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Abstract. We study the global existence and the large time be-
havior of solutions to the coupled system of the Schrödinger equations
with cubic nonlinearities in one space dimension. We construct modi-
fied wave operators to the system for small final data.

1. Introduction

We study the global existence and the large time behavior of solutions

to the coupled system of the Schrödinger equations with cubic nonlinearities

in one space dimension. In the present paper, we construct a modified wave

operator to the system for small final data. We consider the Cauchy problem

at infinite initial time of the following coupled system of the Schrödinger

equations with cubic nonlinearities in one space dimension (for given final

data): 
i∂tu1 +

1

2m1
∂2
xu1 = F1(u1, u2),

i∂tu2 +
1

2m2
∂2
xu2 = F2(u1, u2),

(1.1)

where (t, x) ∈ R × R, u1 and u2 are complex valued unknown functions of

(t, x), ∂t = ∂/∂t, ∂x = ∂/∂x and m1 and m2 are positive constants. The

nonlinearities are given by

Fj(u1, u2) = gj(u1, u2)uj +Nj(u1, u2),
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where

gj(u1, u2) = µj,1|u1|2 + µj,2|u2|2 + δm1,m2µj,3(u1ū2 + ū1u2),(1.2)

Nj(u1, u2) =
∑

α;|α|=3,(1.4),(1.5)

λj,αu
α1
1 ū

α2
1 u

α3
2 ū

α4
2 ,(1.3)

δp,q = 1 if p = q, and δp,q = 0 if p �= q, λj,α ∈ C and µj,k ∈ R, and the

summation in (1.3) is taken by any multi-indeces α = (α1, α2, α3, α4) ∈ Z
4
+

satisfying

(α1 − α2)m1 + (α3 − α4)m2 �= mj ,(1.4)

(α1 − α2)m1 + (α3 − α4)m2 �= 0.(1.5)

(For a condition (∗),
∑
α; (∗)

denotes a summation taken over multi-indices

α = (α1, α2, α3, α4) ∈ Z
4
+ satisfying the condition (∗).) In addition, when

m1 = m2, we assume “µ1,3 = µ2,3 = 0” or “µ1,k = µ2,k for k = 1, 2, 3”

(see Remark 1.3 below). The nonlinearities gj(u1, u2)uj and Nj(u1, u2) are

cubic. We construct modified wave operators for the system (1.1) for small

final data in Theorem 1.1.

A lot of works have been devoted to the global existence and the asymp-

totic behavior of solutions to the nonlinear Schrödinger equation

i∂tu+
1

2
∆u = f(u), t ∈ R, x ∈ R

n,(1.6)

where ∆ is the Laplace operator with respect to the space variable x.

Following Section 1 of [22], we recall several known results on the asymp-

totic behavior of solutions to the nonlinear Schrödinger equation (1.6) with a

nonlinearity f(u) = λ|u|p−1u, where p > 1 and λ ∈ C \ {0}. This nonlinear-

ity is gauge invariant, that is, f(·) satisfies f(eiθz) = eiθf(z) for θ ∈ R and

z ∈ C. It is well-known that if p > 1+2/n, then the nonlinearity λ|u|p−1u is

a short-range interaction, that is, contribution of the nonlinearity is negligi-

ble for large time. (For results on the short-range scattering for the equation

(1.6), see, e.g., Ginibre [2] and Nakanishi-Ozawa [19].) On the other hand, if

p ≤ 1+2/n, then the nonlinearity λ|u|p−1u is a long-range interaction, that

is, contribution of the nonlinear term is not negligible for large time. More

precisely, in Barab [1], it was shown that there does not exist an asymptoti-

cally free solution for the equation (1.6) if 1 ≤ p ≤ 1 + 2/n and λ ∈ R \ {0}.
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Therefore we see that for the equation (1.6), the case p = 1 + 2/n is the

borderline between the short-range case and the long-range one. Recall that

the solution to the Cauchy problem of the free Schrödinger equationi∂tv +
1

2
∆v = 0, (t, x) ∈ R × R

n,

v(0, x) = φ(x), x ∈ R
n

is given by U(t)φ, where U(t) = eit∆/2, and it decays as ‖U(t)φ‖Lq ≤
Ct−n(1/2−1/q)‖φ‖Lq′ , where q ≥ 2 and 1/q + 1/q′ = 1. We consider the

equation (1.6) with the critical exponent p = 1 + 2/n and λ ∈ R \ {0}. In

this case, the modified wave operators to the equation (1.6) were constructed

by Ozawa [20] for n = 1 and Ginibre-Ozawa [3] for n = 2 or 3 for small final

data u+ by a suitable phase shift, more precisely, the solution u behaves like

the modified free profile U(t)e−iS(t,−i∇)u+, where S(t, x) = λ|û+(x)|2/n log t.

Ginibre and Velo [5] proved the existence of modified wave operators to the

equation (1.6) in the case n = 1 without any size restriction of the final state

u+ and extended the above results. For p = 1 + 2/n and n ≤ 3, Hayashi

and Naumkin [9] showed that the small global solution for the initial value

problem of the equation (1.6) with λ ∈ R \ {0} satisfies the time decay

estimate ‖u(t)‖L∞
x

= O(t−n/2), and that the solution has a modified free

profile with the above phase shift. Furthermore, in [10], they improved the

above result. In the case of λ ∈ C, Imλ < 0, p ≤ 1 + 2/n and n ≤ 3, the

large time behavior of solutions to the initial value problem of the equation

(1.6) was studied in [16], [17] and [24]. In this case, the equation (1.6) has a

long-range nonlinear dissipation, that is, the global solution to the nonlinear

equation (1.6) decays faster than the free solution as t→ +∞.

Following Section 1 of [23], we introduce several results on the large

time behavior of solutions for the equation (1.6) with a critical non-gauge

invariant nonlinearity. To investigate the large time behavior of solutions for

the equation (1.6), non-gauge-invariant nonlinearities are more complicated

than gauge invariant ones. We consider the nonlinearities

f(u) = λ1u
3 + λ2uū

2 + λ3ū
3, when n = 1,(1.7)

f(u) = λ1u
2 + λ2ū

2, when n = 2,(1.8)

where λ1, λ2, λ3 ∈ C. As we mentioned above, it is expected that the cubic

nonlinear Schrödinger equation in one space dimension and the quadratic
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nonlinear Schrödinger equation in two space dimensions are on the border-

line between the short-range and the long-range cases. In [18], [25] and [11],

the existence of wave operators for the equation (1.6) with these nonlin-

earities for small final data u+ was showed under the suitable assumptions

including û+(0) = 0. In [11] and [25], the critical gauge invariant non-

linearities are included and the existence of modified wave operators was

proved. These results mean that the critical non-gauge invariant nonlinear-

ities (1.7)–(1.8) are short range interactions under the assumptions such as

û+(0) = 0. Since each term of the non-gauge invariant nonlinearities (1.7)–

(1.8) has a different oscillation and they do not resonate with the linear

part, it could be shown that their contribution vanishes in large time under

the condition û+(0) = 0 in the above results. On the other hand, in the

case of f(u) = λ|u|2, λ ∈ C\{0} and n = 2, non-existence of asymptotically

free solutions in L2 to the equation (1.6) was shown in [23] and [26]. In

the same case, Ikeda and Wakasugi [13] proved the existence of finite time

blow-up solutions in L2 to the initial value problem of the equation (1.6)

with arbitrarily small initial data.

Recently, some systems of Schrödinger equations have been investigated.

Hayashi, Li and Naumkin [6, 7, 8] studied the scattering theory for the

following system of nonlinear Schrödinger equations:
i∂tu1 +

1

2m1
∆u1 = γū1u2,

i∂tu2 +
1

2m2
∆u2 = u2

1

(1.9)

in R
2. Here, γ is a given complex number with |γ| = 1. (For related results

on (1.9), see, e.g., [12, 14, 21].)

In this paper, we study the global existence and the large time behavior

of solutions to the system (1.1) of the Schrödinger equation with cubic non-

linearity in one space dimension by constructing modified wave operators for

small final data. The nonlinearity Fj(u1, u2) of the system (1.1) has a gauge

invariant term gj(u1, u2)uj and a non-gauge-invariant term Nj(u1, u2). To

control interaction of u1 and u2, we restrict cubic nonlinear terms depending

on the constants m1 and m2 (see Remark 1.1). The proof is mainly based

on the methods of [11].

Before stating our main result, we introduce several notations.
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Notation. We denote the Schwartz space on R
n by S. Let S ′ be the

set of tempered distributions on R
n. For w ∈ S ′, we denote the Fourier

transform of w by ŵ. For w ∈ L1(Rn), ŵ is represented as

ŵ(ξ) = (2π)−n/2

∫
Rn

w(x)e−ix·ξ dx.

For s,m ∈ R, we introduce the weighted Sobolev spaces Hs,m corre-

sponding to the Lebesgue space L2 as follows:

Hs,m ≡ {ψ ∈ S ′ : ‖ψ‖Hs,m ≡ ‖(1 + |x|2)m/2(1 − ∆)s/2ψ‖L2 <∞}.

We also denote Hs,0 by Hs. For 1 ≤ p ≤ ∞ and a positive integer k, we

define the Sobolev space W k
p corresponding to the Lebesgue space Lp by

W k
p ≡

ψ ∈ Lp : ‖ψ‖Wk
p
≡
∑
|α|≤k

‖∂αψ‖Lp <∞

 .
Note that for a positive integer k, Hk = W k

2 and the norms ‖ · ‖Hk and

‖ · ‖Wk
2

are equivalent.

For s ∈ R, we define the homogeneous Sobolev spaces Ḣs by

Ḣs ≡ {w ∈ S ′ : (−∆)s/2w ∈ L2}

with the semi-norm

‖w‖Ḣs ≡ ‖(−∆)s/2w‖L2 .

We introduce the following operators:

Um(t) ≡ eit∆/2m, Lm = i∂t +
1

2m
∂2
x.

C denotes a constant and so forth. They may differ from line to line,

when it does not cause any confusion.

Remark 1.1. Recall that the solution for the free Schrödinger equa-

tion Lku = 0 oscillates as eik|x|
2/2t. Roughly speaking, nonlinear term

uα1
1 ū

α2
1 u

α3
2 ū

α4
2 , which appears in the definitions of the nonlinearities

F1(u1, u2) and F2(u1, u2), oscillate as exp(i((α1−α2)m1+(α3−α4)m2)|x|2/
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2t). If (α1 −α2)m1 +(α3 −α4)m2 = m1, then this nonlinear term resonates

with the free solution of Lm1u = 0. If (α1 −α2)m1 +(α3 −α4)m2 = 0, then

an oscillation of this nonlinearity vanishes. (Our method is not applicable

to nonlinearities which do not oscillate.) The assumptions (1.4) and (1.5)

mean that the the nonlinearity uα1
1 ū

α2
1 u

α3
2 ū

α4
2 does not resonate with the

linear part, and its oscillation does not vanish.

The non-resonance condition (α1 − α2)m1 + (α3 − α4)m2 �= m1 for

F1(u1, u2), which is the inequality (1.4) for j = 1, does not hold if and

only if

• α = (2, 1, 0, 0) or α = (1, 0, 1, 1) for arbitrary m1,m2 > 0, that is,

u2
1ū1 or u1u2ū2, respectively,

• α = (2, 1, 0, 0), α = (1, 0, 1, 1), α = (1, 1, 1, 0), α = (0, 0, 2, 1), α =

(0, 1, 2, 0) or α = (2, 0, 0, 1) when m1 = m2, that is, u2
1ū1, u1u2ū2,

u1ū1u2, u
2
2ū2, ū1u

2
2 or u2

1ū2, respectively,

• α = (2, 1, 0, 0), α = (1, 0, 1, 1) or α = (0, 2, 1, 0) when m2 = 3m1, that

is, u2
1ū1, u1u2ū2 or ū2

1u2, respectively,

• α = (0, 0, 3, 0) when m2 = m1/3, that is, u3
2.

The non-resonance condition (α1−α2)m1+(α3−α4)m2 �= m2 for F2(u1, u2),

which is the inequality (1.4) for j = 2, does not hold if and only if

• α = (0, 0, 2, 1) or α = (1, 1, 1, 0) for arbitrary m1,m2 > 0, that is,

u2
2ū2 or u1ū1u2, respectively,

• α = (0, 0, 2, 1), α = (1, 1, 1, 0), α = (1, 0, 1, 1), α = (2, 1, 0, 0), α =

(2, 0, 0, 1) or α = (0, 1, 2, 0) when m1 = m2, that is, u2
2ū2, u1ū1u2,

u1u2ū2, u
2
1ū1, u

2
1ū2 or ū1u

2
2, respectively,

• α = (0, 0, 2, 1), α = (1, 1, 1, 0) or α = (1, 0, 0, 2) when m2 = m1/3,

that is, u2
2ū2, u1ū1u2 or u1ū

2
2, respectively,

• α = (3, 0, 0, 0) when m2 = 3m1, that is, u3
1.

The condition (α1 − α2)m1 + (α3 − α4)m2 = 0, which implies vanishing

oscillation, holds if and only if “α = (2, 0, 0, 1) or α = (0, 2, 1, 0), that is,

u2
1ū2 or ū2

1u2 for m2 = 2m1”, or “α = (1, 0, 0, 2) or α = (0, 1, 2, 0), that is,

u1ū
2
2 or ū1u

2
2 for m2 = m1/2”.
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The main result is the following:

Theorem 1.1. Let u1+, u2+ ∈ H0,2 ∩ Ḣ−b, where 1/2 < b < 3/2, and

‖u1+‖H0,2∩Ḣ−b + ‖u2+‖H0,2∩Ḣ−b be sufficiently small. In addition, when

m1 = m2, assume that “µ1,3 = µ2,3 = 0” or “µ1,k = µ2,k for k = 1, 2, 3”.

Then the system (1.1) has a unique solution (u1, u2) satisfying

(u1, u2) ∈ C([0,∞);L2) ⊕ C([0,∞);L2),

sup
t≥1
tb/2(‖(u1(t), u2(t)) − (u1a(t), u2a(t))‖L2

+ ‖(u1, u2) − (u1a, u2a)‖L4([t,∞);L∞)) <∞,

where

uja(t, x) =(Umj (t)e
−imj |x|2/2te−iSj(t,−i∇)uj+)(x)

=
(mj

it

)1/2
ûj+

(mjx

t

)
eimj |x|2/2t−iSj(t,mjx/t),

(1.10)

Sj(t, x) = gj

(
û1+

(
m1

mj
x

)
, û2+

(
m2

mj
x

))
log t(1.11)

for j = 1, 2. Furthermore the modified wave operator

W+ : (u1+, u2+) �→ (u1(0), u2(0))

is well-defined.

A similar result holds for the negative time.

Remark 1.2. It is well-known that the asymptotics uja(t, ·) =

Umj (t)e
−imj |x|2/2te−iSj(t,−i∇)uj+ in Theorem 1.1 behaves as

Umj (t)e
−iSj(t,−i∇)uj+ as t→ ∞ for j = 1, 2.

Remark 1.3. When m1 = m2, we assumed that “µ1,3 = µ2,3 = 0” or

“µ1,k = µ2,k for k = 1, 2, 3”. This assumption means the following. As-

sume that m1 = m2 and “µ1,3 �= 0 or µ2,3 �= 0”. Then the third term

of (1.2) is not always zero, and we have to treat the functions u1aū2a

and ū1au2a to prove Lemma 3.1 below. The function u1aū2a involves the

factor e−iS1(t,m1x/t)e−iS2(t,m2x/t) and it is not easy to treat this factor.

Under the condition µ1,k = µ2,k for k = 1, 2, 3, we see that

g1(u1, u2) = g2(u1, u2), S1(t, x) = g1(û1+(x), û2+(x)) log t = S2(t, x), and
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e−iS1(t,m1x/t)e−iS2(t,m2x/t) = e−iS1(t,m1x/t)eiS1(t,m1x/t) = 1. Hence, oscilla-

tion in u1aū2a caused by e−iS1(t,m1x/t)e−iS2(t,m2x/t) vanishes.

Remark 1.4. In Theorem 1.1, we assumed the condition u1+, u2+ ∈
Ḣ−b with 1/2 < b < 3/2 in order to treat nonlinearities with non-resonance

conditions (1.4) or (1.5). Therefore if the nonlinearities F1 and F2 do not

involve these terms, then this assumption is not needed.

Remark 1.5. If φ ∈ H0,2 and φ̂(0) = 0, then φ ∈ Ḣ−α with 0 ≤ α <
1 + n/2. (See Remark 1.5 in [11].)

This paper is organized as follows. In Section 2, we solve the abstract

final value problem around an asymptotic function which decays like t−1/2 in

L∞ and approximates the system (1.1) suitably in large time. In Section 3,

we show our asymptotics (u1a, u2a) satisfies the assumptions of the Cauchy

problem at infinite initial time in Section 2, and we prove Theorem 1.1.

2. The Cauchy Problem at Infinite Initial Time

In this section, we construct a global solution (u1, u2) for the system

(1.1) such that (u1, u2) approachs a given modified free dynamics (u1a, u2a),

which decays as the free solution and approximates the system (1.1) suitably,

as t→ ∞.

First we introduce the Strichartz estimate for the free Schrödinger equa-

tion obtained by Yajima [27]. We define the linear operator

(Gkh)(t) =

∫ ∞

t
Uk(t− s)h(s) ds,(2.1)

where h is a function of (t, x) and k > 0.

Lemma 2.1. Let n denote the space dimension, and let (q, r) and (q̃, r̃)

be pairs of positive numbers satisfying 2/q = n(1/2 − 1/r), 2 < q ≤
∞, 2/q̃ = n(1/2 − 1/r̃) and 2 < q̃ ≤ ∞. Then Gk is a bounded oper-

ator from Lq̃′
t ((T0,∞);Lr̃′

x (Rn)) into Lq
t ((T0,∞);Lr

x(R
n)) with norm uni-

formly bounded with respect to T0, where (q̃′, r̃′) is a pair of positive num-

bers satisfying 1/q̃ + 1/q̃′ = 1 and 1/r̃ + 1/r̃′ = 1. Furthermore, if h ∈
Lq̃′
t ((T0,∞);Lr̃′

x (Rn)), then Gkh ∈ Ct([T0,∞);L2
x(R

n)).
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Let (u1a, u2a) be a given asymptotic profile, that is, an approximate

solution for large time, which will be determined explicitly in Section 3. We

introduce the following functions:

Rj(u1a, u2a) = Lmjuja − Fj(u1a, u2a)

for j = 1, 2.

For T > 0 and ρ > 0, we introduce the following function spaces

XT = {(w1, w2) ∈ C([T,∞);L2) ⊕ C([T,∞);L2); ‖(w1, w2)‖XT
<∞},

BT (ρ) = {(w1, w2) ∈ XT ; ‖(w1, w2)‖XT
≤ ρ},

where

‖(w1, w2)‖XT
= sup

t≥T
(1 + t)d(‖(w1(t), w2(t))‖L2 + ‖(w1, w2)‖L4((t,∞);L∞

x )).

XT is a Banach space with the norm ‖·‖XT
, and BT (ρ) is a complete metric

space with the XT -metric.

Proposition 2.1. Assume that there exists a constant η′ > 0 such

that for t ≥ 0,

‖u1a(t)‖L∞
x

+ ‖u2a(t)‖L∞
x

≤ η′(1 + t)−1/2,

2∑
j=1

(
∥∥(GmjRj(u1a, u2a))(t)

∥∥
L2
x

+
∥∥GmjRj(u1a, u2a)

∥∥
L4
τ ((t,∞);L∞

x )
)

≤η′(1 + t)−d,

where 1/4 < d < 1, and that η′ is sufficiently small. Then the system (1.1)

has a unique solution (u1, u2) satisfying

(u1, u2) ∈ C([0,∞);L2) ⊕ C([0,∞);L2),

sup
t≥1
td(‖(u1(t), u2(t)) − (u1a(t), u2a(t))‖L2

+ ‖(u1, u2) − (u1a, u2a)‖L4([t,∞);L∞)) <∞.
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Proof. We may assume that 0 < η′ ≤ 1. Let (w1, w2) = (u1−u1a, u2−
u2a). The system (1.1) is equivalent to{

Lm1w1 = F1(w1 + u1a, w2 + u2a) − F1(u1a, u2a) −R1,

Lm2w2 = F2(w1 + u1a, w2 + u2a) − F2(u1a, u2a) −R2.
(2.2)

The associate integral equations to the system (2.2) is
w1(t) =i{Gm1(F1(w1 + u1a, w2 + u2a) − F1(u1a, u2a)

−R1(u1a, u2a))}(t),
w2(t) =i{Gm2(F2(w1 + u1a, w2 + u2a) − F2(u1a, u2a)

−R2(u1a, u2a))}(t).

(2.3)

In order to prove this proposition, it is sufficient to show the existence and

uniqueness of solutions for the system (2.3) in X0 for sufficiently small η′.
We first prove the existence of a solution (w1, w2) to the system (2.3) in

B0(ρ) for sufficiently small η′ and ρ. We define the operator

K(w1, w2) = (K1(w1, w2),K2(w1, w2)),

where

Kj(w1, w2) =i{Gmj (Fj(w1 + u1a, w2 + u2a) − Fj(u1a, u2a)

−Rj(u1a, u2a))}(t).

We show that the operator K is a contraction map on B0(ρ) if η′ and ρ are

sufficiently small. Let ρ > 0 be determined later and let (w1, w2) ∈ B0(ρ).

We evaluate K1(w1, w2). It is easy to see that

|F1(w1 + u1a, w2 + u2a) − F1(u1a, u2a)|
≤C{(|w1|2 + |w2|2)(|w1| + |w2|) + (|u1a|2 + |u2a|2)(|w1| + |w2|)}.

(2.4)

From the assumptions, the estimate (2.4), Lemma 2.1 and the facts 1/4 <

d < 1 and (w1, w2) ∈ B0(ρ), it follows that

‖K1(w1, w2)(t)‖L2 + ‖K1(w1, w2)‖L4((t,∞);L∞
x )

≤C(‖(|w1|2 + |w2|2)(|w1| + |w2|)‖L4/3((t,∞);L1
x)

+ ‖(|u1a|2 + |u2a|2)(|w1| + |w2|)‖L1((t,∞);L2
x) + η′(1 + t)−d)
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≤C{(‖w1‖2
L4((t,∞);L2

x) + ‖w2‖2
L4((t,∞);L2

x))

× (‖w1‖L4((t,∞);L∞
x ) + ‖w2‖L4((t,∞);L∞

x ))

+ ‖(‖u1a‖2
L∞
x

+ ‖u2a‖2
L∞
x

)(‖w1‖L2
x

+ ‖w2‖L2
x
)‖L1(t,∞) + η′(1 + t)−d}

≤C(1 + t)−d(ρ3(1 + t)−2d+1/2 + ρη′2 + η′)

≤C(1 + t)−d(ρ3 + ρη′2 + η′).

This implies

sup
t≥0

(1 + t)d(‖K1(w1, w2)(t)‖L2 + ‖K1(w1, w2)‖L4((t,∞);L∞
x ))

≤C(ρ3 + ρη′2 + η′).

In the same way, we have the same estimate for K2(w1, w2). Therefore we

have

‖K(w1, w2)‖X0 ≤ C(ρ3 + ρη′2 + η′).(2.5)

Similarly, for (w1, w2), (z1, z2) ∈ B0(ρ), we have

‖K(w1, w2) −K(z1, z2)‖X0 ≤ C(ρ2 + η′2)‖(w1, w2) − (z1, z2)‖X0 .(2.6)

Note that there exist sufficiently small η′ and ρ such that

C(ρ3 + ρη′2 + η′) ≤ ρ,

C(ρ2 + η′2) ≤ 1

2
.

Hence, from the estimates (2.5) and (2.6), we see that the operator K is a

contraction map on B0(ρ) if η′ and ρ are sufficiently small. Therefore the

system (2.3) has a unique solution (w1, w2) in B0(ρ) for sufficiently small η′

and ρ.

Uniqueness of solutions for the system (2.3) in X0 can be proved exactly

in the same way as Proposition 2.1 in [25]. �

3. Remainder Estimates and Proof of Theorem 1.1

In this section, we show that the asymptotic profile (u1a, u2a) in The-

orem 1.1 satisfies the assumptions in Proposition 2.1, and we prove The-

orem 1.1 as a consequence of Proposition 2.1. In order to check the as-

sumptions in Proposition 2.1, it is sufficient to show that for t ≥ 1, the
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estimates

‖u1a(t)‖L2
x

+ ‖u2a(t)‖L2
x
≤ η′,(3.1)

‖u1a(t)‖L∞
x

+ ‖u2a(t)‖L∞
x

≤ η′t−1/2,(3.2)

2∑
j=1

(
∥∥(GmjRj(u1a, u2a))(t)

∥∥
L2
x

+
∥∥GmjRj(u1a, u2a)

∥∥
L4
τ ((t,∞);L∞

x )
)

≤η′t−d

(3.3)

hold, where 1/4 < d < 1, and the operators Gmj is defined by (2.1). In fact,

in order to avoid the singularity at t = 0, multiplying a cut off function

θ ∈ C∞
t such that θ(t) = 0 if t ≤ 1/2 and θ(t) = 1 if t ≥ 3/4 to u1a and

u2a, we easily see from the estimates (3.1)–(3.3) that the resulting functions

satisfy the assumptions in Proposition 2.1. Throughout this section, we

assume all the assumptions in Theorem 1.1. We put

η = ‖u1+‖H0,2∩Ḣ−b + ‖u2+‖H0,2∩Ḣ−b .(3.4)

We may assume η ≤ 1 because η is sufficiently small.

We define the modified free dynamics (u1a, u2a) with a phase shift by

(1.10). In order to handle long range effects caused by the nonlinear terms

g1(u1, u2)u1 and g2(u1, u2)u2 resonating with the linear part, we have in-

troduced the phase functions S1 and S2 defined by (1.11) as in Ozawa [20]

and Ginibre-Ozawa [3]. Noting the assumption “µj,3 = 0 for j = 1, 2” or

“µ1,k = µ2,k for k = 1, 2, 3” when m1 = m2, we can apply their method to

these nonlinearities.

The following lemma holds:

Lemma 3.1. Assume that u1+, u2+ ∈ H0,2. Then there exists a con-

stant C > 0 such that for t ≥ 1,

‖uja(t)‖L2 = ‖ûj+‖L2 = ‖uj+‖L2 ,

‖uja(t)‖L∞ ≤ Ct−1/2‖ûj+‖L∞ ,

‖Lmjuja(t) − gj(u1a, u2a)uja‖L2

≤C (log t)2

t2
‖uj+‖H0,2(1 + ‖u1+‖2

H0,2 + ‖u2+‖2
H0,2)

for j = 1, 2.
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Let a ∈ R\{0}, f and V be complex and real valued functions of x ∈ R,

respectively, and

Ña(t, x) =
1

t

( a
it

)1/2
f
(ax
t

)
eia|x|

2/2t−iV (ax/t) log t.(3.5)

In order to treat the nonlinear terms N1(u1, u2) and N2(u1, u2) which do not

resonate with the linear part, we estimate the integral
∫∞
t Uk(t−s)Ña(s) ds.

We introduce the following lemmas. We can show Lemma 3.2 in the same

way as Lemma 2.4 in [11].

It is well-known that

Uk(t) =Mk(t)Dk(t)FMk(t), k > 0,(3.6)

where Mk and Dk are the following operators:

(Mkf)(t, x) = eik|x|
2/2tf(x), (Dkg)(t, x) =

(
k

it

)1/2

g

(
t,
kx

t

)
.

By the definition of Ña and the relation (3.6), we have

Ña(t, x) =
1

t

( a
it

)1/2
f
(ax
t

)
eia|x|

2/2t−iV (ax/t) log t

=
1

t
(Ua(t)Ma(t)

−1e−iV (−i∂) log tf̌)(x),

(3.7)

where f̌ is the inverse Fourier transform of f .

Lemma 3.2. Let a ∈ R, 1/2 < δ < 2, and f and V be complex and real

valued functions of x ∈ R, respectively. Let δ1 and δ2 be constants such that

δ1 = 1 if δ < 1, δ < δ1 < 2 if δ ≥ 1, and δ2 = 3/2 if δ < 3/2, δ < δ2 < 2

if δ ≥ 3/2. Let Ña be defined by (3.5). Then there exists a constant C > 0

such that for t ≥ 1,∥∥∥∥∫ ∞

t
Ña(s) ds

∥∥∥∥
L2

≤Ct−δ/2(‖| · |−δf‖L2 + ‖| · |−δfV ‖L2)

+ Ct−δ1/2(‖| · |1−δ1∂f‖L2

+ ‖| · |1−δ1f∂V ‖L2(1 + log t)),
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s
Ña(s) ds

∥∥∥∥
L4
s((t,∞);L∞

x )

≤Ct−δ/2(‖| · |−δf‖L2 + ‖| · |−δ∂f‖L2 + ‖| · |−δfV ‖L2 + ‖| · |−δ∂(fV )‖L2)

+ Ct−δ2/2(‖| · |3/2−δ2∂f‖L∞ + ‖| · |3/2−δ2f∂V ‖L∞(1 + log t)).

Proof. By the integration by parts, we see that∣∣∣∣ ∫ ∞

t
Ña(s) ds

∣∣∣∣
=

∣∣∣∣∣
∫ ∞

t

|a|1/2
s3/2

f
(ax
s

)
e−iV (ax/s) log s 1

1 − (ia|x|2/2s)∂s(se
ia|x|2/2s) ds

∣∣∣∣∣
≤
∣∣∣∣∣ |a|1/2t1/2

f
(ax
t

) 1

1 − (ia|x|2/2t)

∣∣∣∣∣
+

∣∣∣∣∫ ∞

t
∂s

( |a|1/2
s3/2

f
(ax
s

)
e−iV (ax/s) log s

× 1

1 − (ia|x|2/2s)

)
seia|x|

2/2s ds

∣∣∣∣
≤C{B1(t) +B2(t)},

(3.8)

where

B1(t) =
1

t1/2

∣∣∣f (ax
t

)∣∣∣ 1

1 + (|a||x|2/t) ,

B2(t) =

∫ ∞

t

{
1

s3/2
1

1 + (|a||x|2/s)

(∣∣∣f (ax
s

)∣∣∣
+

|a||x|
s

∣∣∣(∂f)(ax
s

)∣∣∣+ |a||x|
s

∣∣∣f (ax
s

)
(∂V )

(ax
s

)∣∣∣ log s

+
∣∣∣f (ax

s

)
V
(ax
s

)∣∣∣
+

|a||x|2
s

∣∣∣f (ax
s

)∣∣∣ 1

1 + (|a||x|2/s)

)}
ds.

(3.9)

We estimate the L2-norm. Since 1/2 < δ < 2, we obtain

‖B1(t)‖L2
x

=Ct−1/2−δ/2

∥∥∥∥∥
( |a||x|

t

)−δ

f
(ax
t

) (
√
|a|/t|x|)δ

1 + (|a||x|2/t)

∥∥∥∥∥
L2

≤Ct−δ/2‖| · |−δf‖L2 .

(3.10)
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Similarly, we can estimate ‖B2(t)‖L2 , and hence we have the first inequality

of this lemma.

We next consider the L4
s((t,∞);L∞

x )-norm. By the Gagliardo-Nirenberg

inequality and δ > 1/2,

‖B1(t)‖L∞
x

≤t−1/2

∥∥∥∥f (√at x
)

1

1 + x2

∥∥∥∥
L∞

≤Ct−1/2

∥∥∥∥f (√at x
)

1

1 + x2

∥∥∥∥1/2

L2

∥∥∥∥∂ (f (√at x
)

1

1 + x2

)∥∥∥∥1/2

L2

≤Ct−1/2

∥∥∥∥f (√at x
)

1

1 + x2

∥∥∥∥1/2

L2

×
{∥∥∥∥f (√at x

)
x

1 + x4

∥∥∥∥
L2

+ t−1/2

∥∥∥∥(∂f)(√at x
)

1

1 + x2

∥∥∥∥
L2

}1/2

≤Ct−1/2(t1/4−δ/2‖| · |−δf‖L2)1/2

× (t1/4−δ/2‖| · |−δf‖L2 + t−1/4−δ/2‖| · |−δ∂f‖L2)1/2

≤Ct−δ/2−1/4‖| · |−δf‖1/2
L2 (‖| · |−δf‖L2 + ‖| · |−δ∂f‖L2)1/2.

We have obtained the fourth inequality in the same way as in the estimate

(3.10). Taking the L4-norm with respect to time variable, we have

‖B1(t)‖L4
s((t,∞);L∞

x ) ≤ Ct−δ/2‖| · |−δf‖1/2
L2 (‖| · |−δf‖L2 + ‖| · |−δ∂f‖L2)1/2.

In the same way as above, we can estimate the first, fourth and fifth terms

of the integrand in the definition (3.9) of B2. We describe the estimate for

the second term. When 1/2 < δ < 3/2, we can easily see

∥∥∥∥∫ ∞

t

1

s3/2
1

1 + (|a||x|2/s)
|a||x|
s

∣∣∣(∂f)(ax
s

)∣∣∣ ds∥∥∥∥
L∞
x

=

∥∥∥∥∫ ∞

t

|a|1/2
s2

√
|a|/s|x|

1 + (|a||x|2/s)
∣∣∣(∂f)(ax

s

)∣∣∣ ds∥∥∥∥
L∞
x

≤Ct−1‖∂f‖L∞ .
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Taking the L4-norm with respect to time variable, we have∥∥∥∥∫ ∞

s

1

τ3/2

1

1 + (|a||x|2/τ)
|a||x|
τ

∣∣∣(∂f)(ax
τ

)∣∣∣ dτ∥∥∥∥
L4
s((t,∞);L∞

x )

≤Ct−3/4‖∂f‖L∞ .

(3.11)

On the other hand, when δ ≥ 3/2, in the same way as in the estimate (3.10),

we have∥∥∥∥∫ ∞

t

1

s3/2
1

1 + (|a||x|2/s)
|a||x|
s

∣∣∣(∂f)(ax
s

)∣∣∣ ds∥∥∥∥
L∞
x

=

∥∥∥∥∫ ∞

t

1

s3/2
1

1 + (|x|2)

√
|a|
s
|x|
∣∣∣∣∣(∂f)

(√
|a|
s
x

)∣∣∣∣∣ ds
∥∥∥∥
L∞
x

=

∥∥∥∥∫ ∞

t

|a|−1/4+δ2/2

s5/4+δ2/2

|x|δ2−1/2

1 + (|x|2)

(√
|a|
s
|x|
)3/2−δ2

∣∣∣∣∣(∂f)
(√

|a|
s
x

)∣∣∣∣∣ ds
∥∥∥∥
L∞
x

≤Ct−δ2/2−1/4‖| · |3/2−δ2∂f‖L∞ .

where δ < δ2 < 2. Taking the L4-norm with respect to time variable, we

have ∥∥∥∥∫ ∞

s

1

τ3/2

1

1 + (|a||x|2/τ)
|a||x|
τ

∣∣∣(∂f)(ax
τ

)∣∣∣ dτ∥∥∥∥
L4
s((t,∞);L∞

x )

≤Ct−δ2/2‖| · |3/2−δ2∂f‖L∞ .

(3.12)

From the estimate (3.11) and (3.12), the estimate for this term is completed.

The third term on the right hand side of (3.9) can be evaluated in the same

way. Summing up the above estimates, we have the second inequality of

this lemma. �

We estimate GkÑa.

Lemma 3.3. Let k > 0, 1/2 < δ < 2, a ∈ R such that a �= 0 and a �= k,
and f and V be complex and real valued functions of x ∈ R, respectively.

Let δ1 and δ2 be constants such that δ1 = 1 if δ < 1, δ < δ1 < 2 if δ ≥ 1,

and δ2 = 3/2 if δ < 3/2, δ < δ2 < 2 if δ ≥ 3/2. Let Ña be defined by (3.5).
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Then there exists a constant C > 0 such that for t ≥ 1,

‖(GkÑa)(t)‖L2
x

+ ‖GkÑa‖L4((t,∞);L∞
x )

≤Ct−δ/2

{ ∑
(f̃ ,Ṽ )=(f,V ),(fV,V )

(‖| · |−δf̃‖L2 + ‖| · |−δ∂f̃‖L2

+ ‖| · |−δf̃ Ṽ ‖L2 + ‖| · |1−δ1∂f̃‖L2 + ‖| · |1−δ1 f̃∂Ṽ ‖L2)

+ ‖| · |3/2−δ2∂f‖L∞ + ‖| · |3/2−δ2f∂V ‖L∞

+ ‖∂2(fe−iV log t)‖L2

}
,

(3.13)

where the operator Gk is defined by (2.1).

Proof. Note the equality

Uk(−s)Ña(s) =∂s

(
Uk(−s)

∫ s

T
Ña(τ) dτ

)
+
i

2k
Uk(−s)

(∫ s

T
∂2Ña(τ) dτ

)
,

(3.14)

where t < s < T . Integrating the equality (3.14) over the interval (t, T ),

applying U(t) to the resulting equality and letting T → ∞, we have

(GkÑa)(t) =

∫ ∞

t
Ña(τ) dτ

− i

2k

∫ ∞

t
Uk(t− s)

(∫ ∞

s
∂2Ña(τ) dτ

)
ds.

(3.15)

We calculate ∂2Ña:

∂2Ña(t) = −2ai∂tÑa(t) + 2aLaÑa(t).(3.16)
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Noting (3.7), we see that

LaÑa(t) = − i

t2
Ua(t)Ma(t)

−1e−iV (−i∂) log tf̌

+
i

t
Ua(t)∂t(Ma(t)

−1e−iV (−i∂) log tf̌)

= − i

t2
Ua(t)Ma(t)

−1e−iV (−i∂) log tf̌

+
i

t
Ua(t)Ma(t)

−1

(
ia|x|2
2t2

− i

t
V (−i∂)

)
e−iV (−i∂) log tf̌

=P (t) + r(t),

(3.17)

where

P (t) = − i
t
Ña(t) +

1

t
Ña(t)V

(ax
t

)
,

r(t) = − a

2t3
Ua(t)(Ma(t)

−1|x|2e−iV (−i∂) log tf̌).

Note that r decays faster than P . From the equalities (3.15), (3.16) and

(3.17), we obtain

(GkÑa)(t) =

∫ ∞

t
Ña(τ) dτ +

a

k

∫ ∞

t
Uk(t− s)Ña(s) ds

− ia

k

∫ ∞

t
Uk(t− s)

(∫ ∞

s
P (τ) dτ

)
ds

− ia

k

∫ ∞

t
Uk(t− s)

(∫ ∞

s
r(τ) dτ

)
ds.

(3.18)

Since the integral in the second term on the right hand side of (3.18) is

GkÑa and k �= a, we obtain

(GkÑa)(t) = I1(t) + I2(t) + I3(t),(3.19)

where

I1(t) =
k

k − a

∫ ∞

t
Ña(τ) dτ,

I2(t) = − ia

k − a

∫ ∞

t
Uk(t− s)

(∫ ∞

s
P (τ) dτ

)
ds,
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I3(t) = − ia

k − a

∫ ∞

t
Uk(t− s)

(∫ ∞

s
r(τ) dτ

)
ds.

From Lemmas 2.1 and 3.2, it follows that

2∑
j=1

(‖Ij(t)‖L2
x

+ ‖Ij‖L4((t,∞);L∞
x ))

≤
∥∥∥∥∫ ∞

t
Ña(s) ds

∥∥∥∥
L2
x

+

∥∥∥∥∫ ∞

s
Ña(τ) dτ

∥∥∥∥
L4((t,∞);L∞

x )

+

∫ ∞

t

∥∥∥∥∫ s

∞
P (τ) dτ

∥∥∥∥
L2
x

ds

≤Ct−δ/2

{ ∑
(f̃ ,Ṽ )=(f,V ),(fV,V )

(‖| · |−δf̃‖L2 + ‖| · |−δ∂f̃‖L2

+ ‖| · |−δf̃ Ṽ ‖L2 + ‖| · |1−δ1∂f̃‖L2 + ‖| · |1−δ1 f̃∂Ṽ ‖L2)

+ ‖| · |3/2−δ2∂f‖L∞ + ‖| · |3/2−δ2f∂V ‖L∞

}
.

(3.20)

Using Lemma 2.1 and noting the estimate

‖r(t)‖L2 ≤ C (log t)2

t3
‖∂2(fe−iV log t)‖L2 ,

we have

‖I3(t)‖L2
x

+ ‖I3‖L4((t,∞);L∞
x ) ≤

∫ ∞

t

∫ ∞

s
‖r(τ)‖L2 dτ ds

≤C (log t)2

t
‖∂2(fe−iV log t)‖L2 .

(3.21)

From the equality (3.19), the estimates (3.20), (3.21) and the fact 1/2 <

δ < 2, we obtain the inequality (3.13). �

Remark 3.1. Let 1/2 < δ < 3/2. By Hölder’s inequality, the

Gagloardo-Nirenberg inequality ‖ψ‖L∞(R) ≤ C‖ψ‖1/2
L2(R)

‖∂ψ‖1/2
L2(R)

and the

facts −δ < 1− δ1 and δ2 = 3/2 when 1/2 ≤ δ < 3/2, the norms on the right

hand side of (3.13) is dominated by

C(‖f‖H2 + ‖| · |−δf‖L2 + ‖| · |−δ∂f‖L2

+ ‖V ‖H2 + ‖| · |−δV ‖L2 + ‖| · |−δ∂V ‖L2)
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if these norms are less than or equal to 1.

Proof of Theorem 1.1. Assume all the assumptions in Theorem 1.1.

Let u1a and u2a be the functions defined by (1.10). According to Proposi-

tion 2.1, as mentioned before, it is sufficient to show the estimates (3.1)–

(3.3). The estimates (3.1) and (3.2) immediately follow from the definitions

of u1a and u2a. We prove the estimate (3.3). We rewrite Rj(u1a, u2a):

Rj(u1a, u2a) = Lmjuja − gj(u1a, u2a)uja −Nj(u1a, u2a)

for j = 1, 2. By Lemmas 2.1, 3.1 and 3.3, we have

‖GmjRj(u1a, u2a)(t)‖L2
x

+ ‖GmjRj(u1a, u2a)‖L4
τ ((t,∞);L∞

x )

≤C
∫ ∞

t
‖Lmjuja(s) − gj(u1a(s), u2a(s))uja(s)‖L2 ds

+ ‖GmjNj(u1a, u2a)(t)‖L2
x

+ ‖GmjNj(u1a, u2a)‖L4
τ ((t,∞);L∞

x )

≤Cηt−b/2,

where 1/2 < b < 3/2 appearing in the assumption of Theorem 1.1, and

η is defined by (3.4). Here we have applied Lemma 3.3 to each term of

Nj(u1a, u2a). Taking η′ = Cη and d = b/2, we see that the assumptions in

Proposition 2.1 are satisfied. This completes the proof of Theorem 1.1. �
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