On the Theorem of Riemann-Roch.

By Tstnco TAMAGAWA.

A. Weil [1] has discovered that there exists an intimate rvelation
between the topological strueture of the idéle ring 4 of the funetion
field & and the Riemann-Roch theorem. He has given a completely new
proof of this theorem, defining the differential as a continuous lincar
function defined on the module 4/k. This shows an example of the
beautiful harmony which reigns over the aritametic and the theory of
the algebraic function field. As is well known, the notions of idéles
and additive idéles have turned out to be the most important in the
present day arithmetic, and the standard way of expressing these
matters by means of these notions seems to have heen now established.
The object of the present paper ig first to give a proof of the Riemann-
Roch theorem in this style, and then to generalize it to  veetor
gpaces’’, so that it may be applied more conveniently to various cases.
In § 4, we give an application of this result to semi-gimple algebras,
and obtain a theorem of E. Witt {1} and a formula of Hurwitz [1] in a
generalized form. It is also not difficult to explain the method of F.K.
Schmidt [1] from our standpoint, but this topic will be reserved to
another ocecasion.

The author wishes to express his hearty thanks to Professor K.
Iwasawa who has proposed him the problem and given him many useful
hints, and to Mr. M. Kuga who has helped him to simplify the proof
in § 2.

1. Additive and multiplicative idéles.

Let & be a finite extension of a field ) with the dimension 1, in
which I3 is supposed to be algebraically closed. We shall then call k&
an algebraic function field over 3. A wvaluation of k over X} is a homo-
morphism of the multiplicative group &* of the non-zero clments of f
into the additive group of real numbers, satisfying the following con-
ditions.

1. wla+b) = Min. (u(a), +(b) (u+b=0)

2. u(u) = {} fOi‘ ae}j

3. u(E*) == {0}

Put further »(0) = + <, so that » is defined for all elements of [,
and that the condition 1. is satisfied in general. Two valuations v, /
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are called eguivalent : v ~ /| when there exists a positive number 2 such
that J(a) = Aula) for all awek*. A cluss of valuations according to this
equivalence relation is called a prime divisor. We shall denote the
prime divisors with the letters like P, 4. To each prime divisor P
belongs a normalized valvnation ve, such that o0k%) coincides with the
set of all rational integers. Put o= {u; aelk, v a) >0}, p={u; ael,
v} 2> 0} o 18 an integrity domain determined by P, and p is a prime
ideal in 0. ojp is an algebraic extension of 3 with a finite degree n(P).
Let M be the set of all prime divisors of k. A divisor of I is an
element of the free abelinn group 1) generated by 9. We shall write
F for the neutral element of .

Put v fA) = N0 e and w(A) = S0P, lA) for A = PP, P,
If ack*, there are but finite number of prime divisors P with p.{a) == 0.
The divisor 7/,0”+" is denoted by () and called a principal divisor. The
mapping k* s - {a) is & homomorphism of 4* into /). The map of
k* by this homomorphism, i.e. the group of all principal divisors is
denoted by D,. Since 3S)m(Plvda) =0 for aek* by the * product
formula” we have n{Ad) == 0 for AeD.. The elements of [Jji), are called
divisor classes. n{A) depends clearly only on the class to which 4
belongs. We shall write A > B for two divisors A, B with y,(A) > v {B)
for all Ped, and call the wntegral divisors the divisors A such as
AS>F.

Let K be an extension of & with a finite degree, and &, ..., £,
the extensions in K of a prime divisor P of k. Let p be an element
of & with vup) = 1. Put e, = vy, (p) and f, = #{P)/n'P). Then we have
2lefo= Kkl An isomorphism of 1) iuto D, ithe divisor group of
K) is obtained by P> P Inidentifying 12 with {8 ... {2, D
is enbedded in Dy DT D,

Let &y be the completion of 4 with repect to the valuation vr,
then v, i extended to kp.

The elements {a,) of the direet sum N4, will be called vectors,
and denoted by ¢, b, ..., ap, 0., ... ave called the p-components of a,
b, ..... They are added and multiplieated as follows.

aEkb=1{u,+b)
ab = lap. by
We shall write v{a) for v{e,). An additive ideéle @ is a vector satis-
fying the condition :

veta) 2 0 for all but a finite number of P.
If a and & are additive ideles, @ + § and a.b are clearly also additive
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idéles, and the set of all additive ideles forms a commutative ring £.
We can associate to an element a of & an additive idele whose -
component is « for each P. If we identify e with this additive ideéle,
k becomes a sub-field of £, and the unit element of & is also the unit
element of £,. Similarly, we can associate to a,ek, an additive idele
whose P-component is a, and P’-component is 0 for P’ < P, then kn
becomes also a subring of L. We shall denote the unit element of %,
by 1,. An addilive idéle having an inverse in F, will be ecalled an idele
of k, and denoted by a small german letter. The set of all idéles
forms a multiplicative group JJ. in which &* forms a subgroup. If
a = (e is an idele, then a,=} 0 for all P and v,{a;) =0 for all but a
finite number of P, so that we ecan associate to each idele q a divisor
(@) = JIP"", q — (a) is clearly a homomorphism of J, onto D). Let a be
an idéle and a an additive idele, then the product a @ is defined in i,
so that J; forms a group of operators on / as a S-module.

Let K be an algebraic cxtension of I with a degree », w,, ...u,,

a basis of Kjk, and §,, ..., P, the extensions in K of a prime divisor
P oof k. If we consider K as a commutative algebra over k, the scalar
extension K,/k, of Kl is isomorphic with K.\ + o + Ky, For each

ksa = (a,) we associate an additive idele @,\elx whose P- compo;xent is
equal to a, for each P|P. Identifying a, with @, we ean regard  as
a subring of X and J. as a subgroup of J,.. It is easily proved by
above remark that K = Fuw, +.....+ Jw,

2. Parallelotopes. Theorem of Riemann-Roch.

Pat vp = {a,; apeks, viday 20} and v = S0, Blements of ¢ will
be called (additie) integral idiles.

Let a be an ideéle of /. The sub-module g 'y of % depends elearly
only on the divisor 4 = (qa). We ecall this module parallelotope of the
size A, and denote with L.(A4}. If we take the set of all L(A) as a
system of neighbourhoods of 0 of I, £ becomes a topological ring. The
necessary and sufficient condition for bel, ((a)}, is a-bev. So if n(A) <
L(A) contains only one element 0 of k by the produet formula, hems,
kis a discrete set of k. Putl L{A) = I, (A)~k, then LAY is a S-module.
We have clearly L (b)A4) = o LiA), and L(A(z)) = 2 'I(A) zek*. Hence
the rank {(4) of L(A) over N depends (mly on the divisor clasg of A.

Put p, ={a,; arep, vola,y =1}, Then pr is a prime ideal of o,
and o,/p, is an algebraic extension of > with the degree n(f’). Let
Wi W, be elements of k,, whose residue classes mod. p, are
linearly independent over 33, and p, an element of k with velpp) == 1.
We shall call a system of elements {w!, ....., w; Pt a uniformizing
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system at P, an p, a prime element of P. Each element a, of k) has
a unique expansgion of the following form with respeet £o a uniformizing
system {wi, ....... , Wl Py
== }3 )ﬁ as st P = S Aa w1
PR PRUSARE 4,7

From now on, we shall consider a uniformizing system assoeiated
to each I’ as fixed onee for all. Then we have funetions f7; for all P
and 1 ZiEnl’), —» i< o, I a=(ay is an additive idele, we
shall write f/;(a) instead of % (a,). f1 is then a linear funetion mapping
ke as a Stmodule into ¥, and if we introduce the diserete topology in
S5, fi; is a continuous function. It is casily proved that the set {f7}
i3 a strong base in the sense of Chevalley of the space of all continuous
linear funetions of & in 3. Now we can prove the following lemmas

and propositions.

Lemma 1. If A B, then L(A)/L(B) is a S-module with the rank
n{A)—n(R). ‘

Proof. Let A be adivisor of k. Then a is in 1 (4) if and only if
fi(@ =0 for i <—vp(A). Thereforeif A>B and P,,...... , P, are
all the prime divisors such that v, (4) > (B), then L(A)3a is in L(B)
if and only if £ (a) = 0 for n(A)—n(B) funetions ff, 1 <I<<h, —vp(A)
Ll =vp(B), 1 <j<n(P). Henece L(A)|L(B) has a rank n(A4) — n(B)
as a Si-module.

Proposition 1. [(A) is finite for all 4D,
Proof. Let A, be a divisor such that A > A4,, n(4,)< 0. Then we have
I(A) = {0} and J(B) = L(A)~L(B) for A> B, so that

I{A) = I(A)w L (A)/1(A) < L(A)L(A)
Henee H{A) < a(A) — n(d) .
We shall eall (A) the dimension of the divisor A.

Proposition 2. If & is a purely transcendental extension S'(z) of
S5 then ool = .

Proof. There is only one prime divisor Py, of & with v,u(x) 0. We
shall denote other prime divisor with 2, Q, +.... To each prime divisor
PP} we associate uniquely an irredueible polynomial F.{x) e N [x]
with highest coeflicient 1 such that v(F,.(x)) = 1. Then obviously
v/ (F ) = 0 for P'=P, and vaFi{2)) = —a(l’). We ean take the set
1,2 ..... , U B2} as a wniformizing system at P. If ap isan
element of kp with vp(as) = <0, we put
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then vidap— Hp (@)Y (F, ()" >0 and v (H @) Foed) >0 for PP As
to Po, vio(Hp(2)Y Fr(z)) = pn{P)y — deg Hpyix) 0, nence a,p — Hola):
(F{z)*" eo On the other hand, 1/x is a prime eloment of Foand (D) == 1,
so {1: l/x} is a wniformizing system at Po. If a. is an cloment of
Fre Witn —p = v () <0, we put

Y I
H, = S_I. ,Af&i;‘m(ﬂrlm)f

then it is easily proved as above that a,., — /2 ep.

Let a = (a,) be a non integral idéle, and 72, ..... I’ all the prime
divisors such that vpfa) < 0. To each a, we associate 2 polynomial
H,(2) as above and put

z = >:1 Hl’l(x) /ITI’,('T‘); V":(ﬁ) + Hyof)

(The last term appears ounly when one of P, is P,) Then a—z is
ocviously an element of p, hence it follows that ¢eowhk. Our assertion
is thereby proved.

Proposition 3. Let A be an arbitrary divisor of £, then
EIL(A)Y “k
is a Stmodule with a finite rank. If r(4) is its rank, n{4) ~1(A4) + »(A)
is a constant depending only on k%, and not on A.
Proof. Let zek be a transcendental element over . Put f.= (r),
k is then an algebraic extension of k,. Set »=1[k; k]. Let w,,. ..,
w, be a relative basis of k over k,. We can take an integral divisor
A, such that 4, > (w,)™' for 1<<i<{n, then clearly 1{A)3w ,...., w,.
So we have by Proposition 2: IL(A)wk " k.. Henee L{A)wk 2 ko, +
vevo+ Bae, =F. Take a divisor A, such that A4, > A., A > A. Then
we have obviously L{(A)wlk = [, and
FIT Ay = LAYl [T A~k
= TAAIAA YA LAY k) = LAY ILAY1(A),
TAAYC LAY TAA)Y = (AN T~ TLA) == LA ) ILA).
Hence r(A) = »(A4) —n(AY —([(A,)) —-1(A)}
If in particular L(A)wk =k, we nave n(A) - I(A) - n{A)- [(A).
So if i(A)wk =, L(A)o" =], and A > A, A A,
nld) —H{A) = niA) — HA) = (A} ~ [{A).
Therefore n(A,) — l(A,) is coastant for all 4, satisfying I(A)wk = k.
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So #(A) + n(A) — (A} does not depend on A as
r{A) + n(A) — HA} = n(4,) — I(A)

Remark : From Proposition 3, we see that r(4) depends only on
divisor class of A.

The congtant value of r(4) + n(A) — {(A) + 1 is called the genus
of k, and denoted by ¢g. Putting A = F, we see ¢>>0. Moreover if
k is rational funetion field over ¥, i.e. the purely transcendental ex-
tension of ¥, the genusg of k is equal to 0 by Proposition 2. We have
clearly »(A) > 0. Farther, r(A)<<r(B) for A>B. A divisor A with
7{(A) = 0 ig called non special. As shown in the proof of the Proposition
3, there exists at least one non special divisor A4, .

Proposition 4. There is a constant m, such that all 4 with n(4)=>m
are non special.

Proof. Let A, be a non special prime divisor. Put m = n{d.) + g.
If n(A) == m, we have [(AJA) > n(AJA) — g+ 1>1. Hence there is
an element x40 in L(A/A,). Put B = (2). AJA,. So we have obviously
B> FE and r(ABy =0. as AB> 5. Hence

r(A) = r(A(x)) = r(AB) = 0.

Now a mapping f of k into S} satisfying the following three con-
ditions will be ealled a differential of k.

1. f is linear, i.e. S)3a, B and kaa, b, implies
Flaa + 8b) = ufla) + £1(0)

2./ is continuous, i.e. there exists a divisor 4 sueh that
I{A) > @ implies f(a) = 0.

3. S maps £ to 0.

Let A be a given divisor. Then the set of all differentials mapping
all elements of L(A) to 0 forms a N-module, whose rank is obviously
equal to the rank A/L(A)vk=»(A1). If we denote this N'module with
¥,, the Proposition 3 may be expressed as follows.

{(A) = n(A) — g+ 1 4+ rank ¥,.

Now the sot D) of the divisors of /& forms obviously a distributive
lattice with the order relation 4> B. We have clearly L(4vB)
= JAAVCLR), L(A~B) = L{AAIB). If fis a differential =0,

D, ={4; AeD, L35} forms a sublattice of D. There is the maximal
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value of n(A) for de¥,, as fe¥, for »(A)=in by Prop. 4. Let »((),
C,eD, be this maximal value. As we have clearly #(4) > n(B) for A -8,
AR, D34 implies (> A, Sinee this divisor is determined by the
differential # =0, we shall write "= (7).

Let ¥ be the module of all differentinls. For fel. we define a
differential x-f by ‘

efia) = jiral
g0 that ¢ becomes a k-module. Clearly (&) = () (F)

Proposition 5. ¥ is a l-dimensional r-module.
Proof. Suppose f..f. be two linearly indepent differentials over k.
Let +» be a natural number, and P an arbitrary prime divisor. We have
dim (PYf) = rZzwm(PY+n((f) — g+ 1
dim (P f)) = s = wvnlP) + n((f)) — g + 1.
Letz,, ...., e L{P(f)and u, ..., y.e IL{P*(£)) be linecarly independ-
ent over 3, then & f1, ..., &0, Yufe, oov, Uyt are linearly independ-
ent over S, and P '<(x,f) as x¢ L(PY(S)), P =<(yf) as y;e(P"(f)),
so that
(P = uvn(P) + y — 1 = + s.
Hence
vo(P) + g — 12 200(P) + 2((f) + n((f)) — 20 + 2.
This leads to a contradiction, when v —> o, therefore ¥ is [-dimensional
over k.
By the above proposition and the remark (zf) = (2)(f), the set of
divisors (f) (fe L, f=0) forms a divisor class, which be called the
canonical class of k.

Theorem 1. (Theorem of Riemann-Roch). Let A be a divisor and

f, a diffenrential == 0. Then it follows
WA = n(A) — g+ 14+ 1L{f)A).

Proof. We have only to show dim L, == [((f)A ). Y43/ means
(/) >A. We may write f = z.f according to Proposition 4. This is
equivalent with (z) > A (£,)"'. The number of such linearly independent
z's are clearly I{(f.)A™).

Corollary. U(f) =g, n((f)) = 29 — 2.

§ 3. Vector spaces.

Let M be an n-dimensional veetor space over k, and ¢, ...., ¢, 4
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basis of M over k. Then the “ completion” 3 =Te 4+ .... +]e, of M
is determined by M, independently of the basis e, ...., e.. Misa
o> - module, containing M and M, = ke, + .... 4 l,e,, as sub-
modules.

Now take for each prime divisor P of /: a submodule il, of M,
sutisfying the following conditions.

i) 11,18 a finite o,rmodule, eontainning a 4 ,-basis of M,.

2) I, =o0.e + .... + ppre., oxcept for a finite number of P.

Theu a submodule /1 of M of the form 1/ = 33,11, is called a parallelotope.
In thiy definition a basis e/, ...., e, of Mover & is used, but obviously
it is independent of the choice of hasis whether a submodule I/ of M
is or is8 not a parallelotope. The paralleletope may be also defined as
follows :

A submodule 71/ of M is a parallelotope, when it satisfies the following
conditions.

1} 1/ is an v-module.

2"y A, A, being certain divisors, I(A)e, + .... +(Ae, < Il < L(A")

e+ .... 4 I(A)Ye,.

[t i3 clear that these two definitions of the parallelotopes are equivalent.
A module of the form L(A)e, + .... + L(A)e, satisfies 1), 2), then this
module is a parallelotope. 1/, 18 called the P-component of a parallelotope
I =73711,. When I, 1" are parallelotopes, so are also 1/ 11", tI'~1I".

Let I/ = 3,11, be a parallelotope. Let ak,...., a” be an p,-basis
of 11, and puat al = Nlalie;, alek,s. Denote with a = (a,) the idele
with the compodent «, == |a’%|. The divisor (a) is determined by I/
independently of the basis al. The divisor (a) is called the norm of I/
and denoted by N(f7). Obviously 11 > 11" implieses N(IN)< N(11"). If
¢, ..., €, Is another basiy of M over k, and e, = SMa;e;, the norm
N'(11) of I formed with the basis e/, ...., ¢, instead of e, ..., e, is
obtained from N({/) by N'(i1) = (a) NUI) where a = |a;|. Then V(1)
== n(N(I1) ") is independent of the choice of basis. V(//) is called the
volime of the parallelotope 7/. The following lemma is proved the same
way as the lemma 1 of § 3.

Lemma 2. If /7 >V, the rank of the S-module 1//1' is equal
to V() —(11').
In particular, we have Vi(de + .... + L(A)e) = n-n(4). Now we
shall write MM == 1o M. Then we have.

Proposition 6. M(//) and M(i/)w M are finite N-modules.
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If a(11), p(1]) are their ranks respectively, it holds
AL = V() — n(g — 1) + p{l).

Proof. Take two divisors 4., A, such that //. = L{(A)e + ...
+L(A)e, T TI(A)e, + ... + L(A)e.= 1I,. We may suppose also
r(A) = 0 in virtue of Proposition 4. M({/,) is a D-module of dimension
n-I(A.). Furthermore we have

MM (1) = MUy~ I 11, & 1T,

so that M(/1) is a S-module whose dimension #l(A4) + V({{/) — n.afA).
As 7(A)) = 0, we have L(A)vk =1k, 1/, oM = M, so that
Millvic = Hokith vk 1Ij1[,~{Iwk) = Il < M(UIL).
hence
p(ID) = V(1)) — V(I — (A1) — #(1D))
so that
Wn = Vi — alg — 1) + p(in)

A mapping of 3 into S is called a differential of M, when it
satigfies the following conditions.

1) A7sa, h and )34, 3 implies @(a-a+ 8h) = ud(a) + 30(h)

2) There is a certain parallelotope 7/ so that @(a) = 0 for all ae /.

3) @) =0 for all aeM.

Now, let // be a fixed Parallelotope, the set of ditferentials @, such
that @(a) = 0 for all ae//, a Sl-module, which will be deneted by L,.
We have by Proposition 5, dim ¥, = p(/]).

A differential @ of M determines n differentials f,, ...., f. of k,
by f{@) = @(ae) for aek. Conversely n differentials s\, .... ,f, of &
determine a differential @ of M by &(Sia,e) = >)fda). If a basis e,

.., e, of M over k is fixed, this correspondence between ¢ and {f.,

., [} is obviously one-to-one. Hence the set of all differentials
forms an n-dimensional k-module.

Now, we shall define the inner product (a, b) for a, be M.

It is a k-valued function of a, beM satisfying the following conditions.

1. (a, b) = (b, a)
2. (aa + ¢'a’, b) = ala, b) + o/(a', b) for «, a'ck.
3. If a==0, there exists be M such that (a, b) 0.

Then we can take for a given hasis e,, ...., e, of M over Ik, the *‘ dual
basis’’ ef, ...., el such that (e;, e/) = &;. The domain of definition
of the inner product can be extended te M by
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(2’__‘;,, a; e, , Z:)be) = 2_‘ ah,

Let 17 be a parallelotope. We shall define the dual parallelotope
1* of 11 by
I/* = {a; acM (a, h)eo for all he/l}.

[t can be proved without difficulty that //* is a parallelotope satisfying
L. (I** =1
2. Vrry = - v
Let f be a differential of k and ae M. We shall define a differential
a-f of M by
a-f(b) = f((a, b)).
Suppose f, 410, let @ be an arbitrary differential of M, f,, ...., /.
the differentials of k corresponding to @ as defined abhove. We can
write f, = a.f, in vertue of Proposition 4. Then

(l)(:\,_‘ Bf ' ei.) == fn(gasbl) = (E ; e;:]_fn(z i)g(’f)

so that every differential of M is expressible in the form a-fi. It is
easily shown that @ = af, €%, /] being a given parallelotope, if and
only if (a, B)e L((f.)). for all he//. On the other hand, let b, be an
idele of & such that (f.) = d). Then we have (a, b)elL(q) if and only
if aeM (b, '1/*). From all this follows the following ‘‘ Theorem of
Riemann-Roch for veetor spaces’'.

Theovem 2. A(H) = V) —nlg - 1) + Ao 1I¥).

4. Scparable semi-simple algebras.

& being a function field as before, let S he a separable semi-simple
algebra over & with a rank n. If S3w,,...., @, are linearly independ-
ent over A, the structure of 8 is determined by »* ““ constants of
stracture”” el el :

g
;" W; = ‘\___,1 Ci;

Congidering S as a veetor space over L, we shall use the same notations
as in § 3.

Pat § == ko, .... + Feo,. Extending the relations (») to S, we can
regard § as a ring, which is generally non commutative. An element
of § will be called an additive idele of S, an element of S with an
inverse in § an idele of S, and the multiplicative group of all idéles,
idéle group J of 8.

We can naturally regard S, S, k, k., & and J, as subsets of S. If
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T3, then Yoo, = 3G, 0, with a;ek, and
A = ||
is in J.. We shall eall q the norm of a and denote by

j\"is;k(f'[) =

Proposition 7. p@, + , ... +ore, 18 2 maximal domain of integrity
of S» except for a finite number of P.

Proof. We have v, (c}) >0, 1 <4, j,<n for all but a finite number
of . So orw, + «... + oo, 18 a domain of integrity of S,. Let T-¢
be principal trace of ¢eS, i.e. the sum of the traces of matrices
corresponding to ¢ in all inequivalent absolutely irreducible represent-
ations of S. So

Diw) =T ww;| 40

because S iz separable over k. v {INw)) is O for all but a finite number
of P. If vo(d)) >0, 1 <4, 4, L < n, and vp(IAw)) = 0, v, + .... 400,
is clearly a maiximal domain of integrity of S,.

If every P-component O, of parallelotope O of S are maximal
domain of integrity, we shall eall O a principal parallelotope. In the
following, we shall consider a fixed prineipal parallelotope. Iivery prin-
cipal parallelotope (0 of S
with a suitable idele 9.

ean he then expressed in the following form

() = W OY
To each P, we determine a minimal basis /", ..., 7, of O, over
o, and set
dy = D) = | Tl
Then the vector b of & whose P-compouent is d, for each / is elearly

an idele of &, and the divisor (b) depends only on & and not oun the
choice of . We shall call D = (d) the diseriminant of S.

Proposition 8. Let d = n((d)), then the volume of every principal
parallelotope i — %d.

Proof. Let nf = Slef; clieks.
then
D(n") == (I‘,{’; I"t])(m)
d = n(D) = 23,0 Pl ef;]) = —2V(0).
Put (£, 7 = T&-5 for £ 7eS, then (£,7) satisfies the conditions for the
inner product in §3, and can be regarded as such.
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Put
dpo= {Ely EI/C-Sy (51*; 'C/f)&‘l)/‘ for all all ‘:”C'D/‘}

d:'is then “ Differente ” of (., and >4, = O js a parallelotope of §
which is dual to (b with respeet to the above defined inner produet,
Put 4,.:=8,0,. The idéle T = (3,) will be called the Difiarente idele of
0. It is obvious that O* = T70 = 0% ', and the diseriminant of S
coineides with (N,:D)

Let 90 be an arbitrary idele of S, then the volume of the parallelo-
tope WO is obviously - n((N.,2)) + V(0), and the dual of Y- is
OF) = T W

Put
AT 0) = 1), HO-97) = ()
(N (20)) = n(A)
Let £, be a differential 4= 0 of & and p. an idele of & with ) =(5)
Then applying the Theorem 2, we obtain the fol lowing theorem.
Theorem 3. (Theorem of Riemann-Roch for S)

R0 = nQ) — n(y — 1) - %d b )

EBach differential @ of S is defined by I, £e& as follows
D) = Ef ) = fAT£m), 2¢8, 7e S.

If S eoincides in particular with an algebraie extension K of I, then
Theorem 3 coineides with fe-£- Theorem on A, and genus (; of K can
be expressed by ¢ as follows.

20— 2 e w2y~ 2) ¢+ d

This is the well known formula of Hurwitz,
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