On Selberg’s trace formula.

Dedicated to Professor Z. Suetuna on his 60th birthday.

By Tsuneo TAMAGAWA.

This note is an introduction to A. Selberg’s theory on harmonie analysis and
discontinuous groups in weakly symmetric Riemannian spaces (cf. A. Selberg [3]).
We develop the theory in rather abstract form, after R. Godement (cf. R. Gode-
ment [2]), and restrict ourselves to the elementary part, so we have to pass by
several important items sueh as unitary representations of class one, Plancherel’s
formula, Laplacians ete. It must be interesting to extend the theory to the case
where discrete groups we consider have non compact homogeneous spaces with
finite volume, but we do not discuss the problem either. We treat here only a
frame of Selberg’s theory, however we can apply it to several problems.

The author wishes to apologize for presenting this rather expository paper.
In recent years, at least he believes, the theory of topological groups is playing
an important role in the study of the algebraic number theory and non commu-
tative number theory, e. g. the arithmetic theory of classical groups and simple
algebras. So we have to prepare as many tools as we can collect. We know
that Selberg’s theory is one of the biggest guns as it was shown by Selberg
himself. In subsequent papers we will apply the theory to several number
theoretical problems, e. g. the theory of ¢-functions of a division algebra, Eichler’s
trace formula of Hecke operators etc. The author wishes to express his thanks
to Professor S. Ito who gave him many valuable advices in preparing this paper.
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§1. Preliminaries. Throughout this note, a ‘‘locally compact group” means
a locally compact group with the second axiom of countability satisfying the
assumption that a left invariant Haar measure on that group is also right invariant.
Let G be a locally compact group and da the volume element of a Haar measure
on (&. We will consider the following type of vector spaces of eomplex valued
measurable functions on G.

1. I{G): The space of all continuous functions with compact support.

2. L®(G): The completion of L(G) with respect to the norm || |l defined by

Iflle-= sup | f].
3. L, G) 1=p<o): The vector space of all f with

E!fllpx{ (f if(x){”drc};;<oo.
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The space L,(G) is the completion of L(G) with respect to the norm [ if,.
4. The C(G): The space of all continuous functions on G. C(G) is a Frechet
space with the norm

. 7o 1 e L e, n
=N\ i e

%]

where K, K,c--- is a series of compact sets such that every compact set K is
coniained in some K, and | flle,, is the maximum of |f(x)] on K,.

A lHnear combination of a finite number of locally finite Borel measures on G
with complex coefficients will be called a complex valued measure on G. If du(x)
is such a measure, then

wh= | fle)dp(x) (L)
/

is a linear functional of L(G) satisfying the following continuity condition C':
(Cy: If {f,} is a series of functions in L(G) whose supports are contained
in a compact set K, then

lim 7i(f,)==0 provided lim [ifife=0.

Fo—r 0l b1

Conversely if /i is a linear functional of L(G) of this property, then there exists
a uniquely determined complex valued measure on G such that #(f) is defined by
(1). If 7 satisfies stronger condition C, (1Sp<o); /i is continuous with respect
to || [|,» then there exists a uniquely determined function p(z)e L, (G) with 1/p
+1/p =1 such that

Alf)y= f Fa @, (2)
o
In the case p=1, u(x) is a measurable function such that
In(@)l = sup Gi(fH<eo

for almost all 2€G.
For every function f on G, we put

Ff@=rf"Y and fr@=F@D.

If f and ¢ are measurable functions, then the convolution f+g of f and g is de-
fined by

f fley Dey)dy= f S Hglyx)dy=f+g(x)
(24 G

whenever the integral is defined for almost all z. If feL(G) and g=L,G),
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then fxg is defined and contained in L ,(G) satisfying the following important
inequality :

(gl fililgl,. (3)

If p=1and f and g are 20, then the equality holds in (3). If feL,(G) and
ge Ly (G) with 1/p+1/p’=1, then fsge L™(G) and

I fxgll==1Sfi gl (4)
A function ¢=C(G) which is not identically 0 is called positive definite if

f f @y () f@)de dy=0
G G

for all feL(G). If ¢ is positive definite, then we have

lc@I=¢(e) (8)

and  ¢@ H=y¢(@) (6)
for all z€G.

§2. Zonal spherical functions. Let G be a locally compact group and U a
compact subgroup of G. The vector space L(G) is an associative algebra over
the complex number field C if we define the multiplication of L(G) by the con-
volution *. Let L(G, U) be the subspace of L(G) of all f such that Sluzu’)
=f(x) for all z&G and u,w'eU. Then L(G, U) is a subalgebra of L(G). We
normalize a Haar measure on U so that

fdu:l.
(2

If U is an open subgroup of G, we assume that de=du on U. The algebra
L(G, U) does not contain the unit element unless U is open. In this exceptional
case, the characteristic function of U, namely the funection which takes the value
1on U and 0 outside U is the unit element of L(G, U). For every fe&CG)
we put

@)= | fluz)du, fYz)= | fleu)du
/ /
and Ofo(x)= Suzu)dudu'.
[/

Let C(U\G) be the set of all feC(G) such that f(uz)=f(z) for all z&G and
ue U, and C(G/U) the set of all feC(@G) with f(zu)=f(x) for all 2&G and
#& U. Then the mappings f—% and f— f are projections of C(G) onto C(U\G)
and C(G/U) respectively. The mapping f—°f° is also a projection of L(G) onto
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L{G, U) and it is easy to see that
§fi.zh9r0,

for 1<p=<os. lence the projection f-+%" can be extended to L,(G) (1=p< ),
and the image L (G, U) of this projection is a closed subspace of L (G) of all f
such that fluazu’)=:f(z) for all z&G and u, wel.

Now L) is an associative algebra with the multiplication +, and LG, U)
is a subalgebra of L(&). L(G, U) is everywhere dense in LG, U).

We impose on G and U the following basic assumption (A).

(A). The algebra L(G, U) is commutative, i.e. for every f and ge=L(G, U),
we have

frg=gxf.

If I.(G, U) is commtative, then the following assertions are true.

1. If f and g are in L\(G, U), then frg=g=«fe LG, U).

2. If feL(G, U) and geC(G, U) (the space of all fe=C(G) with f=°9,
then f+geCG, U) and frg=gxf.

A complex valued measure dw(z) on G will be called spherical if deo(uzu’)
=dm(x) for all u, '€ U and 2@, and the mapping & of L(G, U) onto the com-
plex number field C defined by

)= f FlaYda@) (7)

is a homomorphism of the algebra L(G, U) onto C, namely

9= f f F e Hdydm@)=a(filg) (8)

for every f, go:G. We exclude the measure identically 0. The measure dz is an
example of spherical measure. A spherical measure dw(z) is uniquely determined
by the homomorphism & because for every fe L(G), we have

['f(w)dm(x): [ Flua wydeolz) = f of 95 d (@) =@(f ).
[N (¥ [
If @ is a homomorphism of L(G, U) onto C such that the continuity assumption
(CY holds for the linear funetional Ff—&(°f% of L(G), then there exists a uniquely
determined spherical measure dw(x) sueh that @&(f) is given by the integral (7)
for faL(G, U).

Let dw(x) be a spherical measure on G. Then there exists a fo= L(G, U) such
that
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w(fo)= j‘fu(ilT Ddw()=0.

For every f=L(G, U) we have
D fof)= f { f F@ 1y fuly) dy}dmm: {j;‘f(y ,1){ f Folye ) dm(».v}}dy

Hence we have

()= f f { | sty ‘)dw(y)..»’f'ﬁ(fo)}dx.

Since

f Soluzu'y Hdo(y)= [ Soley dw(y)

for all xG and w, W' U, we have

do@=w@dz  with  w(@)= f FoleyY) dey)/ ).
o
The function w(z) is uniquely determined by dw(x) and continuous. A function
o(2)eC(G, U) will be called a zonal spherical function on G if w@)dx is a
spherical measure. Every spherical measure dw(z) is of the form w(x)dx with a
uniquely determined zonal spherical function w(z).
Lemma 1. If ¢(z) is a function in C(G, U) such that

ff(x“‘)tf(w)darzo

for all feL(G, U). Then we have ¢=0.
Proof. Since ¢=C(G, U), we have

f F@)¢@de= f ()¢ (@)dar =0

for every fe L{(G). Hence we have ¢{z)=0.
Corollary. Let w(z) be a zonal spherical function on G and ¢(z) a function
n CG, U). If

ff(rz:”l) cl@yda=ci(f) (c; a constant)

Jor every fe (G, U), we have ¢{z)=cw(z).
Proposition 1. If o(x) is a zonal spherical function, then for every f&
LG, U) we have
frao=wxf=&(Hw. (9)

Proof. It suffices to prove frw=o(fw. If gel(G, UV) we have
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[g(:c“)fm)(a:)dx:f g(az“‘)ff(:cy”‘)m(y)dydrc

i

= [ Frgly Dely)dy=a(@)al f).

Since frocCE, U, from the Cerollary of Lemma 1, we have
Srar=8( f Y.
Proposition 2. If w(x) is a zonal spherical function on G, then we have
[m(;my) dit = w{Z)w(y) (10)
J,
Jor all x, y=G.
Proof. If fe L(G, U), we have, from Prop. 1,

ol [yw(y)= [j‘(:v"‘)m(rcy)dm: /.f(x“‘)m(xuy)dx:f /‘f(:c*‘){[m(;vuy) du}d:c.
1z ‘t w v

Put mj,(x):fm(:z:uy)du. Then w(2)=C(G, U) and

14

[ F@ Yo (@)da = ol oy).

From the Corollary of Lemma 1, we have o, ()= w(x)w(y).
Corollary. Let ¢ be the unit element of G. If w(z) is a zonal spherical
Sunction on G, then we have
wle)=1. (11)
Proof. From (10), we have

w()w(e)= [ w(zu)du=w(x).

e

43
Since w(z) is not identically 0 on G, we have w(e)=1.

Proposition 8. Let () be a function in C(G, U) being not identically 0,
such that

frd=a,¢
Jor every fe L(G, U) where i; is a constant depending on f. Then we have

Jle)y£0 and w(z)=¢)/e) is a zonal spherical function on G.
Proof. From the assumption, we have

2:4(e)= [ @) @da.
Yo
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From Lemma 1, we have 4,¢/(e)5=0 for some fe L{G, U), hence '(e)=0. If / and
g are in L(G, U), then we have

(Fr0)@) =2, A @)= Arus@).

Hence (¢(x)/(e))dx is a spherical measure because

Frge)/¢(e)= f Fa @)/ e) du=12,.
[#4

Proposition 4. A function w(@)eC(G, U) is a zonal spherical function on
G if and only if w(@)=1 and fro=i;0 for all fe< LG, U).

Proof. From the Corollary of Prop. 3 and Prop. 4 we can prove our assertion.

It is easy to see that a function 0#w(x)eC(G, U) is a zonal spherical func-
tion if and only if the functional equatiou (10) holds.

Proposition 5. Let %(x) be a function in C(G, U) such that z(xy)=1(x)7(y)
for all z, y=G. If o(z) is a zonal spherical function on G, then A(x)w(x) s
also a zonal spherical function provided ¥ is not identically 0.

Proof. From the assumption we have %(e)=1. For every fe L(G, U) we have

Felen) = f £y Dr(ym)olya)dy =2(z) [ A @ oya)dy =a(f D)),

Since 2w=C(G, U), “w is a zonal spherieal function.
Remark. #(x) itself a zonal spherical function because w(x)=1 is a zonal
spherical function.

A funetion ¢(x)eC(U\G) will be called right spherical if
fre=4r0
for all fe L(G, U) where A, is a constant depending on f. Similarly a function
JeC(G/U) will be called left spherical if
Gxf=2,¢

for all fe L(G, U). If ¢ is right spherical, then @ is left spherieal. If ¢=0 is
left and right spherical, then ¢/¢(e) is a zonal spherical funetion.

Let ¢ be a right spherical function which is not identically 0. Then there
exists a uniquely determined zonal spherical function «w(z) such that

f clxuze)du=¢(2y)w(z) 12)

o

for all xyeG. For if fe L(G, U), we have
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ff(x“)fg:(mu:co)du da::/?ffg(ux)du:/?_;-g(xo)
G 4 o4

and m’(x):[(;(xuxa)due((}, U). Since Ap =274, '@/ ¢@)=w(®) is a zonal

spherical furl;ction such that &(f)=4; provided ¢(x)#0.*' Hence w(z) does not
depend on @y, If ¢(e)=0, then from Lemma 1, we have o'(2)=0. We will call
such ¢ a right spherical function belonging to w. Similarly if ¢’ is a left spherical
funection, then we have

f daour)du = (2e)w(2) (13)

4
with a zonal spherical function w. We will call ¢ a left spherical function be-
longing to w.

Let H be a closed subgroup of G such that G=UH and ¢ a continuous homo-
morphism of H onto the multiplicative group of all complex numbers #0 such
that ¢(U~H)={1}. Then for wt=2, ueU and tcH, we put ¢@)=¢(f) and have
a function ¢&C(U\G). It is easy to see that ¢ is a right spherical function, for
if feL(G, U), then

feg(a)= f Suy)e(y - )dy = () f F ey dy=4,¢(x).

For every ¢' we have a zonal spherical function w; by the integral

Wy (X)= f ¢lxw)du.
v
In many cases, we can obtain all zonal spherical funetions by this way if we choose
a suitable H.
Let s be an element of G. The right translation R, and the left translation
L, ave defined by
(B )(@)= f(xs)
and (L @)= f(sHa.
If sy, .G, then we have R, R,,=R,, and L. L, =L,,. It is obvious that R,
and L, are continuous linear operators of C(G).
Lemma 2. Let f and f’' be function in L(G) and g a function in C(G).

Then for every compact set K, and >0, there exist constants ¢, -+, cx and yi,
<o, UnEG such that

*> Note that w(e)=1 if ¢{z)=0.
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o@Dy <e 19
and

Freg@) e @y <e (15)
uniformly on K.

Proof. Since f and f'eL(G), we can find a compact set K such that f(zy!)
= f'{xy )=0 for x= K and y& K. Then we have

frglx)= f Sley Hg(y)dy
and

frrg@)= f f(zy Ygw)dy.

Since the function F(x, y)=f(xy )g(y) is uniformly continuous on Ky,x K, we can
find a decomposition K=E,~---~Ey of K into mutually disjoint measurable sets
El, Loy, E,.v so that

0@~ o) [dy)<e
E;
N
and If ’*g(x)—;;‘lf "(xy:Dg(y:) f dyl<e
£

for all =K, where y;,--+, ¥y are points on Ei,---, Ey respectively. Putting ¢

=g(y;) f dy, we have inequalities (14) and (15).
Ey

Let ¢=(¢i,-+-, cx) be an ordersl set of complex numbers and V=Y, ", Yx)
an ordered set of elements on G. For every feL(G), we put

Sen(z) :;Z‘lc;f(xy: .

Using this notation, we have the following
Lemma 3. If f, f’ are functions in L(G), then for a gC(G) there exist
Ciy Coy»+ and Yy, B, -+ - Such that

lim fc,.5,(@)=Frg(x)

and
lim f’c n (2)=f'*g().

o0

(14 Iim 124

=00

means the limes with respect to the topology of C(G).
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Proof. Let K,c K, K, -+ be a series of compact sets on G such that every
compact set K, is contained in some K,. From Lemma 2, we can find ¢, =(¢{"?,
cee, ey and y=(yiv,- -, y¥)) such that

7

[ frg(a)—fe n ()] <1/n

AT

and | f/xg(@)—f'c n (@)<1/n

i

for all z<=K,. Then we have

lim fcn n, =fxg

PR

and
lim f’cn.nn = g,
8- vl

Lemma 4. Let T be a continuous linear operator of C(G) such thut
1) TR,=R,T Jor all s&q,
and 2y TG L(G).
Then for every f=L(G) and g C(G), we have

T(feqy=(Tf)*g.
Proof. Put Tf=f'. Then f’ is a function in L(G), so we can find, from .
Lemma 3, ¢, ¢y,- -+ and Yy, Ys,- -+ such that

hm fcn'nn :f*g

FE—OT
and
lim f'c o = f'*g.

e

On the other hand, we have

T(fe n)=F"® .

Hence from the continuity of T, we have T(f+g)=Tf=*g.
Proposition 6. Let T be a continuous linear operateor of C(G) such that
1) TR.=RT  for all s&G,
2y TL,=L,T for all ucsU,
and 3y TLGHYc L(G).
Then for every vight spherical function ¢ we have
Te=A¢
where A is a constant depending on T and the zonal spherical function w to
which ¢ belongs.

Proof. Assume that ¢#0. Then there exists a foeL(G, U) with &( 0.
Put T'f=f.. Since L,fo=foR.=fo, we have, from 1) and 2), L.f,=fR.=fi, hence
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[V
S

f1ie L(G, U). Therefore from Lemma 4 we have

T(foxg)=w(f) Te=(Tr)e=a(fi)¢
and
Te=w(Tfyai(fo)~-1e¢.

An operator T satisfying the conditions 1), 2) and 3) maps C(U\G) into itself,
so defines a continuous operator T, of C(U\G). We will eall 7T a right invariant
operator of C(U\G). We will show that if 7 and S, are right invariant operators
of C(U\G), then T.-S,=8,.-T:. To prove our assertion, we have to introduce
the notion of approximate identities of L(G, U). Let {V.} (i=1,2.---) be a basis
of open neighbourhoods of ¢ such that V.., V> V. '=V, and V. is compact for
all <. Put

h;(x)_—.z,,i*z‘»&(x)/{fdx}z
V;

where 7., is the characteristic function of V.. Then hi(x) is a continuous positive
definite function being equal to 0 for a¢ V,.,, and [ki],=1. It is easy to see
that for every f&C(G) we have

lim Aj=f=f.

PR3

Put
hi:v):f[h(umu’)dudu’.
v
Then for feC(U\G) we have
ho f ()= [ [ f Riuzw'y V) f (y)dydudu’
‘l:" ‘L-’ [43

= [ hie f(um)du="(h's F)(z).
J
Since °f=f we have
lim s f = f.

We will call {4} a series of approximate identities of L(G, U). Let T be a con-
tinuous operator of C(G) satisfying the conditions 1), 2) and 3). For every ge
L(G, U) we have

T(g*f)= T(girg hogxf) :/.lig) Thorgx f)=lim (Th)+g+f

:1im‘g*Thg*f:g=kT(]§m hxfy=gxTf.

Hence if Ty and Sy are right invariant operators of C(U/G), we have
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TI/"SU(g*f):(TL‘Q)*(SL‘f)ZSL'TL’(g*f)‘
Therefore we have

Ixm TlS[(hg#f): Tlefzhm S;Tg(ht*f):SLT(f

for every faeCUNG).

Now we would like to study the behavior of zonal spherical functions on the
direct product of two or more groups. Let G,and G: be a locally compact groups,
U, and U, compact subgroups of G, and G. respectively. Assume that LG, Uy
and L(G., U.) are commutative. Let L(Gy, U)®L(G:, U,) be the vector space of
all functions f{x, x2) on G=G X G, of the form

f(z, a)z}_ (@) fLF (x2)

with £ e L(Gy, U) and fP € L(G,, Us). It is easy to see that L(G,, UN®L(G2, Uy)
is a subset of L(G, U), U=U,x U., and everywhere dense in L(G, U) with respect
to the norm || . Hence L(G, U) is commutative because L(G,, U)®RL(G,, U,)
is the tensor product of L(G,, Uy) and L(G., U.).

Proposition 7. If w®(z;) and «®(x.) are zonal spherical funtions on G,
and G: respectively, then w(x,, z.)=nC@)w® @) is ¢ zonal spherical function
on G. Conversely every zonal spherical function on G can be represented by
this form.

Proof. Let f(x. 2.) be a funection in L(G, U). Then we have

F@ur!, )0 (y)dy =)o (x:) '
a,
with A(@)e L(G,, U:). Hence we have

[ [ Sty 22 Do (U)o (W) dndy: = o (Ao P (@) ® ().
‘2,

Since @V (e)w® (e2)=1, from Prop. 4, o™ (x)w® (x:)=«w(z;, %) is a zonal spherical
function on G. Conversely assume that w(z,, #.) is a zonal spherical funetion on
G, xG.=G. For every fVe&L(G, U), we define an operator T, of C(G) by

Trog(ey, o)= f SO @i N, 22)dys.
Gy

It is easy to see that T, induces a right invariant operator of C(U\G). Hence
from Prop. 6 we have

Trvow(y, 2a)=Arvw(®y, T2).

Therefore w(xy, ¢s) is a zonal spherical function on G;, and we have w(x,, 22)
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L
=3
54

=w(zy, es)wley, x2). Similarly we see that w(e,, x») is a zonal spherical funetion on
G.. Hence we have proved our assertion.

By using induction, we have the following:

Corollary. Let Gy,---, G, be locally compact groups and U,,---, U, compact
subgroups of Gy,---, G, respectively such that each algebre L(G. U) is com-
mutative. Then for G=G, X ---XG, and U=U,Xx---x U, the algebra L(G, U)
is commutative, and for every zonal spherical function w(xy, -+, x,) on G there
exist uniquely determined zonal spherical functions w™(x),-+-, o7 (x.) on Gy,

., G, respectively such that

W@y, -, B)=wP(@) 0 (@).

Conversely every function w(x, -+, 2,) of this form is a zonal spherical func-
tion on G=G X+ XGQ,.

Let I’ be a countable set of indices p, ¢,---, G,, G- -+ locally compaet groups
associated to indices v, ¢q,---&€l’” and U, U,--- open compact subgroups of
G, G, --- respectively. Assume that L(G,, U,) is commutative for every pel’.
Let G’ be the subgroup of the direct product 11 G, of all G, of all elements x=
(---x,---) such that x,€ U, for all but a finite )ﬁuimbel of p. The group G contains
the dxrect product U’ ——H U, Since U, is compact, U’ is a compact group with
respect to its natural topo]ogy It is easy to see that we can introduce a uniquely
determined topology into G’ so that G’ is a locally compact group and U’ is an
open subgroup of G’. Now we see that L(G’, U’) is the tensor product of all
L(G,, U,).® Hence L(G', U’) is commutative. If & is a homomorphism of L(G',
U’) onto G, then there exists uniquely determined homomorphism @, of L(G,, U,)
onto C such that

m(fm@’ . '@fy,):a)n(fiu) . '(/’\)pr(fp,.)

for every f,,&- - -&f, € L(G,,, U,)@-- LG, ®U,)c (LG, U). Since U, and U’
are open subgroups of G, and G’ respectively, every homomorphism @ and ),
define zonal spherical functions @ and w, on G and G, respectively. It is easy
to see that

w(x)= 11 w, (x,) for x=(---x, ). (16)

pel
Note that this infinite product is essentially a finite product for every =G’
because w,(u,)=1 for u,=U, Conversely if we associate a zonal spherical func-
tion w, to every pel’, then (16) defines a zonal spherical function m(x) on G’.
Now we add 2 finite number of indices pw, 1,+ -, Do, to I’, and consider locally

*  Note that L(G,, U,) contains the unit element.
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compact groups G, ,--+. G, . with compact subgroups Ujo,yro*s Upeo, such
that each L(G,., U,. ) is commutative. Put I=I""{pw y,---, p=,}). We will
call the group

G=G"XGpp X XG o

the restiricted direct product the G, relative to U,. Put
U=sU'xU,, x--xU,..

Then U is a compact subgroup of G and L(G, U) is commutative. Using Propo-
sition 7 and its Corollary, we have the following

Proposition 8. Let I be a countable set of indeces, G,, G, --- locally compact
groups associated to indices p, q,---I and U, U,, -+ compact subgroups of G,
Gy~ such that U, is open for all but a finite number of p. Let G=11"G, the
restricted direct product of all G, relative to U, and U the ecompact subgroup
WU, of G. If L(G,, U) is commutative for all p, then L(G, U) is commuta-

K4
tive, and every zonal spherical function w on G has the form
w@)=Nawylz,)  for x=(- 2, )
palf

where w, s a zonal spherical function on G, determined uniquely by w. Con-
versely if we assoctate a zonal spherical function w, to each pelI, then the
function w on G defined by this infinite product is a zonal spherical function
on G.

This proposition will play an important role in the application of our theory
to number theory.

§3. Existence theorem and the space of zonal spherical functions.

We have not yet proved that there exist sufficiently many zonal spherical
funetions. Using analogous method as in the case of locally compact abelian
groups, we can prove the following theorem.

Theorem 1. For every 0+ fe L(G, U), there exists a zonal spherical func-
tion w(x) such that

()0
and lo(@)=1 for all z&G.

Proof. We consider the algebra L,(G, U). If U is not open, we add an
identity 1 to LG, U) and form an algebra CIRL(G, U)=A(G, U)® with the
norm

fadlt fil={a|+Ifi

*If U is open, we put L (G, U)=A(G, U).
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Then we get a normed ring® A(G, U) with this norm { . We will prove that
if feL(G,U), f#0, then f+f*=h is not contained in the radical of A(G, U).
Let T, be the operator of the Hilbert space L.(G) defined by

g— Trg=hxg.
Since

fhegl:= iRt ol

T, defines bounded Hermitian positive definite operator of Ly(G) with the norm
WTWll<ihi,. Put h*=h%---«h. Then we have

LS ——
n
I Tl = W TE ) =0Tl S 1R
Hence we have
lim {JA*" 13V 2| TWl >0.

Therefore h is not contained in the redical N of A(G, U), so f is not in N either.
Therefore there exists a maximal ideal ;3 of A(G, U) such that the value f(3) of
f at 3 namely a complex number such that f—f(3)&3, is not equal to 0. Every
maximal ideal 3 of A(G, U) such that 33 Ly(G, U) defines a linear functional

F=>f@=a;(f)

of L(G, U) which is continuous with respect to the norm [ ;. Conversely if
is a linear functional of L(G, U) continuous with respect to || |[; such that @&(f«g)
w(f)alg), then & gives a homomorphism of L(G, U) onto C which is extended to
Li(G, U), so there exists a uniquely determined maximal ideal 3 such that @=a;.
Since
IAGAIES Ba
for all fe LG, U) we have a zonal spherical funetion w; uniquely determined by
3 such that @(f)= [f(x)"ws(x)dx, and |w;(x)]<1 for all 2G. Thus we have
[

proved our assertion.

From the proof of Theorem 1, we see the following fact:

Proposition 9. There exists a one-to-one correspondence between the set of
all bounded zonal spherical functions and the set of all maximal ideal 3 of
A(G, U) such that 3% Li(G, U).

Let ©(G) be the set of all zonal spherical functions on G, €,(G) the subset
of all bounded zonal spherical functions and P(G) the subset of all positive definite
zonal spherical functions. For every feL(G, U) we define a function f on E@G)
by

*  of. Gelfand [1].
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Flw) =a(f)= f Fle o) ds
&

We will eall f the Fourier transform of f. We introduce the weakest topology
into ©(G) so that f is continuous for all feJ(G, U). Then ©(G) is a closed
subspace of &(G), and from Prop. 9, &,(G) is locally compact. If U is open, then
©4(G) is compact. It is obvious that PB(G) is a closed subspace of E4(G), so P(G)
is locally compact. For every fe L (G, U) we have a function f on &,(G) defined
by

Flew)= f Fla Yelz)da.

It is easy to see that f is continuous on ©(G). It is known that there exists a
positive measure du(w) on B(€) such that for every f&L(G, U) we have

f | ()= f Fl2dua).

*(z)
If Gy,---, G, are locally compact groups and Uj,---, U, compact subgroups of G,,
-, G, respectively satisfying assumptions of the Corollary of Prop. 7, then we
have
B(G)=8(G)x -+ XE(G.), G(G)=C(G )X -+ - X E\(G))
and  R@=PG)X - xBG.).

If G=1V"G, is the restricted direct product of G, relative to U, as we described

in Prop. 8, then we have
gl(G): ’l,l gl(GI,)

and  PG)=11]G,).

§4. Automorphic functions.
Let I" be a discrete subgroup of G suh that homogeneous space G/I" is com-
pact. Then there exists a uniquely determined G-invariant Borel measure d# on

G/I’ such that for every fe& L{(G) we have

ff (m)d'c—f ‘f(?:w))dx

ay/r
If feC(G) is I'right invariant, namely f(za)=f(2) for all &G and acl’, we
can consider f a continuous function on G/I". Conversely every continuous func-
tions on G/I" is considered a I" right invariant continuous function on G. Let
C(G/I") be the vector space of all continuous function on G/I'. Since G/I' is
compact, C(G/I') is a Banach space with respect to the norm || ||~. For simplicity
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we write

[ f(a:)d-.i:zf f@)dz.

Let L, (G/I') be the vector space of all measurable I'-right invariant function
such that

i

{ / ffzf'dx}-'f:;;f;[,,,,,-<oo.

Gr
Then L,(G/I') is a Banach space and C(G/I') is an everywhere dense sub-
space of L, (G/I'). Let C(U\G/I') and L, (U\G/I') be subspaces of C(G/I") and
L,(G/I) of all f with f(ux)=f(x) for u€ U and 2 G respectively.
Lemma 5. If feL{G) and gL (G/I"), then we have

Frge L(G/T)

a?ld ’:f)tg‘:p[é”f“l l!gsg,r I’

Proof. Let h(x) be a function in L,(G/I") with 1/p-+1/p’=1. Then we have

. ) o ,

[ [ ravvawayirwas = [ 1o 0] [ swmnwaaldy
@ ‘ ; @ ‘1

G.r &7

<[ lf(y“)t{] f Fg(yw)h(w)dm@}dygzéguﬁ, s Wk 1T

7

for all fe L, (G/I'). Hence fxg is defined and contained in L (G/I") for all f& L,(G)
and we have
“ f*g“;!, 15. !’fgil !Iglgﬂ, r

Lemma 6. Let {h.} be a series of approzimate identities of L(G, U). Then
for ge L(G/I"} we have
lim ||g—h.*g],=0

Proof. First we prove that

lim {g—h/«gll,=0

Va0

for all ge L (G/I'). Let g, be a funection in C(G/I") such that fg—gili,, r<d for
any given 6>0. Since G/I" is compact there exists a neighbourhood V of ¢ such
that for every sV we have
fgo(s) ~ go(x) i o0 <O
Then we have
Ng(sx)—g@)l,, r = 19(s@)—go(8T)l] 5, r + 1 go(82) —golX) L, r+ I ge(®) — g}, ¢
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/ .
<2‘3+6Kf dx)?.

G
Hence for any £>0 we can choose V such that

fo(sx)—g(@l, r<e

for all s& V. Now for sufficiently large i, we have V..,V and if k(o) L,(G/I")
we have
[ E@Gige) -g@dz< [ wiew ] [ k@ —g@Ndrseik ..
©r @ G r
Hence we have
ihixg—gl,, r<e.
If gy L (U\NG/I") then we have

h,*g::fhé*g(ua:)du
14

and

!Ehg*g~g§l§§,r:f dx!f(hi*g(ux)«g(zm))du!"'dﬂ:
Gr 14
= | dx | |Regux)—gux)"du< [hixg—gli} r<e.
@/ r U
Hence we have proved our assertion.
A function ¢€C(U\G/I") will be called (right) automorphic if ¢ is a right
spherical function. If ¢#0, then ¢ belongs to a zonal spherical function w(x) de-
fined by

w(x)= j'g(:vuxo)du/g(:co)
I
Proposition 10. If ¢(x) 18 an auwtomorphic function which is not identically
0, then the zonal spherical function to which ¢ belongs is postive definite.
Proof. Put

W' ()= i‘il“ f ¢(sm)F(@)da %)
HA 1 I
Then it is easy to see that «/(8)&C(G, U) and «'(¢)=1. For every fel(G, U)
we have

(s L SN
fror @)= ,f st h[f (tirzs(&)dx}dt
1 S P
= st1)¢ (t2)dt e @de =a(f)w’(s).
ls¢i|3,1~[r{[‘f Gt da=alfels
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Hence we have w'(s)=w(s). The function «’(s) defined by the integral (17) is
obviously positive definite.
The vector space L.(G/T)=H(G/I") is a Hilbert space with the inner product

kel

f 9r= /

Flx)gaeidae.

o r

The space L(U\G/I'y=H(U\G/I') is a closed subspace of H(G/I"). For the
sake of simplicity we denote the space by H,.

Let f be a function in L(G). Then an operator K, of H(G/I") defined by
Kig=f+g  gcHG/T).

is completely continuous. For we have
f Sley Dg(y)dy = f gf (zay Ngly)dy = j o, yg(yidy=frg(e)= K, g(x).
“ Gr - o or

Now the function
ki(z, y)=>" flaay )
T

is continuous because the series converges absolutely and uniformly provided 2
and y belong to a compact set K. Since G/I" is conpact, the operator K, is ob-
viously completely continuous. From Lemma 5, we have K Il fl.. If feL(G)
then K;: K,g=f=g is a bounded operator of H(G/I') and we see that K, is com-
pletely continuous. For we can find a series {f.}, f.€ L(G) such that lim | f—£.I,
={. Then from Lemma 1 we have

lim | K, — K[l =0.

PR s)

Since K, is completely continuous for all », K, is also completely continuous.
Proposition 11. If fe& L(G), the operator K, of H(G/L) defined by

Krg=[g
18 completely continuous with
WK =S
Let g and A be functions in H(G/I'). If f&Li(G) then we have

(Krg, h)= f ) { (f f (my”)g(wdy}mﬂx

= [ ([ foawmay iwde= [ 1w [ ooz jdy

G/

= f f(y")< f g(:c>‘h?<‘ifil%3>dy = f g(m)( f Py ) dy )de,

ar «r ’



382 Tsuneo TAMAGAWA

Hence we have K,*=K,». If feL{(G, U), then we have K, K;*=K,.+=K.,*K,,
so K, is a normal operator. If f, g L,(G, U), then we have

K:K,=K; ,=K,K;.
Hence the set

{Kr; fe LG, U}

is a set of mutually commutative completely continuous normal operators of H(G/I').
It is obvious that

K, LH(G/I"Y]JCH,
for all fe LG, U).

Let « be a function in Y(G). We denote the vector space of all automorphic
functions belonging to « by M(w). Let A(I") be the set of all w such that M(w)
#{0}. The principal zonal spherical function wy=1 is contained in A(I").

Theorem 2. H{I") is a discrete countable set having mo cluster point in
&(G). For every we (M), Ww) is finite dimensional. For the principal zonal
spherieal function wy we have dimM(we)=1, namely we have M(we)=C. If w,
w'e (") are distinet, then M(w) and Mlw’) are mutually orthogonal. The
space Hy 1s spanned by all Mw), we (7).

Proof. We prove our assertions in several steps.

1) WYw) is finite dimensional. Let f be a funetion in L(G, U) such that
f (m)#0. Since K, is completely continuous, the dimension of the eigen space of
K, belonging to the eigen value f(w) is finite. M(w) is contained in this eigen
space, so Dw) is finite demensional.

2) If AI7)» o, o are distinet, then M(w) and M(w’) are mutually orthogonal.
For if j (w)+# f(m’) with fe (G, U), then M(w) and M(w’) are contained in differ-
ent eigen spaces of K,;. Since K, is normal, M(w) and W(w’) are mutually or-
thogonal.

3) H, is spanned by all M(w), e I(I7). Since K, is normal and completely
continuous for fe L(G, U), the space K,H, is spanned by its eigen spaces %,
i, -+-.  All N, are finite dimensional, and if g L(G, U) we have KN .C% be-
cause of K, K,=K,K,. Hence we have a completely reducible representation of
L(G, U) into the algebra of endomorphisms of R;, and since L(G, U) is commu-
tative, every irreducible subspace is 1-dimensional. This means that N, is spanned
by automorphic functions. From the proof of 1, we see that N, is the direct sum
of a finite number of Nw)'s, we.l(I"). Hence K:H, is spanned by suitable
M(w)’s. Let Hy be a closed subspace of H, containing all M(w). Then we have
Hy D> K:H, for every feL(G, U). From Lemma 6, a closed subspace containing
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all K H, is equal to H,. Hence H, is spanned by all M(w)’s.

4). Since H, is separable, A(I") is a countable set. If wis a cluster point of
(), then there exists a fe L(G, U) such that f {w)#0, and f(m) is a cluster
point of { f (w); we AWM}, This gives a contradiction because K, is completely
continuous.

5) dimM(wo)=1. Let ¢ be a function in M(w,). Since G/I" is compact, there
exists @ 2,&G such that |¢(x)| S¢(a) for all zeG. Then we have

f ¢lauwe)du =¢(xy)we(x) = ¢ (o).
v
Hence |¢(2)| must be constant. Assume that there exists a « such that ¢(x)#
¢(z0). Put
(@25 o) = ¢(xo)t(u).

Then the function #(u) defined on U is continuous and [#(u){=1. Furthermore
we have

f () du=cwolx,)=1.
v

On the other hand, we have #(e)1. This gives a contradiction.
Now we have proved all of our assertions.

Let wo, @y, ws,- -+ are elements of A(I"). Put x=dimM(m;). We choose an
orthonormal base ¢{’,---, ¢’ of M(w,) for every w.. For w, we put
L
¢0:1/{f d:}:}”.
o/'r
The functions ¢o, ¢V, ++, ¢, P, -+, ¢, -+ form a complete orthonormal basis

of H,. For every feL,G,U), these functions are eigen functions of K, with
eigen values f(coo), f(wl),---.
§5. The trace formula. Let f be a function in L(G, U)~C(G). If the series

a%“_‘}_f (ay =k, y) (18)
converges absolutely and uniformly on KX K where K is any compact set on G,
then k(x, ) is a continuous function of 2 and ¥, and
ky(xa, yo)=k;(z, ¥)
for every a, feI’. For every ge H(G/I") we have
K g=frg= f ks(x, y)g(y)dy.
Gor

From Theorem 2, we have formaly
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ko 0~ B 0) Vg 0 (19

i

Putting z=y and integrating over G/I', we have

f feo(z, )yde=>" [ Feazde =Nk f(w) (20)
. F AR , F
< 7

where F' is a fundamental domain of I".

We will study the condition when the equality holds in exact sense.

A funetion fa LG, U)~C(G) will be called admissible if the series (18) con-
verges absolutely and uniformly for (x, y)& KX K where K is an arbitrary compact
set on (. A linear combination of a finite number of admissible functions are
also admissible. If fe LG, U)~CG)and | fiZ]fy] for all z=G with an admissible
f1, then f is also admissible.

Furthermore if fe L (G, U) and he L(G, U) then hxf is admissible. Without
loss of generality we prove it in the case A=0 and f=0. Then first we have
hx fe LG, U)~L=(G).

If (z, y)cKx K, then we have

’\‘lh*f(:ry Yy \‘fh(zz")f(zy)dz fk,,(x, z)f(zy)dz.
Since 7.{z, z) is uniformly bounded and continuous on G X, we can easily check
that A+f is admissible. Similarly we can prove if f and ¢ are in L,(G, U) and
f is admissible, then f*g is admissible.

Now if f is admissible and of the form f=g=¢* with ge L,(G, U) then f((z)i)
=0 for all w.c 1({"), and from Mercer’s theorem we have

ke (e, ?/)-§‘f((«>>§l¢”’(@¢§‘ (¥ (21)

and

f k(r, 1)d”c“~_\‘;cf(m) (22)

From this fact, we see that if f is admissible and of the form f=hsg with
admissible 2 and ¢, then equations (21) and (22) holds in this case too. For we
have

heg= | (g (0 +0)=(h=g*) (B =g)— - L= T g (h* +y=T )
4 V=

—— =T —y=T o),

v 3
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0 h+g is a linear combination of admissible function of the form k(x)=k*(x).
Hence if {h} 2=1,2,--- is a series of approximate identities of L(G, /) and f an
admissible function, then for h.«f=f, we have

ke, w)de= Nk flw) =N kidl,  flw)
) I
‘(?,’[. o
where we put ¢, ;=h(w). From the definitlon of k., and since w, is positive
definite, we have Ogl;,(m,-)§1.

Now we have

k. (x, y):fh.,(;rz‘“’)k, (z, y)dz,
[£4

so lim k, (x, ¥)=k, (2, %) uniformly on G/I"XG/I". Hence we have

Y0

lim (Nt fwd)= [ il a)d.

G/

If the series )m_‘zc, fh(mi) converges absolutely, then we have the equality
0

S:;K;f((&)‘):f kolx, x)dx
G r
because all #., are non negative and not greater than 1.

Now we can transform the right side of this equation still further. First
we prove the following:

Lemma 7. Let « be an element of I', G, the closed subgroup of all x with
wwe=ax and I', the aroup G.~I". Then the homogeneous space G./I'. ts com-
pact.

Proof. Let C. be the set of all ¥ such that y=2"'ax with x&G. We con-
sider C. a subspace of G. Then the mapping v: z— 2 'ax is a continuous one to
one mapping of G\G onto C,, and v maps G,\G.I" into I'~C.. Since I'~C. is a
discrete set having no cluster point, G.I" is a closed subset of . Hence the
space G.I'/I'=G./I", is a closed subspace of G/I, so is ecompact.

If f is admissible, then we have

f ki (e, x)dx:f {’jg;;af(xa:c“‘)}dm
Gr G
:f {(‘%’)} 13; f(xm“)}dx:;%f {(a,i\:‘jrf(x7‘x“’)}dx.
G'r

G/r

where 3 ranges over all conjugate classes of I. For every {a} we choose a
™=
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representative «. Then the function ¢.(%) defined on G/Gq by ¢u(@)=f(xaz™?) is
continuous, and from Lemma 7 there exists an invariant measure d,Z onZTG/G,
such that

dx=d,6d%

where dx, is a Haar measure on G,. From A. Weil’'s theorem®, we have, from
Lemma 7,

{3 Stara = [ v@az [ an

Qr @ Gd Ga,/l‘a

Hence we have the following :
Theorem 3 (A. Selberg). If f is admissible function and the series

309‘ i f {w;)
=0
is absolutely comvergent, then we have

>°j§ «f@)=31  volume(Gd/T') f (@) duE.
3 a O,G
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