Theory of Hyperfunctions, I.

By Mikio SaTo.

This is the first of the series of papers, which we intend now to publish
to give a full account of the theory, which we outlined in our previous papers
({113, [21 [3]). We have shown in these papers how we can introduce a gene-
ralized concept of functions—that of “ hyperfunetions’”—on Cr-manifolds, and
how we can deal with them. Hyperfunctions include Schwartz’s distributions,
they form a module (=additive group), can be multiplied by analytic fune-
tions, can be differentiated and integrated. In a certain sense, they can be re-
garded as “ boundary values’ of analytic functions. (Analogous ideas have
been also explored by G. Kothe (6], [7], H.G. Tillmann [8], A. Grothendieck
(9], J.8. Silva [10))*.

We should like to call attention of the reader to a certain class of hyper-
functions, which we shall call analytic hyperfunctions. They are those which
satisfy analytic linear differential equations in the neighborhood of each point.
They may have isolated singularities, which we shall call thresholds. Almost
all of the functions of frequent use in the applied analysis can be considered as
hyperfunctions of this ecategory, and from this point of view, many of the
well-known integral formulas can be deduced in a unified manner. Also Hada-
mard’s ‘ finite part” of a divergent integral can be obtained as the value of
the integral of an analytic hyperfunction.

On the other hand, we have the well-known * decomposition-of-unity-
theorem” on paracompaet C=-manifolds M; i.e. for any locally finite open
covering {U.; v=1,2, ---} of M, there exist C-functions 7dp), v=1,2,---, on
M with 1=X7.(p), the carrier of 7.(p) being contained in U.. This implies
that any Schywartz’s distribution 7' on M can be decomposed in a form: T=\!T,,
the carrier of T being contained in U. (** Decomposition theorem” for Schwa;tz’s
distributions). This has again the following important consequence: Let {U.;
aEN} be any open covering of M, and T. a Schwartz’s distribution on U.,
such that 7.|U«~U: (the restriction of Tu on U~ U;) coincides with 7| Un -
Us for any «, €N, then there exists a distribution 7" on M, with T|U.="7.
for any «&N (‘" Localization theorem” for Schwartz’s distributions).—Both

* See also H.G. Tillman: Die Fortsetzung analytischer Funktionale, Abh. Math. Sem.
Univ. Hamburg 21 (1957), 139, and literatures quoted there.
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these ** decomposition theorem” and ‘‘localization theorem ™ are also valid for
our hyperfunctions as we shall show in §$20-25 (c¢f. [1] §3, 137 §83, 7,8 for
hyperfunctions of several variables, ¢f. (27, 147). We shall call this property of
hyperfunctions the *‘localizability.”

Our hyperfunctions have another remarkable property, which is not shared
by Schwartz’s distributions. Namely, let M’ be any open set of a paracom-
pact Ce-manifold M. Then for any hyperfunction g’ on M, there exists a
hyperfunction g on M, such that ¢lM’=g’. We shall call this fact the * com-
pleteness theorem ” for the hyperfunctions (see §22, cf. also [1] 83, 2] pro-
position 2, [3] &%3, 7, 8).

Sheaf theory provides us with a neat language to express the above facts.
The * germs’’ of hyperfunctions at each point on M form a sheaf B of modules
on M. The localization theorem means that each hyperfunction on M can be
defined as a section of B over M, while the completeness theorem means that
W is a ““ complete (or hyperfine) sheaf 7’ as defined in [2). In case of one vari-
able, these facts can be deduced also from Oka’s principle for analytic fibre
bundles or from Cartan-Serre’s theorem on ccherent analytic sheaves® (see [3]
p. 11 and comments (19), (20) on p. 26; cf. also forthcoming paper II).

In this paper T and also in the forthcoming 1I, we shall be solely concerned
with the “ hyperfunetions of one variable.” To develop fully the theory of
hyperfunctions on manifolds of higher dimensions, as we intend to do in our
subsequent papers, we shall need the relative cohomology theory with sheaf-
coefficients (cf. [2], and [3] chapter III). This latter theory will be expounded
in another series of papers of ours ([4]).

The author wishes to express his hearty gratitude to Prof. K. Yosida and
Prof. 8. Iyvanaga for their constant encouragement, and to Prof. Y. Kawada
and Prof. 8. Hitotumatu for their valuable advice during the seminar on hyper-
functions in the autumn of 1958, The author is much obliged to Prof. M.
Hukuhara for his taking eare above the publication of this work. He also wishes
to thank Mrs. Hatori and Miss Takamiya for their kind aid during the pre-
paration of this paper.
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Basic Concepts.

We shall first give in $§1-8 the definition and simple properties of hyper-
functions of one variable® (ef. 131, §1).

81. Preliminaries.

We shall use the following notations throughout the paper.

R will mean the real axis (—oo, c©) which we consider as lying in the
complex plane €. C*' and €~ denote the upper and the lower half-plane:

C ={z; Jz>0},
(1) C ={z; J2<0},
C=C"4+R+C".

For any open subset D of C, we shall denote D*=D_ . C*.

We shall denote with (D)) the ring of all holomorphic (=single-valued regular
analytic) functions in D.

S will always denote a locally closed subset*™ of B. We denote with (S)
the family of all the ‘‘ complex neighborhoods of 8,”” i.e. the open subsets of C
which contain S as a closed subset. We shall write

DHS)={D*; DeD(S)}.

D*(S) will mean the family of *‘ symmetric neighborhoods of S, i.e. the sub-
family of B(S) consisting of elements which are symmetric with respect to R.

We now consider the family of all the couples (f, D) with F€3(D), De®(S),
and introduce an equivalence relation in this family as follows: two of such
couples (f;, D)), WD), D,e¥8), j=1,2, are equivalent (in notation : (fs, D.)
~(f1, D)) if and only if

fol D= fy| Dy

i.e.

(2) fo2)=11(2) (ze= D))

*  In the following, we adopt notations used in [3]. (In (1}, we wrote N, M, . 7y, ;?:\-,
Sy in place of S, T, %(S), W(S), B(S) in the present paper.)

# A subset Y of a topological space X is called locally closed if we can find for each
p: ¥ an (open) neighborhood U,np such that Y- U, is (relatively) closed in U, or equiva-
fently, if we can find an open set U< X which contain Y as a closed subset. Clearly Y is
locally closed, if and only ‘if Y is the intersection of an open set U/ and Y (the closure of
), fee. if Yis open in Y. If X is a locally compact space (which is the case for X=C),
the condition ** Y is locally closed in X' is equivalent with ““ Y is locally compact.”

% For a function f defined on a space X (or a map f from X into a certain space)
and a subset Y of X, f,Y means the restriction of f onto Y. For a function (or a map)
S defined on a subsct X7 of X, f'1Y means the restriction of § onto X ~Y; i.e. f Y
X AT
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with some De(S), Dc D, ~D,. The equivalence class determined by the couple
(f, D) will be denoted with 7 f. D7 or simply with f, and called an holomorphic
Sunction on S. The addition and multiplication of holomorphic functions on
S are naturally defined, and these functions form a ring, which will be denoted
with A(S). It is obvious that

gFrom S':{'S-., S.: (relatively) open closed subsets of S such that

3)! v
(2) ESe~Su=¢ (230, follows W(S)=11AS.) (direct produet).

82. The concept of hyperfunctions.

In the next place, we consider the family of all of the couples (¢, D) with
ceWD-8), De(S), and introduce an equivalence relation in this family as
follows : two of such couples (v, D)), ¢, €WD,;—S8), D;&D(S), j=1, 2, are equi-
valent (in notation: (¢, Dy)~(¢i, D)) if and only if

(1) @)=+ f(2) (& D-8)

with some De™(S), Do Dy~ D. and some f&WD). It is easy to see that this
relation~is actually an equivalence relation. The equivalence class determined
by a couple (¢, D), ¢&€M(D~—S8), D=D(S), will be denoted with {'¢, D] or simply
with [¢], and called hyperfunction on S defined by (¢, D) or simply by ¢. We
shall often denote hyperfunctions by letters like g, &, ---, and write e. g.
(2) g=L¢, D]={¢],
or: g@)=[¢(2), D6...={¢@®1]...

We shall call ¢ (or more preeisely (¢, D)) a defining function of the hyperfunc-
tion g. The set of all hyperfunctions on S will be denoted by ¥WS). It is
easy to verify that B(S) forms an (S)-module if we define, for any f,=[f;, D;]
WSy and g,={¢;, DI1=B(S), j=1, -+, n,

(3)  Nifg=T8fen D1 Or: 3L @ =X @01 )

with De®(S), DC (D)~ D).

1t is obvious that
[From S=US., S.: (relatively) open closed subsets of S such that
)ISLDS;[:@’» (v320), follows ‘B(S):li‘ﬁ(&-) (direct product).

To sum up, the above definition of A(S) and B(S) can be expressed in the
following way. For any D>ID', D, I’ being open sets of C, we have a natural
homomorphism

(5) prp: WD) > AL
by restriction of the domain. The ring %(S) defined above is nothing but the
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inductive limit of {M(D); DeD(S)} by pun.* On the other hand, the induc-
tive limit of {A(D—S); DaD(8)} by por s » s likewise constitutes a ring AS).
We can consider %(S) as an extension ring of A(S) (and so as an A(S)-module,

too) in a natural manner, and we c¢an now put
(6) B(S)=A(S) mod AS).
The operations in B(S) in (6) as the (S)-module are just given by (3).

3. Complex conjugate hyperfunction.

The complex conjugate of gla)y={¢(2), D}...€B(S), DEI(S), is defined by

(1) gla)=—[¢(2),D*]...€WB(S)
with D*c2(S), the reflection of [ with respect to R, and ¢(2)=¢(z)sUD*—S).
It is easy to see that this definition of g(x) is independent of the choice of the
defining function (¢(z), D).

We call a hyperfunction g(z)eB(S) real valued if ¢(x)=g(x). Thus, each
g&B(S) is uniquely described in the form:

(2) g=g,+1g: (94, g; : real-valued)
where ¢; and ¢. are given by

(3) g1(x)=Ng(x)=(g(x)+g(x))/2,
9:(2) = Jg(z)=(g(x)—g(x))/21.
A hyperfunction g&B(S) is real-valued if and only if it is expressible in the
form

(4) g=L¢, D]
with some symmetric De®*(8) and some ¢=d(D-—R) such that
(5) ¢(@)=-¢(z) (z€D-R).

%4, Representation of a hyperfunction as the “*boundary value’ of the
defining function.

For any locally closed subset SCR and any De(S), I=D- R is a real
neighborhood of S, i.e. an open subset (and hence a locally closed subset) of B
which contains S as a closed subset. Clearly we have D&®(I). Therefore, for
any g=[¢, D]JeB(S), ¢eN(D-S), we have [¢{(D-1), DI&B(), where
o|(D—1)=0p 1 p_s(¢) is the restriction of ¢&W(D-§) onto D~1. Thus, iden-
tifying ge&=B(8) with the hyperfunction &®B(I) thus obtained, we have

Proposition 4.1. A hyperfunction g(x) on S can always be considered a
hyperfunction on some real neighborhood I of S:

# More generally we define W{E)=inductive limit of {D); D=open set>E} by restric-
tion, for any subset K of R.
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(1) gla)sR(I)*.
Now define ¢(z+10)&B(/) (I= D~ R), the **boundary values” of ¢(2)&WD~I), by

¢lati0)={eg, D,

2
( ) &‘(Q"—io)::“[é";, Dﬁl,
where
g leecy 0 e
(3) @l ey, O Gee,

e(2), #2)eWC-1I).
Then we have immediately the following representation of g=l¢, D]:
(4) 0(@)=¢(@+10)— ¢(x —70).

§5. Holomorphic functions as hyperfunctions.
On the other hand, we shall define a special hyperfunction 1=1,&8(J) by

(1) 1=[¢, D]=~[¢ D]**®
whence we obtain, for any fe%({),
(2) Sx) 1= fla+10)= fx—10)&B{).

The correspondence f(x)-+f(x)-1 induces a natural homomorphism :

NI) — BU)

which is injective because we have f-1=0 if and only if f=0. Therefore, we
can hereafter consider (/) as canonically embedded in B(I):

(3) W(HcBU).
On account of (3), a hyperfunction ge®B(I) will be called holomorphic or regular
if g&A(I). A hyperfunction g=[¢, D]€B() is holomorphic if and only if

(4) @) =el2)f () +e(2) folz) (zeD’~1I)

with some D’e®(I), D'c D, and f,, foeN(D").
We shall moreover say that a hyperfunction ge®B(I) is upper (or lower)
semi-holomorphic if we have

(5) g@)=¢(x+10)  (or =¢(x—10))

with some ¢€%W(D") (or (D)), DeD(I). A hyperfunction g=[¢, D]eB) is
upper (or lower) semi-holomorphic if and only if

* Here I depends on each ¢=%B(S). (Cf. §22, proposition 22.1.)
¥ (2)+(2)=1eWU(D), hence e(z)=:—&(2) (mod U(D)).
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(6) Ha)=e)p(R)+e(2)fulz)  (or: ¢(2)=¢(2)f1(2)+E(2)¢x(2))
with some ¢, €MD) and f,eWD’) (or: /WD) and @.€WD)), D'eDU). A
hyperfunction ge*B(I) is holomorphie if and only if it is both upper and lower
semi-holomorphie.

§6. Restriction of the domain of hyperfunctions.

For any locally closed set SCR and open (=relatively open) subset S’ of S,
we shall define the restriction ¢iS’ onto S of each g&B(S) as follows. Let
g=[¢, D], ¢cWD~S), DeD(S). There exists a D'e®(S") such that D'—S
cD—-S (e.g. IV=(D-8)~8"). The restriction ¢g|S’ is defined by

(1) 918" =[¢|D’, D" J(=[¢|(D'~S"), D' EB(S).

It is easy to see that the definition of ¢|S’ is independent of the choice of (¢,
D) and D'.

Definition. We say g=B(S) is =0, is holomorphic, or is real-valued, etc.
on S according as g|S’ is =0, is holomorphic, or is real-valued etc.

If g{x) is =0 (or holomorphic) in the neighborhood of each point of S, then
g(x) itself is =0 (or holomorphic). Therefore, there exists a uniquely deter-
mined maximal (open) subsetS’cS such that g[S’=0 (or holomorphic). We ecall
the complementary set S—S’ the carrier (or the carrier of singularity®) of
g(x), and denote it with carg (or: sing.carg). carg is a closed subset of S,

and sing.car g is a closed subset of carg.

87. Transformation of variable.
Let I and I’ be open sets of R, &x) a real-valued holomorphic function
defined on I’ and taking the value in I such that

A&(x)
dx

>0 (or <0) on I'.

Definition. For each g(x)=[¢(2)]...€B(), we define gZ@)eB(I) by
(1) gé@) =[(€(2) Joca (071 = —[@(€(2)1:-0).

In particular, we have, for any ¢, ¢/&R, ¢+0,

(2) glex+c)=+x[¢(cz+c¢)]... according as ¢=0.

It is easy to verify that the above definition of g(&(x)) is independent of
the choice of ¢(z), and coincides with the usual concept of the transforma-
tion of variable if the hyperfunction g(z) is holomorphie.

A hyperfunction geB(I), I=(—a, a)C R, will be called even or odd according

* In (1], we named it carrier of irregularity of glz).
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as
(3) g(—z)=+glx).
Each g=8(I) is uniquely decomposed into the sum
(4) g(@)=g(2)+go(x), gLx): even, go(x): odd,

with gJ(@)=(g(x)+g(—x))/2, gfx)={ga)—g(—z)/2. A hyperfunction ge®{I) is
even (or odd) if and only if it is expressible in the form

(5) g=[¢, D}, deDY(I)
with some odd {(or even) holomorphic function ¢eN(D—-1):
g(—2)=T¢(2), zeD—1.

§8. Derivatives and indefinite tntegrals of a hyperfunction.
Let g=[¢, D1=B(S), and let S be a locally closed set of B. The derivatives

g‘”(m):%ﬁl are defined by means of ¢’ (z)= g%’;g?LESI(D—-S) as follows:
(1) g @ =[¢"(2), D]...€B(8)

which are clearly independent of the choice of (¢, D).

Proposition 8.1. For a hyperfunction g=B(I) on an open interval
I=(g,b)CcR, —wo<a<b<oo, we have

1) %@:O if and only if g(®)=constant.
More generally,

i1) %%(7?2:0 of and only if gla)=polynomial in x of degree <m.

Proof. The condition o =0 yields, by definition,
(2) W (eAD),

where we may assume that D is connected and simply connected (by replacing
D by a suitable D’e®(), D’c D, if necessary). Therefore there exists by the
monodromy theorem an holomorphie function f€%(D) for which f ™ =¢“ holds.
Then we have

(3) &~ f@N=0  (eD-D)
and obtain the expression
(4) ¢(2)— f(2)=&(2)p:(2) +&(2) p2A2),
pi(z) and p.(z) being suitable polynomials of degree <n. Therefore

(5) g(@y=[e(2)p:i{2) + E(2)Pa(2) )ow = Pu() ~~ pa(T). (g.e.d.)
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Proposition 8.2. Eor each hyperfunction geB(I), I=(a, byCR, there exists
o hyperfunction G,=B(I) such that

(6) flf""f;:;f@i =9(@).

&

We shall call G, (x) the n-fold indefinite integral of g(z) and denote:

o7 G ()= f - f "(@)dz.
N e
n-fold

G.(x) is determined to within an additional term of a polynomial of degree
<n by Proposition 8.2.

Proof. Let g=l¢, D), D=D"~I~D D). We can further assume that
D' and D are both connceted and simply connected (by replacing D by a
suitable D'&®(1), I’c D, if necessary). By the monodromy theorem we can
find a ¢.(2)&AD—T) for which @:}";;(?)m;(z) holds. The hyperfunction G.(x)
=[¢.(2),D]...=8() clearly satisfies the equation (6). The remaining part of
the proposition is obvious. (q.e.d.)

If g(x) is =0 on a real neighborhood of a=1I, then the n-fold indefinite inte-
gral G.(x) of g(x) is uniquely determined by imposing on it an additional eondition
that G.(x)=0 on a real neighborhood of acl. We shall denote this particular
G (&)eB() with

(8) G (2)= Idn) ---fl‘g('x)dn:.

The lower bound @ in the expression (8) may be replaced by —co (or co) if
car g(x) is contained in (a, ) (or in (—oo, @)).

Propositions 8.2 and 8.1 are particular cases of proposition 26.1 and the
corollary thereof, respectively.

Simple Examples of Hyperfunections.

We shall now give in §§9-13 simplest examples of hyperfunctions: Dirac’s
d-function, Heaviside’s Y-function and power functions. Other examples will be
found in {3].

89. Dirae é-function.®

We define the Dirac d-function 6(z) as a hyperfunction on R as follows

' P.M.A. Dirac, The Principles of Quantum Mechanies, (Clarendon Press. Oxford,
1957), third edition, § 15; W. Heitler, The Quantum Theory of Radiation, (Clarendon Press,
Oxford, 1954), third edition, §8, especially (8.7.).
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(1) May=— 1. [111 EB(R).
By (4.4), we have

N | 1 1
(2) d0==51 (a0~ w00
By (8.1), we have

S e em avr M .,,1“,, ae (e elle' - ;,1, - __._,,,,,1. .
3 aw=C1ryl ] =g iy~ @iy )

PITe ;
Clearly, these are all real-valued hyperfunctions with carrier {0}. Moreover,

we have, by definition,
(4) 2-6(x) =0, 20 ()= —not V),

and hence, for any f(z)=A({0}),
S@)3i@)=fO)5),

4y '
(4) f(rc)a“"‘(.‘c):lj)c,,;[i‘“””(;‘v) with c,i-.vr(-—l)”<7:)f“"’(0),

which are familiar properties of 6(z) as introduced by P.M.A. Dirac. The general
solution of the equation
(5) " g(x)=0 with g(z)eB(S), (S=0),

is given by the linear form (with constant coefficients) of J¢“'(x), v=0,1, -,
n—1. Again, for any given h(z)=[¢(2)]...=B(S), the general solution of the
equation

(6) xgle)=h{z) with g(2)B(S)

is given by the sum of a particular solution gy@)=[z2""¢(z)]...€B(S) and the
general solution of (5) deseribed above.
For any ¢>0, we have

(7) 3 ew)= i oz),  B(kew)=(% 1)"»0,}‘,»-1 3 (x).

Thus, 6(x) is an even hyperfunction of ‘‘ homogeneous degree —17”’, and 6 ()
is an even or odd hyperfunction of ‘‘ homogeneous degree —(n+1)"" aeccording

as n is even or odd.

§10. General o-functions and meromorphic hyperfunctions.

Let ¢(2) be a mormorphic function on the open set ICR. We can put
deW(D~—1) with suitable De™(I), D=D"~I1~D". Therefore a hyperfunction
on I is defined by g=[{¢, D). We shall call a hyperfunction of this type a
general d-function on I. Any general 6-function g(x) on I possesses the diserete
carrier (which is at the same time the carrier of singularity) on I, and is ex-
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pressible, in the neighborhood 1. of each (isolated) point a<ear g, in the follow-
ing form :
(1) gl Lo =cd(@—~a)+ -+ +e, 6" V(x—a).
The coefficients ¢. are easily determined from the principal part of the Laurent
expansion of ¢(z) at z=a. (See what follows the corollary of proposition 23.1.)
More generally, we shall define the meromorphic hyperfunction on I as
follows. A hyperfunction g=8B(I) is called a meromorphic hyperfunction if it
is expressible in the form:

(2)  g@={e@(2)+ @), Doy DED), ¢4, €UD~T),

where ¢, and ¢, are meromorphic funcfions on I. For example, for each
meromorphic function (x) on I, {a+10), {(x—10), and hence their arithmetric
mean

(3) Piz)=(P(x+10)+(x—10))/2
are all meromorphic hyperfunctions on I. We call P¢(x) the principal value
of ¢(x). (Note that ¢(x) itself is not a hyperfunction). Every meromorphie
hyperfunction g(¢) on I, as expressed by (2), possesses a discrete carrier of
singularity, and is uniquely decomposed into the form

(4) g{x)= P¢(x)+(general é-function)
with (@)=, (2)—-¢.(2).

For example, we have the Lippmann-Schwinger formula*

1 1. .
(5) ;tivi0~~P~x~+z“o(m)
v 1 =T 1 ;“\4,(::-92,(‘-"&::)’
w0yt ‘“Pm""“ Fo a0 {x)

by (9.2}, (9.3) and (8). Since P?z-‘}"ﬁ’ is of the opposite parity to 6'*’(z), the for-

mulae (5) just furnish simple examples of the decomposition (7.4) (as well as of
the decomposition (3.2)).

$11. Heaviside Y-funetion.
We define as follows the Heaviside Y-function Y(z) as a hyperfunction
cWR)

¢

1.
(1) V(@)= rllog(—2)]:
in which we consider log(—z) a single-valued function of 2eC—[0, )
* This is a formula frequently used in the theory of dispersion of waves, especially in
quantum theory of scattering processes. See, e.g., B. A. Lippmann-J. Schwinger, Variational

Principles for Secattering Processes, I. Phys. Rev. 79 (1950), 469, formula (1.57); W. Heitler,
loe. cit.; see also P. M. A. Dirac, loc. cit., formula (50.35).
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(2) log(—2)&WC [0, o))
which assumes real values for z&(—,0). We have, by (7.2),

(3) Y(—x)zngé—i—ilogz]::“ with log z&A(C—(—o0, 07),
hence

(4) Y@)+ V()= 5L e(2)~ @) ].o=1.
Now let us define sgnxeB(R) by

() sgnw=Y@)~Y(~2)=— 1 [e@log(~iz)+logliz). ..,
hence

(6) Y(x)=1+sgnz)/2, Y(—a)=(1-sgnux)/2.

All three hyperfunctions Y(x), Y(—=), and sgn2 have the isolated point {0}c R
as their carrier of singularity, while they are expressed as follows in BR—{0}:

0 NEE. =1 (@&(~,0)
(7 Y(z)= 1, Y(~-%)~{ 0 sgnm»«{ 1 @e, o).
We have furthermore
(8) B pwy, D )
and
f da-- f dayda= oY), [Cdoe [Ta@de=- o 1)' —Y(~a).

h——-v-—._/
n-fold
The unit step function of a interval [a, b]CR is defined as a hyperfunction
eB(R) as follows:

10 Y(; [a,b)=Y@—a)~Y(e—b)= 5 - |log % “2] eB®) with

log— "~ €WC~a, b)),

for which we have
0 xe(-—co, q)
1n Y(x; [a, b]):{ 1 x&(a, b)
0 xe(h, o)

§12. The hyperfunction with holomorphic parameters.
Let A be an open set of the product space C*=Cx--.xC of the complex
[ —"

s-uple
plane C. For any locally closed subset W of CxA and any a=(u, -, a)EA,

we shall write We={z; (z, )6 W}. W. is a locally closed set of C. Now let §
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be a locally closed subset of Rx A, I)an open set of CxA which contains Sasa
closed subset (the ¢ complex neighborhood of S7), ¢(z; «) an holomorphic function
(of (s-+1)-complex variables (z, «y, -+, a.)) defined on D~S. Then, for each €],
D« is a complex neighborhood of Se, and ¢{z; @)eW(D«—S.). Hence a hyper-
function g(z; «)&B(S.) is defined by

( 1 ) g(il? H (l’):[t;’(z ' ”{:}, D”j::mw:-

We shall call such g(z; o) a hyperfunction with (complex) holomorphic para-

meters weEAF

§13. Power function.
Let « be a complex number (#rational integer). We define g(x)=B(R) by:

-1

r1 " PRt T
25 sin = F( 2y ), with (—2)&WC—-[0, o))

(1) al®)=

in which we consider (—z)* a single-valued function of z&C~[0, ) which
assumes real values for ze(—c0,0). We have by (7.2)

1%4 . e
By sin a2 e With 27 €WC—(~00, 0]).

(2) gal-~x)=

g«(x) (and hence g.(—=x)) is a real valued hyperfunction, and has the isolated
point {0} as the carrier of singularity, while they are expressed as follows in
R—{0}:

0 (=) (@E(=c2,0)
3 alX)= Wl X)) =
(3) ga(®) { O (—=) { (0, o).
On the other hand, we have by (1) and (2)
(4) Ba(a) = o i 2ga (@) f o= Fga(—w)y = e()(—12)" J: o,
@) =7 g () e i tga(—a) = —[e(a)(12) J: s,
(5) () =ho(—2)
and conversely,
galx)= 5 xm‘":?(b a2 (&)~ 6™ Sha(2),

(6)

1 e
20 sin ra (e Pha(x) e 7 Fha()).

go(—2)=

By (4), h«(x) and h«(x) are upper and lower semi-holomorphic hyperfunctions
respectively. By definition (1), the hyperfunction g.(*x) is a hyperfunction
with a holomorphic parameter a«=C—{0, =1, =2, ---}, while the expression (4)

*}

in IL.

We shall introduce the notion of hyperfunction with real holomorphic parameters
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shows that ha(=2x) is a hyperfunction with a holomorphic parameter aeC.
However, we can obtain a more precise result as follows. Define ¢(z, =
_[0’ OO))’ “’EC! by

(7) e(z ) =(—2)" f:e%«t)“a‘lazt.

9 o
Then we have, dividing the intergal into f +j \
o R i

(8) ¢z, @)=1"(—a)-(~2)*+ f(z, )
where
% T Y o ‘A_,l‘._V ',l gl “'
(9) == [ (motedi= S SN0,
1]
Therefore we have for «sC—{0, £1, £2,---}:
(10) IN'a+1)e(z, cr)_m—ASHT_T (—2)« (mod A(CY),
hence
gol) =1 (‘H D oz, o).
11) r ( 1
g~ =T oz, ).
and
(12) ha(j:;};):.£j_(élit—%ﬂl>u[“‘i:ar/f¢(z’ a)__,ei[::u/‘.’.(;(_z’ “)]z .

= +[e(+2)(F12)*—sin fgr(aﬂ) Fz, @) lsn

Moreover the right hand sides of (1) and (2) give effective definitions of gi(:tz)
and ha(+x) even for a=n=0,1,2,--. We have by (7)

(13 el my==z" [ lrdt=—"Tr log(~2)  (mod A(C),

whence we obtain
(14) gu(Ex)=(Fx) Y(d ).

The corresponding expression for A.(+x):
(15) hltx)=(Fiz)€WR)

* Actuallv the identity (8) is derived here only for Mfa<0, but the result is true for
any a=C~1{0,1,2, ---} on account of the principle of analytic continuation.
((\' +1)
z‘—
defining functions of e¥g.(x) multiplied by ¢*>. (See {31, p. 26, comment (17), and forth
coming note II).

*# The defining functions & ¢{-rz, @) which appear in (11) are the standard
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is a particular case of the expression (4), while the expression (6) cease to be
effective for a=n=0,1,2, ---. To sum up, g«(*) is a hyperfunction with a
holomorphic parameter «we C—{—1, —2, ---}. Moreover, the expressions (11) shows
that gu(+a)/1'(«+1) is a hyperfunction with a holomorphic parameter a<C,
which, as is seen from (7), reduces to a i-function for a=—-n—1=-1, ~2, .-

, NSUE SR AP PSR Ty SR AN VY )
(f"(z,—"n“"l)~~““é;;rf e't"dt= znsl( d/';“fe dtlzg‘

N
—o0

n it f
e L (L 0T =1yl (mod O,

(16) (ge(F2)/ (e +1)). =67 (£x).

Representation of Hyperfunctions by Harmonic Functions.

8§14, Representation of hyperfunctions by harmonic functions.

It is possible to define the notion of hyperfunctions in terms of harmonic
funetions instead of analytic functions ([3] §1, p. 5). Let us denote with $(D)
the module of (single-valued) harmonie functions defined on an open set D of C.
For DD (D and D’ denoting open sets of C), we have a natural homomor-
phism by restr'iction of the domains

(1) Pop: DDy — H(D").

For an open set I of R, we shall denote with () the inductive limit of
{HDYY; DeD*U)} by pup, while we denote with £,(/) the inductive limit
of {H{D"): DeD¥(I)} where Dy(") denotes the submodule of $H(D*) cosisting
of harmonie functions whose boundary values on I are identically 0. 9,°(I)
consistute a submodule of D'(J) in a natural sense. Now let ¢(2)eW(D), then
we have

(2) u(@,y) =¢e+iy)—e(c—iy)eND").

The correspondence ¢(z) —» u(x, ) induces a canonical homomorphism

(3) W — o)

which turns out to be surjective because there are arbitrarily small DeD*I)
such that each connected component of D' is simply connected. Besides, the
inverse image of £,"(1)<H'() coincidens with U(J) in accordance with the
principle of reflection for harmonic prolongation. Thus we have

(4) BI)=H*(I) mod Hy"(1).

For glx)={v(2), D). .€BU) and u(z, Y)=¢@+iy)—¢le—iy)€H(D*) we say that
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u(zx, y) is a defining harmonic function of g(z), and denote

(5) g@y={uz, y), D],..,=ulx, +0).
For instance, we have, instead of (3.1) and (8.1) respectively,
(6) 9@ =u@, Wy co=ul, F0),
0" ulx, ) oMz, +0)
(7 ) g (Q?) [ O.’Lﬂ ]g/sao aa/u .
Example 1.
3 H}ﬂ Y 1 r_&
0(3’3)*—- {:‘T)‘*ﬁyl ]t/ 405 P € [x +U ]u ;0'
su _*l ‘m(?_u 11““ 7_L+A v n! C‘;(a ,{__,“I)unl
(8) @=(gr) wiye ], SO
1 ( ‘)n ﬁ n T s)t(’l“*"l’l/)"”
P =" [< G:c) ?E‘-j‘:!:i}"‘-"]y,‘g [ (@2 4yHy ! lo
Ezxample 2.
(%) { Y(+2)= S larg(Fo+iy) o
with argze(0, =) for z&=C (the principal value of argz),
( sgn x:%—[Tan“Lai] ,
(10) J “ Y dy=so
14 SR =
| where Tan~ ye( 2, 2) for zeC(,
[ Y(QI H [a’l b]):“;;{ﬁ(xr y)]y-w()v
an where 6(z, y):arg(z»-b)-—arg(z—a):a/;l}
(the angle between za and zb), with z=x+14y.

Integration.

One of the most important operations on hyperfunctions is definite integral.
Not only it extends the usual notion of integral but it brings about great im-
provement for handling integral formulae of practical use in applied analysis.
Various examples will be found in [3] §2.

§15. Integration.

We now define as follows the definite integral of a hyperfunection on a
compact KCR.

Definition. The definite integral of ga)=[¢(z), D]...BK) is given by

(1) f g(w)da= — 9?¢<z)dz

x

771’7'"'\;’6:VHVeitier,wloc. eit. (8.17, b, ¢).
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where ' is a rectifiable path in DEDUK) going round K in the positive sense.®’
By the integral theorem of Cauchy, the value of the integral (1) does not depend
on the choice of the defining function (¢, D) and the path I'. Taking this fact
into consideration, we shall hereafter often denote the right hand side of (1) as
follows :
(2) ~ fe@ dz=~fe@iz.
r a2

For cach particular hyperfunction gc=B(K), we can consider g&B(I) with some
real neighborhood I of K (proposition 4.1). In this case, the region K of in-
tegration in (1) may be replaced by I:

j 9(@) da = f g(z) dz.

For instance, for K={a,b] we write

L+ 38
f g(x)da= f g(x)dx
a-§ [«,0]
with some ¢, 0<0< 0.
Ezxample 1. Let f=[f, D]eA({0}). We have
S@)a@)eB{0}), Sf@)p (@)eB{o}h)
and
(3) f £ (@) 6() da= f F(@)6x) da= 1 (0),
—ix {u}
(4) [‘f(;u) r'}“"’d:c::ff(x) B0 () dav = (—1)* F(0),
. a {ir}
which follows from the definition (9.1) of d(x) and the integral formula of
Cauchy.
Feample 2. Lel [a,b]C R be a closed interval, and f(x)e%({a,b]). Then
we have
S@)Y(; [a, b)eB(la, b
and
. R
(5) / F@ Y@, fa, b})d:v:f Fnda
‘L”.I'} [
#3 Such /7 can be always found e. . if we cover K with a finite number of dises D. :
KeD-—UD., with D.cD,
e )

v

and set /" =00, This I’ consists of a finite number of are polygons in D.
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where the expression in the right hand side denotes the integral of f(z) in the
usual sense (i.e. the Riemann or Lebesgue integral of 7F(a)).
Proof of (5). By definition, we have

"t da

(The left hand side)=— fj(& \2 ej -»d,;v\(lz

Tz V)

=7 f { 7( T az)ar = [”,ﬂ.n)dx.

(q.e.d.)
§16. The standard representation.
Proposition 16.1. Let g@)=B(K) be a hyperfunction on a compact KCR.
Then ¢(2)eWC—K) defined by

(1) a@=gr; [ 10 v, 2eC-K,
K
18 a defining function of glx):
(2) g@)={¢o(2), Cl._..

This ¢4(2), which is uniquely determined by g(2), will be called the standard
defining function of g{z).
Proof. Let gx)=[¢(2), D]..., DED(K). By definition (15.1),

f

(3) poF)= f‘;i'@ i, 2cC—K.

where I” is a rectifiable path in D going round K in the positive sense such
that z is outside I'. We can write, in agreement with (15.2),

(4) o2} = 213 I E’(qi» zeC—-K.

EO~K

On the other hand, define f(z)e%(D) by

(5) f@)= g 9 a4, zeD.

ul)
Combining (4) and (5), we have for z& D—-K,
(6) @)=y [ FEdr=et
D~ R'\
by the integral formula of Cauchy. Thus we have

(7 ¢@=¢z)  (mod (D))
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and hence the desired result (2). (g.e.d.)

Among defining functions of g(z)eB(K), the standard defining function
(¢o(2), C) is characterized by

(8) ¢o(2)EWUC-K)
and

(9) ‘f’*’ﬂ("o):i}i}fg ¢o(2)=0,
by the Liouville theorem. (From (8), (9) follows in particullar that ¢y(z) is
holomorphic at z=c0. We shall write gpo(z)E‘)I(C") for it, where C denotes the
Riemann sphere C~"{o0}.)

Proposition 16.2. Let g={¢, C1&BK), and let ¢, be the standard defining
function of g. We have then

(10) f g(@)dz=2ria
K
where « denotes the residue of the differential form @i(z)dz at z=oo:
(11) a=—(2¢y(2))z-r0.
Proof. By definition,
f go(@)dz=— 9§ oo(2) dz=2ria. (. e d)
x 2C

Though the notion of standard defining function is useful for various pur-
poses, it must be remembered that it is not an invarient notion under the
analytie transformation of the domain K.

Concerning the representation by defining harmonic function, we shall define
the standard defining harmonic function of g=B(K) by

(12) Uy, 2/):}1;:' f g (t)"”('tf:g)!'-z’;ry?dt, (y>0).
i g
Then we have uy(z, »)EHC) and
13) g(x)=uy(z, +0)
by @).

Example 1. The expressions of g(z), 6™ (x), and Y{(z, [a, d]) in the defini-
tions (9.1), (9.3), and (11.10) are all representations by the standard defining
functions. We have, by (10)

d(x)dx=1,
[0}

0 (@da=0  (»>0),
v}
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and, combining this result with (9.4') we obtain the result (16.3) and (16.4) again.
The expressions in (14.8) and (14.11) are representations by the standard
defining harmonic functions.
Erample 2. Let P.(2), @Q.(z) be the Legendre coefficients of degree n of
the first and the second kind. Then we have a formula of C. Neumann:

N 1 T Pu() Ot 1. 1"
Q,,(‘)mzf Dy zeC-r-1,10.

By (15.5), the standard defining function of P.(@)Y{(x, [—1,1))e¥([—-1,1]) is
given by A’;]"TQ,I(Z)EY‘((C~[~—1, 1h:

19 P,@)Y@,[~1,1)=11Qu2), C 1. ..

817. The perfect hyperfunction.

Now let K be a compact sebset of a locally closed SCR. Let D,&d(S) be
given (e. g. Dy=C—(S—S8)).

Proposition 17.1 guarantees that each g&B(K) possesses a defining funection
¢eWD,—K):

(1) g=[¢, Dy],
e. g.

(2) P=¢o|(Dy—K),

¢o: standard defining function of g¢.

Define now a hyperfunction g,=B(S) by
(3) go=L¢l(Do—S), Dy].

Clearly this g, is determined only by ¢g&B(K) and is independent of the choice
of Dy and ¢. The correspondence g—g, induces a canonical homomorphism

(4) BK) — B(S)

which is 4njective because go=0 clearly implies ¢g=0. Consequently, we ean
agree hereafther to set

(5) BKYB(S)

in a natural sense. A hyperfunction g=B(S) belongs to B(K) if and only if
gli(S—K)=0, i.e. if and only if

(6) car gc K.
Definition. A hyperfunction ge&B(S) is called a perfect hyperfunction™®

» In [1], we named it particular hyperfunction (p.h.f.).
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of geBK) for some compact K< S, i.e. if car g 1s compact.

More generally, we define a perfect hyperfunction g on any given set ECR
to mean a hyperfunction on some compact subset KC FE, and define the integral
of g over E by

(7) f g(x) dz= f glx)dx.

The family B*(E) of all perfect hyperfunctions on K is given by the induective
limit of {B(K); KcE} by the (injective) canonical homomorphisms:

(8) BK) - BK), KcK,
K, K’ denoting compact subsets of E. By (5), we can set

(9) B ()= U BK).

Fach B(X) is an A(K)- and hence U(l)-module, and cach homomorphism (8) is an
A(E)-homomorphism (i. e. B(K) is an YL )-submodule of B(K’} for K K’). Hence
VL), defined as the inductive limit of these B(K), is also an A(E)-module. In
particular, B*(S) is an WS)-submodule of B(S) for any locally closed S. On
the other hand, let *(E) denote the inductive limit of {M(D—K); D: open set
DF, K: compact set CE} by the restrictions (D —K)-W(D'—~K") with Doy,
Kc K. We can consider %*(E') as an extension ring of A(Z), and hence as an
(L )-module, in a natural manner. Moreover, we can easily derive the relation
(10 BHE) =N E) mod (L)
by a natural correspondence.

Decomposition of Hyperfunctions.

ys

In the following 818, 19, the * decomposability’ of hyperfunction is
studied. As we shall observe in §25, we can prove fundamental properties of
hyperfunction such as localizability (proposition 24.1) and completeness theorem
(proposition 22.1) by means of the results of £§18,19¥, but we shall derive

them (ineluding decomposition theorem) in a more unified manner in §820-24.

$§18. Decomposition theorem for perfect hyperfunction.

Let —o<a=eas - <Ke=b<eo and let g.€B(levy, ¢.]), v=1,---, 0, be
given. Then, by (17.5), we can consider g. as belonging to B({a, b)), and hence
we have their sum

(1) g=gi+-+9.€B(a, b))
as a hyperfunction on |'a,b]. The purpose of this paragraph is to derive the

¥ This is the way in which the author was first led to these results in autumn, 1957.
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converse of this fact (proposition 2).
Lemma 1. Let k(x) be a (complex valued) continuous function® on [0, co).

Then there exists an entire function z(2)&W(C) such that
(2) 2x)z k(x)] for x&f0, o)

Proof. Replacing k(z) by max jk(t)| if necessary, we can assume that k(x)
ey
is positive-valued (k(x)>0) and monotone increasing on [0, oo). Choose a pair of
sequences of numbers: {a,.; n=1,2,---}, {b.; »n=1,2, ---} such that

(3) O<(11-<CI:S, 0<I)I<b3<
and beb<(1/ru (n:‘“l, 29 "')'

(E.g. a.=2n, b,=n). Then, for every », we have

" ( ,%?‘L\)mn;:; Ia..,,)

\ n
for a sufficiently large natural number m,. Clearly we can assume moreover
My Mel v -

Now define %(z) by
(5) ) =ka)+3 (£-)",

a power series whose radius of convergence is «. Therefore, %(2) is an entire
function :
1z)e W)

which is, by definition (5), positive-valued and monotone increasing on [0, oo).
Now we have, by (5) and (4),
ta)> (4 ) "> kan)
7
and hence, we have for any zx<{a., ¢..1 1,

(6) @)= k(x).

As n is arbitrary, we see that (6) is valid for any z&[ay, ). () is valid also
for x=[0, a;], as we have by (5)

1(x) = k(a) = k(z).

Hence 7(z) satisfies all the required conditions. (g.e.d.)

© Ther condition ‘k{z) is continuous’ can be replaced by ‘k(z) is bounded on any finite
interval [0, a], (0<e <), The proof which follows is valid for this case, too, if we replace

max k(t)! therein by  sup [k({t).
0<t<e 0<t<e
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Lemma 2. In the preceding lemma 1, %(z) can be chosen as an even entire

Function without zeros (i.e. #H—2z)=%(z), ;/,"(]@ W),

Proof. Apply lemma 1 to k(x)=log*lk(yz)]. Then we have a 7,(z)EU(C)
such that
1)k (z) (0w o).
Put #(z)=exp7(z?). Then (z) is clearly an even entire funetion without zeros
for which we have
1(x) = exphi () = k(). (q.e. d.)
Proposition 18.1. Let —co<a<e<b<oo, and let g&=B(la, b1) be given. Then
we have a decomposition of g{x):
(1) g(x)=g:(x)+ g(2)
with some g (x)eB(la, ¢l) and glzyeB({e, b]).
Proof. Let ¢4(z) be the standard defining function of g(x).
2=¢ and Nz=c are transformed to 2’=co and J2’=0 (real_axis on 2’-plane)
respectively, by a Mobius transformation: z=e+iz'™', z’x;?é. Hence there
exists, by lemma 2, a 22)eU(C—{c}) such that
1
(8) 2(2)
1z =21(@)=max(|¢@)], l¢(z)]) for Nz=c.

-eWC~{e}), and

Consequently we have

(9) ¢o(2) = 1(2)¢(2)
with ¢,(2)&A(C—{c}) such that
10) ()<l for Yiz=¢, z#ec.

Now let us consider two paths 17, I's defined by
I'': e rediewr @8+t qg—E—it > ¢—4E > ¢
I's: e-re—ie -~ bte—ie—btetdie—ctir—e

with sufficiently small ¢>0 (Fig. 1).

T ctie T

Pe

o
=

o®

c—-1¢
Fig. 1

By (10), we can define ¢.(z), v=1,2, by

-1 ¢a(8) 2eC—la,c] for v=1
11 ",_» o) Eemais - o 3 de ~ - *
(1) ¢u(2)=5_; J =z 7t { zeC—Je, b} for v=2.

r
¥
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As ¢ can be taken arbitrarily small, we get

(12) d@EWC-Ta, ¢, a(2)ENC-Te, b)),
Moreover we have for z&C—[a,b]
-1 "o P 4
(3) w@+e@= g [ Lz,
[P
Defining g¢.(z), v=1, 2, by
(14) g:@)=[¢.(2), CJ... with e@)=1(2).(2),

we have, by (9), (12), and (13),

g(x)=g{z)+g:(x)
n()eBla, cl),  gL0)EB({c, b]). (g.e.d.)

By repeated application of the above proposition 1, we obtain
Proposition 18.2. Let —oco<a=¢<e < - <¢,=b< oo, and let geB(a, b))
be given. Then we have a decomposition of g(&):

(15) gloy=g(x)+ - +g.(x)

with some g()eB((e,_, ¢.]), v=1, ---, n.
Remark. Let h.e€B({e.}), v=1, ---,n—1, be any hyperfunctions on a point
x=¢y, and put Ay=h,=0. Then we have from (15)

g=g/+--+g./
with g/ =—h, +go+h.eB({e, 1, c. ),
a decomposition of g similar to (15). It is easy to see that (16) gives the general
form of decomposition of g as required in proposition 2.

(16)

§19. Decomposition of a hyperfunction into perfect hyperfunctions.

The purpose of this paragraph is to generalize the decomposition theorem
18.2 to a hyperfunction which is not necessarily perfect.

Proposition 19.1. Let I=(a,b)CR, —oco<a<b<oo, be any open interval,
{e.; n=0, £1, 42, ...} be any sequence of points on I such that

(1) enda (for n—r—o0), e, 1d (for n—roo).
Then, for any g=B(I), we have a decomposition

(2) g= z‘gy

with some g.€B([es.y, €]), v=0, +1, £2, ..., (2) means that, for any I'=(a", V),
a<a’ <b'<b, we have

N
(3) 9= 3 gl
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Jor sufficiently large N. FEach g. isu niguely determined mod. {ec,_1}), A({c.}).
Proof. Let g=[¢, DI, ocWD-1), DED(). Let d{x) be a continuous
function on 7 such that
0<d(z)<oo, and {z-+1y; lyi<d@),aclcD
and define e D(I), D' D, by
D'={a+iy; yi<d), z=1}.

On the other hand, we can find, for each v, %.(2)&W(C—{e.}) such that we have

elz)=1(e)n{z), L()eWD-T),

(<1 for Re=c., z=D'—1,

by lemma 2. Define £.(2) and 7.(z) by
—~ L) [+ T """"(f),df',—f £u(2) (for Nz>c., z€ D)

(4) g ,
2ri -z 7| p(z)  (for Nz<eo, z= D).

widewy

Then we have, by analytic continuation,

(5) E(eWD —(a,c.]), (WD —[e, b))
and

(6) E()+nz)=¢@) (for z&D'~T).
Now put

(7) ¢(2)=Eu(2) =&v 1(2)= —7:(2) + 75 _1(2),

then we have

(8) e 2)END —cv_y, ¢u]).
Therefore we can define g.&WB(i¢. 4, ¢.]) by

(9) go==l¢», D',
We have, by (7), (6), and (5),

N
¢el(2)— LT;\,‘;»-(z):5‘3'“1(2)-nL'q,\-(z)G‘)[(D’»(a,, ¢y (e, B)).

By (1), we have ¢_y ;<a’ and b'<ey for sufficiently large N, whence
By
(&)= 3 @u(@NII'=0
. A
viz, gil'= X! g.|I'.
PN
The uniqueness of each g. mod. (A({ev..}), A({e.})) is easily verified. (q.e.d.))

Conversely we have
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Proposition 19.2. Let I=(a,b) and {c.; n=0, =1, 42, ---} be as in pro-
position 1, and let g(x)eR(e.y, e}, 2=0, 1, =2, -+, be any given hyper-

Sunction on each [c..,,¢.]. Then there exists @ uniquely determined g(ryeR(J)
such that

(10) glz)= gwg-,«(az).

This proposition is included in the following
Proposition 19.3. Under the same assumptions as in proposition 19.2,

there exists a h(z)eB(la, b)* such that
a1 h@)= S g.(2).

Proof. Let ¢.(z) denote the standard defining function of g.(x). For each
v<0, we shall define fi(z)&C—{a)) as follows. Let

(12) ‘fq"‘(z):f—; o fz—a)™” {lz—al>c.—a)**
be the Laurent expansion of ¢.(z). Then f.(z) is a partial sum of (12):

(13) fl(z)::?i cbg;(Z“"(L)“” (z7_a)

ey
where N. is a sufficiently large natural number such that
14 je ) —fu(2)] <2 for [z—a|>2(c.—a).***
Similarily, for v>0 we can define f.(2)e%C—{b}) so that
(15) lo(z)—fulz)| <2 for {2—~b|=2(b~c¢. ).
By (14) and (15), the infinite series

@@=+ S~

vyl - ¥
is uniformly convergent in the interior of C—{a,¢ ,]~[c¢., b]. Hence we have
‘Ibn(z)em(é“!‘a! C»M:]V[CM b })-
Now define h.(z)eB(la, c ., {e., b]) and h(x)yeB(la, b)) by

¥ For a=:-—~e and/or bo=-loo, [a,b] should mean the closure of (¢, b) in C, e.g.
[—eo, oo]__R“R‘/{oa}

¥ Tor a-=--o5, (12) and (13) should be replaced by ¢.(z)+ 3 ¢u,.z” and Ju(z)
ki 1

Ny P
=3V eu,2" respectively.
TRezl)
#0  If we use the approximation theorem of Runge, it becomes unnecessary to invoke
to the Laurent expansion (12) to prove the existence of f.(z) which satisfies (14).
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hole)y=1¢(2), Cl...
h(z)=hy{z)

Then we have, for any I'={a¢’, V'), a<a'<l'<b,
N
(hlx)— > ‘y:(-’C))fl’ﬁh,v(ilf)il'zo
v~ N

with sufficiently large N. Hence we have (11). (q.e. d.)
Now we have
Proposition 19.4. Let I=(a,b) be an open interval, and let geWBI) be
given. Then there exists ¢ perfect hyperfunction hz)EB( a, b)) such that

(16) hil=g.

(z) is uniquely determined mod. B({a}~{b}).

Proof. Take a sequence of points on I: {c¢.; n=0, £1, %2, ...} such that
(1) holds. Then, by proposition 1, we have decomposion (2) with some g.=
B(le..;, e ]). By proposition 3, there exists a h(@)eB([«a, b]) for which (11) holds.
Hence we have (16). (q.e.d.)

Localizablity of Hyperfunctions.

Now we derive ‘* localizability ’ and other basic properties of hyperfunctions
along the line of [3], §3.%

$20. An existence theorem for defining functions.

We have proved in §16 the existence of the standard defining function for
any perfect hyperfunction. We shall prove in the following a corresponding
result for an arbitrary (not necessarily perfect) hyperfunction.

Proposition 20.1. Let SCR be any locally closed set. Let g=®(S) and
DyeR(8) be given. Then there exists a ()W Dy—S) such that

( 1 ) g(-’l‘): [‘r"o(m), Dl)‘}.‘:‘ar

Proof.***  We need prove the proposition only for a non-compact S.
First step. Let g=[¢, D], DET(S), where we shall assume Dc D, without
loss of generality. Take D'&®(S), D' D such that

*  The meaning of these results becomes most clear if we look at them from the
standpoint of sheaf theory (see [3], p. 11, and comment (19), (20)).

**2 An open set D, CC is a complex neighborhood of S if and only if SCD,cC~K where
K is a closed set of C defined by K=S-S. In particular, C~K is the greatest complex
neighborhood of S. Therefore it suffices to prove proposition 1 only for the case Dy=C-K,
though in the following we have described the proof for general D,.
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(2)0 1 the elosure of D’ relative to Dy i1s contained in D :
1 D'~ D,CD,

in other words, closure D’ ~D of D relative to D is (velatively) closed in D,
and
the boundary of D’ relative to Dy is a locally rectifiable path
(3) I in Dy
=D~ Dy— D).

op, D=0 (I’

The carrier [['] of I’ is not compact : some of the connected components of |/
may be (rectifiable) closed Jordan curves, but some must be (locally rectifiable)
open Jordan curves.**) We can, in any case, decompose /I° into chains with
compact carriers (e. g. into closed ares), i.e. we have

(4) =747+ (sum of chains)
where [7,| are compact subsets of [I'} such that {[7.j; n=1,2, ...} constitutes
a locally finite covering of |I'|.

Now let us suppose that there exist ¢, (&M D,—7.]), n=1,2,--+ such that

—1 ¢ (0

(5) 9"”(2)52‘..11 C_zd: (mOd“)[(DU))y
and for any m=0,1,2, ---, the series
(6 ) gm(z):??;}n(r,'u(z)'

#* Such ) is obtained e.g. if we cover S with a locally finite family {D.;v=1,2,-.-} of
open dises D. in D such that D.cD, and set D'=UD..

##  Thus, each component /', of I is expressible in the following form:
i) for closed [,:
D= (2, (t); 05,0 1)
where z,(¢,) is a continuous map from [0, 1] into D such that 2,(0)--z,(1);

ii) for open /'.: ,
l,ll"(z7l(ti2);()<[lt<1>)

where 2,(t,) is a continuous map from (0,1) into JJ which is at the same time closed as o
map from (0, 1) into D,. The carrier {17,] of ', is the image of the mapz,, i.e. the point
set {z,(1,); 0<£, <1 (or 0<t,<1)}, while [/}, the carrier of /7, is given by U{/',]. The
condition that /7 is locally rectifiable is equivalent to say that each z.(t.) isﬂ of (locally)
bounded variation.
In abbreviating, we shall write as follows for the full path / ==/ 4/ 4+
I7=(z(t)y; teT),
where T stands for a direct union of some circles and some copies of interval (¢, 1).
Now divide T into closed intervals ., v=1,2, ---, by taking points relatively discrete
on !Ti{. Then I" is decomposed as follows:
A sy kb
with vy =(2(t); ter.),
where each [y.] is a compact set of D, and {y.i;v=1,2,---} is locally finite in 7J,. In
other words, I is a locally finite singular chain in D, with carrier in I2.
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is locally uniformly convergent in D—|>'7,L* By (4), we can define

[

¢ol2)EAU( DS~ and flzycWD~L']) by

: P &olz) (ze=Dy— D"
(7) ¢il2) { ¢(2)—E4(2) (z’—8)
o f ¢ —E2) (ze D~ D)
(8) J (z)"’{ £(2) (ze D)

By definition, |7.] converges to the boundary of I, :

(9) lim sup 17,1 D— Dy 3D},

where 1) and 9D, denote the closure of D) in € and the boundary of D, in C
respectively. Hence, for any ecompaet subset K< Dy, we have

(10) [ iK=¢ for n>m
with sufficiently large m. By (10) and (6),
E40)=0 (modWK)),
EBy= (@)t @ D= @)+ () (mod WEK)),
henee we have by (5)

— 4
(12) Gl g 22 dt (mod A(K)).

Tideo Ty

The formula (12), ecombined with the integral formula of Cauchy, shows that
¢i(z) and f(2) defined by (7), (8) are holomorphic in the neighborhood of K |/’
(it As K ois any compact subset of Iy, we have now

(13) o2y WDy 8, Fye .
Consequently,
@)= o)+ f(2)mee(R) (mod NA(L))),

L e. ¢(z) 1s the defining function of g(2) as required in proposition 1.

Second step. Now we shall show the existence of ¢ .(2)&M(D,—|7.]) which
gatisfies (5), (6). For this purpose, let A, n=1,2,--., be relatively compact
open subsets of Iy such that

(14) Ay ~[Tul=¢,

A sequence of continuous funetions {f.(p), 2 =1, 2, ---} on a topological space X is
ealled locally wniformly convergent on X if, for each pocX, { ()} is uniformly convegent
on some neighborhood U, of p.. If X is locally compact (which is the case for X =D, an
open set of C), this is equivalent to the condition that {f.(p)} is uniformly convergent on
X in the wider sense (or uniformly convergent in the interior of X) i.e. {fu(p)} is uni-
formly convergent on any compact subset KC.X.
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(15) A, is simply connected relatively to Dy, and

(16) A, T D, for s 00,
{Such A, are furnished e. g. by

an A,=A(2d,),
where

A(ry={z; Ddz, r)c D} for r>0,
{2/ —zi
Dz, -r):"(z’; B N
(18) l «'1~%~;‘Z[“\<1+;Zi“\ J
=the disec with center z and radius » in the spherical distance, and
dy=max{r; AT Dy— U |7.i}.
v

It is clear that A, defined by (17) are open and relatively compact in I, and
satisfy (14). (15) is also satisfied because no connected component of D,—A, is
disjoint to the ideal boundary of D,. (16) is clear because we have d, {0 for
n-+co by definition.)

According to the generalized Runge’s theorem®, we see that, for cach
h(z)eENA,) and £>0, there exists a f(2)E(D,) such that

Ih(z)— f{z)|<e for zeA,.

In particular we have, for h(z):g;if %i%df (€NA)) and ¢=2",

7
o

l(2)<2  (zed,)

(19) - "
where ¢".(2)= Zjll[ r‘j(“);d:—fn(z) zeDy—1.D

“n
with some f.(2)&€W(Dy). It is then clear that ¢.(2), n=1,2, ..., given by (19)
satisfy conditions (5) and (6). (q.e.d.)
Corollary. For any D,&¥(S), we have a canonical isomorphism
20) BS) =Dy~ S) mod A(D,).

Furthermore, for Dyo D D---28 (Dy, Dy, ---€D(S)), we have a commutative
diagram of the form :

0 0 0
UDY — WD) e U)
@1) ?l(D{—S) - ‘)((D%S) S %(.Lé*)
"15('3) = ‘15(‘%') = oeee o= "5(1‘9)
0 0 0

*1 Bee M.II. Behnke: Généralisation du théoréme de Runge pour des fonctions multi-
formes de variables complexes, Colloque sur les fonctions de plusieurs variables, Bruxelles
(1958), p. 81
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where each sequence in vertical direction 1s exact.

§21. Alternative proofs of the existence theorem.

We shall next{ give an alternative proof of the proposition 20.1. by construct-
ing ¢.(z) in (20.5) directly, without employming Runge’s theorem.

Let p{2)&W(Dy), n=1,2, --- and suppose p.(z) has no zero on [7,]. Define
P2 EUD,y—T2]) by

— 1 7 -
( 1 ) ‘il}n(z):: “2':,],; D (Z)f ];;l():) 2:“(";; d{y (26 Do“‘ 17 wz!).
£

Clearly, we can write
(2) P~ p 2y =L ~2)q.(L, 2)

with a holomorphic funetion ¢.(¢,2) of (£, 2)& D, X D,. Consequently

/ ~1 ) 1 .r]u({) Z) ” v 1 _.»(F)
¢(z)= 2‘/_;1:']({;2 =) ’“)‘F’(L)M:Q‘%i“ %ﬁ;df (mod A(D,)).

T 4%
Namely, ¢.(2) defined by (1) satisfies (20,5). We shall now show that, by a
suitable choice of p.(2), (20, 6) is also satisfied by these ¢.(z). First, dividing
each 7, into smaller ares if necessary, we can assume that the diameter of |7.]
tends to zero for m-roo. Consequently we can choose w,&C—-D, n=1,2, -,
such that
(3) Dy, d.)DI7 )

with some d.>0 tending to zero:

(4) d. 10 for n-rco,
where

"

(5 ==the disc with center « and radius r (for a# o),

o

Die, ¥)y={z; |z—wa|gr}
) { :
Do, r)=:{z; ¥z~ﬂ!;:~7; with a fixed geC-U|r,.

By (4), there exist natural numbers N,, n=1,2, ---, such that N, { o and

(6) d, f{”/M,, — 0 for n—sco
with
M= o [le@ds.
We shall now put
(7) { pal2)= 2“‘(1’”).’ ¥» for m for which «,#co,
Pu(@y=(z=3)¥n for n for which v, =c0,
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From (1) we have, for a,% «x,
[ 1 i ey EU(:)({:'_

é‘/"'re @i iz—a,] ol il T T
Ve oy b N 1 : : AYH
Z Y 2 : &,
T A N TS R
dist{z, [7..1) dist(z, [7.1) § 2=,

and for a,=co,

23| 1

Y (- P . A LI - - fe (2 )iVa
OIS Gistia, o TS distce, 1 G

N .
where we set &,=d,- 1/ M, {for which we have &,»0 (n—e) by ©). Conse-

quently we have, for any compact subset K< D,
(8) )< A-(Be )  for z¢K

with some A>0, B>0 and sufficiently large n. It is now clear that ¢",(z) satis-
fies the condition (20, 6) in question. (q.e.d.)

We remark now that the proof can be subsumed in the following proof-
scheme :

Let I'={¢(t); t=T} be a parametriec representation of ['=4, D’ and let ¥
be a submodule of A(D-—S) consisting of ¢(@)eWH—-S) such that "hgg;) is
bounded for t=7 with some (fixed) m(t)>0, a continuous function of t&T. Let
us consider a differential form of £=£(t) of the form
aL)

f g H (2t

w(t, 2)=

such that
(9) mw(t, z) is integrable in ¢t T locally uniformly in zesDy—|[7], 1. e¢.
for any compaet subset K of D,—[I’|, there exists an integrable function
k(t, K) of t&=T such that
Cot, 2y k(t, K)
dt 1 m()

flc(t.K)dt<os,
r

for ze K,

(10) f(t,2) is loecally integrable in t& T locally uniformly in ze& D), i.e.
for any compact subset K, of D,, there exists a locally integrable function
ko(t, K;) of t=T such that

1, ) <ko(t, Ky) for z& K, and
(11) for any continuous function A(t) of t& T with compact carrier,

fﬁmfmzmz
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is a holomorphic function of z=D,. (We shall say * f{, 2) is holomor-.
phic in 2" in this case).
The existence of such a differential form oft, z) being assumed, define for
each ¢(z)e§, ElEW D~ 1)) by

(12) a@= 5y [ ot .

[N
We have, for any compact subset K of D,

-1 r
229
;v;z'lL'l'l

¢ LEnmlt, z)=20 (mod WK))

with some compact subset T, of 7. Hence

G0 gy [ et = 5k [ @ moduck),

oy L)

whence we see, just as in the first step of the proof of the proposition 20.1,
that ¢4(z) and f(z) defined from &(2) by (20,7) and (20,8) respectively, satisfy
(20, 13), and thus we again arrive at the proposition 20.1.

It is clear from the above considerations that the map

(13) ¢(@) = ¢yf2)
is a linear map from ¥ into W(Dy—S).

Previously we have constructed ¢,(2) by (1), and obtained £,(z) (and hence
vo(2)) by (20,6). This can be regarded as a special case of (12). In fact, (12)
reduces to

X & &0
(14) w»( ) N:' _._; pww)[ Pul) Ef(\; _:_“ ‘7"’:1(2)

if we take

() ddD

pAc) Cin—g T IET =L 2

wlt, @)«

i. ¢,

(15) : N vy, Dal®) o dlt)
A R I

1 for t= 7T,

0 for t=T-T,,

where 7, and p.(2) are as deseribed above and 7, ={&(t): te T}, T=T,~"T:~--.
On the other hand, decompositions of ¢ (2)=WC—{a, b)) and ¢R)cWD~-I)

given in the proofs of proposition 18.1 and proposition 19.1 respectively, are

with 7(t, ,’1’,,,)—:,{

also special cases of (12). In fact, we have, as to the propesition 18.1,
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1 ~

(16) (.:’(":>: ’;i ‘/ (f";\(z)({)(:, Z}, ;,,_::1. 2’
with

and as to the proposition 19.1,

(18) o [ (s, =] FE e

271 . 1 /L(g) ( Nz )
with
(19) (f,)y{f, Z)?‘ gz; Ad:”

To sum up, we see that the proof of the existence theorem (proposition 20.1)
as well as of the decomposition theorems (propositions 18.1 and 19.1) are all
reduced to the construction of w(t, z) for which (9), (10) and (11) hold,—and it
is easy to see that w(t, 2), w(&(), 2), (L), 2) given by (15), (IT). (19) respectively,
satisfy (9), (10), (11). We shall prove however the following proposition which
assures the existence of such w({, z) satisfying even stronger conditions than (9),
(10), (11). Thus this proposition will furnish still another proof of propositions
18.1, 19.1, and 20.1. The method of the following proof will be also used later on.

Proposition 21.1. Let D,CC be an open set and let k(z)dz be a given differ-
ential form where k(z) is a continuous function defined on a closed subset F
of Dy with positive value:

(20) k(z)>0 (z& ).

Then there exists a differential form of L&Dy of the form

(21) a(, z)mcc_{i“z +f(&, 2dE

such that
22y  f(&, 2) is a Co-function of (&, 2)E Dyx D,, and is a holomorphic fune-
tion of z& D, for cach fized L&Dy, and

®

of Dy—F
Proof. Let U,, n=1,2,---, be relatively compact open subsets of 1), such

w(C, z)) is bounded for (£, 2)& Fx K, K being any compact subset

that {U,; n=1,2, ---} constitute a locally finite open covering of D, and
assume at first that there exist p.(2)&WD,), n=1,2, ---, such that p,.(2)#0 for
ze U, and

(24) t -»’f,rgéh(z)lc(z) for tel,, ze€Dy, n=1,2, ...
1 ‘. 1
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with some A(z)>0, a continuous function of ze D, independent of n. On the
other hand, it is well-known as the decomposition-of-unity-theorem for C>-fune-
tion that there are C-functions &,(z) of z&=D,, n=1,2, ---, such that
0< e, (7)<, Si‘,.ﬁ,,(z):::l,
. 91~ 1
25) and the carrier of ¢,(2) is contained in U, (i. e. £,(2)=0 for ze D-F,
with some F,c U,, a closed set of D).

We shall define w(£, 2) by

o s .2y d¢ o

(Z(’) ”}( Z) \ ""n("’) p”(c) ;r Z ((kv ~)CD0XDO C’?"z)-
we have

¢ ])72(2) . — Qn(C, g)

&) (o) ~IHED

¢.(C, 2) . holomorphie function of (£, z2)& Dy x D,

an identity parallel to (2). Consequently

w(t, z)~~ : ‘i"f( 2)d¢
(28) = e,(0)
. (4
with f(c Z) \ \ D (C) q:l(\) Z).
Clearly f(&, z) satisfies the condition (22). We have moreover, by (24),
1 Jeg )] 1 4 1 _ Wz
o | "ae [y SO MRk 5L =

Hence the condition (23) is also satisfied.

To complete the proof, we shall verify (24) by constructing suitable p.(2).
Replacing the covering {U.,; n=1,2, ---} by a suitable refinement of it, we ean
assume from the beginning that the diameter of U, tends to zero for n—rco,
Consequently we can choose «,&C—D, n=1,2 ---, such that, in the notation
of (),

(29) Diw,, d,) DU,

with some d,, >0 tending to zero:

30) d, 10 for n—co.
We can furthermore choose natural numbers N, n=1,2, .-, such that N, t o
and
N dr
(31) £, = -~ 0 for n—oo
\!”n

with
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= min k().
LET,
We shall now put
WH2)=(2—w,) *n for n for which a, %00,
(39) { Pal2)=(2~ax,) ‘

Pu(2)=(z—3)"n for n for which =00,

and define i(z) by

33) h(z)=max h,(2),

L% Na o
with { levn(z)‘<~%.z:;w",;|'> for e, # oo,
h@= (B for =,

As h,(2) tends to zero locally uniformly in z& D,, a continuous function h(z) of
ze& D, is defined by (83). We have, for LU, z&D,,

£y

IR A B L (U L

!pt(C)‘_! By | >Iz"“"fkt
if a,#c0. It is easy to see that the same result is also valid for «,=co. Thus
(24) is fully verified. (q.e.d.)

§22. The completeness of B(S).

The existence theorem (proposision 20.1, or equivalently, the formula (20,20))
proved in §820 and 21, plays an essential rdle in the theory of hyperfunctions,
as will be explained now.

First of all: let F be any closed subset of a locally closed ScR. Then it
is clear that any complex neighborhood D of S is always a complex neighbor-
hood of F':

DeD&) > DeDI).

Now let D be any one of these complex neighborhoods of S. By proposition 1,
each ge&B(I") possesses a defining function ¢(z)eW D~ F'), and hence determines
a hyperfunection on S, as explained in proposition 4.1. It is clear that this
correspondence B(F)—+B(S) (the canonical embedding) does not depend on the
choice of De®(S); each element of B(F') corresponds in a 1-1 manner to each
element of B(S) whose restriction onto the open subset S—F of S vanishes. In
other words, we have an exaet sequence:

» BF) ~— B(S) 5 BS-F),
(rest.=restriction).

0

On the other hand, we have D—Fe&®(S—F), whence we see by proposition 20.1
that each gi(z)&B(S—F) possesses a defining function ¢ (2)eW(D-S):
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(@)= {¢o(z), D—~F 1, 5.
Hence, defining g (@) B(S) by ¢,(a)=1{¢(2), Di..., we have
(1) =g (S—F).

Thus, a hyperfunction on S~ F is always the restriction of some hyperfunetion
on S, or equivalently : the restriction B(S)—»>B(S—F') is a surjective mapping.
To sum up, we obtain the following result, one of the most basic properties
of hyperfunections, which we shall call the completeness of V(S). (If we replace
“ hyperfunction”” by * Schwartz’s distribution,” the following proposition ceases
to be valid.)
Proposition 22.1. For any closed subset F of locally closed SC R, we have

an exact sequence !

(2) 0~ BEF) —> BS) 5 BE—F) — 0,
or equivalently,

(3 BS— FH=B(S) mod BF)

where we consider BF) as a submodule of B(S) by canonical embedding.

For any locally closed SC R, the closure S of S in R is always a compact
set containing S as an open subset. Hence we have

Corollary. Any hyperfunction g&B(S) can be *‘ extended to’ a suitable
perfect hyperfunction g x)SB(S) (and hence g (x)&B(R)):

(4) g=g,lS.

£23.  Decomposition of « hyperfunction, general case.

Proposition 23.1. Let {F,, n=1,2,---}, F,c8§, be a locally finite closed
covering of S, and let g (x)=B(F), n=1,2,---, be given. Then there exists a
g(@YeR(S) such that

(1) 9IS'=31 9,18

for any relatively compact open subset S’ of S.%°

The proof below is similar to, but somewhat simpler than, that of proposition
20.1.

Proof. Let D,&T(S) be a (fixed) complex neighborhood of S. By proposi-
tion 20.1, each g.(x) possesses a defining function ¢, ()eW(Dy—F,). Let A, n=
1,2,---, be a relatively compact open subset of Dy— U F. such that A, is simply

v

connected relatively to D,, and A, 1D, for n-—c. (Such A, are furnished e.g.

)

Note that the number of non-vanishing terms in the right-hand side of (1) is finite.
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by (20.17) where d, is defined by
d,=max{r; Ap)c Dy— UF.}

v

instead of the definition of d, in (20.18).)
According to the generalized Runge’s theorem, there exist f.(z)&N(Dy), n
=1,2, -+, such that
o () —fu)<27" for ze&A,.
Consequently

( 2 ) ém(z)zng_l((;’n(z) “—fn(z))

is convergent locally uniformly in Dy— ;J F., and hence a £,(z)&W Dy g F.)
is determined by (2). In particular we have

(3) 8= DD~ FEDZ T E) (mod WAL,

Define g{z)eB(S) by
(4) g@y="1%52); Dyl:.s.
We have, by (3),

(5) giSm:;.;lg“}Sm (: Egn!Sm)

78

with S,=RA,. As any relatively compact subset S’ of S is contained in some
S., (5) yields the general relation (1). (q.e. d.)

Clearly g{z)e=B(S) is uniquely determined by the condition (1). We shall
therefore call g(x) the sum of {g.(z); n=1,2, ---} and denote

8

().

7=

(6) g(x)==

i

Remark. In the above proof of proposition 28.1, proposition 20.1 is used
only to assure the existence of the defining functions ¢,&W(Dy~F) of g,&B(L,).
Consequently, the proof goes well without proposition 20.1, if each g, is perfect
(by proposition 16.1). In other words, following corollary is derived without
proposition 20.1. (This is a generalization of propositions 19.2-3.)

Corollary. Let I be any open set of R, {K,; n=1,2,---} a locally finite
family of compact subsets of I, g. a hyperfunction on each K,. Then, for any
Do), there exists a ¢, &U(Dy—1I) such that

2971:[(,370; DO} (EQ}(I))'

9151
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Now let g(x) be a general é-function on an open set T R as defined in §19,
with carrier {a,; 7=:1,2,---}, and let

(2

A
gl =g )= Do (k—ay)
yext)

be the local expression of g(z) in the real neighborhood I; of z=a;. Then we
have, by the definition (6) of the infinite sum,
(7) gla)y=> g x) on I
g

Conversely, if « discrete point set {a;; j=1,2, ---}cI and general o-func-
tions g x) on ®w=a, j=1,2,---, are arbitrarily given, then by corollary of
proposition 23.1, a general o-function glx)sB() is determined by (7).

This is essentially the well-known Mittag-Leffler theorem.

Ezxzample. Let &) be a real valued holomorphic function on IR whose
Zero8 X==a,, ts, -+ (&I} are all simple. Then, by (7.1), 6(&(x)) is well-defined in
the neighborhood of each z=a.. Accordingly, we have*

5(5(33))::}34‘ If (@)l to(x—a),
and this is a general 8-function on I. For example,
B(xemaz):~~|—2z|f(z3(a;~}-a)+6(m—a)), (@0).

Utilizing the proposition 22.1, we can now prove the converse of proposition
23.1, the general decomposition theorem for a hyperfunction which contains the
decomposition theorems of 8§18, 19 as special cases.

Proposition 23.2. Let S and {F,; n=1,2,---} have the same meanings as
in proposition 23.1, and let g(x)&B(S) be given., Then there exist g, (x)=B(F),
w==1,2, -+, for which (6) holds.

Proof. Put S,=S~ U ., n=1,2,-... Clearly S, is an open subset of
Fy~o..~F, as well as (;f/'”S. Henece, by proposition 22.1, the restriction
18, 1S, can be extended to a hyperfunction #,(x) on I\~ ..~ :

( 8) h'ngsza ) Sn with hnEQ\H(Fiv’ * 'VFN)C}B(S)'
Define g.(x)eB(F,~ - ~F,) by
(9) gi@y=h(x),  gu@)=h(x)~h, ().

We have ¢,!1S,.1=0 by (7). Hence g.(x) is a hyperfunction on F,~«..~F,~8§,
=K,

* The definition of J(fx)) in footnote (3), [1] should be abandoned (cf. [3] comment
16).  Accordingly, the expression in the line next to (4) on p. 127 {17 should be replaced
by (9.3) of the present paper,
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gﬂ(m)e\;B(Fn)r n:ly 2r Tt
Moreover we have from (7) and (8)
ggsze:igvlsm
o

and hence the identity (6). (q.e. d.)
In particular we have, as a generalization of proposition 18.2,
Corollary. Let K., ---, K, be compact subsets of K. Then we have

VK- K)=(BKY), -+, K.

Now let D, be a complex neighborhood of S, and let g(x)=1{¢(2), Dol.. -,
ho(2)={¢u(x), DoJ.... Then we have

gﬂ(x):i:‘fnll(z)v DD]ZTI W’ith ‘pn(z)ﬁ(rhn(z)_‘r’}n(l(Z)EDI(D[)“qu)
and
(10 ‘p(z)rieapn(z) for ze Dy—S.

Hence we have
Proposition 23.8. Let g(x)eB(S), g {x)=B(F.) be as described above, and
let f(x)eNS) be given. Then the identity (6) implies

an F @@= F @),
(12) G(@)=3" G(x),
(3) g(@) =3 0. (@).

§24. The localization theorem.
Definition. Let {S«; ac N}, S.CS, be any open covering of S, and let
ga(@)EB(Ss) be given on each S.. We say that {(S., g«); «& N} constitutes a
localized hyperfunction or a hyperfunction in the wider sense, if every pair
g«, g5 has a common restriction on S«~Ss:

(1) 9alSa~S5=0g5|8a~8S5*",  a,BEN,
1. e go{2)=ga(x) Jor 2& S, ~Ss.

For example, {(Sa, g|S); a= N} with a g&B(S) always constitutes a localized
hyperfunction. Each localized hyperfunction of this type will be called * equi-
valent to a hyperfunction g{x) .

Now we can state as follows the localization theorem the hyperfunctions,
a basic result assuring localizable nature of hyperfunctions.

* IfSa,.\S,;: ¢, each side of (1) stands for 0=B(¢).
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Proposition 24.1. Ewvery localized hyperfunction is equivalent to a hyper-
Junction, i.e. for any localized hyperfunction {(S, ¢|S«); «aEN} on S there
exists a hyperfunction g{x)y=B(S) such thaet g.=g¢iS. for every «EN.

Proof. There exists a refinement of {S.; w& N} by a locally finite closed
covering of S, say by {F,; n==1,2, ---}. By hypothesis, 14'““:‘1?) F'. is a closed
subset of §. We shall now define hyperfunetions iz‘,[(x)E‘B(F,:)J/(}&cQﬁ(S)), n=1,
2, ---, such that

(2) Gz S hiSe  (mod B(Se I 1))
i b

as follows, by induction on #n.
Let hy(x), -, kh, (&) be already defined, and set

-1

(3) = }_J:h-,iSn-%-g,m.

By hypothesis, we have g.(x)=gs(x) for £&S.~ S5 and hence

(4) Gua@)=g,5(2) for x&8a~S;5.
Moreover, we have (,.&B(S~F ) by hypothesis of induction. Hence {(Sa,
g.a(2)); &N constitute a localized hyperfunction on K. Consequently,
defining ¢f. & B(Su—F D) by gha=0na|(Se—F "), we have a localized hyper-
function {(Se—F 'V, gl &N} on ' —F "V, By hypothesis, there exists
a a(n)e N such that F,CSe. Clearly we have

g:}:au:) E\B(F €3] ____F‘ unvl)),

whence the localized hyperfunction {(Sa—F “*V, g¥.); &N} introduced above

ALEES DN

is equivalent to a hyperfunction gi=g}..., on F " —F
gram GRS — IR (for every we&N).
By proposition 22.1, there exists a A, (x)E&B(F,) such that
R (o0 — [ iy =gk
or equivalently,

h (Sa--FDy=g%,  (for every «€N),
i.e. holSaz=g. mod B(Se, FP),

We have now

n
o= 2| Se== gra=Ru|Sa EB(Sa ~ F 1),
»oew ]

and hence the condition (2) is verified also for %.(z).
To complete the proof, we shall invoke to the proposition 23.1 and define
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9@)EB(S) as follows by means of k. ()&B(F), #=1,2, .-

(5) 9= X1 ().
Then we have, by (2),
91Se=g..
Thus the proposition is completely proved. (q.e.d.)
Let {(S«, 9.); «& N} be a localized hyperfunction on S, and let
(6) go=1ge, Ual,  U.&T(8W).

Now set D= U Uﬂ Then clearly D is a complex neighborhood of S, while

{Us; aEN} constltutes an open covering of D, Clearly we have
(7) CaZ=p {(mod WU~ U3)

for any «,3&N. Conversely, if a complex neighborhood I of S, an open
covering {Ua«; a€N} of D, and a family of holomorphie functions ¢«=WU.~8),
a& N, satisfying the condition (6), are given, then a localized hyperfunction
{(Su, g«); «EN} on S is determined by (5), and hence a hyperfunction g(x) on
S.

Definition. We call {(¢a, Us); « &N} a family of localized defining func-
tions of g(z), and denote:

(8) { :[‘((r’)a, U{r) H LYE:lV_]:[Crx ’ {!'ENJ, or

9@)=1(¢a(2), Us); &N ,=l¢u(2); &N, ..
If the suffiz set N is the finite set {1,2, ---, n}, we shall write, in particular,
(9) 9= Uy (e, U i=ley, -+, ¢l
As to this paragraph, see further {8] §8, and the forthcoming note I1.

§25. A remark.

In §520-24 above, the decomposition theorem and the localization theorem
are derived from proposition 20.1 (existence theorem) and proposition 23.1.
The results of §18 and §19 are special cases of the decomposition theorem thus
obtained. Convexsely, we shall show in the following that we ecan also prove
the proposition 20.1 (and hence all the results of §$20 24) with the help of the
results of §518, 19 (and corollary of proposition 23.1).

In fact: let I be an open set of B, g(z) a hyperfunction on I. By apply-
ing proposition 19.1 to each g(x)|/;, 7=1,2, ---, I, denoting connccted components
of I, we see that g(z) can be decomposed into a locally finite sum of perfect
hyperfunctions :
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{ r}a_:‘ g, 9.=8(K),
v
{K.; v=1,2, ---}: locally finite family of compact subsets of I

Hence, by corollary 1 of proposition 23.1, g(z) has a defining function ¢eU(D,
— 1Y for any Dee=S(I).

Analytic Hyperfunctions,

§26. Linear differential equations.
Let L=L. be a holomorphic (linear) differential operator on an open set
IcR:

(1) Lo=Sfu) &

SUA@) s SEUD), v=0, 100,

and let A==[¢, D]e=B(I) be a hyperfunction on I.
We shall consider linear differential equations of the homogeneous and in-
homogeneous type:

(2) L{g]=0,
(3) Ligl=nh,
where the unknown function is a hyperfunction g&8(I).

We can and shall restrict ourselves, with no loss of generality, to the case
where I is connected, i.e.

(4) I=(a,b)c R, —coga<bg oo,

We shall also assume that fi(z) is not identically zero on (a,b). By replac-
ing D by a suitable D’e®(I), D’'c D, if necessary, we can assume furthermore
following conditions from the beginning:

(5) D=D"~I~D" (i.e. D-R=1),

D and D~ are both connected and simply connected,
and
SfoeU(D), v=0,1, .-+, 1,

(6) fi@#0  for z&D-1.

Under these assumptions, the following equation clearly admits a solution
¢=@&N(D~1) (by the monodromy theorem):
(1 Lig@)=¢k) (@eD-I).

We get consequently
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Proposition 26.1. Equation (3) always admits a solution €¥(I). Let g
=g, be one of the solution of (3), and g=g’ (€R¥U)) the general solution of (2),
then the general solution of (3) is given by

(3) g=¢st+g'.

If, in addition, we have heWI) and fy(x)20 (for &), then we have gcW(I)
for g in (8).

In particular, we have

Corollary. Any hyperfunction g&B(U) which satisfies the cquation (2) 1
everywhere holomorphic on I except on zero points of fo. Consequently, carg
is (relatively) diserete in 1.

Moreover we have, by an analogous consideration,

Proposition 26.2. Let g¢'(x) be a solution of equation (8) on I', I' being a
open sub-interval of I (i.e. I'==(a’, b") with a<<a/<V'KV). Then there exists a

solution g(x) of (3) on I such that
(9) gll=g"

§27. analytic hyperfunctions.

Definition. Let g&B(I), ICR be open, aczI be an isolated singularily of
g (i.e. an isolated point of sing.carg). We say that x=a is a threshold of ¢
if there exists a real neighborhood I.cl of x=aqa, and a differential operator
L holomorphic on I,, such that

(1) L.[gx)]=0 (z&l).

Definition. We say that g&B(I) is an analytic hyperfunction if gx) is
everywhere holomorphic exeept on thresholds (.e. if sing.carg s a discrete
subset of I and each a€sing-carg 1s a threshold of g(x)).

Proposition 27.1. Let f,eWI), ¢g,eB) (§=1,---,n), and let g, be all
analytic hyperfunctions. Then the linear form g= A\”_‘.ffgj 13 also an anlytic
hyperfunction. More generally, let 49 be holomm‘phézll‘inear differential ope-
rators defined on I, then

(2) g=3149(g,]

Fey

18 also an analytic hyperfunction on 1.

This proposition follows from the fact that, if each g; satisfies the differential
equation

(3) L7(g;1=0

of rank <m, on a neighborhood I, of a=I, then we can construct an equation
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of rank <§_j m; satisfied by ¢ from these equations, by eliminating all g; from
the equatié)hls (2y and (3).

We can easily derive from the theory of monodromy groups of holomorphie
linear differential equations, that, if g={¢, D}&B(I) has x=a as the threshold,
then ¢(z) is uniquely decomposed into the following form:

(4) ¢@)=3¢(2)

where
@ (2)=(z—a)i(e(z)P(z, log(z—a))+ (2)Q (z, log(z—a))),
(8) Pz, w) and Q(z, w) are polynomials of w whose coefficients are
holomorphic functions of z in 0<|z—a|<d with some 0>0,

and, in addition,
EI d 1) for j+k,
(6) { o Ew (mod 1) for 7

ap=0,

Each «; are determined uniquely mod 1.
In particular, x=a is an isolated point of caryg if and only if r=0 in (4),

(7" o(2)=¢o(2) = e(2) Polz, log(z— )+ &(2)Qu(2, log(z —a)).

Now we shall consider a special kind of thresholds for which every coefficient
appearing in the representation of P, and Q; as polynomials of w in (5) is mero-
morphic at z=a. We shall call such a threshold a regular threshold, because
it corresponds to the regular singularity of an analytic linear differential equa-
tion.

Now it is easy to see that g satisfies an equation of the following form:

(8) L.[g(x)]=0
. no dil'y
/110 = N'"Folx)- -
with L, %__:;f,(.l) du
where
feeW(a—ad, a+a8)Y),
(9) =0 T4 (g, a+0)), for some 50,

Jol)

and conversely, any hyperfunction g which satisfies an equation of a form such
as (8)(9), has x=a as a regular thershold.

Again, let us call the regular threshold x=a non-degenerate, if each coefli-
cient appearing in the representation of P, and @, in (7) as polynomials of w
is, not merely meromorphic but holomorphic at z=a. Then we have
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Proposition 27.2. Let g=®(I) be an analytic hyperfunction whose th resholds
are all non-degenerate regular thresholds. Then, for any discrete subset
AcT (e.g. A=sing.carg), g(x) is uniquely determined by its restriction onto
I—-A:

gI—d)e®I-A).

Proof. Let g, ©®(I) be another analytic hyperfunction whose thresholds

are all non-degenerate regular thresholds, and assume
QI —A)eglI-A).

Let go=gi—g=1¢, D], DE®(I). Then, for each acd, ¢(2) is a holomorphic
function in 0< |z] <0 with some 4>>0. On the other hand, ¢(2) is expressible in
the form (25.8). By the uniqueness of the expression, we know that the ex-
pression is of the form

¢(2) = ¢u(2) = e(2)¢a(2) + ¢ (2)¢a(2),
where ¢¢2) is a holomorphic function in |2{<d.

As a result, we have
go=0 on I. (q.e. d.)

If we take AD sing.caryg, then f=gl{{I—A) is a holomorphic funection on

I—A, and, for each a€4, f(x) is expressed in the form
}7_‘ (x—a) Pz, log{x—a)) (a~o<a<la)

Gerth

(10 fl@)y= .
> (a—x)iQ(x, log(a—-1)) (a<z<a+n)

J=4

for some 6>0, where as, - -, e, satisfy the eondition (6), while P;(z,w) and @,(z,w)
are polynomials of w whose coefficients are holomorphie functions of z in |z—a|<J.
Conversely, let A be any discrete subset of I, and f(x), any analytic funetion
on I—A which is expressed in the form (10) for each a&A. Then there exists
a uniquely determined analytic hyperfunction g(z) on I whose thresholds are
all non-degenerate regular thresholds.

Exzample. Power funections ga(x), g«(—2) (e€C—{—1, —2,---}} in §13 are
analytic hyperfunctions on R and satisfies the equation

(m ;fa - 4,y)ga(:%;a;):0.*’

' {
®*  Conversely, the general solution of the equation {z - Lo o Jw=0 with
dz

(1) we B(R)
is given by w=e1ga(x)+ eagal — 2), ¢y, ¢: being arbitrary constants. The same result is true
even if we replace (i) by a weaker condition: we®B(f), 1 being an open interval on X,
according to the proposition 26.2. In ease «= - (n-+1)=~-1,-2,---, which was excluded
above, the general solution of the equation with weO(R) or weB(l) is given by w=

1 [N
clP‘;};;;:{ + .0 ().
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z=0 is the only threshold of ¢.(+z). Clearly it is a non-degenerate regular
threshold. Consequently, g.(-+-%) is completely determined by (13.3), in the sense
of proposition 27.2.

Various examples of analytic hyperfunctions (of practical use in the applied
analysis) and their integrals will be found in [3], §82-3. (Cf. also forthcoming
paper 11.)

£28. Irregular thresholds.

Thresholds of g&B(I) other than regular thresholds will be called irregular
thresholds. They correspond to irregular singularities of holomorphic linear
differential equations.

(1) L.1¢(2)]=0,

where coeflicients of operator L. are holomorphic functions in [z—a|<p with
some p>>0, then the solution ¢/(z) of equation (1) is a holomorphic function with
(possibly) a logarithmic branch point on z=a, i.e. a holomorphic function on
the covering surface of the z-plane;
0<jz—al<p
) |
—co<Larg(z—a)< oo,

If z=a is an irregular singularity of (1), it is generally difficult to determine
¢n(z) exactly. According to H. Poincaré,* however, the equation (1) has then a
solution ¢(z) which has an asymptotic expansion of the following form for
{z—al]-0 in a domain {z; #;<arg(z—a)<t:}:

(3) Mz)~(z—a)-exp P((z—a) ') Qz~-a)""),
where « is a2 complex number, r a natural number, P(w) a polynomial in w,
and Q(w) a formal power series (not necessarily convergent) in w. The expan-
sion (3) holds uniformly in ¢,-+Jd<arg-(z—a)<t:—0 (0>0). Now let Aw” be the
term of the polynomial P(w) with the highest exponent. The domain {z;
NA(z—a) " <0} consists of the angular domains A, ={2; wm<arg(z—a)<wm.1},

m=0, +1, -2, --+, where
wp=arg A+ <#+é~)ﬁ%_'
In each A, which lies in #;<arglz—a|<t., ¢(2) converges to zero exponentially,

and hence faster than any power of |z—a{, when [z--a]| tends to zero.
For this reason, we shall now consider a solution ¢(z) of (1) defined in the

® 1. Poincaré, Arta Math. 8 (1886}, 295.
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domain (2) which satisfies for every N<co:

{ H2)=0(z~a|") as |z—al—0,
(4 uniformly in & -+i<argiz—a)<t—a, (6>0)
with some #,, 0. (4,<0s).

Lemma 1. Let A=_1, be a holomorphic linear differential operator defined
in |z—al<p. Then A.[{(2)] is again a holomorphic function in the domain
(2) satisfying the same condition as that of (4) for {(2).

Proof. By the integral formula of Cauchy, we have

(5) 1L9@1=55 Feo (1 ez,

where we shall take 7=(2+ce’*(z—a); 0<«<2x) with a suitable ¢>0 so that we
have in |z—a|<m<p

[¢z+ee' (z—a))| < Alz—al¥*" for # +d<arglz—a)<:—0

(6) .
with some A>0.

1 . o 1 (

As A;(-C—:E> is a polynomial in v of degree m+1, n being the rank of .,
we have

1 1 n+

et s

1
for |(—z|<p:

with some p;>0 and B<co. Consequently we have from (5)
AN S Bos - Az —a V"= A 2 —a) ¥
’ (cle—al)" '
for |¢—z|<min(p;, p2)
with A’=c¢ *-BA. (q.e. d.)
Now let 0<po<p, and let Io=I"4(p") (0o<p’<p) be a path in the domain (2)
defined by

(8) I'y: atp ~— a+d— a+de? — a-+g-¢’

8 being a sufficiently small positive number (Fig. 2). Define
¢r(z)eUC~-{a, a+p']) by

id
7=a -+ 0e FB

z»a%vé‘-‘ z-a+P’
(Fig. 2)
R PO
(9) gor@)=— 4 f {2 dc

ryle’
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with a # between ¢, and #.. Clearly ¢.(z) does not depend on the choice of #.
Now let
(10) g={ga, Do ] (Dpy={z; {z—al<po})
be a hyperfunction on (a-p,, a+py) with ¢ (2) in (6) as the defining function,
then we have
0 (a—pp<a<0)
aw  ogw={ '
o) O<ez<a+p).

On the other hand, lemma 1 yields

(12) L) = =) f t”i‘i’f” Az (mod (D))
Poteny

for any analytic linear differential operator .1 defined in D,. In particular, we

have

(13) L.i¢p(z)i=0  (modWDy,))
and hence

(14) L, lg(x)]=0 (x&{a—po, a+po)).

It is clear that g(x) does not depend on the choice of o'

To sum up, we shall state as follows:

Proposition 28.1, Let ¢{(2) be a solution of the equation (1) defined in the
domain (2) satisfying (4) for every N<oco. Then an analytic hyperfunction
gy B(a—pgo, a-t+py)) 1§ determined by (9)-(10), and satisfies (11), (14).

Definition. We shall call this g(x) the analytic hyperfunction determined
by ¢(z) and 'y (or any path ' which s equivalent to 'y as an asymptotic
path for J(2)).

Futhermore, by lemma 1 and proposition 26.1 we have easily

Proposition 28.2. Let L<', A%, j=1, -+, n, be all analytic linear differ-
ential operators in Dy, and for each 3, let g{x) be an analylic hyperfunction
determined by (2) and I'y where (z) is a solution of the equation
LY (2)=0 satisfying the same condition as (4):

[ i(2)=0(z—a]") as |z—a]|-0, for every N<oo,
U wniformily in ¢, +6<arg(z—a)<t:—3 (3>0).

Then g@)=N1AY1g{x)] is also an analytic hyperfunction determined by
.

kd o .
¢(@) =23 1" [¢ ()] and 1.
ERE
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Hyperfunctions with Diffrent Types.

Thus far, we have considered hyperfunctions on a locally closed subset of
R. Hyperfunctions, however, can be defined on any Ce«-manifold as we have
stated in the foreword, and at this juncture, we are led to introduce the notion
of analytic distributions as a natural generalization of that of hyperfunections
({21 §2, 1371 §7, t4]). In the following, we shall explain a generalization of
this sort in case of dimension 1.

8§29. Analytic distributions.

Let X be a Riemann surface. (We do not assume the connectedness of X,
i.e. we admit that X consists of an arbitrary (not necessarily countable) number
of connected components.) For any open set D of X, we denote with (D) the
ring of all holomorphic functions in D (which is a generalization of the definition
of WD) in §1), and for any subset E of X, we define a ring W) as the in-
ductive limit of {W(D); DDE} by restrictions g, 5 : WD) D) (D, IV being
open sets of X).

Now let S be any nowhere dense* locally closed set of X. We shall, in
accordance with §1, denote with ®(8)=(S, X) the family of all the * complex
neighborhoods ”’, i. e. the open sets of X containing S as a closed subset. For
locally closed S, %(S) is clearly defined as the inductive limit of {N(I)):; De
D(S, X)} in accordance with §1. Similarly, %(S) and B(S) are now introduced
as U(S)-moduli by

(1) W(S)=inductive limit of {MD-8); DeD(S§, X))},

(2) B(S)=A(S) mod A(S),
where we consider %(S)c(S) in a natural manner. We call each clement of
B(S) an analytic distribution on S. An analytic distribution gezB(S) is deter-
mined by a couple (v, D) such that ¢eWD—S8), DeS, X). We call (¢, D)
(or simply ) a defining function of ¢, and write:

(3) g=L¢, D]=[¢].

Now, let (X', §) be another couple of a Riemann surface X’ and a nowhere
dense locally closed set S’ of X’. Let & be an analytic homeomorphism from
S onto &', i.e. a 1-1 analytic map from some D,&D(S) onto some Dy DS
such that «(S)=S8". (Hence # ! is an analytic homemomorphism from § onto

* Although analytic distributions can be defined on any locally closed S, we confine
our considerations on nowhere dense S. (This implies Dist(S, ) =0 in notation of 2], U

denoting the sheaf of holomorphic functions of some type (§31). Hence only Dist(S, ¥) is
to be considered.
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S.) For any ¢'={¢/, D']eBK"), we define g=g¢’-0=B(K) by

(4) g=l¢, 0" (D ~D"]
with  ¢@)=¢'(a(p) (pEo™H(Dy ~D")-S).

The definition of ¢’ o is clearly independent of the choice of (¢’, D’). Moreover,
we have from (4)
goa l==g’.
Therefore, the carrespondence g—g’ furnishes a canonical isomorphism
(5) B(S)=B(S.
The transformation g=g"-¢ defined by (4) is a generalization of the transforma-

tion of variable defined in (7.1) for hyperfunctions.
The corresponding relation between A(S) and W(S):

(6) N(S )= AS")

is also easily derived. We have, for f/&€WS", g/€WS"), j=1, -+, n,
(7) <§:fj’g4fl>”‘7:>_:.:f,igj
J=1 F=1

\Vith fj,“ﬂ:fj’ gj’l'ﬂ:gj'

£30. Hyperfunctions on an analytic curve.
Let M be an oriented simple analytic curve on a Riemann surface X. Thus,
for a suitable De®DM, X), we have a decomposition analogous to (1.1)

(1) D=D'+M+D-

such that for each p&M there exists a complex neighborhood D,e®({»}) and
an univalent holomorphic function z,&MN(D,) (i. e. a local parameter in D,) with
which
(2) 2 (R)=D, - M
2, (C)=D,~D*(=D})
holds. Replacing X by some X'&eDM, X) (e.g. X'=X—-(M~M), M denoting
the closure of M in X) if necessary, we may assume, with no loss of generality,

that M is (velatively) closed in X:

(3) M=M.

‘

The Riemann surface X may be called a ‘ complex analytiec prolongation’ of
the ‘*1-dimensional Ce-manifold M. The relation (29.5) assures that these

hyperfunctions on SCM are well defined if Ce-manifold M is given, and do not
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depend essentially on the choice of X in which M is embedded.

Now we shall generalize as follows the notion of hyperfunction defined in
§2.

Definition. Let S be a locally closed subset of M, M being an (oriented)
simple analytic curve on a Riemann surface X.*' We call a hyperfunction
on S each element of B(S) (i.e. each analytic distribution on S).

Needless to say, the properties described thus far for hyperfunctions on a
locally closed S in R also holds, mutatis mutandis, for hyperfunctions on a locally
closed set S in M. For instance, for g=[¢j&B(S) we can define the complex
conjugate g=B(S) of g by

g=-l¢]
(4) Lo
with ¢(p)=¢(p*)
where p* denotes the reflection of p&D (with some De(S, X)) with respect
to M, and for any analytic linear differential operator I on S, we can define

LigleB(S) as a generalization of (8.1) by
(5) Lig]={Ll¢]].

Each g=®B(S) can be considered as an element of B(J), I being a suitable real
neighborhood of S (i.e. an open set I M which contains S as a closed subset),
and we have, by a canonical identification similar to (5.3),

(6) WIHcBA).

§31. Hyperfunctions with different types.

Through handling manifolds, we are naturally led to introduce hyperfunc-
tions with various transformation properties as follows.

In the first place, let B be a (complex) analytic veetor bundle over the
Riemann surface X. For any open set D of X, we denote with Wn(DD) the
U(D)-module consisting of all the sections of B over D (i.e. of all the analytie
mapping ¢ from D into B such that m-¢=1p=idential map of D, = denoting
the projection of B onto D). Replacing every (D) in 29 by Us(DD), we obtain
the definition of n(E) (E: subset of X), Mn(S), Bu(S) (S: locally closed set
of X), in place of A(E), MS), B(S) respectively, and expressions and relations
corresponding to (29.3)~(29.7). Clearly Us(E) constitutes an (E)-module, and
As(S) and Bp(S) constitute A(S)-moduli. Each element of Bu(S) will be called
an analytic distribution of type B on S.

In the next place, let M be an (oriented) analytic ecurve in X, and let B be

* Clearly M (and hence S) is a nowhere dense locally closed set of X.
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an analytic vector bundle over the I-dimensional Ce-manifold M. Then there
exists an X, =M, X) and a complex analytic vector bundle B, over X, such
that B is (canonically isomorphic with) the restriction of B; ento M (i.e. the
analytic vector bundle on M induced from B by the injection M—X,). If (X,
B.) is another such couple of X, 2(M, X) and a complex analytic vector bundle
B, over X,, then we have a canonical isomorphism

Wi, (S)y==Us, (S)

(6) B, ()= B, (S)

in a natural manner. Therefore, we can define A(S)-moduli s(S) and Ba(S)
by
Nu(S)=%Us, (S)

(2) . -
Bu(S)="8n,(S)

independent of the choice of (X, B)).

Definition. Each element of Au(S) and Bu(S), Sc M, is called holomorphic
Function of type B and hyperfunction of type B, respectively.

If B is e.g. the analytic vector bundle of differential forms (i.e. convariant
vectors), or of (linear) differential operators, then analytic functions of the
corresponding type B are holomorphic differential forms or holomorphic differ-
ential operators on M, respectively, while the hyperfunctions of the corre-
sponding type will be ealled hyperfunctions of differential form or of differ-
ential operator, respeetively. If B=XxC (the product bundle), then %u(S)
and Bn(S) reduce to W(S) and B(S) respectively (so that the qualifying phrase
“of type B’ becomes unnecessary).

Corresponding to (30.6), we have in a natural manner
(D) Bs()

for any open set I M and any type B, and consequently, we can legitimately
call each f&%u(I) a holomorphic hyperfunction of type B (ef. {2] §2, {3] §T).

In 11, we shall give an equivalent definition of analytic distributions from
the local stand-point, and a direet proof of the ‘localization theorem’ and
‘ completeness theorem’ for analytic distributions.
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Errata,

The author profits by this opportunity to correct some errors in his former papers [1),{2).
[1] p. 127, expression (2): ‘¢@~(2)’ should be replaced by * —¢~(z)".
[2] p. 607, line 9: *completely separable’ should be read  perfectly separable’.
p. 607, line 5 from the bottom: ‘T’ in the bracket should be replaced by ‘ T,



