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A Representation Theorem on a Filtering Model with
First-Passage-Type Stopping Time

By Takenobu NAKASHIMA

Abstract. We present a representation theorem for a filtering
model with first-passage-type stopping time. The model is constructed
from two unobservable processes and one observable process that is un-
der the influence of two unobservable processes. A filter is constructed
using Brownian motion in the observable process and a first-passage-
type stopping time in an unobservable process. Though our theorems
are similar to those of Nakagawa[5], we do not use pinned Brown-
ian motion measure, which is difficult to deal with. In addition, we
describe a representation theorem for another filtration that was not
discussed by Nakagawa[5].

1. Introduction

Duffie and Lando [2] studied the implications of imperfect information
for the term structures of credit spreads on corporate bonds. They assumed
that the bond investor could not observe the issuer’s assets directly, and
could receive only periodic and imperfect accounting information. They
then derived a relationship between the volatility of the issuer’s asset value
and its hazard rate. Their model is a kind of filtering model. Jeanblanc and
Valchev [4] examined three types of information related to a company’s un-
levered asset value on the secondary bond market: the classical case of con-
tinuous and perfect information, observations of past and contemporaneous
asset values at selected discrete times, and observations of contemporane-
ous asset values at discrete times. In their model, although bond holders
receive information about contemporaneous and past asset values in the sec-
ond type of information, they receive only contemporaneous information in
the third type. Jarrow, Protter and Deniz [3] provided an alternative credit
risk model based on information reduction, whereby the market only ob-
serves the company’s asset value when it reaches certain levels, interpreted
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as changes significant enough for the company’s management to make a
public announcement. Nakagawal[5] constructed a filtering model based on
a default risk, and derived representation formulas under conditions of im-
perfect information. He analyzed the properties of processes under V&ff,
which is a probability measure on C(]0,u]; R), and the law of Brownian mo-
tion B; conditioned to start from z; > 0, stay in (0, 00) for s < w and reach
2 > 0 at time v under P. However, because this measure is difficult to deal
with, we present representation formulas that do not use the measure v. In
this paper, we refer to the “first-passage-type stopping time” instead of a
“default time”, because our focus is solely on the mathematical perspective
of a filtering model.

First, we present a representation theorem for a filtration with first-
passage-type stopping time. In this part, we do not use a filtration model.

Let (92, B, P,{B;}+>0) be a complete filtrated probability space, and as-
sume that the filtration {B;}+>( satisfies the usual conditions. Let B, B,
and W; be independent Bi-Brownian motions with values in R.R% and R re-
spectively. We denote the right continuous filtration generated by a contin-
uous stochastic process X as (G;¥). For example, G =(,., 0{Bs,s < u}.
Let a > 0, B} = a+ By, 7* = inf{t > 0' B = 0} NP = l{TaSt} and
FV o= Muae(GF vV o{r® Au}). Let qu(t) = [;° exp )ds and
Aalt) = = log4a(t) = 2qa(t) ! exp(_Q_j). Then P[T > 1] = qa(t) =
e~ Jo Aawdu T 7a(t) be the density of 7*. Then, we have

(1) ve(t)dt = P[r% € dt] = Ao(t)e™ Yo Ae(Wdugy,

We can also see that
t
M= N = [ =N ()ds
0

is £}V -martingale.
Let g(t, z) and ®(¢, x) be the density and distribution, respectively, of the
Brownian motion B;. Hence, g(t,z) and ®(¢,x) can be written as follows.

T

2
exp(~3;). @(t.) = [ gty w20, 10

—00

@) gltz) = V;_ﬂ
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We note that

dg x 0%g dg 2 —t
“itx) =gt It r) =22 (t, ) = —
%9 10) = ~2o(t.), TS(1a) =22 1,0y = T
We denote as LP, p € (1,00), the space of {B;}-progressively measurable
functions ¢ such that E[fOT lplbds] < oo for any T > 0, and write £PT =
Uq>p L9 p>1. Fort > s, let

g(t, ).

ak
(3)  HO (5 0) = Bllirosa fgy(t =, BOIGY], f € £17,
k=0,1,2,
t 4
(4) AP (t; f) = / HP (t,u; f)du, fe L3+, k=0,1,2
0

(5) Hy(t; ) = 0 2O GO (1 1) + 220, () HO (55 )},
feLt,

(6) Ua<t7 s;f) = E[1{7“>s}f8(2¢(t - Sng) - 1)’gZV]> IS £
(7) Talt, 55 f) = el O LHD (¢ s: ) + A (OUa(t, 55 )},
fertt.

We will show that these are well defined in Section 2. Thus we have the
following theorem.

THEOREM 1.1. (1) For any t,T >0 and f € L,
T t
E[/O fsstu:tVV] = _/0 Ha(s; fl(O,T](')))‘a(S)ildMg‘
(2) For anyt >0 and f € L*F,
t ¢ t s ops
E[/ fsds|FV] :/ E[f|F¥ds —/ </ Ua(s,7; f)dr) Aa(s)"taMe.
0 0 0o \Jo
(3) For any t,T >0 and f € L5F,
T TAt
Bl rawir) = [ Bl
0 0

- t ([ outours rroman, ) auts)anz,
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4) For anyt > 0,f;,€ £L2F,i=1,--- .d,
( y

E[fudBi|F7"] = 0.

Second, we consider a representation theorem with a filtering model.
The quantities X, Z, and Y are the same as those considered by Nakagawa
[5], and are called the main system, sub-system and observation, respec-
tively, in his paper. Let X and Z be solutions of the following stochastic
differential equations under P:

dX; = dB;—+ bo(t, Xz, Zt)dt, Xog=x9 >0,
dZ, = o1(t, Xy, Z)dB; +b1(t, Xy, Zy)dt,  Zo =z € RV,

where by : [0,00) x R x RV — R, 01 : [0,00) x R x RV — RN*4 and
by : [0,00) x R x RN — R are bounded and continuously differentiable
functions. Let Y be a solution of the stochastic differential equation,

dY;f - UQ(t,}/t)th + b2(taXt/\T7 Yt)dta }/0 =Y S Ra

where o9 : [0,00) Xx R — R and b2 : [0,00) x R x R — R are bounded
and continuously differentiable functions. We assume that there exist some
e > 0 and oa(t,y) satisfing o9(t,y) > € for any ¢t € [0,00), y € R. Let
7 =inf{t > 0; X; = 0}, Ny = 1<y and F; = Nust(GF Vo{r Au}). We
now consider changing the probability measure. Let p; be given by

t t
(8) pt = €xXp (/ bo(S, Xs, Zs)st + / /8(37 Xsar ifs)dWs
0 0

1 t
by [ 0o X 20 4 B X Yo )
0

where B(t,z,y) = oa(t,y) ba(t,2,y) and P is a probability measure on
(Q,F) given by dP = p;'dP. We can see that p,p~' € p>1 £F by
Novikov’s Theorem. Let p; = E[p|F]. Here, we will denote the expec-
tation under the probability measure P as E[-]. Let

_ t
B = Bi+ / bols, X, Zs)ds,
0
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t
Wi = Wit [ 5o Xonr Yo)ds.
0

Then Et, B, and Wt are independent ﬁ'{Bt}te[O,oo) -Brownian motions. The
stochastic processes X, Z and Y are described in the following:

dX; = dB;,
dZ, = o1(t, Xy, Z0)dBy + bi(t, Xy, Zy)dL,
dY, = oo(t,Y,)dW,.

From the above equations, we can see that {th}tG[O,oo) coincides with the
natural filtration generated by {Et}te[o,oo)- Because dW; = o(t,Y;)"'dYs,

we can see that G = G)V and F, = nu>t(g;W Vo{rT Au}). In addition, we
can see that

. t
M; = N/"° — /0 (1= NIz (s)ds

is ﬁ—ft—mar‘cingale. Let

~ oF
©)  I®( s f) = E[1{7>S}a—£(t 8, X )ps_fslGY], t > s, k=0,1,2

for f € £L?T. Let ¥ denote the set of B -adapted continuous processes F for

which there exist f;, = 1,2,3 € £5% and (fi),j =1,---,d € L5 such
that

(10) F o= R+ /0 f1(s)ds + /0 fo(s)dW,

t d t o
+ /Ofg(s)st—l—j;/o fl(s)dB.

For F € X, let
(11) (DoF)i = B(t, Xinr, Y2)Finr + Lirsey fa(t),
(DiF)e = bo(t, Xe, Zo) Finr + Lirsy f3(1),
(D2F)e = Ly fa(t),
(LF): = lgspfi(t).
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For r > s >0, let
(12) V(s F) = prleo deolode (Vi s )

+Mwﬂ(%ﬁm%ﬂ%+ﬂmmeWD>

(r,s; F) / ID(r, u; DyF)dW,
0
+/ <I(2 rou; DUF) + I (r, LF)> du.
0
Let .
A(s) = Agy(s) + V(s;1), M;= N, / (1 — N)A(s)ds
0
and

. t
Wt = Wt - / E[ﬂ(r7 XT/\TvK”)|F7"]dT
0

Then, we will show that M, ¢ 18 P—.ﬂ—martjngale and that Wt is a P-F;-
Brownian motion. Nakagawa [5] also gave A using the measure of a pinned
Brownian motion. We can now state the following representation theorem,
which was not given by Nakagawa [5].

THEOREM 1.2. Let F € ¥ and Fy = E[Fp,|Fi]. Then we have the
following.
(1)

t -~ t t_ =
Ft:F()—i-/ fg(?";F)dM,A-/ fl(r;F)dr~|—/ fa(r; F)YdW
0 0 0
where
fo F) = —14uny (VR F)+ V() Fo)Ar) ™
fl(r;F) = 1{T>T}E[1{T>T}(LF)T‘fT]7
f_Q(T;F) = E[(DOF)T|JTT] - E[ﬁ(ra er}/;’)|fr]Fr—
(2) Moreover, if there exist ¢ > 0 and a € (0,1) such that
1{|Xt\§1}1{r>t}|Ft‘ < C’Xt|a fOT‘ t > 0, we have fo(T‘; F) = —1{T>T}F _.

The author would like to express his appreciation to Prof. Kusuoka and
the referee for their useful suggestions and comments.
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2. Evaluation of Integrands

For fefl,t>s>0and k=0,1,2, let

~ g "
(13) H(J(Lk)(tv 55 f) = E[l{T“>s}|fSW(t -5 Bs)Hg;/V]

ProprosiTION 2.1. Forq>1 and k=0,1,2, we have

HP(t,5:1) < 01 (@) + (g, a)(t — )7
foranyt>u>0 witht —u <1. Here
(k) “g
Ci"(a) = sup |(9 = (t2)| < oo,
x>a/2,t>0
0o k a
g\u, 5
Plaa) = 2| s L0 1 < o
0
Proor. We have
kg ok 1 1 k1 Ofg
w(t,l’) = %(t 29(1,t Q.T)) =t 2 W(l’t QI)

Since {B{'} and {W,} are independent,
8kg a\|q| oW
(14) Bl 22t B 1G]
00 akg
- / (9(u,x —a) — g(u,x + a)) W(t —u, x)|9dx
0

o ax k:
= [T otus - ) - exp(- 2L — )
0

IN

0o k
[ st =l - wards
2a [%/? g

o ), g(u,z — a)ﬂw(t —u,x)|%dzx.
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For the first term, we have

) k 00
//2 g(u,x — a)\%(t —u, x)|%dx < ka)(a) //2 g(u,z —a)dr < C’{k) (a).

For the second term, we have

a/2 k
20 [ gt — )l 921w, )
u
a 2a [ 0
< gt §)= [CalT e - v
a. 2a [ _k1 OFg _1 g
= o= [l - S0 0w
a 2a, [ OFg —kq—q+2
SR N I
< P (qa)t—u) T

Then we have our assertion. [J

To represent the conditional expectation under P with respect to {G/V'}
and {F}V}, we must derive some inequalities to define stochastic integrals.
Propositions 2.2 and 2.3 enable us to evaluate H, and U, in Theorem 1.1.
These quantities are defined in Equations (5) and (7), respectively.

PROPOSITION 2.2.  Let p € (1,00) and ¢ = ;5.

(1) For k = 0,1,2, there are some C’?E )(q, a) and Cik)(q,a) € (0,00) such
that

—kg—g+2

APt ) < (6 (g.0) + P (g,0) —w) ™5 ) B[ £PIGY )

for any f € LP, t > u > 0. Note that ﬁé’“’ is defined in Equation (13).
(2) Let k = 0,1,2 and p > 3%4,?. Then there are some C’éﬁ)(q,a) and
Céffl) (g,a) € (0,00) such that

t ~
/ H®) (¢, u; f)du
0
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1
1 —kg—q+4 t P
< (B + a5 ) ([ Bisra)
foranyt >0, f e LP.

(3) Let k=0,1,p > % There are some C’ég)(q, a) and C’ég) (¢,a) € (0,00)
such that

t o~
/ HP (t,u; f)2du
0

=

)

1 —kg—q+3 t P
< (Bt + e ) ([ Bisa)"

for any t >0, f € L.
(4) Let s € [0,T]. There is some C1(T,q,a) € (0,00) such that

B[ 1,6 Pl < C1(T,0.0) ( I E[Ifulp]dU)% ,

for any f € LP, p > 4. Note that H',gk) is defined in Equation (5).
(5) Let 0 < 59 < s1 and & be a bounded Fs,-measurable random variable.
Then, we have

/0 I;[ng) (T; 51(50,81}('))dr - 2ﬂéO) (3;51(50,51]('))‘

Note that H is defined in Equation (4).

PrROOF. (1) By Proposition 2.1, Holder’s inequality and a property of
convex function, we have

\HE) (¢, u; f))|
< Bllpronny| 2L 4w, B)9IGITS Bl £ 1GV ]
~ {re>u} 6w’f u, Dy, u u u

—kq—gq+2
2

)" ElfP10Y )
q+2

(C;E,k) (g.0) + P (ga)(t — )~ ) Ell£PIGT7,

IN

(@ + @ -

IN

where

1 1 1 1
) (q,a) =200 (@), (g, a) =210 (g, a)7.
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Next, we will show assertion (2) and (3). Let m = 1,2.

t ~
/ AWt u; ) du
0

kq—q+2

t — m m
/o(Cé’“(q,a)+c§“<q,a><t—u> ) B 11T du
t —kg—q+2\ ™ %
[ (Paa+cPaan-n™5) " al
0

t 5
( / E[| fuP1GY ]mdu>
0
(=kgq—gq+2)m

gm ( /0 (€ (g,a)™ + CP (g, a)y™(t —u) 2 )du)

AP )
(f )

Ifmzlandp>ﬁ,orifszandp>ﬁ,wehavep>
(=kg—g+2)m
2

IN

IN

X

1
q

IN

X

24+2m
24+m—mk

and

> —1. Then we have

(=kq—g+2)m

t
/o (5@ )™ + (g, @)™i(t — ) =5 ) du
2 (7kq7q2+2)m+2

t
|(—kq —q+2)m + 2|

< (g, a1t + P (g, a)™

Then we have the following for f € L.

t ~
/ HP (t,u; f)™du
0
(k) (=kq—q+2)m+2

1 (—kq—q+2)m+2 ¢ 1
< (P (ga)ts +CE (g a)t ></0 E[|fu|™)du)?,

where

mg+m m

¥ (g,a) =27 P (a)¥,

mqg+m

2 g
1
|(—kq—q+2)m + 2|9

e (g.a) = S (g, a)
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(4) We can see that H(gk)(t,f), k =0,1,2, are well defined for f € Lt
by Assertion (2). Then H,(t; f) is well defined for p € £%*. Since p > 4

and 3q+4 > 0, Assertion (1) implies
B [ 168011
0
" S T A A
< Elelo Aa(“dr/ <H§2)(t; £) + 2 (6 HO (85 f)) dt]
S O l
< ([ Ens)’
0
s 1
S él(Tv(La’) </ E[|fu|p]du>p 5
0
where
él (87 q, CL)
— efﬂs )\a(T)dT‘{/ (0(2)( )qtq +C( )( )ét732qq+4>
0

+ 2)(t) (Céo)(a)été + 00 (q,a)et 30 )dt}

(5) Since lrasyy [0 %(r —u, By)dr = lgras,39(s — u, By), we have the
following.

= 2H(§O ( 51 50,51]( ))
Note that the last equation holds by Assertion (2). O
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PROPOSITION 2.3. LetT >0,p>3,q= [%. Then U, is well defined,
for any f € L5 and there are C1(q,a,T),Ca(a,T) € (0,00) such that

E/ (/ tuf)du) 1
< Ci(qaT) </0TE[|fu|2p]du)dt>% + @(a,T)E[/OT Fdu]

for any f € LT, Note that U is given by Equation(7).

PROOF. Because 0 < ®(t — s, BY) < 1, for any f € £ we have

/ Ut us ) du

t
< /0E[E[1{Ta>s}fu(2q>(t—u,33)—1)|g3V]2]du
< /OtE[fj(m(t—u, B —1)%du < /Ot fidu.

By the above evaluation and Proposition 2.2 (2), we have

Bl /0 ' < /0 Bt f)2du> dt]

- 5l ' (/ RN (0 1, )l PU s 1))
9¢2/0 Aal drE/ / t u; f) du) dt
; /0 Au(t)? ( /O |Ua<t,u;f>|du) a

262 fOT Ao (r)dr

T 1 t 1
< <<0é2<q,a>t+0é2<q,a>t—2q+3m<t> ( nfu\pfduﬁ)d

0
+ 9T /o Aa(r)dr ( sup Ag( ) / f2du).
0<t<T

IN

IN
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For a part of first term, we have

T 1 3 1
/ (G5 (g, a)t + C§3 (g, a)t~20+3)a / E[|f.|*)du)? )dt
0 0

Sl

< /0 (CH (g, a)t + (g, ayt—2+3)de) i /0 ( /0 B[ fu[*)du)dt)

Note that U is defined in Equation (6). Then we have the assertion where

Cl (Q7 a, T)

1
X T q
_ 262./0T Aa(r)dr </ (Cé}g(q,a)t + 06(5,12)(% a)t_2q+3)dt>
0
1
T t 5
Y ( /0 a(t)? /0 E[!fuIQP]dU)dt>

Co(a,T) = 9T e2lo Aalr)dr ( sup )\a(t)2> O
0<t<T

and

3. Representation Theorem

We saw that some integrals are well defined under the conditions in
Section 2. In this section, we prove Theorem 1.1 ,which is the representation
theorem under F}V. For 2,y > 0 and ¢ > 0, let

(15)  go(t,z,y) = g(t,y —x) — g(t,y + ) = g(t,y — x)(1 — e~ 22¥/")

where g(t,z) and ®(t,x) are the density and distribution, respectively, of
the Brownian motion B;. These are given by Equation (2).

First, we will present a representation theorem for E| fot -dBs|FV] which
corresponds to Theorem 1.1(1).

LEMMA 3.1. Lett > u >0 and & be a bounded B,-measurable random
vartable. Then we have

EE|G%] = E[€1G,"] and E[§(B; — B,)|G] = 0.
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PrOOF. Let hg be a bounded QZV -measurable random variable and h
be a bounded o{W(s) — W(u);s > u} measurable random variable.Then

E[£hohi]
E[¢hoE[h|By]] = E[Sho] E[h]
= E[E[£|G)) [ho] E[h1] = E[E[£|G,, 1hoh]

and
E[¢(By — By)hohi] = E[¢ho|E[(By — By)hi] = 0.

So we have our assertion. [J

PROPOSITION 3.2. Let 0 < s¢9 < s1, £ be a bounded Bs,-measurable
random variable. Then, we have the following for t > 0,

(16) Elg1rasy (Bg, — Bg))]

0 Ss1 829 u
- = ( 1{u<T}E[€1{TQ>u}a 2 (7' - u, Bu)]dU)dT
t S0 T

PROOF. Let
oo oo
@(vaat) = / / (y_x)gO(S7$ay)90(tvyaZ)dydza T > Ov 87t > 0.
0 0

Note that go is defined in Equation (15). At first, let us think about the
case t > s1. Then we have

1{7a>so}E[1{Ta>t}(B;11 - Bgo)|Bso] = 1{7a>so}90(31 — 50, Bg()?t - 81)'
Then
E[é-l{r‘l>t}(Bg1 - B;Lo)] = E[é-]‘{Ta>SO}SD(Sl — S0, ngat - 31)]‘

Note that

A7) (st < / / ly — 2lg(s, — y)g(t.y — 2)d=dy
o0 —0o0
(@)

- /OO ’y—m]g(s,x—y)dy:EHBsH:\/QWE.
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Since
a o 1 09? a dp a a
ds@(sl _S’Bs7r) = (_$+§@)¢(31 _SvBsﬂa)dS—i—%(Sl _Svstr)st
and
8 1 02
(~+5 10 2> (5.2,7)
B / / (s, 2,9)90(r, y, 2)dydz = — 890(8+7“ z,z)dz
0 8ZC
= —/ (== (s—i—r x—z)—@(s—i-'r x+2))dz
N 0 Oz Ox '
= —2¢9(s+mr,xz), x>0, s,r>0,
we have

Lras o) (51— 8 AT Bl rat = 51) — (51 — s0, Bl t = 51))

SAT?
= —2/ g(t —u, By)du

S0

SAT 7
+ / %(81 —u, By, t—s1)dBy, s € [s0,51).

S0

2
As 289 = 52 2°9 we have

E§1 rasyy(Bs, — Bg))]
= E[§1{7a>50}g0(51 —sATY Bl a,t — s1)]

s
+ 2E[§1{‘r“>so}(/ 1{7“1>u}g(t - u,BS)du)], s € [30731)'

S0

Since ¢(s,0,t) =0 and ¢(s,z,t) — 0, s | 0, we have

lim E[§1(asg10(81 = SATY, Bpra,t —51)] — 0

s—S1

by Equation (17) and the bounded convergence theorem. Then we have

Ef1resn (B, — Bg,)]

51
= -2 E[£1{7“>u}g(t —u BZ)]drdu

S0
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= —2/ §/ (r —u, BY)dr|du
50
0%g a
- = ( 1{u<r}E[§1{T‘1>u}a D) (T —u, Bu)]du)dr
t S0 x

for any ¢t > s1. By taking ¢ | s1, we also have our assertion for ¢ = s;.
Second, let us think of the case t € (s, s1].

Elg1rasy (B, — Bg,)]
E[¢ 1{Ta>t}E[(B“1 — Bg,)|Bt]]
E[1rasyy (B) — By,)]

oo t 829
= [ e Bl€1 oy 5o (= B
t S0 x

Letp>4andq:p%1,r>u20. Then we have

0%g “
(15) Bl s g 5 (r — u, BY)
1 8%g a
E[|1{T“>u}lé‘p]pEﬂl{T“>u}‘m(r —u, By)|]
—3q+2._1

< E[1pasuy €17 EI(CP () + CP(2,a)(r —u) "]

Q=

IN

by Proposition 2.1. We have the following by Lemma 3.1.

[e’s) S1 629 “
[ e Bl ey 5 50 - v B duyar
t t x
S1 o ag a
= 2| (| LucnBllgresuég (r—u, By)ldr)du
t t r
= -2 /Sl(E[l §/OO @(r — u, By)|dr)du =0
- ] {re>u} ., or » Py - Y
Note that since # > —1 and by Equation(18), we can use Fubini’s
Theorem in the above equation. So we have Equation (16) for ¢ € (s, s1].

When ¢ € [0, sgl,

BElg1 oz (Be, — Bg)] = El§l{rasy BB, — B |By]] = 0.

So we see Equation (16) is valid for ¢t > 0. O
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PropPOSITION 3.3. Let 0 < 50 < s1, t > 0, and £ be a bounded F,-
measurable random variable. Then, we have

°° 99 a
E[€1{7a>so}1{7—a>t}] = / E[1{7“>so}§%(7a — 50, BSO)]dr‘

oVt

PROOF. We assume that ¢t > sy, then we have
E[€1{Ta>t}:| = E[£1{7a>SO}E[1{T‘l>t} |BSOH
= Bl a0t 0. B )]

For x > 0 and t > 0, we have

o0 o0 o0 a
[ atteaan = = [T ([T H s mpas)ay
0 0 t §
1 00 [o8) 8290
- _§[ < 0 ayQ (S,$7y)dy> ds
_ 1 [ 99 [0y
= 3/ By (s,x,0)ds = /t 8x(s’x)d8

Considering Equation (14) in Proposition 2.1, we have

o0 89 u
E[§1{7a>50}1{7-a>t}] = — E[§1{7a>50}£(7“ — So,BSO)]dT. ]

oVt

PRrROPOSITION 3.4. Let 0 < sg < s1, § be a bounded Fg,-measurable
random variable, and v : [0,00) — R be a bounded Borel measurable func-
tion. Then we have the following.

(1)
E[E(B;, — Bg)v(m)]

00 S1 829 u
= —/ v(r) </ 1{u<r}E[§1{7a>u}—a 5 (r—u, Bu)]du> dr.
0 S0 x

(2) E[§1{70>50}U( a)] - SC;O ( ) [1{Ta>so}§%(r_807330)]dr'
(3) E[E(BY — BE)FW] = — [y (r) HP) (13 €1 (a9 001 ()N
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(4) EE(Bs, — B&)IFY] = = [§ Hals:€1(s,0) () Aals) " 1dME, £ >0.

PROOF. (1) For v = 1j; ), Assertion (1) is valid by Proposition 3.2.
Let V be the collection of bounded measurable functions v which satisfy
Assertion (1). Then V is a vector space. In addition, if {v,}nen is an
increasing sequence of non-negative functions in V and if lim,_,~ v, exists
and bounded then lim, v, € V. Let A = {A C R;14 € V} then
(t,00) € A for each t > 0. A is w-system by the monotone convergence
Theorem and A" = {(¢t,00);t > 0} € A is m-system. Then we have our
assertion by the monotone class theorem.

(2) By the same way with Assertion (1), we see that this assertion is valid for
any bounded Borel measurable function v : (0,00) — R using Proposition
3.3. This completes the proof of Assertion.

(3) Let ho be a bounded Q -measurable Borel function and h; be a bounded
o{Wy—Wgy; t > so}- measurable function. Note that B,, VG2 and o{W; —
Wyt > so} are independent. By Lemma 3.1 and Proposition 3.4 (1), we
have

BIE(BS, — B, hoh] = —Blhoc(BY, — B, ) Elh]
00 S1 82
= ([ tuen Bl G5 v By B
0 S0
[e's) S1 829 W
— ([T e Bt Bl o 55— BIG Nu)ar )
= —E[hohl(/o </0 Liuary Bl€L(s0,61) () Lrasu)
2
< 8- B aar)

= —FE[hohiy,(t*)~?

> 829 a a w
X 0 1{7“>U}E[§1(80,81](u)1{7“>u}@(7 - U, Bu)‘gu ]du]
= —Elhoh17a(7) " HP (7% €1 (50,511 ()]

= —E[hoh1/0 Ya(r) T HE) (13 €1 49,001 () AN,

Then we have the assertion.
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(4) We note that lEIéQ)(t;fl(sOM](-)) =0 for t < sp and

Bl&(Bs, — B, )| ey | = BIE[E(BE, — Bs,)|Bs, ||y 1 = 0.

Then we have
t
BlE(BY. — BY)|FV] =0 = /0 (5 €1 (53,011 ())Aals) 'dME, £ < 50,

By Lemma 3.1, we have

/ ) (551 3 ())ds = BIE(BS — BL)|GY] =

and then

B B €100 (D161 = — [ AP 561
By Assertion (3) and Equation (19), we see that
(20) Ble(Be, — Bg,)IF"]

S /0 T ) A (1 €1 g g (AN FV
- -/ e PV (11 €10y ()N

- E[/tOO 7;1(r)ﬁ(§2)(7°;51(50,51]('))dNﬁ\ftW]

_ /0 RO (O 5261, (D) Aa) A
_ /Of O ) (561,00 ())(1 = NO)ds
belinin g ey / A (561 o) (-))ds

Note that 7, is defined in Equation (1). We also note that elo Aa(r)dr (1
N =1- ft Jg Xa(r)drgpra  We now see that

t
t N
i 2alrir (1 _ gy /O ) (55 €150 011 ()



548 Takenobu NAKASHIMA

_ /H 51 (g9,1]())ls

_ (/ oI5 N (r)drdMa> </ O (51 (00 ())ds)
0
t ~ S A
- / et ( / A 73 €1 () ) M
0

+ / <Hc(z2( 351(50,51]('))/ €f07'>\a(u)dudMg> ds.
0 0

Then, we have the following for ¢t > sg,
t
EIE(BS, - By)IFY) = - / elo AT FP (51,001 () Aals) " M
0

* / t< / S HP (7159 01 () dr)d(elo 2 (1 — N2 )

0 0

¢ )
— _/ efff*“(”d’"(Héz)(S;ﬁl(so,sl]('))
0
+ Aa(s)/ FIC(LQ)(T;51(50,51}('))6”)))\a(s)_ldMg'
0

Finally, we have Assertion by Proposition 2.2 (4). O

Let Zo be the space of progressively measurable processes ; for which
there exist B, - measurable bounded random variables £, such that

n—1

Zfsk Sk,skJrl (t) t Z 07

k=0

where 0 < 59 < 51 < -+ < 8, <T. For any p > 1 and f € LP, there exist
foe L0 n=1,2,---, such that

n—oo

T
lim E[/ |fu(s,w) — f(s,w)[Pds] =0 forany T > 0.
0

The following gives Theorem 1.1(1).
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COROLLARY 3.5. LetT > 0. Then we have
T [e%) fe'e)
B[ fasdr == [Toaer ([ 6 frim (i) an

for any f € L* and

T t
B[ £dBARY) =~ [ Hus flom()hale) HME, >0
0 0
for any f € L.

PROOF. Let s1 > sp > 0 and fbe a bounded B, -measurable function
and fy = fl(s 5(t). Then we see that the first and second assertion are

valid for f € £O by Proposition 3.4 (3) and (4), respectively. We can see

that [ H (s,u; f ljo7)(-))du in the first assertion is well defined for any
f € £4+~ by Proposition 2.2 (2). As for the second assertion, let us take
{&.} € Lo such that

lim E[|&,(r) — fr]] =0 for all v > 0.
Then we have
TN t B .
Bl /0 £.(3)dB,| ] = — /0 (s, Euljo.zy () Aals) M2, £ 0,

by Proposition 3.4 (4). Since o{W;;t > 0} and o{Ny;t > 0} are indepen-
dent, we have

T _ ~
E| /O (Ha(5:8,) — Hals: £))hals) N9
T — ~ —
- £ /0 Ell(Ha(s: &) — Ha(s: ) Mals) " dN?]
= /TEH( o (53 6n — f)\]e_fos Aaidugs 0, as n— oo, forallT >0
0

by Proposition 2.2 (4). So fot Hq(s, flio17(-)) Aa(s) 1M, is well defined,
and we have the assertion. OJ

Second, we will state a representation theorem for E| fot -ds|F}V'], which
corresponds to Theorem 1.1(2).
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ProPOSITION 3.6. Let s >0 and f be a bounded F-progressively mea-
surable process. Then, we have the following

(1) E[f|FY] = B[] racey — [ 7a(r) " HM (1, 55 £)dNE.
(2) E[f8|ftw] - [fS,f;/V] fst ( ) an(Tasvf))‘a(r)_ldM'g? t> S.

PROOF.
(1) Let s > 0, ho be a bounded G!Y -measurable Borel function, h; be a
bounded o{W; — W;; t > s}-measurable function and v : [0,00) — R be a

bounded Borel measurable function. Then we have

E[fsv(t")hoh1] = E[fsl{za<syv(T")hoh1] + E[h]E[fs1{as s 0(7%) ho]

and

E[fsl{rags}v(Ta)hOhl] = E[hl]E[fsl{Tags}U(Ta)hO]
= E[M]EE[fFY N racsyv(t®)ho] = EE[fs| FY 11 7acsv(r*)hoha].

Since o{Wy;t > 0} and o{N;;t > 0} are independent, we have the following
by Proposition 3.4 (2),

E[M]E[fs1{rass0(T") o]
_ E[hl]/ ()E[1{7a>s}fs 97— 5, BE)holdr

= —Ela] [ o)) Eba(r) HD (5 ) holdr
= —/Oov(r)fya(r)E[’ya(r)1H((ll)(r,s;f)h0h1]dr

= —E[E[o(r)ya(r) " HED (1, 53 f)hoha]r—re 1 {ras)]
= —Eha(r) T HM (55 ) zessyo(r*)hohi]

T / () HD (55 F)ANT Y0+ hohs].
So we have

Blful ros | Y] = - / () HD (1, 55 f)1as gy dNE.

S

Thus we have Assertion.
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(2) Note that

2 ({1~ 5,2) 1)

_ _ Yy
/8tt—sydy / 82 = s y)dy =5 (t = 5,2)

and that

__ [T
20(t — s, ) / 87“ (2®(r — s,z) — 1)dr = o (r — s,x)dr.

Here we note that 1
lim ®(t — s,z) = 30 T> 0

t—oo

and
Iim®(t—s,z)=1, z=>0.
tls

Let

Li=1- exp(/O Na(5)ds) (1 — N).

Then we have
t t
dL, = exp! / Aa(8)ds) (ANE — Ag(t)(1 — N%)dt) = exp( / Aa(s)ds)dME.
0 0
We note that
t
AN = exp(— / Na(8)ds)dLs + Aa(t)(1 — N)dt
0
and
t
W07 ANE = )L+ expl [ Aals)ds)(1 - N
0
t
= A(t)"YdL; — Lydt + exp( / Aa(5)ds)dt.
0

Then we have

Ua(tvsvf) = E[1{7‘1>s}fs(2q)(t_87Bg)_1)’ggv]
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= —E 1 a S~ - ’B(Z
| 1 fightr = 5. BIGY ar
= —/ HW (7, s; f)dr.
t
It is obvious that

/ HO(r,s: f)ya(r) " dNE

S

— [ HO s ) L~ [ O G L
" / HD (r,s; f)elo .

Here we note that the third term at the last equation is Fs-measurable.
And the second term of the above can be described in the following.

—/ HWM (r, s; f)Lydr

s

— — [ P o[ dia+ Loar

= —/ (/ Hé”(r,s;f)dr) dLu—/ Hc(bl)(r,s;f)Lsdr
s 0 s

= / UQ(T,S;f)dLT+L5Ua(8+,8,;f)-

Here we note that the second term at the last equation is Fs-measurable.
Then we have

E[f|FY]

= <E[fs’]:!v]1{7'“<s} — LUa(s+, 85 f) —/ Hél)(r,s;f)efor/\a(S)der>
- / (Hél)(ﬁs;f))\a(?“)_l + Uy(r, s f)) dL,.

The first three terms are F)'-measurable and the summation should be
equal to E[fs|FV]. The last term is equal to

/ “{exp ( I )\a(u)du>
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< (HO 05 )+ 2Vl ) Aalr) e
= [ Ot el b,

Then we have our assertion. [J

The following gives Theorem 1.1(2).

PROPOSITION 3.7. Let T,t >0 and f € L**. Then, we have

t t
Bl /0 fuds| FV) = /O Elf.|7}V1ds

t . .
a / E[fslorys) |75 1ds —/ {(/ Ua(S,T;fl[o,T})ds> )\a(s)_l} dM;
0 0 0

re

PrOOF. Remember that Uy(t,s; f) = E[l{zass fs(20(t — s, BY) — 1)

GY]. We can see that fg(fOT Ua(s, 735 fljo,17)ds) Aa(s) " 1dME is well defined
for any f € L2 by Proposition 2.2 (2)

. Then we have the assertion by
Proposition 2.3 and 3.6. [

Third, we prove Theorem 1.1 (3) as follows.

PROPOSITION 3.8.

Let s1 > s > 0, and & be a bounded F -measurable
process. Then we have

E| /0 €1y 011 (F)AW, [ ]
/0 EE1 (300 (1) EV 1AV,

- ([ ot €t ) sy ane

In particular, for any T > 0, f € L£oF,

E| /0 fo Lo (r) AW, | V]

t
- /0 B 10,2 (r) | F1dV,
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([ vt g ) xar) s

PrROOF. Note that
o0
B[ €1 )IWFY] = BRIV, = TW,).
By Proposition 3.6, we have

BIERY] = BIEAY )~ [ Oalr o011 (DAalr) a0

S0

and then
E| / €100 (1) V| Y]

El¢| 7Y 1dW,

(7, 50 EL(s0,51) () (Wons, — Weg)Aa(r) ™1} dM

|
o\ \

S

‘51 (so0, 81] |fW] Wy

Il
\

—/ / (507 €150} (D)AW) Ao (1)~} ML

Here we note that

Jg 0 pa Jg a
1{Ta>so}(a—(t—sm ,Bsw)—%( s0, Bg,))

SAT® 32
_ 1{7a>50}/ (t—r BYBY, s (s0,t).
S0

Then we have

Htgl)(tv 50551[50,51)('))
99 o pa
= ED{T“>SQ}£1[$0,81)(')(8—x(t —SAT 7Bs/\‘r“))|ggg]
= Htg,l)(tvs;gl[sO,sl)('»a s € (507t/\ 81)'



A Representation Theorem on a Filtering Model 555

Also we have

Lrosog) (®(t = s AT BY 0) — D(t — 50, BL,)

SAT®

= 1{7-a>50} g(t—?”, Bg)ng, s € (80,75/\81).

Thus we have

Ua(tv 30;§1[50,t/\81)(')) = Ua(tvs;él[so,t/\sl)('))7 s € (507t/\ 51)'

Since
Us (7" U'él(so 51}()) =0, re [0730]7

we can see that [ (f) Ua(r,u; €15y 5,1 (-))dWu) g () 1dM is well defined.

Then we have the first assertion. For & € Ly, we have the following by the
first assertion,

T ~
Bl /O & dw,|FV]

/OT Bl | FY1aw, - /OT { </0 Ua(r, u; E)qu) )\a(r)_l} dM?.

Let us take {&,} € Lo such that

T ~
lim E[/ |&n(r) — frldr] =0 for all T > 0.
0

n—oo

Since o{Wy;t > 0} and o{Ny;t > 0} are independent, we have
B[ 1 [ 058 Ot )Wty an
= L[ Bl [ @t &) - Outr )W)

_ / ol / (Talr, s & — £)AWollga(r)dr
0 0

< /OTE[/OT(Ua(nU;gn — f)?du]'?dr

— 0, as n—oo, forallT >0



556 Takenobu NAKASHIMA

by Proposition 2.3 for f € £5%. So we have Assertion. OJ
Fourth, we show Theorem 1.1(4) as follows.

ProrosiTION 3.9. LetT,t > 0 and fj e L*,j=1,---,d. Then we
have

t
E[/ faB)FY =0,j=1,---,d.
0

PROOF. Because B, B and W are independent and .ﬂw C o{Bs, Wy;
s € [0,00)},

Z/ fldBI|FV] = Z/ fldBI] = 0.0

Finally, we state Nakagawa’s [5] representation theorem using a different
expression.

PROPOSITION 3.10. Let f € L. Then we have
H? (¢ f)—hmE[(/ul o fsdBa)@(t—u BY|GM].
ult 0 {ro>s} 57 0x T ¢
The right-hand side of the above corresponds to the representation theorem

given by Nakagawa [5].

ProoF. Note that
0 1 0% Og
Cout3a)an
and so

dg %g
—u,B%) = —(t — u, B*)dB? .
dy Wy —(t ) . (t —u, By)d u<t

By Ito formula, we have

b ay 99 a
du((/o 1{Ta>s}deBS)8$(t U,Bu))
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2

0y avgga o ([ 0,979 ayga
1{Ta>u}fu%(t —u, Bu)dBu + (/0 1{7—a>s}f5st)w(t — U, Bu)dBu

d%g a
+ 1{7a>u}fu@(t —u, By)du, u<t.

And then
w a ag a W
El( | Vross fudBY) 5= (6 —u, B)IG]
0 T
u &g a
= / E[1{7a>5}fsﬁ<t_ 87Bs)ygtvv]d8
0 T
u 829 a w
= /O E[1{7a>s}fsw(t* s, BJ)|G, Jds
= / HA(t,s; fds, u <t
0
So we have

4 : “ a 89 ay| oW
A1) =1 Bl 1o LB GHE =BG O

4. Equivalent Probability Measures

We now state a representation theorem for a filtering model with first-
passage-type stopping time. Note that I, F' are defined in Equations (9)
and (10). Operators Do,D1,Dy and L are defined in Equations (11). As we
defined in Equation (8), let

t - —
b1+ / po(bo(s, Xo, Z)dBy + B(s, Xonrs Y2)dTT).
0+

Let F' € ¥ be given by Equation (10) in the Introduction. Then we have
t
Feo= Bt [ (A9~ (s, X Y ols) = b5, Xou Ze) fos)) ds
0

t N t - t A
+ /0f2(5)dWs+/0 f3(3)st+/0 fa(s)dBs
and so

t tAT
PtFt/\r = pOFO + / Fs/\pos + / psdes + [/?7 F]t/\T
0 0
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t

t —_—~ o~ —~ A
- R+ / pe (D1 F)sdB, + / ps (Do F),dB,
0+ 0+
t

t —_—~ —~ ~
+ / pS(DOF)SdWS—I—/ ps—(LF)qds.
0 0

+ +
Let
(21) V(t,s:f) = Elps—1roe) fs(20(t — 5, X5) — 1)|GY],
(22) V(t, s f) = elo 2o ®dr (Wt s 1) £ X\, (OV (L 53 £)),
(23) I(t,s; f) = elo Aao(r)dr ( / 1Ot s f)du

0

20, (0) [ 100 f)du) ,
0

(24) V(r, s F) = ﬁr__lefOT )‘Io(u)du(ffl(r,s; F)+ )\xo(r)f/'g(rjs;F)), s<r

where

~ —_—

S —_—
Vo(r,s; F) = /V(r,u;DoF)qu
0S N N
+ / (V(r, w; LF) + 210 (7, u; DlF)) du
0

for f € £57 and F € ¥. Then we have the following by Theorem 1.1.

(25) ElpcFine|Fi] = Fo
/OMT { <I(7“, r: DI F) + (/OT V (r,u; DoF)dW,,)

+ /O ' V(r,u; EF)du)> A%(r)—l} dM,

tAT ~ tAT o N
+ / Elpy—(LF);|Frldr + / Elp,—(D1F),|F.)dW,
0 0

t —~—
= Fo—/ ﬁr,V(T,T;F)AIO(T)ildMT
0

t ~ t . N
+ / Elpy—(LF)|F;|dr +/ Epr— (D1 F),|F.|dW,.
0 0
Here we note that

I_(T;p(bvlF))—f—/ V(T,u;bvoF)qu—i—/ V(T,u;zF)du
0 0
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— efoT )‘wo(“)du { (/ [(1) (7-’ u; b\BF)qu
0
+ / (I (r, u; 15/1F) + IV (7, u; EF))du)
0
+  Ag(7) (/ V(r,u;bT)F)qu
0

+ /Or(v(r, w; LF) +2/Or I(O)(r,u;ﬁlF))dU)}

= 5 V(r,rF).
We will show that V (r,r; F) = V(r; F) and that these can be written with-
out using stochastic integrals by Propositions 4.1 and 4.2.

PROPOSITION 4.1. LetT >0 and F € ¥. Then we have

A

0
Vi(r,s; F) = —a—g(r,xo)Fo + IV s F), 0<s<r<T
7
and we can see that the right-hand side of the above equation can be defined
even at v = s by r | s. Note that V; is defined in Equation (12).
9%g

PROOF. Because %(r, x) — %W(r, x) = 0, we have

8g . s 829 ~
%(T—S,Xs) —/0 W(T‘—U,Xu)dBu

So we have

Jg

2"

0?g dg ~ ~

= Pu (@(T - U’XU)FS =+ %(T - u, Xu)(DlF)u)dBu
dg

— . o __ __
52 (r = u, X,)pu(DoF)udB, + 29 (1 =, X)) pu( Do F)ud W

Ox
dg ~
+ (@(T —u, Xu)<LF)u +

d( - u, Xu)PuFu)

0%g

e

Since GY, 0{By, By;u < s} and o{M,;u < s} are independent, we have the
following for r > s.

(r — u, Xo)pu(D1F)y)du).

g
E[%(T -5 XS)1{7>s}pSFS|g3/]



560 Takenobu NAKASHIMA

= @(zjo)Fo%-/ IO, u; Dy F)dW,
ox 0

+ /(1(2)(r,u;51F)+I(1)(r,u;EF))du
0

0 ~
= a—agj(ﬁ x0)Fo + Vi(r,s; F).

Then we have our assertion. [

PROPOSITION 4.2. LetT >0 and F € ¥. Then we have

N

Vo(rys; F) = —(2®(r, o) — ) Fo + V(r,s; F), 0<s<r<T

and

npf/g(r, s;F) = —(20(r,20) — 1)Fy + E[lgr 00 Fr|GY ).
In particular, V(r, ryF) = V(T;F). Note that V(T;F) and V(T,S;F) are
defined in Equation (12) and (24), respectively.

PROOF. Because %—‘f(r,:r) - %227?(7“,30) =0 and %—f(r,x) =g(r,x),

O(r—s,X5) = / g(r — u,Xu)déu.
0
So we have
(2®(r — s, Xs) — 1)psFs

S
= (29(r,x9) — 1)Fy + 2/ pu—Fug(r —u, X,,)dB,
0

+ /0 (00— . X) — V(oo (D1 F)udBy + pu_(DoF)dB,
+ pu—(DoF)udWy + pu—(LF)ydu)}

+ 2/ pu—g(r — u, X)) (D1 F)ydu.
0

and then we have the following by Lemma 3.1, which gives the first assertion.

V(r,s; F)

= E[2®(r,z0) — 1)Fy + / Loy (28(r — u, Xy) — 1) pu— (Do F)udW,,
0
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/0 1oy (280 — w, X,) — pu_(EF),

29(r — t, Xu) pu— (D1 F)y)du|GY ]

S —~ —~
(QCI)(T', $0) - 1)F0 + / V(T,’LL; DoF)qu
0

/ (V(r,u; LF) + 210 (r, u, Dy F))du
0

(2®(r,z9) — 1) Fo + Vg(r, s; F).

Then we have

So we can see that

~

V(r,r; F)

(2®(r,x9) — 1)Fp + li%n Va(r, s; F)

Im V (r,s; F)
sTr

E[(Q(I)(T —TAT, Xr/\T) - 1)prATFr/\T)|g7¥]
E 1{T>r}(2q)(07X7“) - l)pTFTHg?Y]

[
B[l (20(r — 7,0) — 1)p, F;)|GY ]
[

E 1{T>r}p7"FT’gq¥]‘

Prtelo AotV (1,15 F) + Ao (r)V (75 F))

~71€f07' Az (u)du

Pr

{Varors F) 4 2 () (=20 (. 20) = D) Fy + Bl oy F116)1) |

~

V(r; f)

by the first assertion of this Proposition and Proposition 4.1. [J

We now state Proposition 4.3, Lemma 4.4 and Proposition 4.5 for The-
orem 1.2(1).

ProPOSITION 4.3. Let & be a B-measurable process. Then, we have

E [pe&ins|H]

Fleone M = =

., HCB;.



562 Takenobu NAKASHIMA

ProOOF. For A € H C B, we have

Elinr, A = E[E[g[H], Al = ElorElginr|H], A
= ElElpr|BE[&nr|H], A] = E[Elp HIE[nr|H], A

At the same time,

Bleine Al = Eloréine. A = E[E[pr|Biléinr. A]
= Elpilinr, Al = E[E[pi&in-IH], Al O

LEMMA 4.4.

E[ptFt/\T |7:t]

tAT .
Fy— / Pr_V (15 F)Agy (1) "*dM,
0

tAT . AT _ __
+ / E[PT(LF)T‘|-7:T‘]dT+/ Elpr—(DoF)y|Fr|dW;.
0 0

PROOF. Since V(T,T;F) = V(T;F) by Proposition 4.2, we have our
assertion by Equation (25). O

Let py = Elpi| 7.

PROPOSITION 4.5.

t . t - —~
ﬁt =1- / ﬁT_V(T; 1))\1‘0 (T)iler + / ﬁT—E[ﬂ(r’ XT? Y;”)|f7”]dWT
0 0

and

t ~ o~
- / SIS, X, V)| 51T
0
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Proor. Letting F; = 1 in Lemma 4.4, we have the first assertion.
Then we have

t t
e N =
+ Z (5;1 - ﬁr_—l + ﬁ;—g(ﬁr - /77“—))

o<r<t
t

— t ~ —
= 1_/ ﬁ;}V(r;l))\xO(r)ler—/ ptE(B(r, X, Y, | FyldW,
0 0

t ~
4 / S BIB(r, X, V)| F 2 dr
0

t ¥ -1 2
s [T )y
0 Azo (1) +V(r; 1)

Here we use the fact that
Z (ﬁ;l - /7;—1 + ﬁ?—%ﬁr - ﬁr—))
0<r<t

_ (ﬁr - ﬁr—)2 _ ¢ ~—1 V(T r —1
> = | P v

= =
0<r<t Pr—Pr

—_
~—
[\

Then we have the assertion. [J
We give Propositions 4.6, 4.7, and 4.8 for Theorem 1.2(2).

PROPOSITION 4.6.

89(

Aa(t)(2®(t,a) — 1) + o

t,a) = 0.
In particular,

V(r; F)

g X 0 .
= A (Vi P+ 8 ) o+ ElL oy 0161 1)

PROOF. Because of the well-known reflection principle of Brownian

22
motion, we have ¢q(t) = P[t* > t|=1-P[t* <t]=1— \/% Jo e zde =
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20(t,a) — 1. So we have

o . L9b,. [T dg 9y
Gidel) =25 (o) =2 [ Gtyydy = (t.).

Since A,(t) = — 4 log g4 (t), we have the assertion. [J

PROPOSITION 4.7. Let Z be a random wvariable and r > 0.Then we

have N . N
E[Z1(r5r|GY Lrsry = e o Ao N[ Z| 1y

PROOF. Let A € F,.. Then there exists B € G such that AN {7 >
r} = Bn{r > r}. Since G} and 1, are independent, we have the
following.

E[E[Z1 {75} |GY 1 {71y, Al

= E[E[Z1{511G) 1 (r>y18] = E[E[Z1 ;541816 11 {r>n]
= E[E[Z1p|GY|E[ ;5] = E[Z, A]P[r > 1]

= Ele o o@dug g = E[e= o MoWduEl 7| F,], A

Then we have Assertion. [

PropoOSITION 4.8. Let F € ¥. Assume that there exist C > 0 and
a € (0,1) such that 1qx, <1} 1zsr}| Fr| < C| X0 |* for v > 0. Then we have
Vilr,r F) = 89 4 (r,x0)Fo and

V(T F) = le o Io(u)du)‘ o7 )E[l{r>r}P7"FT’g1¥]-
In particular,

1{T>r}v(r; F) = 1{T>T}ﬁr_—1)\ﬂfo (T)E[1{7>r}pTFr|fT‘]'

PrROOF. Let1<p< ﬁ,q = p%l and r > s > 0. Then we have

- _ 9
EHI(l)(TaSvF)H < EHa—(T*S’XS)|1{T>s}pS|FS”
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~ dg 1~ 1
< Ellgronly (r— s Xo)PIEP]P Elpl]7.
Note that zg > 0. We have the following by Mean-Value Theorem.

 (a—2q)? _G@re? wo(T + x0)

e —e < ————> x€(0,00), s€(0,n).
s

Since w > 0, we have

N g
Ellyx,<iylrsnly (r = s, Xo)PIEIF]

z2 -
6_ 2(r—s) )p(OIa)p dx

</°°( 1 x
“Jo \2m(r—s)r—s 27ms

p952

[e.e]
< zoCP(r — s)_%ps_g / TP (g 4 pg)e” 20— dae
0

Cp(2—a o0 2
= 20CP(r — 8)72 plfza) 3 / y (g =55 gy,
0

2 2p2=0) 5 (%0 (44, w’
+z5CP(r—s) 2z s 2 y Pe™ 2" dy
0

—0 as sTr.

Let p’ > 1,q¢ = p,p_ll. For r > s > 0, we have

N dg
Ellx,>1ylrsnyl 5 (r = s, Xo)IPIEI]

1 1
o ol

~ 8g / /
< E[1{|Xs|>1}1{7->r}|%(r — 8, Xs) PP |»" B[|Fs[PT] 4
1
0o 2 _Geme® _ (wheg)? v
_ / ( ]. X e_m)pp/e 2s e 2s dm
1\ 2n(r—s)r—s=s 21s
7oL
X B[]
— 0 as sTr.
Then we have Vi(r,rF) = —%(T, z0)Fo + limg, IW(r, 5, F) =

—%(r, xo)Fp. By Proposition 4.6, we have the first assertion. We have
the second assertion by Proposition 4.7. [J
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We can show Theorem 1.2 (1) and (2) using the following proposition.

PRroOPOSITION 4.9. Mt is P-Fi-martingale and Wt is P-B;-Brownian
motion.

PrROOF. By Proposition 4.5,

and then we have

d(p;'My) = pldMy+ M,_d(p") + d[p~", M,

5N (t ~
_ Pi— :coA( ) dAM, + Mtfd(ﬁil)t-
Aao (1) +V (t;1)

Since p; 1]\AJJt and p, L are P-Fi-martingale, we can see M, ¢+ is also P-Fi-

martingale. We can see that /vat is P-B; -Brownian motion by the following.

A5 We) = pitdW, + Wid(p Y, + d[p=, Wi = p2dWy + Wed(p~1)e. O

Now let us prove Theorem 1.2. Let F, = E[ptFt/\T\]-}], then we have the
following by Lemma 4.4 and Proposition 4.5.

t -~ t t -~
E=:%+/hmﬂﬂh+/hMRW+/hmﬂmm
0 0 0

t 5 -~ t - =
o= 1+/ 5;_1f0(r)er+/ prt fo(r)dW
0 0

where
by = —YCE) G ) = Bl (DoF), |,
) A(r) = V(1)
film F) = E[pr—(PF)rl f]
n 1{T>T}‘:/(?"; 1) A(?";F)ﬁr_
Ar)=V(r;1)
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+ B3 Xonr, o) | F ) Elpr(DoF)r |72,
fo(r) = =V(r DA™, fao(r) = —E[B(r, X, Y,)| F].
Note that dM, = dM; + (1 — N,_)V(t;1)dt and dW, = dW, +

E[ﬁ(t,Xt/\T,th)’ft]dt. Then E[Ft/\’ru:;f] ﬁt_lFt. Let Ft = E[Ft/\Tu:t]
and we have the following.

pi Fy
= Ar [t [
_ Fo+/0tMPr_(fo( F) + fo(r)E, )dM
- /Ot/\f Pyt (fl(T‘ F)+ folr )f2(7~;p)> dr
tAT
+ /0 Pr—<f2(r F)+ fo(r) )dW + Z 5ol (B - B

. A ) A ~O<7”<1i/\'r _
= R+ / ot (Jotri P) + Jo(r) By + Jo(r) fors F) ) dDM,
0
tAT R _ . ~
o [ (A0 F) + ROACE) + 1o ) ol AW dr
tAT
+ /o Pr— <f2(7“ F)+ fo(r)F;, )dW
Here we note that

S G - (- F) = / P fo(r) fo(r F)aN,.

0<r<t 0

Then we have Theorem 1.2(1) as the following.
! = =
ElFin|F] = Fo —/ Lirsry (V(r F)+V(r;1)F, ))\( )y LdM,
0
t ~
+ /0 1{T>7"}E[1{‘r>r}(LF)T|Fr]dT

- (BUBWF)IF] - El3(r, X, Y,)|FIF, ) V.
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If there exist C' > 0 and a € (0,1) such that 1 x, <1} 1{rse|Fi| < C[X¢*
for t > 0, we have
Lo V(s F) = 1psnrtdeg (1) E[Lrsrypr B | F]
- 1{T>T}ﬁr_—1>\10 (r)els AzO(u)duE[l{rw}PrFr’gr]

by Proposition 4.7 and Proposition 4.8. Then we have

fo(rs F) = —lgrsn (V(r; F)+ V(r; 1)FT_> :\(7")_1
Ao ()P, Lelo A0 WM E[1 1y p, Fr|Gr) + V (r; 1) Fr
Azo (1) + V(r; 1)

- _1{T>r}
= _]‘{’T>7‘}FT*7

which gives Theorem 1.2(2).
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