S) for k& U depends only on the tengent vectors
Kier -+ Xy determined by the vector flelds X;,---, X, at 2. Thus w may be
identified with a collection {w.}.er of R-linear g-alternating functions w, from
the tangent space T, of M at © to B(S).=S, such that, if X,---, X, are vector
fields on an open set U’ of U, then the map z-w.(X,, -, X,.), z€l’, is a
C-cross section of B(S)on U'. For UDV define a map =4 : C/X(U), I'(B(S), U))
~CH2A(V), ['(B(S), V)) by

ai{w Yer={w. ey

It is easily checked that = w is an element of CY(2(V), ['(B(S), V)) and that
7Y commutes with the coboundary; d=}§=r{d.

Proposition 1.1. The complex C=C(X(M), I'(B(S)) is canonically isomorphic
to I'(£2:8).

Proof. Let U be an open submanifold of M. Then we know that 27 is equal
to C1((U), 4(U)), i.e., to the HU)-module of (U)-linear g-alternating functions
from 2X(U) to H(U).

If S is constant on U, then it is evident that we have I'(27-S, U)=2,QRSy
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=CHXU), HUNSSc=Ci (X)), HUYSS,).
Then the isomorphism o : S(U)R 50— [B(S), U) induces an isomorphism
(1.14) age T{2%S, U)=C*"(0(), 7(UYRS)—C* (X)), B, Un.

Take an open covering {U.} of M such that & is constant on each Uy For
weCIiCAM), I'BLS)), set

(1.15) we=r we CHNUL), INB(S), U).
Then w,s satisfy the following condition :
(1.16) ~ N (uu)‘- e (wx)

for any U, and U; such that U,~U;#é. Conversely the collection {w,} oof
elements w,=CI(AU,), I'(B(S), U,) which satisfy (1.16) determines a unigue
element weC? satisfying (1.15).

For seI'(27:5), consider the elements

1110\(7’[7 I (b)

Since the relation =i« , o, =a. . = . holds, these =/s satisfy (1.16). Define

a(s)eC* by z;}’u(rr(s)):w,,m('r[ v ’s,) Smce each oy 18 an isomorphism, + is an
isomorphism (of module).

To show that do=od, it suffices to prove do, =ar,d, because 7 d=dz=y’ for
both sides of (1.14). On I'(2%8, U)=27 S5, =CUU,), HUNDS,, the dif-
ferential d is defined by

dwRs) =dw®s, weClU2U), AU, s&Sp,.
It is well known that the formula which defines dw is given by (1.11). Thus,
by the definition of o, (ef. (1.7), (1.8) and (1.14)), we have
T MwRs)Xy, -+, X, D=0, ([dwPsHX,, -+, X))
=dw(X;, -, X, 08

{1‘]{.‘1 I'\“( 1) ‘”X (QU(le *s iv' '.': X‘“/l))s
+3 N (=1 e[ X X Xye ey X, ‘Xj’ e XoL))s)
- qil D Ko X X, X, Es)

—}-‘E_‘i(‘,-(-——l)“jr)’(’(t(’LL?([Xi,X_;],Xu t ';Xu o 'y);’p o 'vau l)l\g‘s)}
-——d(f{ (’llz \(XL,’ N (;;l)-

Hence o, d=ds.,; this proves the proposition.
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Corollary 1.2. H*(X(M), I'(B(S))) is canonically isomorphic to H*(M, S).

Remark. (cf. §2.6). If S is a sheaf of algebra over R, then I'(B(S)) is an
algebra over J(3). The usual Grassman multiplication makes C(2(M), I'(B(s5)))
an algebra over “(M). I'(Z<$) is also an algebra over F(M). The canonical
isomorphism o of [(2<8) onto C(2 (M), I'(B(S)))=C is an isomorphism of algebra,
as is easily seen. Note that, in this case, the following formulae hold.

X -(wArnw)=X - wyAw +wA (X 1)
dwAw)={dw) Aw +(— 1) A (dw),

where weC?, weC' and Xc2(M).
Thus

Corollary 1.3. If & is an admissible sheaf of algebra over R, then the
algebra (over R) H*(X(M), I'(B(S))) is canonically isomorphic to the cohomology
algbra H*(M, S) of M with coefficients in S.

Hereafter we shall identify H*(2(3), I'(B(S)) with H*(M, S).

$2. De Rham cohomology in fibre bundles.

1. Preliminaries.

First we recall elementary parts of theory of connections in fibre bundles [9].

Let (B, =, M, F',G) be a C"-fibre bundle. A connection in this bundle is by
definition a C~-distribution @Q:z—@Q, of dimension n(=dim M) on B which
satisfies the following conditions :

(2.1) B.=F,+Q. at each v&B, where B, is the tangent space at z to B
and F, is the subspace tangent to the fibre through z:

(2.2) TFor any C“-curve w(t) in M, there is an integral curve At ; x) (called
a lift of w(t)) of the distribution @ which starts at any given point x of the
fibre = '(u(0)) and which covers the curve u(t). Moreover, for fixed t, the cor-
respondence u, : x—u(t; «) defines an isomorphism of = '{u(0)) onto = u(t), ie.,
if £:F-»x"Y(u(0)) and &: F—r"(u(t)) are any admissible maps [13] then & 'y £:
F—F is an element of G; and the function (¢, )—%(¢; 2)eB is C*.

In particular, for a vector bundle, %, is a linear map of the vector space
77 (o)) onto = (u(t)).

If u(t) is a closed curve, it defines an automorphism of 7 Y(u(0)). The totality
of such automorphisms forms the holonomy group @, at u(0) of this connection
which can be considered as a subgroup of G.

Let (8, =, M) be an admissible sheaf. We shall define a special connection in
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B(S) which will be called the connection defined by S. Let z be a point of
B(S). There exists a neighborhood U of =z(x)eM on which the unique Cross-
section 8 of & through z is defined. s can be considered as a C*-cross-section
of U into B(S). Define Q.=s.(M...,), where s, denotes the differential of s and
M., denotes the tangent space at =(x) to M. The distribution 2—Q, defines the
desired connection. In this case, if u(f) is a curve in 3 and =(x)=wu{p), then its
lift u(t; z) is yet a continuous curve in &, and is the unique cross-section image
of u(t) through 2. %(t; x) considered as a curve in & will also be called the lift
of u(t) through =x.

Consider again the bundle (B, =, M, F,G). The vectors of F. are called
vertical. A C”-vector field X on B is called vertical if X, is vertical for every
z€B. Let X(B)=the totality of vertical vector fields on B. 2,(B) is an “(B)-
submodule and R-Lie subalgebra of 2(B). If we imbed (M) in 9(B) through
the homomorphism =*, then 2(B) is characterized as the annihilator of S(M) in
UB).

Let @:2—Q. be a connection of the bundle. Vectors of Q, are called hori-
zontal (with respect to this connection). A C™-vector field X on B is called
horizontal if X, is horizontal for every z&B. The totality 2,(B) of horizontal
vector fields form an F(B)-submodule of X(B).

X(B) is a direct sum of X,(B) and ),(B). We shall denote by v: J(B)—a.(B)
and & : X(B)—2X,(B) respective projections.

Let X be a C>-vector field on M. There exists a unique horizontal vector
field X on B, called the life of X, such that =.X=X (X and X are =-related).
The correspondence [:X—I(X)=X gives an Z(M)-linear map [: 2 (M)~»2(B)
which we shall call the lift map. Moreover we have A((X, Y )=[X, Y.

In the case of the connection defined by & in B(S), [X, ¥ ]=[X, Yj ie., lis
a homomorphism of Lie algebra, as we see easily.

Proposition 2.1. Suppose that a connection is given in a C=-fibre bundle
(B,z, M, F,G). Let XeX(B) and Y&X(M). Then, we have [X, ¥ e X,\(B),
where Y is the lift of Y with respect to the given connection.

Proof. Let fe%(M). It suffices to show that

[X, Vet f=0.

Now [X, ¥ 1= = X(Y(=* )~ V(X" 1)
=X(Y(=* ).
Since Y:r:(.r)fz(n* i}z)f: ?J'(R*f)l i-e-y

Y fy==*(Yf),
we have [X, ¥ In* f=X="Y f)=0.
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Let M be a manifold. A collection {X,} of elements X, of 2(M) is said
locally finite if the carriers of X.s form a locally finite family, ie., if for each
2= M, there exists a neighborhood U of 2z such that only a finite number of
X/, exists whose carriers meet U. (The carrier of X={x; X.#0, e=M}). If
{X;} is locally finite then N'.X, is a well defined element of X(M).

Proposition 2.2. Suppose that o connection is given in the fibre bundle
(B, =, M, F',G). Let |:X(M)-2(B) be the corresponding lift map. Then we

hawve

),,(}}) i "(B) Z( )(ﬂ/[))’
=[N AUX); fred(B), X2, {X;} locally finite}.

Proof. Note that X< U(B) is characterized by X.=Q. for any x&B5. Since
UX)e 2 (B), XuBY>F(B)1(Y(M)) is obvious. Suppose that U is a coordinate
neighborhood of some point of the manifold M. Then there exist X,,---, X. = X(U),
n=dim M, such that {X..} span T, for any <= U. Then (X)), -, [{(X.).~ span
Q.+ for any z*e="(U). Take a locally finite covering {U,} of M by local
coordinate neighborhoods. Let {V.} be a covering of M such that V.U, Let
{4} be a partition of unity attached to {V.}. Set A*==x*l. If Xe1.(B), then
the carrier of 2.X is contained in = (V). Take X, - -, X, €2(M) such that
{X:;} span T, for any a2V, and X, =0 for g U.. Then, we have 2 X=
S LX), foe A (B); {X,) is obviously locally finite, therefore

— 1
X=X X=030 00X ye H (B)-L(M)).

Definition 2.3. Let M be a connected manifold and let I''be a (left) F(M)-
module. Further, let 27 be an R-Lie subalgebra of (M) which 1s, at the
same time, an F(M)-submodule of X(M). We shall say that X' operates on I,
if the following conditions are satified:

@) I 18 a (left) X-module. We shall denote the operation of X&' on
cal by Xe.c;

(b)) (fX)e=f(X-0, fedM), Xe¥’, cel}

() X-(foy=X- e+ f(X-e), feFAD, Xe’, cel;

@ X, Y]l ¢e=X-Y.00—-Y-(X-0), X, Ye ceI

In particular X(M) operates on TF(M) in this sense (ef. (1.9)-(1.11)), and
27 operates on itself by the operation X-Y=[X, Y.

Definition 2.4. Let " and I'! be F(M)-riodules. Define a graded T(M)-module
CUL I')y=2 0 CI, ") by
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cnry=r7,
CUL Iy="i(M)module of (M) linear g-alternating functions from I to
I.
For fe®(M) and weCU{L I, fw is defined by
(f“’")(ch f T Cq):f('ll,’((';, ] C»;))-

Definition 2.5. Let X’ and I" be as in Definition 2.8. Let X&}'. We define
three R-linear erndomorphisms #(X), «(X) and d in C(27, I") by*

(@) HX)e=X-e, ccCUQ", =],
(X)) Xy, X)=X-((Pr,- -+, X))~ w(Xy, -, [X, X+, X)),
weCxr, M.
(b) «(X)c=0, e=CYX", I,
UX ) w(Xy -, Xy )=w(X, X, -+, X, ), we 2, I,
(€ dw(Xy -, X, ) =S U= X (0K, Xoe oy X0))

AN =D WX X0 Xy Kooy Xy ooy Xou),
X)) preserves the degree, and by the action w—0(X)-w 17 operates on
C(X7, I'}y (Definition 2.8). i#(X) diminuates the degree by one and is #(})-linear.

d augments the degree by one. The following identities are easy to verify (see
(4D :

(2.1.1) XYY ) =Y Y(X)=i(X, ¥, X, Yer,
(2.1.2) (X)) +diX)=6(X), Xex,
2.1.3) H(X)d=dHX), Xe 1,
(2.1.4) d*=ded=0.

The derived E-module of C(7, IM=X\'C2", I') with respect to d is denoted
by H*(XY, IN)y=> 0 HY(X", T')”.

2. H*XB), I).

Now let (B, p, M, F,G) be a C>-bundle, and let I" be an Y{(B)-module on
which X{B) operates. As remarked in §1, the ZF(B)-submodule 2(B) of vertieal
vector fields ia also an R-Lie subalgebra of 2(B). We imbed (M) in “(B)
through =*. Since 2(B) is the annihilator of “{M) in ¥(B), the following pro-
position follows directly from the definition of d in C(X(B), I').

(2.2.1) In C(X(B), I, d commutes with the operations of FM), i.e., for
welC? and [fe9(M), we have dfw=dfw. Thus FM)-module
strucure of C(X(B), I') is inherited by H*(X(B), I).

Let 1: X(M)—2X(B) be the lift may with respect to a connection of the bundle.
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Let X=X(M) and ecCX(B), I'). Define X.-ceC7(2.(B), I") by
(.Y'C)(X;, ey X;)ZZ(X)'(C(XU seey X,')““S:C(Xl" <ty [Z(X)r Xi}" ] X;)'

Since [U(X), X:Je 2 (B) by Proposition 2.1, the above definition has a sense.
We shall prove the following identities: for ecCYX{B), [), X&2X(M) and
fer(M),

(2.2.2) d(X-c)=X-(de)
(2.2.3) (fX)-e=f(X-¢)
(2.2.4) X-(foy=(X-fe+ f(X-0)

First we note the following formulas analogous to (2.1.1) and to (d) in Defini-

tion 2.3, whose proof is immediate.

2.25) () X-o)—-X-(i()e)y=i([Y, {X)]e

for YEX(B), XeX(M) and ccC(X(B), I).
(2.2.6) (Y NX-e)—-X-(0(X)e)=t(Y, UX)]De

for Ye X\(B), Xe2(M) and ceCHX(B), ).

We suppose that the formula (2.2.2) is proved for ¢ of dimension less than g,
and we shall prove it for ecCHX(B), I"). Calculate i(Y)d(Xe) for YeX\(B);

U)X -e)=HY )X -¢)—d@(Y (X -¢)) by (2.1.2),
=Y )X 0)—~d(X- (Y )e)—d( Y, {X)De) by (2.2.5),
=Y UX €)X (di(Y)e)—d#[ Y, {X)]e)
by the inductive assumption,
=Y WX )= X - (Y )e)+X- (Y )de)

=Y, UX) De+u(LY, X)) Dde by (2.1.2)
=X-(Y)de)+1([ Y, {X)]de by (2.2.6)
=3(Y (X (de)) by (2.2.5).

Thus (V)X e)=4(Y )X -dc) for any Ye&X\,(B); this implies that d(X-¢)=X (d¢).

Let fe9(M). Then we have I(fX)=fI(X), and therefore

FXo(Xy ey X)=fUX) (e(Xy, - -+, X)) —ie(X, -+ - [FUXD), XD, -+, XD
Since X f =0, we have [ fU(X), X:]=f[I(X), X;]. Hence
(FX-O)(Xi oo, X)=F (X)X, X,).

Thus, (2.2.3) is proved.

Noting that I(X)f=Xf, we can prove (2.2.4) in a similar manner.

In virtue of (2.2.2), the action of X(M) on CYX(B), I') transfers on
HYX(B), IN. If ce HYX,, I') and if ¢ is a representative cocycle of ¢, then X-¢
is defined as the class of X-c.
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Proposition 2.6. Let X, YeX(M), and ceHY (2 (B), I'). Then
(X, Yle=X(Y-o)-Y-(X-¢.

Proof. Let weC¥(X{B), I') be a cocycle representing ¢. Then direct cal-
culation shows that

(XY )Xy, X)— (Y (X)X, -+, X))
=71X), YY) (X X)) =20, w(X,, -, (LX), I ] Xl -+, X)), Xie 3(B).
Since LX), UY)T=R(IX), UY)D+v(CKX), I{Y)D)
=ULX, YD +o([KX), (Y)]D),
it follows that
XY - w)— Y- (X w)=[X, Y - w+ 0@ {X), Y)))w.

But dz=0: therefore #(x([I(X), {(Y)INw=di(x({{(X), {Y)w by (2.1.2). It fol-
lows that X-(Y-w)—Y (X -w) is cohomologous to [ X, ¥ ]-w. Hence

X (Y-o)—-Y-(X-o)=[X,Y]1c

Proposition 2.6 together with (2.2.3) and (2.2.4) shows that X(M) operates on
the S(M)-module H*(X(B), ')

Proposition 2.7. The operation of 2(M) on H*(X(B), ') defined above is
independent of the choice of connections used in the definition.

Proof. Let I, and l. be the lift maps corresponding to any two connections
given. Then [,(X)—I(X) is a vertical vector field for XeX(M). Therefore

ZL(X)(w(Xh ) X;))__\:zw(Xh' ] [ZI(X)! XE]: M X)
_{ll(X)(w(le Tty X‘![))—:{_‘Lw(Xl’ ttty [lﬂ(X)y Xl’}! Tty ‘Xr‘)}
=0 (X)L Nw(X, -+, X)), X2 (B), weCi(2(B(I1).

If dw=0, then 0((X)—L(XDw=di([{(X)—1(X)w is a coboundary, so that our
assertion is proved.

3. Sheaf J9(S).

Now let (B, p, M, F', G) be a C*-fibre bundle in which B, M and F are con-
nected. Let (S, =, B) be an admissible sheaf on B. Let « be a point of M and
let U be a neighborhood of x in M which is mapped diffeomorphically onto the
unit spherical domain of a Euclidean space. Take a point y in U and let u(f),
0<t<1, be a C”-simple curve in U with u(0)==z, u(l)=y. Using a fixed con-
nection of the bundle, lifts of u(f) define a diffeomorphism % of p~*(x) onto p~'(¥):

w(@*)=us(x*)=%(1; 2*), z*p i(x).

Let z**e=z"'pYz) and =(z**)=z*. Denote by %t ; z**) the lift of wu(t;z*)
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through «*”. Then the correspondence % : z**—u(t: 2**) gives a 1-1 map of = 'p!
(@) onto = 'p '(y). Both (='p~i(x), =, p Yx)) and (="'p (y), =, » y)) are admis-
sible sheaves induced by (S, =, M).

Proposition 2.8. The patr of maps (4, w) is compatible with sheaf structure,
that is, it sutisfies the following conditions.

(2.3.1) TSI
(2.3.2) wiz Wz 1s a linear map for any z*ep-z).
(2.8.3) w is ¢ homeomorphism.

Proof. (2.3.1) is immediate from the definition.

Since u(x**)=u(1, %), and since u(t, x**), 0=<t<1, is the cross-section image
of w(t; x%), z*=rx{x"), 05t=<1, in a locally constant sheaf, (2.3.2) holds.

To prove (2.8.3) it is sufficient to show that any cross-section image is mapped
by @ on a cross-section image. But this follows also from the fact that %(t ¥,
0=5t=<1, is a cross-section image for every z**&E="lp z)

Let (8, =, V) and (&, 7, V') be admissible sheaves on connected, paracompact
C*-manifolds V and V’ respectively. Let %:S5—& and u: V— V' be maps com-
patible with sheaf structure, i.e. satisfying (2.3.1)(2.3.3). (In (2.3.2), p~'(z) will
be replaced by V). Then the map %: B(S)-»B(S) is a C bundle map ; hence it
induces u : N(B(E)--+I(B()). If Xe2(V), and seI'(B(S)), then, as is easily veri-
fied, we have

(2.3.4) (X 8)=u, X %(s).
Define

ut GV, DBE)-COUV), T(B(S))

by

whw( X, -, XY= wu Xy, -, 4. X)),
Xe V), ae V.
w" iz R-linear. From (2.3.4) it follows that du'=u"d. Thus, »* induces an iso-

morphism
w* T H((V), T(B(S)~H* V), I'(BS))).
Applying this to the Proposition 2.8, we have
Proposition 2.9. The pair of maps (U, w) induces an tsomorphism
W H (X {p7 (), LBS), p~ iy H* (X (p~' (), I'B(S), p(x)),

or equivalently, w*: H*(p '(y), S(p-{N—H*(p~'(®), S(p Yz))).
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Proposition 2.10. The isomorphism of Proposition 2.9 does wnot deperd on
the choice of curves in U joining x to y.

Proof. Let '™ and " be two curves in U joining @ to . Then there
exists a C*-homotopy %', 0=r=1, between u and wu'. Precisely, u7(f),
0=t=1, is a C”-curve in U joining & to y and the function Ix I~ defined by
(z. y—u=(t) is C*. Then the family of curves %'™{(¢t;a*), a*ep @), is a
C~-homotopy between 2'®(t;z*) and “™{t;a*) (cef. [9)). It follows that u*:
pH@)—=p (), 0=r=£1, is a C*¥-isotopy between ' and w'*. Similarly %< :
T ip Hx)»x"lp Ny) is a C™-isotopy between #” and %", where we consider
= 1p Yz} and = 'p Yy) as C”-manifolds. Qur proposition follows, therefore, from
the following lemma.

Lemma 2.11. Let M and M’ be manifolds. Let (S, = M) and (&, =, M)
be admissible sheaves om M and M’ respectively. Suppose that there are maps

E . SX I‘q’vS’
and
¢:MxI-M'.
Define maps b1 S8 and ¢.: M—-M' by
G.(2)=¢(x, 0), TES
and

ox)=¢(x,7) zEM.
Suppose moreover that the following condition are satisfied :
(@) =, 7) = p(=(x), 1),
(b . 18 a diffemorphism for each e 1.

(c) . is @ homeomorphism compatible with sheaf structures.

(@) If we consider ¢ as a map of B(S)XI into B(S), then ¢ is C”.

Under the above assumptions, ¢, and ¢ induce the same isomorphism of
H*(M’, &) onto H*(M, S).

Proof. It is sufficient to show the existence of a homotopy operator

D, : CH(2AM"), T(B(SN)—~C" (M), I'(B(5)))
such that
dD,+ Dy, \d=pF 3t

where ¢ CUX (M), T(B(S)))—Ci(A(M), '(B(S)))
is defined by

@)Xy, XD =¢7 (WX, - - -, ¢:X,)(-(2)).
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The tangent space T.. at (x,7) of MxI is cannonically identified with
T, PBR, where T. is the tangent space at x of M. (If ==0 (or 1) it is identified
with T.B0, o) (or T.P(—o00, 07).)

For Xe&X(M), we shall define XeX(MxI) by X... =(X,0) in T..=T.BR.
Let Y, 2(MxTI) be defined by

YofGe, )= 0.

v

Let (S, =, MxI) be the tensor product sheaf of (S, =, M) and the constant sheaf
(Ix R, p, I) (cf.{17). Since the fibre of B(S) over (x,t) is canonically identified
with .S,, an element s& ["(B(S)) ean be considered as a C=-function s: Mx I— B(S)
such that s(z, )= B(5)..
Now define
hy s CHMXT), T(BE)))-CH(X(M), I'(B(S))
by
haw=0 if ¢=0,

h,ﬂU(X],' C Ty X;—l)(x):flw(ym fh Y Xﬁl)(ﬁv: t)dtr lf q>0
a

Since w(Yy, X, -, X’,, O, HeB(S),. for all te1, the integral of the right hand
side is well defined.
Using the fact that

[Yo, X1=0 and X(hw(X, - X, )@= f Ko K- X0, tdt,
[}

the following identity is easily verified:
(dh,+h, Dw(X,, -, X)x)

::f‘ YO(QL’(J71. Ty X,))(’U, tydt
4]
:u}()?l’. ) X{)(x! 1)_"10(52"1, Tty X})(Q?, 0).
Define ¢ : C/(X(M"), ['(B(S))—-C(XMXI), I'(B(S)) by
$ho(Yy, -, Y, t)=d: (@Y1, -, (Y )6(x, B).
Then we have
ohwXy, -, X))@, D—¢hw(Xy, -, X)), 0)
=¢*w(X, .-, X)@)—oFw(X,,- -, X)@).
Set D,=h,>¢*. Then, for weCY«(X(M"), I'B(S))), we have
(dD,+ D, DHw(X,,---, X))

=¢“'w(3{h t X,')(xy 1)““(;6",“;(21, ttty Xq)(xr 0)
:¢:tlv(X1! ) X})(m)—(p?u}(Xh Tty qux) ;
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thus,
dDr; + Dc}«;ld = ‘;b;‘:—@éL'

The isomorphism «* is defined by means of a fixed connection. However, we
have

Proposition 2.12. The isomorphism u* of Proposition 2.9 does not depend
on the choice of connections.

Proof. Let @ and @, be two connections of (B, p, M). We know by {9]
that there exists a family Q. of connections (0r=<1) such that the lift of
an Xe2X(M) with respect to Q. is given by (1—)(X)4-1(X), where [, and [,
are lifts operator with respect @y and @, respectively. Let %u.(t;x*), a¥ep(a),
be the lift of w with respect to Q. starting from 2. Then it is easily checked
that the curves %.(f:z*) give a homotopy between %y (f;z*) and W,(t; a%). It
follows that u.: p~{x)—p (y) is a C™-isotopy between uy and u; (u{a*)=u.(1, x*)).
Similarly %.: = 'p Y a)—="'p (y) is an isotopy between %, and %;. The situation
is the same as in the proof of Proposition 2.10, and the Proposition 2.12 follows
from Lemma 2.11.

Set JHS)..= H*(p(x), S(p~Hx))) and J’l'(S)*—;ELJVJII‘(S)I. Define a function = : H(S)—M
by =(z*)=2 for 2*J(S),. Each J(S), is a :\rector space over R. Let U be an
open set of M diffeomorphic with a Euclidean space. In virtue of Propositions
2.11 and 2.12, there exists a well defined isomorphism a(z, ¥): J(S),~#(5). for
any z, y< U, such that a(z, y)oo(y, 2)=a(z, 2) for z,y,ze U. Let UM beas above,
and let ¥ JH(S)., x U. Define U(z*) to be the set of all oz, y) 'a*, ye U.
Since y*e U(z*) implies that Uly®)=U*), {U(a:*)} is a neighborhood system of
a unique topology in J{S), where z*e9(S) and U runs over Euclidean open
sets of M. It is easily checked that

(2.8.5) (H(S), =, M) with the topology of H(S) defined above is a locally con-
stant sheaf of vector space.

Generally, (S) is not admissible, i.e., is not finite dimensional. However

(2.3.6) If the fibre F of the bundle (B, p, M) is compact, then the sheaf
JA(S) 18 admissible.

This is an immediate consequence of the known fact that over compact X, coho-
mology groups H*(x, S) with coefficients in an admissible sheaf are finite dimen-
sional. We have only to apply it on p~!(x) and S(p~'(x)).
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4. T'(BIS)).

We continue with the situation of §2.3. Let now I'=I'(B(&)), where B(S) is
the vector bundle defined in §l. Assuming that 5(S) 1s admissible, we shall
prove the existence of a canonical isomorphism of H*(X(B), [} onto ['(B(I(S))).

First we note the following fact. Let 7. denote the bundle of tangent vectors
along the fibres of B, and let A*Y(T.) be the dual of ¢-th exterior product bundle
of T.. Then CH{xX(B), N=I"(A*(TI®B(S)), so that, for ecC{X(B), I') and
x& B, ¢(z) is an element of the fibre over & of A*H(T)EB(S); c¢(z) may also be
considered as a ¢-linear alternating function from the vector space of tangent
vectors at « along the fibre through = to the vector space S. (cf. the analoguous
statement in §1 preceding Proposition 1.1).

Let N be a submanifold (regularly imbedded) of M. If we consider c(x) only
for such = that p(x)& N, we get an element =, ¢ of C{(X(p Y(N)), [(B(S), p~'(N))).
=~ 18 a funetion CHXU(B), IN-»CUX(p U (N)), I'(B(S), p"{N))). =» sends cocycles
into cocycles and coboundaries into coboundaries. We shall write

Cy=Crx(p~ (N)), ['(B(S), p'(N))).

In particular C4=C"(2(B), ) and C:=C?,=C"2(p (), ['(B(S), p~'(2))).
Let Z7 and B% be cocycles and coboundaries of C¢. Set H%=2Z2%/B%. Then =y
induces a map H%—H? which we denote also by =x.

For c= HY, let the cross-section p(c) of B(J(S)) be defined by
pley@)=r.ce Hil=9(S)..

We shall show that ple)eI'(B(%(S))), ie., ple) is a C™-cross section of B(H(S)),
and that p: H(J,(B), I~ '(B(4S) is bijective.

Let 24 be a point of M, and let U be a neighborhood of x, such that there
exists a diffeomorphism ¢ : U~ {(t,, -+, 1,); ti+ +ti<1, L,ER}; ¢(@e)=(0,---, 0).
A C -curve u(z), 0=+, u(0)=w,, is called straight line if ¢u(z) is a straight line
in the Euclidean space R*. If U then there exists a unique straight line =
joining ax, to x. As explained earlier, w induces, by means of a connection, an
isomorphism «, : C#—C{, which commutes with d. If Vcp i(z) is a sufficiently
small neighborhood, then we may identify canonically B(S).~ with R* for a¥e V.
If ce=CY, then we see easily that the function (z, 2*)—a.7,c(Xy,---, X)E*)ER?
is a C= function UX V—R* for any X;e2(p Yx,)) and for any sufficiently small
Ve p-ix). We shall express this fact by saying that the function U—C{, defined
by z—a,.c is C>. Conversely a C*-function ¢ : U—C{ defines a unique element
ceC{ such that ¢'(x)=w.7.c.
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Thus we established a 1-1 correspondence between (7 and the set of all
C=-functions U—C2=Co2(p~*(x0)), I'(B(S), p~'(xa))). The latter is'an “(U)-module
in an ovbious way, and may be identified with WU )@Cgo, the "{topological
tensor product of Grothendieck of nuclear spaces “(U) and C2[2, Ch. II, §3.1,
the differential
d in C? is translated into l@d in S( U)@C,,"a. Sinee d is a topological homomorphism
of the topological vector space CZ, the derived module of ‘J'(U)@Cgﬂ with respect
to 1®d is SF(U)»/@HZO (cf. [12, Exp. 24, Lemma]). Since H =.%%5),, itis finite
dimensional by the assumption, so that H(U )@H 7 =HUYRHY,.

Example 17. It is clear that, by the isomorphism Cl"j.—aff(U)@C a

(4

Thus we have an isomorphism
a: Hi-»9(U)SH?,.

On the other hand, from the difinition of JiS) it follows that there exists an
isomorphism

B: I(BIS), U)—HU)QHE,

such that the map 3'ea: Hi~I'(B(4(S), U) is just the map ¢ defined on H/.

Consider the following commutative diagram

Hy, 2 ), )

(2 P o
H: L5 P@Bs), U)

where I'" means the set of all (not necessarily continuous) eross-sections of bundle.
Then, p(H ;)< I'(B(94(S)), M) if and only if :U,O(H;)CF(B(-W‘(S)), U) for sufficiently
small neighborhoods U of any points of M. Since p(HHCI(B(S), U), we have
proved that p(H)<I'(B(I(S)).

Let V be an open set such that VcU. Let eeI'(B(J(S), U) be such that
c(x)=0 for z& V. If we write f(c)=3.f:®¢, where f,&(U) and {c¢;} is a base
of HZ%, then, fi(z)=0 for zeV. If z,€Z% is a representative of ¢; then
Ejf,.@z,;~—~ze-‘-T’(U)@Cgoc:E..F(U)/(;EC,Z0 is a representative of S(c). Since (a'2)(x)=0
for xe& V,(xeU), a '(z) extends uniquely to an element 2’&Z7 such that 2'(2)=0
for &V, x€M.

Let {Vi} and {U,} be locally finite coverings of M, such that V.cU. Let
{4} be a partition of unity belonging to {V.}.
Now if eeI"(B(I(S)), then Zce'(B(JNS))) is zero outside of V. Therefore,

by the above remark, there exists a z.€Z} such that z(z)=0 for z&V: and
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that p(class of z)=2Xc. Set z=>'z. Then p(class of z)=>"o(class of z,)=S"Ac=c.
This proves that p is surjective.

Let z&Z}, be such that s(class of z)=0. Then, p(class of 2:z)=20(class of z)=0.
Since p is injective on H/, it follows that = (class of 2,2)=0. Therefore there
exists a 2;&C7 ! such that dz;==,(42). Take an open set W, such that V.c W,
W,c U, and let 4 be a C>-function on U, such that m{x)=1 for z=V and
1{@)=0 for wq: W,. Then, d(uzi))=x,(42) and uz;=0 outside of W. iz, extends
to zi" over whole C% ' such that dz/’=42 and 2/=0 outside of W. Then we
have d(®l2/')=N'2=z. Thus (class of z)=0; this proves that o is injective.

We defined an operation of A(M) on HY? in §2.2. 2(M) operates also on
(B(A(S)). It is easily checked that p commutes with the operations of 2(M).

We summarize these in

Proposition 2.13  Assume that J(S) is admaissible. Then there exists a ca-
nonical F(M)-isomorphism

p 1 H*(X'o(B), T(B(S)-T(BUILS),
which commutes with the operations of X(M).

5. A filtration of C(X(B), I') and its spectral sequence.
Let (B, p, M, F', G) be a C>-fibre bundle with B and F connected, and let I”
be an (B)module on which 2(B) operates. Let C=X"=C?, CY'=Ci(X(B),]).
We define a filtration (ef. [6], [13]) {A”} of C as follows: set
Art={w; weCr Xy -, o X, )w=0, for any X,,---, X,.,€ X (B)}, for p=0,
Art=C" for p<y,

and
AP=N14m1,

U
Az*qnl is an J(B)-submodule of C?'7, so that A” is an F(B)-submodule of C.
Following properties are easily checked.
C=A"2A'D- - DAPDAM!....
and QA?':O.
YXWAPD)C APt for XeX(B).
HXAPYC AP for XeX(B).
d{APTyC AP,

In particular {47} defines a filtration of C.
We shall examine the spectral sequence induced by this filtration.
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First define an {B)-linear map

@ O A(B), IN—-CHX(B), CHA(B), I"), p=0, ¢20,
by
(7 Xy, o XN X X y=wlXy, o X X, X))
for weC?*, X, X(B), p>0,
and
=1, for p=0.
Then we have (cf. [4])

(@5.1) (P AWK+, X))
=P Xy X (Dl P, X)),

for weCr 9L, pz0, ¢=20. (We set ¢ =0 if m or n s negative.)

Let Rest: CHX(B), MN—-CYX(B), I') be defined by restricting arguments to
X(B), and we shall denote by Resty : C*(2A(B), C(A(B), I'N)—-C*(X(B), C1(2«B),I")
the map Rest induces.

Define

g P; AP~ CP(2(B), CHX(B), )

as the composition of ¢ A”% and Resty.

Proposition. 2.14. The tmage of ¢ is CPA(B)/XYB), CH{(X(B), I')) which
is imbedded in CP(X(B), CH(X(B), I') through the dual map of the canonical
projection X(B)-+2{(B)/X(B). (An elemnt weC?(2(B), CY(X(B), I')) belongs to
C¥X(B)/XAB), CH(X(B), IM) if and only of w(Xy, -+, X,)=0 whenever onc of
X,eX(B) is contarned in X(B).)

The kernel of o7 is AV*bi7L

Proof.

If we AP, then (¢@?w)(X,, -+, X,)=0 whenever one of arguments X, is in
X(B), that is, ¢'»?w is contained in C?(X(B)/X(B), CH{X(B), I')).

Conversely, suppose that w’ is contained in C?(X(B)/X(B), Ci(X(B), ).
Take a connection in the bundle, and let v:X(B)-»X(B) be the corresponding
projection. Define weC?*¢ by

w(le' s Xp; X;}«ly' tty Xpu{)

=S =) S W (Kayy -y e DO Xey )+ 00K, ), Ko X(B),

e

where X, is the projection of X, in A(BY/X(B), S=(81,- -, S tpers ", bpuy) I8 @
permutation of (1,---,p, p+1,---, p+¢q) such that s, <s:.y, {;<t;.;. The summa-
tion is taken over all such permutations. Obviously, wed"’. If X,e2(B),
1<i<p, and X, €X(B), p+1=7<p+gq, then we have
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WXy, X Xoers oy X;n.rrz):('u("()?b Yy X.;)))(qu, vony Xpo)
This show that ¢ Pw=w’'. Hence C"(X(B)/X(B), C'(X(B), I')) is just the
image of @7,
It is evident that the kernel of ¢% is A¥*1«7l,
Since the term K,»7 of the spectral sequence is equal to A??/A4# bi71 hy
definition, we have

Corollary 2.15. ¢2? induces an 9(B)-isomorphism
¢ BPi-Cr((B)/ X(B), CHXLB), I).
Define
d  Cr( B/ A UAB), CXUB), [Ny C(A(B)/ L (B), C*"(2«(B), )
by
(dw)( Xy, X)=(=1)"dw(Xy,- -, X,).
d’ is a differential operator in C(2{(B)/ X AB), C(X(B), M=, CPX(B)/ 2 AB),
Co(2u(B), ).
Proposition 2.16. Let dy: E9- "7 be the differential of E, in the spectral
sequence. Then
9’783)‘!““do‘“—'d,‘féi"q)-

Proof. d; is induced by d: A" A"*, Let we A™. Then (2.5.1) gives

(2.5.1) (P D (dw)( Xy, - -+, X))
=(d(¢@ PN Xy, - X)) (1D dlePPw(X, - -, X))
But since we A7, we have Rest: (¢271"Pw)=0; therefore Rest: (d¢ P 117V yp)=(),
Applying Rest: on both sides of (2.5.1) we obtain
(gt dw( Xy, - X =dg 0w (X, -0, X))

Hence c§t Bdm=d o,

Let 1: X(M)—X(B) the lift map of a connection. Let I: 2(M)—(B)/2X(B)
be defined as the composition of I and the canonical projection. 1 is F(M)-linear.

1 induces a dual map
I : CH(B)/ X (B), CH{XLB), I'N)—C(2(M), C{XAB), I').

Here C?(2(M), CHX(B), I) consists of “(M)-linear g-alternating functions from
My to CUX(B) I, and an 4(B)-module structure is induced in C?(X(H),
CH{X(B), I') by that of CHX(RB)., I'). Then I¥ is F(B)-linear.

We have

(2.5.2) 1* is an isomorphism.



Spectral sequence in the de Rhiam cohomology of Jibre bundles alt

In fact, X(B) is the direct sum of 2,(B) and 2,(B), and the canonical pro-
jection restricted on X, (B) is an isomorshism onto 2X(B)/2(B). Therefore we
have

(2.5.3) WXy X)=wh(X)), -, h(X), X:=2(B),
for weCHX(B), CH(A(B), ).
Suppose that lFw=0, that is, w({(XD,---, H{(X,)=0, for any X.e2X(M). Since
A, (By=9(B)-l(X(M)) by Proposition 2.2, it follows that w(X,,---, X.)=0, if X,
are all in X (B). Hence w=0, by (2.5.8) ;1% is therefore injective.
If weC?X(M),CH{X(B),I), then an element we CH((B)/ X (B), CHX LB
such that Fw=w’, if exist, must satisfy

u)(l(Xl)l Sty l(Xi}))zw’(Xh s X;))y XKEiR(M)'

Since (B)=9(B)-Il(A(M)), w defined on I(X(M))x - X U{A(M)) (p-times produet)
by the above expression extends uniquely on the p-times product of F(B)-1{(A(M))
as is easily checked. This proves that I# is surjective.

If we choose another connection, and if I’ is its lift map, then I(X)-I'(X) is
vertical for XeX(M). It follows that

(2.5.4) =%

By (2.5.2) and (2.5.4) there exists a canonical isomorphism C?(2(B)/X.(B),
CUX(B), M)~ C(M), C(XLB), I')) through which we shall identify boths.

Then Corollary 2.15 and Proposition 2.16 yield

Proposition 2.17. ¢™7 induces an isomorphism

PP B = CH M), CHX(B), IN).
Explicitly it is given by
(@i Pe)( Xy, e - oy Xp)=(@ P w)(U(X)), -+, UX,), Xie (M),

where we AP 48 @ representative of ¢, and | is the lift map of a connection.

Let d’' be the differential of 3, ,CP(2(M), CHX(B), I) defined by

(dwl Xy, -, Xp)=(~1)" d(w(X,,---, X)), X.€ X(M),
then
,Trélh'l%l)dﬂ._;d/‘;a,“,d).
Set
Z1=ZYX«(B), IN'=the module of coeyeles in C1 (A (B), I},

Bi=BY(X(B), I''=the module of coboundaries in C'(X(B), I,
so that we have Z7/Bi=HYX(B), I'). Set also
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Z 0= 2 2M), CHLAB), I'))=the module of cocycles (with respect to d’) in
Co(M), CUXL(B), [,
B'ovi=B(M), C/(¥AB), I"))=the module of coboundaries (with respect to d’)
in C"(CH(M), C'(X(B). '),
and set
Hlevizm Zr0a) Bl

Then, by Proposition 2.17, &% induces an “(M)-isomorphism

;

Note that, since d’ commutes with the operation of J(M), d; does so, and E,»*
and H'7" are “(M)-modules.

Since B? and Z¢ are both J(M)-submodules of C9(2.(B),I), we may imbed
CP(X(M), BY) and C*(X(M), Z%) as submodules of C*(QA(M), CHX(B), I")). Then,
it follows from the definition of d’ that

Zi=Cr(2(M), Z9),
BricCHAM), B,

Since the kernel of the map 2: CH( (M), Z73—~C (X (M), H(2 (B), I'")) induced
by the natural projection Z'—HY2X(B), I') is exactly C"(2(M), BY), we get a
natural (M )-linear map

AT H'Mi=CrAM), HY((B), ).

Proposition. 2.18. Let (S, =, B) be an admissible sheaf such that D(S) is
also admissible and set I'=I'(B(%)) where B(S) is a locally constant wvector
bundle constructed from S in 81,

Then 2 1s bijective.

Proof. 2 is injective if and only if B?'=C?(X(M), B?), that is, if and only
if d: CPXM), CHH{XABY, I'Y)—-CP(2(M), BH{X(B), I)) is onto.

A is onto if and only if A: CP(2(M), Z?)y—Cr(X(M), H{(X (B), I')) is onto.

We defined a function =,:C¥H2.U(B), ['(B(S)—CH2A{p Y x)), I'(B(S),p Yx)))
in §2.4. Then the carrier of weC/ (M), CH(B), [)) is by definition the set
{zeM; w0} If {w}, w.eC?(X (M), CH(X(B), I'), are such that their carriers
form a locally finite family, then their sum >w; is a well defined element of
Cr(X (M), CHX(B), I'). Moreover if all wis belong to C/(X(M), Z"), then Ylw;
belongs to C?(X(M), Z%), since d (in C(A(B), I) is /(M)-linear.

Let {2} be a partition of unity belonging to a locally finite covering of M.
Then, for w'eC"(A(M), BY), the sum YWw’' is well defined and is equal to w’,
since the values of 2’ are in B? and summable.
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Lel {U.} and {V} be locally finite coverings of M consisting of local coordinate
neighborhoods such that V.c U, and let {4} belong to {V.l.

Let X.y,---, Xi, n=dim M, be elements of 2(}) such that Nitorroy Xiws
span T, (the tangent space at = of M) for = V,, and X .=0 for xac U,

If 'lvl<Xi,}'1: Tty X“J,jp):(“l)!) dc:‘jp---y ipe ci,jp.n! ‘;‘J,EC‘!_](\?';‘(B)- I!)v

set
’lU:(Xz;_,f,, tery Xe,jl;)z)tici,jp---y ip

for any subsets {j,,---, j,} of {1,---, n}.

Then w; determines uniquely an element of C#(2(V.), C*-{(2(B), I') which
we shall denote also by w;. Since w; is zero on the boundary of V., it extends
to an element w; of CP(A (M), C*(X(B), I)) if we define it to be zero outside
of Vi i.e., m,wi=0 for x& V.. It is clear that

dwi=iw’
Then, by the earlier remark, we have
P wh) =S =S v’ = ',
Theaefore d': C(X (M), C* H(X(B), I")—C?(2(M), BY) is onto, and 2 is injective.
A similar argument proves the surjectivity of 4, using the fact (Prop. 2. 13)

that H¢(2(B), I') is canonically isomorphic to I'(B{(9(S)).
The composition of ¢? and 2 defines an “(M)-linear map

" B\ CH (M), H(X(B), I).
Let we AP be such that dwe A”*%¢, Then,
a(l”‘f)w(l(xl)’ tt l(Xp))Equ for any le Tty XPE:{‘(M)r

as can be seen from (2.5.1), where [ is a lift map.
Thus, we have

Proposition 2.19. ¢ induces an F(M)-homomorphism
e By C(X(M), HY(X'(B), I)

which is bijective if I'=I'(B(S)) for some admissible sheaf S such that J(S)
ts also admissible.

Let e E?" and let we AP respresent c¢. Then,

(1" P el Xy, - - -, Xp)=cohomology class (relative to d) of ¢ w(l(X)), -+, X)),
where 1 18 the lift map of a connection.

(dw must belong to AP*1 by the very definition of E,"9)
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(M) operates on HY(X'(B), I'y by Proposition 2.7, so that the differential
d is defined in > ,C?(AM), H'(X(B), ).
Proposition 2.20. Let d, be the differential in the term E, of the specrtal
sequence. Then, we have
‘r,l(;:vx,rg)dlzds’:{p‘q}
Proof. Let c¢=E\»? and let we A" represent ¢, dws A”*Y9. Then dc is

represented by dw. By Proposition 2.19,

¢ e(Xy, oo, Xp)=class of ¢®Pw(l(X)),- -+, UX,)),
(2.5.5)
et die( Xy, - -, X)) =class of 220 Pdw{l(X)), - -, UXpa))-

But by (2.5.1),

S5‘\',1'*l-’l"d»u;(l(xvl), ey, l(X]i']))
_—.(dp“"f"w)(l(Xx)y s U X)) (=1t d((ﬁchu,q-nw(l(Xl), can, l(X1>+1)).

Therefore

(2.5.6) class of ('«,&“"“”’dw(l(Xl), e WX L))
=class of (Rest:(dewl(X1), -, UX,.))-
Since we 4”7 and ([ X, X;D=[UX)), (X;)] mod X,(B), we have
de P wU(X), -+ -, UK, )= SW= 1D UK @ PP wUX), -+, UKD, -+, UKpat)
+ e =D D w UKy XDy UKD, =+, UKD, o, U, 1 UXpu))-
Hence

class of (Rests(de " w)U(Xy), -+, UX,.1))
=3~ X(class of ¢ Pw(l(Xy), -, l(yf),--'. (X500

+ e (— 1) (class of ¢ PP w (L X, X1, UXL),- -+, X, -, l()?,-), co U X))
Comparing this with (2.5.5) and (2.5.6), we get

(d‘,:;p'(”c)(le Tty X;Nl):(ﬂ""l(i} i‘l'q)dlc)(.X“b Ty Xp+1).
Corollary 2.21. ¢ 4nduces a homomorphism
¢ Eu o HP (M), H{((B), ).

Moreover ¢»? is bijective if I'=I'(B(S)) for some admissible sheaf such

that J4S) is also admissible. In this case, we have

H(X(M), HI(X(B), IN)= HO(UM), I'(AHS).
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Remark. Since d(A")C A" the eohomology group H(A")y=X" H(A") is defined.
Let H?*C H?"'(1(B), I') be the image of H(A"¥) by the natural homomorphism
induced by the injection A"*—C#*%X(B), I"), and let H p=NVH?, Then H?
defines a filtration of H*(2(B), I'). By the standard theory of spectral sequences,
E~ is the graded module associated to this fltration :

Efg’*’:H"“‘V/HF" L=

6. Ring structure.

Let M be a C”-manifold.

Let I' be an (M )-module satisfying the following conditions :

(@) I'=Xy»ol™ (direct sum of F(M)-modules I™).

(b) I' is an J(M)-algebra.

(e) I'?-Iecir,

We call such an #(M)-module a graded F(M)-algebra.

Let X’ be a Lie subalgebra of (M) which is an ¥(M)-submodule of 2(M).
We _shall say that 2’ operates on I' if X’ operates on each I'? and if it satisfies
the following condition :

X-{e-e=(X-0)-¢+c-(X-¢), X2, ¢, c’el.

Let I" and X’ be as above. We define the structure of (bi-) graded J(M)-
algebra on C(27, I by
W'?U,(Xl, trty L ])+(1)
:E(__l)siyu(SDw(XS” ) va)’ W'(leﬂv Tty Xl))ﬂg)’

fol‘;wEEC”(l\’, I‘) and w'EC"‘(l’, Iﬁ), \Vhere SZ(S], ey sp; t;Mlv fr t]’él]) IS a per-
mutation of (1,---, p+¢q) with 8,<---<s,, ¢,,,<+++<t,,,, and the summation is
extended over all such permutations.

Following series of statements can be easily verified.

(2.6.1) U X)) (w-w)=@X)w) w' +(—1Pw-{(X)w’,
for weCP(2*, I’y and weC(X", I'), Xe X,
(2.6.2) X)) w - w") =X )w) - w +w- (X )w’),
for w, weC), Xe X,
(2.6.3) d(w-w)=dw - w +(~1"w-dw’,
for weC*(X’, I'y and weC(X", ).
In particular X operates on C(X',I") (with respect to each of two graded

structures: C(X7, =100 (27, Iy and C(X7, N=3,C(X", I') by (X, w)-
HX)-w.
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H*(2, ') 45 a (bi-) graded algebra over R by the multiplication :
(class of w)-(class of w')=class of w-w’

Let (B, p, M, F, G) be a C*-fibre bundle, and I" a graded F(RB)-algebra on
which 1(B) operates. Let A”" be defined as in §2.5. Then, from (2.6.1), it
follows that

(2.6.4) At i A,

From this and from (2.6.8), it folows that E. 4s an algebra which has natural
three structures of graduation (the first two are that of the spectral sequence
and the third one is induced by that of I"); E, is an “(B)-algebra and E, is an
J(B)-algebra and E, is an J(M)-algebra ;

(2.6.5) Era provc i’
Moreover, we have

(2.6.6) dla-b)y=d,a-b+{(—1)""a-d.b
for ac= E/% and be E..

On the other hand, C(X(B), I') is a (bi)-graded F(B)-algebra. H*(X«(B), I')
is a (bi)-graded (M)-algebra and X'(M) operates on H*(X(B),I'). Then,
S5 B =30 O M), CUX(B), 1)), X B =31, ,C (M), HY(X(B), I")) and
MU SE =N H (M), HY(X, 1)) are (bi-) graded algebras (they have one more
structure of graduation induced by that of I).

The maps ¢7": EP "B (v=0, 1, 2) defined in §2.5 preserve the last gradua-
tion and satisfy the following®

2.6.7 - et (g by = (=1 g, a) - (@9 h)
for a= E " and be E? 7,

Let (S, =, B) be an admissible sheaf which is, at the same time, a sheaf of
graded algebra over R, Then I'(B(S)) is a graded S(B)- algebra on which
2(B) operates. Therefore H*(X(p (x), I'B(S), p~'(x))) is a (bi)-graded R-algebra.
If 4(s) is admissible, then I'(B(J(S))) is a (bi)-graded F(M)-algebra. In this
case the map p: H¥QUB), I'(B(S)—-I'(B(#(S)) is an isomorphism of graded
F(M)-algebra.

Chapter II.

§3. De Rham cohomology of homogeneous spaces.

Let G be a connected, simply connected Lie group. Let D be a discrete
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subgroup of G. The right coset space B=G,/D of G by D is a C*-manifold.
Define a map
h:GxB-+B

by

hg, g Dy=g9¢'D, for g=G, ¢ DeB.
h is a C*-map satisfying the following conditions :
(3.1 h(l, )=z, for all z& B.
3.2 gy, i(ge, 2))=h{(g:1g2 x), for all g, g-=G and for all x&B.
In the usual terminology, h defines a C=-operation of G on B. We shall write
g-x for hig-z).

Proposition 3.1. Let (S, =, B) be an admissible sheaf on B=G/D.
Then there exists @ unique continuous map

7 GXSE—S

satisfying the following conditions :

a) =hig, 2)=h(g, =(x)), for g6, z<S.

by For fixed g=@G, the map x—h(g, x), x5, is an isomorphism of sheaf.

c) %(1, )=z, for all x& S,
and

R(gi. h(ge 2)=R(guge, ), for all g), g:€G and zES.

Proof. Let U be an open neighborhood of 1 in G which is diffeomorphic to
a Euclidean space and which meets D only at 1. Let V be a neighborhood of
1 sueh that V:cU. For any z&B, U-z={g-v;gcU?} is a neighborhood of «
diffeomorphic to a Euclidean space. Therefore S is constant on U.x; we have
an isomorphism of sheaf.

¢ U-a X RM— YU 2).

Suppose that a continuous map % : GX S—S exists which satisfies the conditions

a), b) and ¢). Consider the following diagram:
il Xy ..
VXxV.ax R - VXaYV-x)

) Wy

Uxx R —5  =Y(U-x),

where %. is the restriction of 7, and & is defined by
g, oz 0)=@g-x0), g, 0V, ceR".
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In virtue of conditions a), b) and ¢), we must have

golohae(id. X ¢ )9, ¢+, ©)=(g g'-x, kg, g)c),
where k(g, ¢') is an element of GL(n, R). The continuity of % implies that the
function VX V—GL(n, i) defined by

g, 9)—+k(g, 9)

is continuous with respect to the discrete topology of GL(n, R). Therefore k(g, ¢)
is a constant. Since k(1, ¢’)=1, we must have k(g, g")=1; it follows that

(3.3) T che(idXe) ™,
1,¢. that the above diagram eommutes.

Conversely the map k. Vx=Y(V-2)—="'(U-x) defined by (8.3) is independent
of the choice of local product expression ¢,. Moreover if V-2, V-y+¢, then %. and
%,V are identical on Vx=z (V.2 V-y). Therefore we may define a continuous
map

bt VXS&—S
by
h(g, x*)=h(g, z*), foy z*e=z"Y(V ).
Thus we have shown the uniqueness and the existence of continuous map
T VxS—=s
which satisfy the conditions a), b) together with:
) h(gu h(gz, 2)=h(g,g:, x), Whenever g, ¢.€ V and g,g.€ V.

Since the group G is simply connected, the existence and the uniqueness of
continuous map %G x5S follow from the monodromy theorem.

Let 1 €G/D denote the coset of D and set r==-1(1). Since % maps D X7
on 7, we have a linear representation .(;s: D~GL (); 1<(d)-2=h(d, 2), de D,x<7.
The natural projection p: G—G/D defines a principal bundle over G/D with
group D which we denote by c¢e=HYG/D,D,). Let As,: H(G/D, D)~
HYG/D, GL(n, R),;) be the map induced by s (we have identified v with R").
Proposition 3.1 implies that .1:.(e)=¢(S). Moreover if & and S are isomorphic
then 15 and .ls- are equivalent, i.e., there exists an element g&GL(n, R) such
that 15 =g.1:9"'. Conversely a linear representation .1 : D—>GL(n, B) determines
a unique admissible sheaf & such that .1.(c)=¢(35) and As=.1. To equivalent

representations correspond isomorphic sheaves. Thus
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Proposition 3.2. The map A—.1.(c) establishes a 1-1 correspondence between
the classes of linear representations of D and the isomorphism classes of
admissible sheaves over G/D.

If we consider the map % as a function from GxB(S) into B(s), then h is
differentiable. We shall write g-a* for h(g, a*). Let caI'(B(%) and~gG G. Define
an element g-¢ of I'(B(S)) by

(3.4) (g-e)x)=g-(c(¢g”'-2)), 2= B.

By the map GXI'(B(S)—I'(B(S)) defined by (g, ¢)—~g-c, G operates on I'(I3s)).

Since D is a discrete subgroup of G, 2(B) is imbedded in 2{(G) as the set of
vector fields on G invariant by the right translations of elements of I). Then,
the Lie algebra g of G is imbedded in X(B) as the set of right invariant vector
fields on G. Moreover the (B)-linear map

P H(B)YEg—2(B)
defired by
p(fRX)=fX, feiB), gegc2(B),
is bijective.
Note that, if fe A B) and Xeq, then we have

(X )@ =lmp-{ £ (exp X0)-2)— £@)).
for all x= B. It follows easily that, for cel(B(s)),
(3.4 (X- (@) =lim {((exp 1X) 1)) ~ @)}

Now let g be a finite dimensional Lie algebra over R, and let I” be a
g-module [4]. We shall denote the cochain complex of ¢ with coefficients in I’
by Clo, I')=31zeC%g, I'), where C%qg, I') is the module of ¢-linear alternating
functions from ¢ to 7. In C(g, I') the operators ¢(X), 1(X) and d are defined
(X<g). Their defining formulae are the same as those in Definition 2.5. The
cohomology module of C(g, I') is denoted by H*(g, I")=>"-oH(g, I").

Let G be a simply connected Lie group with Lie algebra g, and let B be
the coset space of G by a discrete subgroup of G. If I' is an “{B)-module on
which X(B) operates, then I'" is a g-module since ¢C2A(B), and we have a
homomorphism (by restricting arguments to ¢)

C(X(B), IN—-C@, I),

which is bijective because p:(B)®s—X(B) is bijective”. The inverse homo-
morphism
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wz: Clo, IN)—C((B), I)
is given by
(“‘;u))(leh v 'quXfJ:‘:fl' ¢ 'qu(Xh -t 'X/1)y aE'(‘r(B)r ngg, fOI’ wECQ(gr r)

More generally, if 7 is a g-module and if «:7—1I" is a g-homomorphism, then
« induces a homomorphism «,: C(g, 1) C(X(B), I') which is defined by

(e 0)( i Xy LX) =Fie LKy -, X)L (fi€T(B), X;& (B)),
for weCi(@g, 7). «, commutes with d; it induces a homomrphism
a.t H*(g, N—>H*(A(B), I).

Now let G and I be as above, and let K be a connected, simply connected,
closed normal Lie subgroup of G such that KD is closed in G. The projection
G/D-+G/K KD/K defines a C*-fibre bundle whose fibre is KD/D=K'K-D.
Set B=G/D, M=G/K KD/K and F=KD/D. The imbedding g X(B) carries
the Lie algebra ¥ of K (which is an ideal of g) into X(B), and the map
p i (B)RE-2(B) is bijective. Similarly we have an imbedding g/fcC.2(M) such
that p: M)/ f—2 (M) is bijective.

In this situation, «:7—1I" induces further

&, C(E, N—CX(B), I),
and hence
ah H*(@, - HY (2 (B), ).
Let Xesq/f and ¢ H ‘0, 7) be reprsented by X=gand ce Z4(, 1) respectively.
Then the element X-ceZ9(1, 7) will be defined by
3.5 XXy X)=XeX, -, X)=Se( X, [X X0 X)), X et

The cohomology class of X-¢ depends only on X and ¢ and is denoted by X-C.
H*@, 1) is a g/F-module by the operation (X, ¢)—X-c¢ (ef. [41).

On the other hand, (M) operates on H¥X(B), ). If ecHYX(B), I} is
vepresented by ceZU(X(B), I') and if Xe2X(M), then X-¢ is represented by
X-¢ which is defined by

(3-6) X'C(Xls "ty Xq):z(i;)(c(xls ety Xq)"’“.\::’.c(Xh Tty [l()?)y Xé]x' MY Xq)'
Xie‘{‘l‘z‘<B)r
where [: X(M)->2(B) is a lift map (cf. §2.2).
If Xeg/t, then it is easily seen that I(X) belongs to g and the projection
of (X) is X. Hence, comparing (3.5) and (3.6), we have
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L
(3]
ot

3.7 ay H¥(L, 1)~ H(B), I') is a g/Fhomomorphism.
Finally, «% induces
a: C/t, H* (1)~ C(2(M), H*(2(B), I'))
and
gt H*g/f, H*(E, )~ H* (M), H¥(X(B), I').
In C(g, 7) we shall define a filtration {A% (@)} as follows :

Ap.q(g):{w : 'u,.‘EC‘WQ(Q’ 7’), I(Kl) . .i(Xr;u)w:O, for any Xx, e, .Xé;»xEEf}
A(g) =31 A"(q).

We shall denote the corresponding spectral sequence by E.(q).
Let C?(g/t, C*(}, 7)) be the module of p-linear alternating functions from g/t
to C9(¢,7). Define a linear map

¢ Arig) - C Mg/t CUE T))
by
P OwX, e, XY Y ) =w(Xy, e, X, Yoo, Y,
for we A™(y), X;=¢/t, Y.<t, where X, is a representative of X; in g. Then we
know [4] that

(3.8) @ induces isomorphisms

o™ By (m)—C g/t CUE, 1)),
i B\ (@)~ Cr(g/t, HO(E, 1)),
@70 B (@)~ H(o/t, HY(, 7).

Let {A?%} be the filtration of C(2(B),I") and {E.} its spectral sequence
introduced in §2.5. I" and 7 being as above, a,: C(g, 7)—C(2(B), I') preserves the
filtration :

(AP T A,

Hence it induces homomorphisms

a,: E{g)~E..

Proposition 3.3. The following diagrams are commutative :

0

E(g) 2, Bz

996”"”1 w l@é"""
Crg/t, C4E, 1)) = c HX(M), CU(X(B), I'))
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where the second wvertical map ¢i™% is that of §2.5 and oz, is induced by
a;: Cilt, 7)~C"(2°(B), I');

oy

Erig > Ep

03

Pa—

¢
Cra/t, (7)) “2 €, HU(B), T)

[£¢]

L7 — E,7

¢£z>.q>l l‘;gp,q)
Hig/t, HU(L 1) 25 H7 (M), HY(X(B), ).

(The proof is imediate and is omitted).

Remark. If 7 is a graded algebra, 7=Y'-,¢ such that, for Xeg and

G
PR

¢, ¢'&7 we have
X(e-¢hY=(X-¢)-¢'+c-(X-e),

then we shall call v a graded g-algebra. If 7 is a graded g-algebra, then E,,
2LCHR CHE T, L Ce/t HAYE ) and N, H7(o/t, HYE, 7)) are algebras with
three structures of graduation. If I" is a graded %(B)-algebra on which
2(B) operates, and if «:7—1" is a g-homomorphism preserving the structure of
graduation, then it follows easily that ao, ay, a2 and ay, ag, aye are homomor-
phisms of graded algebras.

Let again B=G/D where G is a simply connected Lie group with Lie algebra
g and D) is a discrete subgroup of G. Let I" be an Z(B)-module on which
2(B) operates and let ¥ be a g-module. We are particularly interested in the
case where

3.9 7 1s finite dimensional, and
(3.10) the map @ : FS(B)YXRr—1" defined by
#(f®e)=fale),
is bijective.
If we define the operation of 2(B) on F(B)X71 by
B1)  (FXNSQ0)=F(Xf Bet [ ®Xe), f,f'€HB), X<y, cer,

then « is an S(B)-homomorphism commuting with the operation of 2(B).
Obviously, when 1 is given, such a I" is unique up to isomorphism. Note however
that, given a I', such a 7 does not always exist even if I'=I"(B(S)) for some
admissible sheaf &.



Spectral sequence in the de Rham cohomology of fibre bundles 323

Proposition 3.4. Let S be an admissible sheaf over B=G/D and set
I'=I(B(S)). Then there exist a finite dimensional g-module v and ¢ g-homo-
mophism «:7—I" such that «:F BYSi—I" is bijective, if and only if the
linear representation .1:: D—GL(n, R) extends to a linear representation
A:G—GL(n, Ry; A|D=1¢.

Proof. Let =.: ['(B(S)—B(S)., 2B, be the restriction. Let 7 be a g-module
and a :7—I" be a g-homomorphism. Note that

(3.12) a: HABYQr—1I" 1s bijective if and only 1f =.: 7~ B(S).
18 bijective for any z< B.

Suppose that there are 7 and «:7—I" with @: F(B)Rr—I" bijective. Since
v is a g-module, that is, there is given a homomorphism 21:q—gl(n, R), and
since (& is simply connected, there is a unique homomorphism 4 :G—GL{n, R)
such that d.f=4. Since a:7—I" is a g-homomorphism and since the operation
of g on I' is given by (3.4), it follows that the operations of G on v and on I’
is equivariant through o« ;a(1(g)-2)=g-a(z), g&G, x=r. Therefore if d=D, we
have zia(I(d)x)==i{d -a(@))=1:(d) -=1(z) (cf. (8.4)). It follows that 1|{D and A-
is equivalent representations and that .45 is extendable to whole G.

Conversely, suppose that there exists a representation A4 : G—»GL(y) extending
As: D=GLE), r=="%1). The differential d.1 : g—ql(?) defines a g-medule structure
on 7.

Let P be the principal bundle belonging to As«(c)esHYB, GL(n, R).).
Elements of P ore admissible maps &:7—S, and every &S can be written as
x=£{(c), é€P, cer. Since coordinate transformations of P are loecally constant
maps, we may operate® G on P in such a way that, if g-& denotes the transform
of £ by ¢, then we have (g-&)¢)=g-(&(c)).

Since P belongs to As(c), we have a fibre preserving map 1:G-P such
that (g, ¢)=1(g)-.A(g") for geG, g’eD. Moreover, we have A(g-g)=g-A(g)
for g, 9'€4G.

Let £, P be defined by &o=1A(1). & is in 7. If gD, then we have

Alg)=A(g-D)=g-A(1)=g-&,

and
Agy=A1-g)=A1)- A(g)=Ey A 5(g).
It follows that

(3.13) g-&0=Ey-A5(g) or g(&o(c)=En(A5(g)-¢) for any gD and cE7.
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Now we define 3 g-homomorphism « : 7—T(B(S)) by w(egD)y=g-(E(A(g™")-¢))

for cer, g=G. Using (3.13) it is easily shown that the right hand side depends
only on the coset gD.

To prove that @ commutes with the operation of g, it is sufficient to show
that

(3.14) g -alcy=a(1(g)-¢c), for g=G and c<7,

since g operates on 7 through the differential 4 of .I, and g operates on [ (B(S))
by the formula (3.4).
Now, for g, ¢g’=G, we have

(g-ale)g'-Dy=g-(alc)g ‘g~ D)),
=g-{g g’ G Mg 'g")- N}y
=g’ (Eo(A(g ) A(g)e)),
=a(1(g)e)g' D).

Thus (3.14) holds.

7o P+ B(S), is bijective for any ze B, because muwv=£%, is bijective and G
operates on B(S) as a group of isomorphisms of bundle. It follows from (3.12)
that o : A B)XRr—I(B(S)) is bijective.

Remark. The proof given above shows that the structure of w-module of
v is determined by the differenticl of an extension of As.

Proposition 3.5. Let G be a simply connected Lie group with Lie algebra
a, and D a discrete subgroup of G. If 7 is a finite dimensional g-module,
then there 18 a unique (up to isomorphisms) admissible sheaf S over B=G/D
and @ g-homomorphism «:7—I'(B(S)) such that @:I(BYSr—I(B(S) s
bijective.

Let 1 :G—-GL() be the representation whose differential defines the g-module
structure of . Then a desired sheaf must belong to (1]D) () HYB, GL{):)
where c& HY(B, D,.) is the bundle G—G/D. Conversely a sheaf belonging to
(4/D),(c) satisfies the desired condition (see the Remark above).

Remark. If 7 in Proposition 3.8 is a graded g-algebra, then we may take
as S sheaf of graded algebra ; the isomorphism & : S(B)YRi--+ 1T (B(S)) then becomes
an isomorphism of graded algebra.

&1. Cohomology of certain solvmanifolds.

Let g be a finite dimensional Lie algebra and 7 a finite dimensional vector
space over RE. A representation 2:g--gl()) is called triangular if there exists a
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sequence /=747 2--- 37, =0 of subspaces of 7 such that dim 7.=dim r.,+1,
0<i<n, and that each ¥, is invariant under i{g). In this case, the g-module is
called triangular.

A Lie algebra q is called triengular or ‘& racines réelles” if its adjoint
representation is triangular. A triangular Lie algebra is solvable. A Lie group
is called triangular if its Lie algebra is triangular.

Let G be a simply connected Lie group with Lie algebra g, and let D be a
discrete subgroup of G. Set B=G/D. If7 is a finite dimensional g-module, then
I'=5(B)R®r is an “(B)-module on which A(B) operates by the formula (3.11).
Let a:7—I" be defined by «(e)=1&c. Thus « induces a cochain homomorphism
ay; Clg, N—-CCX(B), I') (cf. §3), which is injective.

Theorem 4.1. Let G be a simply connected, triangular Lie group with Lie
algebra g and let D be a discrete subgroup of G such that B=G/D 1s compact.
Let v be a triangular g-module. Then the injection «::C{,1)C(W{B), )
induces an isomorphism

@t H*(8, 1)—~H*(X(B), I').

Proof. We proceed by induction.
1) The case: dim G=1. In this case, ¢ is generated by an X+0. Imbed E

in 7(B) as constant functions. We need the following lemma.

Lemma 4.2. a) Let feW(B). Then there exist a unique heW(B) and a
unique b& R, such that

T X htf=b
b) Let fei(B), and let a, bE R, a0. Then there exists a unique he'H(B),
such that
X -h+ah+f=b.

Proof of Lemma. Since dim g=1, we have G=F&, and we may assume that
D=Z=the group of integers. (B is the circle). We imbed 7(B) in (K) as
functions with period 1. X(B) is imbedded in 2X(R) and we may assume without

loss of generality that X= a(!l

Now if h, K= (B) and b, b’ R are such that
X-h+f=b and X-h'+f=b,

then we have
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d AN N Y
do (h—hy=b-=V,

or
h—h =(b~b)x+constant,

Since % and &’ have period 1, we must have b=b' and h=h'. Hence the uni-

queness of a) follows.

For fei(B), set b= . 'fdz, and define h by

iz,(.@:):‘ﬁx(bwf)da:.
Then
El
R+ 1) = h(z) = f (- f)dze,

=b— | raa,
ol
::-waO fdx, (since f has period 1),

={,

If follows that he¥(B) and X -h+ f=0b, proving a).
Let h, ke (B) be such that
X -h+ah+f=b and X-h'-+ah’+ f=b.
Then we have

4 (=)= —alh—1),

or h—h’=(constant) e *%,
Since h and B’ has period 1 and a0, we must have h=Fh’, proving the uniqueness
of D).

Let fe¥(B) and a, b= R, a+0. Define h by

h(a:):‘z e+ Fx)e ",
1 2 i Fans .
where = g f}f(fc)e“dx and  F(z)= _.Jo S @t de.

Since f has period 1, we have

Fa+h=—c" [ f@erde
= —~e”‘iolf(w)e“dcc-f-e‘“’F(m).

It follows that
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R+l —h(x)=cle* —1)e %" — e'fl‘rji(:f(:‘c)e" “drte Flx) e F(x)
=0.

Hence h belongs to ¥(B). An easy calculation shows that
X-h+ah+ f=b,

completing the proof of b).
Now it follows easily from the definition that

H%g, N=it={cer, X-¢=0},

HYXB), N=I'"Y={cel; X-c=0},

Hig, N=r/X-7, where X-r={cey;c=X-¢' for some ¢'€J},
HY{OB(, IN=I/X-I', where X-I'={cel ;¢=X-¢ for some c'&l’},
Hg, N=HYX(B), I')=0, for q¢>1.

The homomorphisms «, ; H%g, 1) HY(X(B), I'y are then the natural maps
@ 7YY and I/ X 717X T,

induced by the injection a:7—1I".
Now since 7 is a triangular g-module, there exists a base {e}7., of I’ such
that we have
X-e;=aye;,
X-ex=azne +asses,
(4.1) ................

X'eu:anlel+ e +ann,e/u aijERv

Then elements of I' are written uniquely in the form > fe, with f.&(B),
and S f.e: belongs to 7 if and only if all f; are in E.

Now a,:7¥—I'Y is obviously injective. Suppose that Y fie is annihilated
by X. Since X-(X'f.e)=SY(X -f)e.+f:X-e), if follows from (4.1) that X-fotapmfoa=
coefficient of e, of X-(3'fe)=0. Then in virtue of Lemma 4.2. we hae f,&R.

Assume that we have f.€R, for 0sk<7<n. Since

ka+Gm;fk+akz.w;fku+"'“f"an,&fu
=coefficients of e, in X(>\fe)
=0,

and since f,, k+1<i<p, belongs to R, we must have f,€ R in virtue of Lemma
4.2. We have proved that all f; are in R and >fecr. If follows that
a 7Y% is bijective.
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To prove the bijectivity of w, :7/X-7—I/X-I', it suffices to prove the fol-
lowing two statements:

(4.2) for any fe v (B) and k, 1=sk<p, there exist 2,€(B) and ¢.€ R such
that

% k
fee=X-(Che)+)] ce.
i T

4.3) If X0 fey=>ce, with fi&=A(B) and ¢, € R, then f.eR.
Now since we have
A i
X000 hed 4+ ce;
i1 .21

= (Xhh "{'akn’;h/.' + Cr’()eé‘
F(Xhirar o he 4+ hitecy) e

we can determine (by Lemma 4.2) hy, ¢, Ap gy €oyeeov e inductively to satisfy

X-hitapf+e. =1,
Xohe (vaw o hegtam h+e =0

This proves (4.2).
(4.3) is proved by a similar argument using Lemma 4.2.

2) We assume that the theorem is proved for dim G <k, and we shall prove
it for dim G=k. We know that there exists a connected, simply connected,
closed normal Lie subgroup K(0<dim K<dim G=k) of ¢ such that KD is closed
in G. In fact, if G is not nilpotent we can take the Lie subgroup corresponding
to maximum nilpotent ideal of ¢ {97, and if G is nilpotent we can take such a
K in the center of G [10]. Let t be the Lie algebra of K.

We shall show that

(4.4) H*(, 1) is a triangular g/f-module.

We have a canonical isomorphism Ci(f, = 17()®7, where .1“(f) is the g¢-th
exterior product of the dual of f. The operation of g on C7(, 7) translates
then to the operation on AYM®)r which is the Kronecker sum of the g¢-th
Kronecker sum of the adjoint represantation of g on the dual of the ideal T and
of the given operation of ¢ on 7. Since both operations are triangular by the
assumption, their Kronecker sum is triangular; g operates triangularly on
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Cu(i, 7). Since Z9(Y, 1) is an invariant subspace under this operation, g operates
triangularly on Z%(f, 7) and hence on H%(%, 7). Since I operates trivially on H(1, ),
¢/t operates triangularly on HY(%,7); (4.4) is proved.

Now consider the fibre bundle p:G/D--G/K KD/D. Since g is triangular,
f and ¢/f are also triangular. The fibre F=KD/D=K;/K. D and the base
M=G/K KD/K are compact coset spaces of simply connected triangular groups
by discrete subgroups.

In the spectral sequence attached to this bundle, we have a commutative
diagram (cf. §3):

Yo

E‘.";;!Ji(ﬂ) — Ez‘l‘””"
v (}'*2 W
Heg/t, H't, 1) — HYQM), Hi{(X(B), I').
The first vertical map is bijective. The second one is olso bijective in virtue of
Corollary 2.21, since I'=I"(B(S)) for some admissible sheaf S by Proposition 3.3,
and since {S) is admissible because the fibre F' is compact (ef. (2.3.6)). Regard-
ing HY(X(B), I') as I'(B(J(s))) (ef. §2.4), we consider the map

oy L HUR, D= B(HAYS))., 2 M,

which is the composition of o : H'(f, 7)—-»I(B(49S)) and =,.:I'(BIYS))~»
B (9:4(S)).. Since B(AH(S)).=H"(X(p~'(x)), I'(B(S), p~'(z))) and since I'(B(sS),p™'(2))
=9(p~Y(x)®7 as a submodule of F(B)XQ, it follows from the inductive assump-
tion that =.«’ is bijective. (Note that 7 is obuiously a triangular f-module).

Since =, is bijective for any z€M, it follows from (3.12) that the map
T FOMDRH Y, 1)~ HY(X(B), I') is bijective. Therefore, again from the inductive
assumption and from (4.4), we conclude thae e, is bijective; hence c«;: Ea(g)—E.
is also bijective. Then by a theorem of Leray [6], «,: H*(@g, r)—H*(X(B), I') is
bijective. This completes the proof of the theorem.

Remark. If 7 is a graded g-algebra, then «, is a homomorphism of graded
algebra.

Corollary 4.2. Let g be a triangular Lie algebea. Let G be the simply
connected Lie group with Lie algebra g, and let D be a discrete subgroup of
G such that G/D is compact. Then the injection

a: Cg, R—C((G/D), HG/D))
wnduced an isomorphism
ayt H¥(g, R)—-H*(X(G/D), “(G/Dy).

(R is considered as a g-module in which the operation of ¢ is trivial. Note
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that H*(X(G/D), F(G/D)=H*G/D, R) (cf. §1)).

Remark. Let M be a connected manifold on which a triangular Lie group
operates transitively. Then M is homeomorphic to a product of a Euclidean
space and a compact coset space G/D where G is a simply connected triangular
group and D is o discrete subgroup of G (cf. [11]). In particular M is an
orientable manifold, since a coset space of a Lie group by a discrete subgroup
is always an orientable manifold.

Corollary 4.3. Let M be a compact manifold on which a connected trian-
gular group operates transitively. Then the Euler-Poincaré characteristic
M) of M and the index (see [3]) (M) of M are equal to zero.

Proof. We may assume that M=G/D, where G is a simply connected
triangular Lie group and D a discrete subgroup of G. Then H*(G/D, R) is
isomorphic to H*(g, R) where ¢ is the Lie algebra of G. Since G/D is compact
orientable manifold H*(G/D, R)=H*(3, R) has the Poincaré duality. Therefore
C(g, R) is a Poincaré ring with a differential (see S.S. Chern, F. Hirfiebruch,
J.-P. Serre, On the indiz of a fibred manifold, Proc. Amer. Math. soc., vol. 8
(1957), for the definition of a Poincare ring with a differential and for its beha-
vior with respect to the Euler-Poincaré characteristic and the index). Therefore
we have 1(G/D)=x(H*(, B))=x1(Cly, R)) and =(G/D)=<(H*(3, R))=(C(g, R)).

We know that x(Cg, R))Z}E(wl)’(? >=O, where n=dimg.
f=0 y

To compute =(C(g, R)), we may assume that dim g=4%k. Let X0 X
be a base of g%, the dual of ¢. Then {Xia..nXi,}i<..cip, IS a base of
C*(n, R)=1**(y), where .1*(g) is the 2k-th exterior product of g*. C*(g, R)=_1*(g)
is spanned by é=X;A---AXu. With respect to a suitable ordering of elements
of the base of C*(g, R) given above, the symmetric bilinear form on C*'(3, R)
defined by (x, y)— <&, y>, <, y>£=2AYy, may be expressed by a symmetric
matrix of the form

é‘l
a=| Og | N=(3F) e=x
&y
It follows that +(C(y, R))=<(4)=0.

Notes.

1) (in p. 290) To define the equivalence in the strict sense of coordinate bundles we require
C>-differentiability of transition funetion Fu:V;~Vi'—G instead of continuity in
[14, §2.4].

2) (in p. 291) In the sequel, we shall use the word ‘‘covering’ to mean an open covering.
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4)

5)

6)

7
8)
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(in p. 291) Hereafter we shall assume the paracompactness of manifolds and of Lie
groups.

(in p. 299) In [2], the notation C(X, I') is used in the case where X is a Lie algebra
and " is a 2 module to mean the 2-module of R-multilinear alternating functions
from 1" to I', and operations corresponding to our &{(X), #(X) are introduced. Our
C(x, I') is a submodule of Hochild-Serre’s C(X, I') invariant under #(X), #(X) and d.
(We can check the invariance by calculations.)

(in p. 299) The difinition of d in C(X(M), ') in (1.13) differs from the present one only
up to a multiplicative constant. Therefore the derived module H*(2(M), I} is the same
in both definitions.

(in p. 316) See [1]. Our definition of ¢{?? differs slightly from that of [4]; hence
the difference of the multiplicative constant in (2.6.7).

(in p. 319) In particular H*(X(B), I') is isomorphic to H*(g, I).

(in p. 323) The proof of this fact is similar to that of Proposition 3.1.
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