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Asymptotic Behaviors of Solutions to
One-dimensional Tumor Invaston Model

with Quasi-variational Structure
By Akio ITO

Abstract. We consider a one-dimensional tumor invasion model
of Chaplain—Anderson type with quasi-variational structure, which is
originally proposed in [3]. One object is to show the existence of global-
in-time solutions by using the limit procedure for suitable approximate
solutions. The other is to consider the asymptotic behaviors of global-
in-time solutions as time goes to co. Actually, we construct at least one
global-in-time solution, which enables us to consider the convergence
to a certain constant steady-state solution as time goes to co whenever
the initial data satisfy suitable conditions.

1. Introduction

In this paper, we consider the following one-dimensional tumor invasion
model of Chaplain—Anderson type, which is a nonlinear system composed
of two PDEs, one ODE and constraint conditions:

,

e = (ding — NP)nfo)e + ppn(1—n— ) — g in Qr,
fe =—amf in Qr,
my = domy, +bn —cm in Qr,
P)S n>0, f>0, n+f<a in Qr
(ding — AM(f)nfz)(£L,t) =0 for t € (0,7,
mg(£L,t) =0 for t € (0,7,
[ (1(0), £(0),m(0)) = (no, fo, mo) in €,
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where T' € (0,00], Q = (=L, L) for some L > 0 and Qr = Q x (0,7); a,
b, ¢, di and dy are positive constants; o > 1 is a constant; A\ is a non-
negative function on R; p, and p4 are non-negative functions on Q; a
triplet (ng, fo, mo) is a prescribed initial datum.

In the original model proposed in [3], such constraint conditions as are
described by the fourth condition of (P) are not imposed and make it dif-
ficult for us to analyze (P) mathematically. From the biological point of
view, the unknown functions n, f and m indicate the distributions of tumor
cells, the extracellular matrix denoted by ECM and the enzyme degrading
ECM denoted by MDE, respectively. Especially, n(x,t) and f(z,t) indicate
the local ratios of tumor cells and ECM at the position z € €} and the time
t € [0,00), respectively. Actually, n(z,t) = a (resp. n(x,t) = 0) means that
the position z is completely occupied with tumor cells (resp. there are not
any tumor cells at z) at ¢. Similarly, f(x,t) = a (resp. f(z,t) = 0) means
that ECM at x is completely healthy (resp. completely destroyed by the
biochemical reaction with MDE) at ¢. Moreover, the value a —n — f means
the ratio occupied with the other normal tissues or cells. The first equation
describes the dynamics of tumor cells, which is composed of a random motil-
ity dings, a haptotaxis —(A(f)nfy)z, a cell proliferation of logistic growth
type ppn(l —n — f) and a cell death —pgn. The second one describes the
kinetics of ECM, which is derived from the biochemical reaction between
ECM and MDE with a velocity a. The third one describes the dynamics
of MDE, which is composed of a space-uniform diffusion dsm,,, a secretion
from tumor cells bn and a natural decay —cm. In this paper, we omit the
detail explanation of (P) and entrust it to [3].

Of course, many tumor invasion models are proposed from the biological
point of view and analyzed mathematically in [1, 2, 4, 5, 6, 7, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25| and their references. The common thing among
all models is that the kinetic equation of tumor cells contains a chemotaxis
term and/or a haptotaxis one. Furthermore, some mathematical results,
which are obtained from the analysis of Keller-Segel system in [8, 26] and
their references, are made use of to deal with the tumor invasion models.

In this paper, we concentrate our discussion on the models of Chaplain—
Anderson type without and with constraint conditions. For the model with-
out constraint, for example, in [14] G. Litcanu and C. Morales-Rodrigo
showed the existence and uniqueness of global-in-time solutions and con-
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sider their asymptotic behaviors as time goes to oo for the three-dimensional
case. The main ideas in their argument, which will be also used in this pa-
per, come from the properties of the Neumann heat semigroup {e*®® |t > 0}
on LP(Q) for any d > 0 and p € [1,00]; for any t > 0 and ¢ € LP(2) the

— ptdA

function y(t) © is a unique solution to the system:

yr = dAy in Q x (0, 00),

9y _
ov
y(0)=¢  inQ

where Q is a bounded domain in R? with smooth boundary 9Q and v is

0 on 99 x (0, 00),

the outer normal unit vector on 9€2. The properties for the one-dimensional
Neumann heat semigroup will be clearly stated in Lemma 2.1 in Section 2.

On the other hand, the models with constraint are dealt with in [9, 10,
11, 12], in which the homogeneous Dirichlet boundary condition is imposed
for n instead of the fifth condition of (P) and the haptotaxis sensitivity A(f)
is independent of f but a positive function on [0, 00). In [10, 12] the authors
showed for the first time the existence of local-in-time and global-in-time
solutions for the case that the coefficient dy of a random motility of tumor
cells is given by a prescribed positive function d;(t) of the time variable .
In [9] R. Kano showed the existence of global-in-time solutions for the case
that dy = dy(,t) is a positive function on Q x [0, 00), where Q = [-L, L].
Recently, in [11] R. Kano and A. Ito succeeded in showing the existence of
global-in-time solutions for the case that d; = di(x,t, f) especially depends
upon the distribution f of ECM, which is one of the unknown functions in
(P). The difficulty to analyze (P) mathematically comes from the constraint
conditions 0 < n < a — f in Q. In order to overcome this difficulty,
first of all we formally rewrite (P) into the single system of n by using
suitable solution operators A; and Ay, which assign n to f = Ajn and
m = Agn, respectively. Then, the constraint conditions are expressed by
0 <n<a—Anin Q. It is important that the interval [0, — f] =
[0, — Ain], where the values are allowed to be taken by n, depends upon
the unknown function n itself. Such structure is sometimes called quasi-
vartational structure. In order to deal with such systems, we mainly use the
theory of quasi-variational inequalities established in [13]. Unfortunately,
in general it seems quite difficult and impossible to show the uniqueness of
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solutions to the systems which have the quasi-variational structures. As a
result, until now it is also difficult to deal with the asymptotic behaviors
of global-in-time solutions as time goes to oo even if we succeed in showing
their existences.

Throughout this paper, we denote by || - ||, and || - ||, the norms of
LP(2) and W™P(Q), respectively, where W™2(Q) = H™(2). Furthermore,
we assume that (A1)-(A6) are satisfied for the prescribed data:

(A1) X is non-negative globally Lipschitz continuous on R, whose Lipschitz
constant is denoted by L.

(A2) pp is continuous on Q x [0,00). Moreover, there exist g1 > 0 and
p2 > 0 such that py < pp(x,t) < po for all (z,t) € Q x [0, 00).

(A3) pg is continuous on € x [0,00). Moreover, there exists sz > 0 such
that 0 < pg(z,t) < pg for all (z,t) € Q x [0, 00).

(A4) ng € HY(Q) and 0 < ng < a in Q.

(A5) fo € WH°(Q) and 0 < fy < a —ng in Q.

(A6) mg € WH>(Q) and mg > 0 in Q.

Under the above assumptions, at first we show the existence of non-negative
global-in-time solutions to (P), which is clearly stated in Theorem 1.1.

THEOREM 1.1. Assume that (A1)-(A6) are satisfied. Then, (P) has
at least one non-negative global-in-time solution (n, f,m) satisfying the fol-
lowing properties for any T > 0:

(1) n € WH2(0,T; L2(Q)) N L>=(0,T; HY()) and the first equation in (P)
is satisfied in the following quasi-variational sense in L?(0,T; L*(Q)):

[[ i //Tnm = J[, Ansine o
(1.1) g//TMpn(l—n— //Tudnn_

for anyn € L2(0,T; H'(Q)) with0 <n < a— f a.e. in Qp.

(2) f is given by the following expression:

(1.2)  f(=z,t) = fo(z)exp (—a/o m(x,s)ds) for all (x,t) € Q x [0,T).

(3) m € WH2(0,T; L2(Q)) N L0, T; Wh*(Q)) N L2(0, T; H*(Q)) and the
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third equation in (P) is satisfied in the following variational sense in L*(§2):

s /th(t)c+d2/gmx(t)@—i—c/Qm(t)C:b/Qn(t)C
for any ¢ € HY(Q) and a.e. t € (0,T).

(4) The following constraint conditions are satisfied:
(1.4) n>0, 0<n+f<a ae inQr.
(5) (n(0), £(0),m(0)) = (no, fo,mo) in H'(2) x WH(Q) x WH>(Q).

Moreover, Theorem 1.2 below guarantees that there exists at least one
non-negative global-in-time solution (n, f,m) to (P), which enables us to
consider the asymptotic behavior as time goes to oo.

THEOREM 1.2.  Assume that (A3)’ instead of (A3), (A7)-(A9) are sat-
isfied besides (A1)-(A6) except (A3):

(A3)" 11g =0 on Qoo-

(A7) There exists n. > 0 such that no(z) > n, for all x € Q.
(A8) no(z) <1 — fo(x) for all x € Q.

(A9) There exists m, > 0 such that mo(x) > m. for all x € ).

Then, there exists a non-negative global-in-time solution (n, f,m) such that
(n(®), F(£).m(t)) — (1,0,2) in LA(Q) x C(Q) x L3(Q) a5 t— ox,

where (1,0,b/c) is a constant solution to the steady state system (P)g:

( (dlﬁx_)\(f)ﬁfx)x+ﬂpﬁ(1 _ﬁ_f) =0 mn Q,
—amf =0 in €,
domgs +bn —cm =0 in €,

(P)sq _ . . .
n>0, f>0, n+f<a in Q,
(diige = M f)nfe)(£L) =0,
| me(£L) =0,

where fi, € C(Q) is any function satisfying p1 < fi, < p2 a.e. in L.
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Theorem 1.2 says that ECM in the region € is completely destroyed by
the biochemical reaction with MDE and the tumor cells reach the saturated
state in the whole € at time ¢t = co when all conditions below are satisfied:

(A2) Cell proliferation rate in the logistic term is positive.

(A3)’ Cell death does not exist.

(A7) Tumor cells extends over the whole € initially.

(A8) ppn(1—n— f) really works as the proliferation of tumor cells at ¢ = 0.
(A9) MDE extends over the the whole (2 initially.

But it does not give any information about the behaviors of tumor cells,
ECM and MDE from their early stages.

REMARK 1.1. In [6] K. Fujie et al. propose a new tumor invasion
model, which is a modified one of Chaplain—Anderson type without con-
straint conditions and give an idea of the mathematical control method
of a tumor invasion phenomenon by heat stress. They show the existence
and uniqueness results of classical local-in-time solutions to their system.
Moreover, in [7] K. Fujie et al. show the existence of classical global-in-
time solutions and consider their asymptotic behaviors as time goes to co.
They succeed in showing that any classical global-in-time solution always
converges to a constant steady state solution as time goes to co although
the kinetic equation of tumor cells contains the chemotaxis effect for a sub-
stance, which comes from the biochemical reaction between ECM and MDE.

2. Local-in-time Solutions to Approximate Systems of (P)

In this section, for each ¢ € (0,1) we show the existence and uniqueness
of local-in-time solutions to the following approximate system (P)_ of (P):

(1§ = (din — AX(f)n°f5)e — B=(F55n°) + g(n, f%)  in Qo
Jf = —ams f* in Qoo,
®) m; = dams,,, + bn® —cm?® in Qu,
| (ding — A(fEREfE)(£L,t) =0 for t > 0,
mS(£L,t) =0 for t > 0,
(n(0), f(0),m*(0)) = (no, fo, mo) in €,
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where g(n, f) = ppn(l —n — f) — pgn and for each f € R the function
Be(f;) is increasing and globally Lipschitz continuous on R defined by
r —max{0, o — f}
€

if r > max{0,a — f},
if 0 <r <max{0,a — f},

/Bs(fQ T) =

if r <0,

M3 O

whose Lipschitz constant is 1/e. Then, we see that [.(f;-) satisfies the
following inequalities, which are used without notification below:

7]

Be(f5m) < 2 for any fr R,
6:( i) — B < D2 oramy v e
Moreover, ﬁs fir fo Be(f;0)do gives Moreau—Yosida’s regularization of

the indicator functlon on [0, max{oz — f}]. In order to use the argument
similar to those in [6, 14], we use the following change of variables:

1 rf
(2.1) w=mnz, z=exp (——/ )\(r)dr) > 0.
di Jo

Then, the system (P). can be rewritten into the following system:

(Wi = diwg, + A(fwsfr + g=(w®, f5,m°)  in Qu,
f = —ame e in Qe
m§ = dymS, + b ()1 — em® in Qu.
(22) ws(£L,t) =0 for any ¢t > 0,
ms(£L,t) =0 for any ¢ > 0,
[ (w(0), f2(0), m*(0)) = (wo, fo, m0) in €,
where (w,n, f,z) = (w,n%, f¢,2°) in (2.1) and g.(w, f,m) is given by
a\(f)wmf

ge(w, fym) = —zB:(f; wz_l) + ppw(l — wz™ - f) = paw + dy

Then, wy € H'(Q) is easily seen from (A1), (A4) and (A5).
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In order to show the existence of solutions (w, f,m) to (2.2), we use the
following lemma, whose proof is omitted in this paper and entrusted to [26].

LEMMA 2.1. Let1 <p<qg<o0. For each d > 0, the one-dimensional
Neumann heat semigroup {etdA}tZO, which is given by the same definition
for the three-dimensional case in Section 1, satisfies the following estimates:

(1) There exists C1 = C1(d,p,q) > 0 such that

sl < oy 2 0 and ¢ € LP(Q
1P elly < Cut lelly  for any t >0 and ¢ € LP(S).

(2) There exists Cy = Ca(d,p,q) > 0 such that

1(q41o1
I20),], < € (147055 )
for any t >0 and ¢ € LP(Q).
(3) For each p € [2,00] there ezists C3 = Cs(d,p) > 0 such that

M2 01y < Csll@lliy  for any t >0 and ¢ € WHP(RQ).

Now we give the main theorem in this section, which guarantees the
existence and uniqueness of non-negative local-in-time solutions to (P)..
THEOREM 2.1. For each € € (0,1) there exists T5,,. € (0,00] such
that the approximate system (P). has one and only one non-negative so-
lution (n%, f¢,m®) on [0,1},,,) satisfying the following properties for any
T € (0, T5qz):
(1) n¥ € C([0,T); H'(2)) nW12(0,T; L*(2)) and the first equation in (P).

is satisfied in the following variational sense in L*(£)):

Aﬁmx+m4@®@—AMUWﬂ®MQ+/@u%mﬂmc

:/Q,up(t)na(t)(l—n( — (1) — /Md

for any ¢ € HY(Q) and a.e. t € (0,T).
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Moreover, the initial condition n®(0) = ng is satisfied in H'(£2).
(2) f¢ is also expressed by (1.2), in which (f,m) = (f¢,m®).
(3) me € C([0, T); Wh*(2)) and is expressed by the following variation-of-
constants formula for all t € [0,T):

t
me(t) = e 22" Vmg 4 b/ = RA=)pe()ds in  LO(Q).
0

Moreover, if T}, .. < 0o, then we have

(23)  n°(®)

ax

12 + || f5(1)

Loo + [[m=(B)ll1,00 — 00 as &/ T,

In order to show Theorem 2.1, we mainly deal with the approximate sys-
tem (2.2) in the following argument. For any 7 € (0, 1) we consider a Banach
space X7 = C([0, 7]; HY(Q)) x C([0, 7]; W1>(Q)) x C ([0, 7]; Wh*(Q)) with
norm ||(w, f,m)|x- = maxo<i<r (Jw(t)|lr2 + [l ()][1,00 + Im(t)]|1,00), and
for any p > 0 a closed ball B7(0, p) with center 0 and radius p.

First of all, we show the following lemma, which gives some estimates
of z defined by (2.1) on B7(0, p).

LEMMA 2.2. There exists Cy(p) > 1 such that

2.4 )2 (@, )]} < Calp),
(2.4) (ng)z)éTﬂzl(I 1z (@, 01} < Calp)

2.5 min z1(z,t)|, 271 z,t)|p > ,
25 min {26 0] e @00 > 5

(26) max {|(z1 = 22)(x, )], (27" = 23 ) (@ )|} < Calp)|(f1 = f2) (@, )]
for all (z,t) € Qr = Q x [0,7]
for any (w;, fi,m;) € B7(0,p), i = 1,2, where z is given by (2.1).

PrOOF. Let (w;, fi,m;), 1 = 1,2, be any elements in B7(0, p). First of
all, we see from (A1) that the following inequalities are satisfied:

(2.7) IA(o)] < Lylo| + A(0) =: Cy(o) for all o € R,

/D " \F)dr

Lyo? ~
(2.8) < 2% L \N0)|o| =: Cy(o) for all o € R.




578 Akio ITO

By taking Cy(p) = exp(Cyu(p)/d1), we see from (2.1) and (2.8) that (2.4)
and (2.5) are satisfied.

Next, we use (2.4), (2.7) and apply the mean value theorem for e”, which
is often used without notification in the following argument. Then, we have

C C _
max{|z1 — 29|, \21_1 — 22_1|} < %exp <%> “|fi = fa| on Qr,
1 1
hence, by taking up Cy(p) again as
C C
04(/)) —(1+ 4(p) exp 4(P) 7
dq dq

we see that (2.4)—(2.6) are satisfied. O

Now, we define a mapping ® on B"(0, p) by

(@5 (w, f,m))(t)
(@%(w, f,m))(t) = | (®5(w, f,m))(t)
(@3(w, f,m))(t)

t
i Dy 1 /0 =1L G (w, f,m)(s))ds

t
— fo—a /O (mf)(s)ds for all ¢ € [0, 7],

t
eHd2B=c) +b/ (=) (@8-0) (1~ 1) (5)ds
0

where ge((w, f,m)(s)) = A(f(s))wa(s)fe(s) + ge(w(s), f(s),m(s)). Then,
the mapping ®° satisfies the following properties.

LEMMA 2.3. There exists p1 > 0 such that for each ¢ € (0,1) there
exists i € (0,1) such that ®¢(B7(0,p1)) C B7(0, p1) for all T € (0,75].

ProoOF. From the property of the Neumann heat semigroup {emA H>0,
we have ®°(B7(0,p)) C X7. Without notification we use the compact
imbedding H!(Q)) — C(Q), hence, there exists C5 > 0 such that

lellc@) < Csllelle  for all p € HY(Q).
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By using Lemma 2.2, we have

(2.9) 12(8)Be (f (£); (w2 (B) 2 <

pCi(p)®
—

By the elemental calculation, we see from (2.9) and Lemma 2.2 again that
there exists Cg(p, ) > 0 such that

(210 ma (3 (w(®). £0). m(®)]2 < Cop. )

Hence, we see from Lemma 2.1 with (2.10) that the following estimates are
satisfied:

(2.11) (@5 (w, f,m)(t)lh2 < Csllwoll12 + Cr2Cs(p,€) (T +2v7)
(2.12) [[(@5(w, f,m) ()00 < [ foll1.00 + Bap®T,
(2.13) [[(@5(w, f,m)(B)ll1,00 < Csllmolli,co + bpCr2Ca(p)Cs (T +2V/7) ,

vyhere C~’1,2 — Cl (dla 27 2)+02(d17 2> 2)7 C_’1,2 — Cl(d2a 0, OO)+02(d27 o0, 00)7
Cg = Cg(d1,2) and 03 == Cg(dg, OO)
At last, by using (2.11)—(2.13), we have

(2.14) |®F(w, f,m)|x- < Cr+ Cs(p,€) (T +2/7),
where
Cr = Cslwoll1.2 + [|.foll1,00 + Csllmoll1,00,
Cs(p,e) = C12Cs(p, €) + 3ap” + bpCh 2Ca(p)Cs.

By fixing p1 > C7 and 7§ > 0 satisfying Cg(p1,)(75 + 24/75) < p1 — C7,
then (2.14) implies that this lemma holds. O

LEMMA 2.4. For eache € (0,1) there exists 75 € (0, 7{] such that ®¢ is
contraction on B2(0, p1), where ¥ and py are the same numbers that are
obtained in Lemma 2.3.

ProOF. Throughout this proof, let 7 € (0, 7§] be any number and put
(W,F, M) = (w; —wa, fi — f2,m1 —ma). At first, we see from Lemma 2.2
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that there exists Co(p1,€) > 0 such that

/Q 21 (081 (0 (wn 27 1) (1)) — 22(8)Be(fa(0); (wazy 1) (1)

4 -
. Q

< Colpr.e) (W2 + IF@)F ) forallz€[0,7].

By the elemental calculation with (2.15), we see from that there exists
Cho(p1,€) > 0 such that

(2.16) 19e (w1, f1,m1)(t)) = ge((w2, fa, m2)(¢))|l2
< Cro(pr,e)|(W,F,M)||x- forall t e [0,7].
By using Lemma 2.1 and (2.16), for the mapping ®§ we have
217 H(q)?(wlafl:ml)x ) = (D5 (w2, f2,m2)) (t)]l1,2
< C12C10(p1, ) (T4 2v7) (W, F,M)|| x~ for all ¢ € [0,7].

By repeating the argument similar to ®{ for the mapping ®5, we have

(@5 (w1, f1,m1))(t) — (P5(w2, f2,m2))(t)]|1,00
(2.18) < b0172/0 (1 + (t — s)_% | (wlzl_l)(s) — (wgzgl)(s)Hoods

< Culpy) (r +2y7) (W, F,M)|x-  forallte[0,7],

where 011(p1) = b(l -+ p1)617204(,01)05.
For the mapping ®5 we have

(@5 (w1, f1,m1))(t) — (P5(w2, f2,m2))()[|1,00
< 2ap17||(W,F, M)| x~ for all t € [0, 7].

(2.19)

At last, we see from (2.17)—(2.19) that the following estimate is satisfied:

| (w1, f1,m1) — D (w2, fa, ma)| x-

(2.20) )
< (C12C10(p1,€) + Cri(pr) + 2ap1) (T + 2y/7) (W, F, M)||x-.
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By taking 75 satisfying
(C12C10(p1,€) + Cr1(p1) + 2apy) (%2‘E + 2\/%) <1,
and putting 75 = min {7§, 75}, (2.20) implies that this lemma holds. [J
Now, we are in a position to give the proof of Theorem 2.1.

PROOF OF EXISTENCE PART. We define T¢

max

by
Tue =sup{T > 0| (P), has a solution (n°, f°,m) on [0,T]}.

By using Lemmas 2.3 and 2.4, and applying Banach’s fixed point theorem,
we see that ®° has a unique fixed point (w®, f&,m?) € B (0, p1). Because
it is clear that (w®, f¢, m®) is a solution to (2.2) on [0, 75], we see from (2.1)
and Lemma 2.2 that (w®(z°)!, f¢,m?) is also a solution to (P)_ on [0, 75].
Hence, we have 75 € {T' > 0| (P), has a solution (n¢, f¢,m) on (0,77}, so,
TTiLaI

Moreover, from the definition of X7, which is the function space applied
Banach’s fixed point theorem, and the boundedness of (nf, f¢,m*), it is

clear that (2.3) must be satisfied whenever T, < co. [J

max

exists.

In the next proof, we let (n, f¢,m®) a solution to (P), on [0,7},,,) and

show their non-negativities by using the argument in [14, Theorem 3.2].

PROOF OF NON-NEGATIVITIES OF SOLUTIONS. It is clear from (1.2)
and (A5) that f¢ is non-negative on Q x [0,75,,..)-
Next, we show the non-negativity of n® by using the same method that

is given in [14]. We consider a function H € C3(R) given by

0 if r € [0, 00),
H) - &4 if r € [-3,0),

—8rt —32r% —24r2 —8r —1  ifre[-1,-3),

24r% + 24r + 7 if r € (—o0,—1)

Then, we see from the elemental calculation that H(-) satisfies

0< H'(r)r <12H(r) for all r € R,
(2.21)

0< H"(r)r? <12H(r)  forallr € R.
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Now, we define the non-negative function ¢(-) by
S(t) = / H(n#(t)) for all ¢ € [0,T5,,.).
Q

Then, it is clear that ¢* € W12(0,7) for any 7 € (0,75%,,,) and (0) = 0,

’ T max

which comes from (A4). By integrating the first equation in (P)_ on € and
using the non-negativity of f¢ with (2.21), we have

()~ Lo

- I/ e £12 5 1/ €\ E._E pe
dl/QH<n>|nzr +/QA<f>H (n)nens 2

IN

(2.22)
_/H/(n8>18€(f87n€)+/MpH/(n8>n6(1_n6)
Q Q

=: —dl/QH"(ns)\n‘;]2 +I —Ih+ I3 ae. in (0,7).

Then, we see that the following estimates are satisfied for a.e. t € (0,7):

BC4(1f Nloo) 11 F5 11 oo ‘
dq

(2.23)  L() Sdl/QH”(ns(t))Infc(t)IZvL (1),

(2.24) I3(t) < 12p2 (1 + CsIn"(t)[l1,2) 7 (2)-

Moreover, since both H'(-) and (.(f;-) are increasing on R satisfying
H'(0) = B:(f;0) = 0, we have

(2.25) I)(t) >0 fora.e. te (0,7).

By substituting (2.23)—(2.25) into (2.22), we have

(2.26) <d§) (1) < E(B)o° (1) for ae. t € (0,7),

where ¢¢ € C|0, 7] is given by

_ 3G Ol DI} oo

£ A

+ 12u2 (1 + Cs|In°(t)[|1,2) -
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By applying Gronwall’s lemma to (2.26), we have ¢°(t) = 0, i.e., n°(t) > 0
on  for all + € [0,7]. Finally, by applying the maximum principle for
parabolic PDEs to the third equation in (P)_, we have m® > 0 on Q x [0, 7).

Since T € (0,T%,,,) is arbitrary, we see that n® and m® are non-negative on

Qx[0,T5,.)- O

’ - max

REMARK 2.1. From the non-negativity of m® on Qx [0, T%,,..) and (1.2),

’ - max

we see that 0 < f& < a on Q x [0,75,,,) and for each z € Q the function

) - max

f(z,-) is decreasing on [0, T7,,..)- These facts play important roles not only

to show the uniqueness of local-in-time solutions but also the existence of
global-in-time solutions to (P)..

Finally, we show the uniqueness of local-in-time solutions to (P)_ and
make the proof of Theorem 2.1 complete. We refer that the original idea of
the uniqueness proof is given in [6, Theorem 1].

PROOF OF UNIQUENESS PART. Let (nf, f£,m{), i = 1,2, be two non-

negative solutions to (P)_ on [0,7},,,). Throughout this proof, we omit the

? T max

index € and put (N, F, M) = (n1 — na, fi — fa,m1 — my) as well as

P = Afui)ri(f1)e — Af2)n2(f2)e,
Q = B:(f1;m1) — Be(fasn2)
R=p,(1—ny—ng2 — fi)N — ppnoF — pgN.
Then, we see that for any 7 € (0,75,,,) the triplet (N, F, M) satisfies the

’ T max

following system (D):

(Ny= (N, —P),—Q+R Qs
F,=—afiM — amsF in @,
D) My = doMy, +bN — cM in @,
(diN, — P)(£L,t) =0 for t € (0,7),
M, (£L,t) =0 for t € (0,7),
(N(0), F(0),M(0)) = (0,0,0) in Q.

We note from (2.3) that the following estimate holds:

(2.27) Cia(7) = [[(n1; f1,m1) |7 + [|(n2, f2, ma)|[x < o0
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At first, we multiply the first equation in (D) by N and integrate its
result on €. By using the increasing property of 5.(f;-), we have

228 — [ QN < [ 8(fisna) = Bl IN] < 5 - (IVIE + IFIE).

By using Remark 2.1, we see that there exists C13(7) > 0 such that the
following inequalities are satisfied a.e. in (0, 7):

d\N, — P),N < — [ |PJ?
/Qu 4d1/||

(2.29) < 4d /{ Lalni(f)eF D2 + (M f2) (f1)= N + |M(fo)ne Fe*}
< Cus(7) (IN1B + I1F13 + 1 F2(13)

as well as

(2.30) /QRN < g (1 + %2(7)) (IN13 + [1F113) -

By using (2.28)—(2.30), we have

. LINWIB < Culr.2) (INWIB+IEOIR + IE0)1R)

for a.e. t € (0,7),

where 1
014(7',6) = 2013(7') + /,62(2 + 05012(7')) + g

Moreover, by using (1.2) and Remark 2.1, we have
t t t
IFo(8)] < al(fo)e| exp ( / ma(s)lds +a / |m2<s>|ds) / M (s)|ds
talF(1 |/ ((m1)a(5)|ds + al fo(t |/ M, (s)|ds

< aHfoHLooezmcm(T)/ |M (s)|ds + atCha(7)|F'(t)] + “0‘/ | My (s)|ds
0 0

for a.e. in €2, which gives the following estimate:

(2.32) 1F()lI5 < Crs(r) (IF@)]3 + J1(¢))  for all ¢ € [0,7],
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where

t t
Ji(t) = e / 1M (s)3ds + 243 / | Ma(s)[12ds,
0 0

3a?retarCr(n)|| f, ||ioo n 3a’a’T

015(7') = 3a272012(7')2 + . 5,

By substituting (2.32) into (2.31), we have
(2.33) %HN(t)H% < Cu(mye)(1+ Ci5(7))J(t) for ae. t € (0,7),
where J(-) is a non-negative function on [0, 7] given by

J(&) = IN@OIZ + [FO3 + M @)]3 + J1(2)-

Secondly, we multiply the second equation in (D) by F' and integrate its
result on € to derive

(2.34) %I!F(t)llg <aa ([FO)3 + [M@)I5)  for ae. t € (0,7).

Thirdly, by multiplying the third equation in (D) by M and integrating
its result on €2, we have

d b?
(2.35) 7 (IM@®)[5 + J1(t)) < ;||N(t)||% for a.e. t € (0,7).
By adding (2.33)—(2.35), we have
dJ
(2.36) <E> (t) < Cip(r,e)J(t) for ae. t € (0,7),
where

2
016(7'75) = 014(7'75)(015(7') + 1) +aa + ?

By applying Gronwall’s lemma to (2.36), we have J(t) = 0 for all ¢ € [0, 7],
i.e., (n1, fi,m1) = (na, fo,mz) in (L?(2))3 on [0,7]. Since 7 € (0,T%,,,) is
arbitrary, the solution (n®, f¢,m®) to (P), on [0,T},,,) is unique. [J

) T max
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3. Global-in-time Solutions to Approximate Systems of (P)

In this section, we use the same notations in Section 2 and devote our-
selves to show the existence of global-in-time solutions to (P).. For this, we
use the argument similar to that of [14, Section 4].

THEOREM 3.1.  For each € € (0,1) the system (P). has one and only

one non-negative global-in-time solution (n®, f¢,m*), that is, T5,,. = oo.

We fix any ¢ € (0,1) and prepare some boundedness of the local-in-time
solution (n®, f¢,m®) to (P),. First of all, we give L'-boundedness of (nf, m?)
and L°°-boundedness of f¢ in Lemma 3.1 below.

LEMMA 3.1. (nf, f€,m®) satisfies the following estimates:

(3.1) max ||n°(t)]1 < 2Lmax{a, ﬂ} :
0<t<T 0y 0
2bL
(3.2) max  [[me(¢)|h < |Jmolly + —— max {a, @} .
0<t<T5 0s c L1
3.3 (1)l ey <
(33) a0 o <o

max

PROOF. First of all, since m? is non-negative on Q x [0, T%,,,.), we see

from (A5) and (1.2) that (3.3) holds. (cf. See Remark 2.1.)

Next, we integrate the first equation in (P), on €2, and use the non-
negativities of the functions (n®, f¢) and the increasing property of 5-(f;-)
with B:(f;0) = 0. Then, we have

d
IOl < pzfn* (@)l ~ %Hng(t)\\% for a.e. t € (0, T40),

which implies that (3.1) is satisfied.
Finally, we integrate the third equation in (P)_ on € to have

d
(3-4) Sl @l + clm® @)l < blln° (@)L for ae. t € (0, Tra0).

By applying Gronwall’s lemma to (3.4) and using (3.1), we see that (3.2) is
satisfied. OJ
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From (2.1), Remark 2.1 and Lemma 3.1, the following corollary is im-
mediately obtained.

COROLLARY 3.1. 2% and w® satisfy the following estimates:

. )]l < 1,
(35) omax 17 (B)lloo <
ey—1
. oo < ,
(3. s ) Ol < Cale)
5 H2
(3.7) max ||w®(t)|[1 < 2L max {a, —} ,
0<t<TE 0p I

where Cy(a) is the same constant that is obtained in Lemma 2.2 with p = a.

The next lemmas give us L°-boundedness of (n,m®). Although the
original and essential proof is precisely shown [14, Proposition 4.2], we give
their proofs to make the difference between ours and those in [14] clear.

LEMMA 3.2. There exists Ci7 > 0 such that

() ||oo < Ci7.
pmax  [[m=(t)]lee < Chr

mazx

PROOF. By using (1) in Lemma 2.1 and (3.1), we have

t
[m=()]lee < [lmolloo + 601/0 e (t — 5)73|n(s)]1 ds

IN

2bLC T (%
Hmﬂm+———iﬁﬁmw{ “ﬂn

NG “

M1
where €7 = C(dz,1,00) and T’ denotes the Gamma function throughout
this paper. This estimate implies that this lemma holds. [

LEMMA 3.3. There exists Cig > 0 such that

“(t < (3.
. [[n(0) < Cis

max
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PrROOF. We omit the index ¢ of solutions (w®, f¢,m) to (2.2) and 2°
throughout this proof. Let p > 2 be any number. At first, we multiply the
first equation in (2.2) by pwP~!'z~! and integrate its result on Q. By using
the non-negativities of (w, f,m,2) and z=! > 1 on Q x [0,75,,.), we have

) max
d B 4d -1 _
R T _ddi(p—1) I[(wP/2), |12 +p/ fipz P
dt Jo P Q

[ wr e + 2 [ (g,

Since fB:(f;-) is increasing on R with G.(f;0) = 0, we have

(3.8)

(3.9) / W B fwe ) > 0.
Q
By using (3.3) and Corollary 3.1, we see that there exists C1g > 0 such that
(3.10) [ e < Cuall,
Q
(3.11) @ 2 IN(fHuwPmf < 019/ wPm.
di Jo Q
By substituting (3.9)—(3.11) into (3.8), for any 6 € (0,1) we have
4di(p — 1)

2P+ ey wl|p < — Al wP?)2 13

dt Jq

(3.12)
+(pCio + 6d1)|[w]Z + Crolp — 1) / wPm.
Q

By using Young’s inequality and Lemma 3.2, we have

3/2 3/2 1/2
/wms%ww@MMwmﬂmm

3.13
(3.13) 5d;

< -7
~ Culpp-1)
By substituting (3.13) into (3.12), we have

B L2CECHCly(p — 1)°
43633

P12 5 + Alwlly

B Alp—1

& e ssaiuly < an {s - LD g
(3.14) “ "
33L20560%7Cil9(p - 1)4 .

P&

p
p/2

+(pCrg + 2d16)[Jw||} + [Jwl|
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Next, we estimate the second term in the right-hand side of (3.14). By
repeating the argument similar to (3.13), we have

33L2C6
lwlh < &llwllf + 8]l (w”?). 5 + W?)S Nlwliy s
hence,
1 33L2CP
315) g < g o+ SR i)

We see from (3.14) and (3.15) that there exists Cao(6,p) > 0 such that
d _
G |+ sl < o)l

o PCho Ap—1) p/2\ 112
—l—dl{é—i— 1—6< 4 +26> ’ | (wP2) 2 ||5-

(3.16)

By the elemental calculation, we have

bp [ pChg > 4(p—1) 1
+26, | < ——=, b= ———,
1—5p< dy P p P Oulp+1)
where Cy; = 019/3d1 + 7/6
Moreover, we see that there exists Coa > 0 such that Coo(p + 1)7 >

C20(6p, p) for all p > 2. Hence, by using (3.16), (3.17) and Corollary 3.1, we
see that the following inequality is satisfied a.e. in (0,77,,,):

i Zﬁlwp—f— dl
dt Jo Ca(a)Cn(p+1)

By applying Gronwall’s lemma to the above inequality, we see that the
following estimate is satisfied for all ¢ € [0, T, ,..):

’ - max

LE o < [+ apncata) (s Tol,.)
< 20i(a)max {207, ) e [wl0)l2) }.

0<t<Tmaz

(3.17) &, +

[ = < Conot 1)l

hence,

(3.18) Hw(t)\\ps<2a<p>o4<a>>%max{a<2L>%, e uw<t>up/2},

0<t<Tmax
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where

8 8
(p+1)° <alp) = Cﬂcﬂd(ﬁ 2l 021022(2]9) :
1 1

Then, by taking p = 2 in (3.18) and using Corollary 3.1 again, we have

(SIS

(3.19) omax (b2 < (2C()a(2))

max

(2L + 1) max {a @}

M1

By repeating the same operation in p = 2 for p = 27 inductively, we see that
the following estimate is satisfied for all ¢ € [0,T%,,.):

Y max

j
lw(t)|les < H L’“ (2Cy4(cx )) k=135 ~(2L+1)max{a7@}
M1

(3.20) k=1

a, 22
- di p1
By taking the limit j — oo in (3.20), we see that the following estimate is

satisfied for all ¢t € [0,75,,,):

’ - max

- 99+8X 721 55 (2L + 1)Cy(a)C21C22 max { Mz}

321)  flw(t)]e < dy

Finally, we see from (2.1) and (3.21) that this lemma holds. [J

0 j
9IH8E T2, 3 (2L + 1)Cy(a)C21C2 max {a o }

In Lemma 3.4 below, we give W1*-boundedness of (f¢,m?).

LEMMA 3.4. There exists Cag3 > 0 such that

292 e <
(3.22) o [m=(t)][1,00 < Cas,
(3.23) s [£5()][1,00 < C23(1 + T00)-

max

PrROOF. By repeating the same argument in Lemma 2.3 and using
Lemma 3.3, we see that the following estimate is satisfied for all t €
[0, T50z):

1
328 (Ol <O (% + ?) ~: o
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which implies that (3.22) is satisfied.
By using (1.2), (3.24) and the non-negativity of m® on [0,75,,.), we have

) - max

175(2)

t
Loo < [l foll1,00 + aa/ [Im%(8)lloods < | foll1,00 + aaCayt
0

for all t € [0,T5,,,), which implies that (3.23) holds. O

Before showing H'-boundedness of n®, we prepare the following lemma,
which is one of the Gronwall’s lemma. Although its proof is quite standard,
we give it in this paper by way of caution.

LeEMMA 3.5. Let6 € (0,1), 7 >0, v(7) > 0 be fized numbers, ¢(-) be a
non-negative continuous function on [0,7) and h(-) be a positive continuous
function on (0,00). Assume that for any M > ~(1) the following inequality
is satisfied for allt € [0,7):

t

(3.25) o(t) < h(M) + ”)’(T)/ e~ M(t=s) (1 + (t— 3)*0) o(s)ds.
0

Then, there exists Cas(T) > 0 such that

max ¢(t) S 025(7‘).

o<t<r

ProOOF. We put ®(7) = maxo<t<r ¢(t). At first, we see from (3.25)
that the following inequalities are satisfied:

(3:20)  6(0) < (1) 4 5(r) [ M gepas + WD)

hence,

eMip(t) < {h(M) + W : @(7)} Mty 7(7)/0 eMsp(s)ds.

By applying Gronwall’s lemma to the above inequality, we have

/0 €MS¢(S)dS < M—;’y(’r) {h(M) + % . (D(T)} eMt,
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hence,

(3.27) /D e ME=5) g (s)ds < M_;W) {h(M) + % : @(T)} .

By substituting (3.27) into (3.26), we have

(3.28) B(r) < Ajy ﬁ(i\(@) + (L(Tz]\j(i ()1) ]\_419_)9 (7).
We can choose M; > ~(7) satisfying

V(1) MLT(1 - 6)
(My —~(7)) M~

My=1-—

9

because
y(T)MT'(1—0)

(M —~(r))M*=0

Hence, we see from (3.28) that the following boundedness is satisfied:

—0 as M — oo.

Mlh(Ml)
*) < IL0h -2

which directly implies that this lemma holds. [J
LEMMA 3.6. There exists Cag(c) > 0 such that

13
< .
omax [ (®)ll,2 < Cao(e)

max

Proor. For any M > ~(T%,,..), where y(T5,,..) is exactly determined

max max
in the following argument, we use the variation-of-constants formula of w®:

t

(1) = AWy [ NBAMG () (),
0

where g. ar(w, f,m) = g-(w, f,m)+Mw. We see from Lemmas 3.1-3.4 that

there exist Co7 > 0 and Cag(e, M) > 0 such that the following estimate is

satisfied for all t € [0,T5,,,):

’ - max

(3:29)  1ge.ar((w®, f7,m%)(8))ll2 < Cor(1 + Tiap) W (s)[l1,2 + Cas(e, M).
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By using (3.29) and Lemma 2.1, we have

t
[0 (Ol < heM) + (T [ €0 (14 0= 9)74) [u(5) s,
0

where

- - 1 I
M) = M) | — 2
he(M) = C3|lwol1,2 + C1,2Ca8(e, M) (M + \/H>’
V(Tiae) = C12Cor (14 Tas) -

By applying Lemma 3.5, we see that there exists Cag(¢) > 0 such that

£
. m < .
(3.30) o inax lwe(t)]]1,2 < Cag(e)

mazx

Moreover, we see from (2.1) and Lemmas 3.1-3.4 that the following
estimate is satisfied for all ¢ € 0,75, ,..):

€ 2 e(.e\—1 2 3 NVt FE(2F -1 2
ns@®3 < 2/Q|<wm<z> (@) +d%/9|<w> 2@

C4(Ol)202 (1 + T?f’baac)z
23d2 [w® ()13 2-
1

IN

204 (a)? {1 +

Hence, we see that this lemma holds. [J
Now, we are in a position to give the proof of Theorem 3.1.
PrROOF OF THEOREM 3.1. We assume 17

e ar < 00 and let (nf, f€,m®)

a unique solution to (P)_ on [0,7},,,). Then, we see from Lemmas 3.4 and

3.6 that there exists Csp(e) > 0 such that

g (3
o T0B% ([[n°(&)[l1,2 + [|£5(¢)

max

1,00 + [[M°(#)[]1,00) < C30(e),

which is in contradiction with (2.3). Hence, T};,,, = co must be holds. OJ

max

4. Existence of Global-in-time Solutions to (P)

In this section, we devote ourselves to show Theorem 1.1. For each
e € (0,1) we let (n%, f¢,m®) (resp. (w®, f¢,m%)) a unique non-negative
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global-in-time solution to (P)_. (resp. (2.2)) and use the same notations in
Sections 2 and 3. Then, we note that we have already had their uniform
boundedness in Lemmas 3.1- 3.4 and Corollary 3.1, which are clearly stated
in Lemma 4.1 below again.

LEMMA 4.1. There exists C31 > 1 such that

sup {Sup ([In* () lloo + [[m=()]]1,00
e€(0,1) L0

HWW%mm+wwmg}§@h
sup || fo(t)|loo < C31(1+1t) forallt >0
€€(0,1)

as well as

sup {swp Ol <o s {0l p <1

e€(0,1) Lt>0 e€(0,1) Lt>0

Since the boundedness of n¢ in L*(0, T; H(2)) obtained in Lemma 3.6
depends upon ¢, first of all we derive the uniform boundedness of {n°}.¢(o1)
in Wh2(0,7; L*(Q)) N L>(0,T; H*(Q)), which plays an important role to
the limit procedure of the approximate solutions (n®, f¢,m?) to (P).. For
each f € R we consider a non-negative function (.(f;-) given by

Bs(fﬂ“) = Z2Bg(f;rz_1) for all r € R.
Then, we have the following lemmas.

LEMMA 4.2. The following inequality holds:

0

Eﬁg(fs;ws) <wiZB (5w (25)™Y)  ae in Quo.

PROOF. For each f € [0, a] the function B.(f;-) is expressed by

_ 2
(r—i—z];—ozz) ifr>az—2zf,
€
Bz—:(f?r): 0 if0<r<az-—zf,
2

— if r < 0.
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Then, we see from Lemma 4.1 that the following equality is satisfied:

0

(41

B(f55w°) = wi 2B (f55 w5 (2°) ™) + L(f550f)  ace. in Qoo
where £.(f;w) is given by

(w+2f —az) {(2f)t — oz}
EE(fﬂU) = €

0 ifw<az—zf.

ifw>az—zf,

By using (2.1), the second equation in (2.2) and Lemma 4.1, we have

az"A(fF)m° f5(f* — a)

(1) — 0z = -

—az"mff* <0
for the case w® > az® — 2° f°, hence,

(4.2) L(f%5w°) <0 ae in Q.

We see from (4.1) and (4.2) that this lemma holds. O

LeEMMA 4.3. For each T > 0 there exists Cs2(T) > 0 such that

sup ||nllz2(0,m;02()) + sup {SUP ||n€(t)||1,2}
€€(0,1) €€(0,1) | 0<t<T

c€(0,1) | 0<t<T

+ sup { sup /Qﬁs(ff(t);na(t))} < Ci(T).

PrOOF. We multiply the first equation in (2.2) by w§(t) and integrate
its result on ). By using the estimate, which is obtained in the proof of
(3.23), and Lemmas 4.1 and 4.2, we see that there exist C33 > 0 and C34 > 0
such that

fot+ 5 (Shusoi+ [ A o)

< 033(1 + t)QHUJ;(t)H% + (C3y forae. te (O,T).

(4.3)
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By using the non-negativity of B.(f;-) with B.(fo;wo) = 0, which comes
from (A4) and (A5), and applying Gronwall’s lemma to (4.3), we have

» ; / s ()Eds+ s OIF + [ Al @)

d 2033(1 +T)3
< (?IHUJOH%,Q + C'34T) exp (%) for all t € [0, 7.
1

From Lemma 4.1 we have
(4.5) /Q Bo(Fe (1) (1) < OBy /Q Be(£7 (1) w (1)):

By using the similar estimate, which is obtained at the end of the proof of
Lemma 3.6, and the following equality:

w_te B a)\(fe)wsmsfs
2€ dyz¢

we see from (4.4), (4.5) and Lemma 4.1 that this lemma holds. O

g _
nt_

From the standard argument of parabolic PDEs and Lemma 4.3, we see
that the following uniform estimate for {m®}.c( 1) is satisfied. Since its
proof is quite standard, we omit it in this paper.

LEMMA 4.4. For each T > 0 there exists C35(T") > 0 such that

sup [[millr20,m2(0)) + sup Ml p20,mm200)) < Cs5(T).
€€(0,1) €€(0,1)

By using the uniform boundedness of approximate non-negative
global-in-time solutions to (P)_, we can construct a non-negative global-
in-time solution to (P). At first we give two propositions. One gives the
existence result of the limit (n, f,m) of a suitable sequence of approximate
solutions (n®, f¢,m®), of which each component converges each correspond-
ing component in a suitable function space. The other shows that the limit
(n, f,m) satisfies the constraint conditions.

PROPOSITION 4.1.  There exist a sequence {e} and a triplet (n, f,m)
of mon-negative functions on Q~ such that

(4.6) e 0 as k— o0
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and for any T > 0 the following convergences are satisfied as k — oo:

C([0, T} L*()),
(4.7) n —n in { weakly in W5H2(0,T; L?(12)),
s-weakly in L>(0,T; H(Q)),
(4.8) [ — fin WH(0,T; L3 (Q)) N WH(0,T; H' (),
C([0,T]; L2(2)) 1 L2(0, T; HY(%),
weakly in W2(0,T; L*(2)),
weakly in L*(0,T; H*(Q)),
s-weakly in L>(0,T; Wh*(Q)).

(4.9) mt —m in

Moreover, (n,f,m) satisfies the same estimates that are obtained in
Lemmas 4.1-4.4.

PrOOF. At first, by using Lemmas 4.1, 4.3 and 4.4 with T = 1, we
can take out a sequence {e1x} C (0,1) and a pair (n',m!) satisfying the
convergences (4.6), (4.7) and (4.9) as k — oo, in which (eg, n,m) is replaced
by (e1,k, n',m'). By using Lemma 4.1 and the second equation in (P), with
(1.2), we see that there exists C3g > 0 such that the following estimates are
satisfied for any t € (0,1):

(4.10) [|FY*(t)]l2 < Cae VEI M || 120 4:12(0)

(4.11) [|[F}F()]|2 < Cse (\/ﬂ|M1’k||L2(o,t;H1(Q)) +t|| Y Loo(o,t;m(g))) ;

(412) [F* 1))z < Ca (M4 (0) 12 + [F(1)]2)
(413) [ FL Ol < Coo {1+ OIM@)12 + IF @)}

where (FVF, MYF) = (feur — f1ometk —ml) and (f,m) = (f,m') in (1.2).
Hence, we see from (4.9)—(4.13) that (4.8) is satisfied, in which (f%*, f) is
replaced by (feuk, f1).

Next, we assume that for any ¢ € N there exist a sequence {¢;;} and a
triplet (n?, f', m?) such that all convergences in (4.6)— (4.9) are satisfied, in
which (T, ek, n, f,m) is replaced by (i,&;x,n’, f',m'). We consider the case
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1+ 1. By applying Lemmas 4.1, 4.3 and 4.4 with T" = ¢+ 1 and repeating the
argument similar to the case 7' = 1, we can choose a subsequence {&;41} C
{eix} and a triplet (n'™, fiT1 m*1) satisfying all convergences in (4.6)-
(4.9), in which (T, &g, n, f,m) is replaced by (i + 1,&;51 5, nL, fi71 miTh),

Now, we define a sequence {ex} = {1} and a triplet (n, f,m) by (x):

for each T > 0 there exists i € N such that i — 1 < T < i and
(n(t), f(t),m(t)) = (n'T(t), f'7(t),m'T(t)) for all t € [0,T].

Then, {1} and (n, f,m) are desired ones in this lemma because it is clear
from the constitution method of (n, f,m) that

(n" (1), f1 (), m™ (t)) = (n™ (1), f2(t),m™(t)) for any t € [0, 1]

whenever i1 < i for any i1, i3 € N. [

REMARK 4.1. We see from the uniform estimates of approximate so-
lutions (n®, f¢,m®) to (P). obtained in Lemmas 4.1, 4.3 and 4.4 that for
each T' > 0 there exist a sequence {e7x} C (0,1) and a triplet (nT, fT, m?),
which depend upon 7', such that all convergences in Proposition 4.1 are sat-
isfied. It is not clear that (n™'(¢), fT1(t),m™1(t)) = (n*2(t), f72(t), m*2(t))
for all ¢ € [0,min{T7,T>}] because it is difficult to show the uniqueness
of solutions to (P) on [0, min{T},75}] in general by the quasi-variational
structure of (P), which is made clear in Theorem 4.1 below.

PROPOSITION 4.2. Let (n, f,m) be the same triplet that is obtained in
Proposition 4.1. Then, the following constraint conditions are satisfied:

n>0, f>0, n+f<a onQs=Nx]0,00).

ProoOF. We fix any T > 0 and consider the same sequence {ej} that is
obtained in Proposition 4.1. From the convergences in Proposition 4.1 with
Gagliardo—Nirenberg’s inequality; there exists C3y > 0 such that

1 1
lellc@) < Carllellizliell;  for any € HY(Q),
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without loss of generality we may assume that the following convergence is
satisfied as k — oo:

(4.14) (%, £, me*) — (n, f,m) in C(Qr).

Since we see from Lemma 4.1 and (4.14) that n > 0 and f > 0 on Qr, it is
enough to show n + f < a on Q7. In order to do this, for each f € [0,q]
we consider the indicator function B(f;-) on [0, o — f].

For the case that (z,t) € Q satisfies n(xz,t) + f(z,t) < a, we have

(415)  B(f(z,t)in(z,1) =0 < Be, (f*(x,t);n (2,t)) for all k € N,

For the case that (z,t) € Qr satisfies n(x,t) + f(x,t) > a, we take out
and fix r(z,t) > 0 satisfying n(z,t) + f(x,t) > a + r(z,t). Then, we see
from (4.14) that there exists k(x,t) € N such that

t
nk(z,t) + [ (x,t) > a+ r(:p2, ) for all k > k(z,t),
hence, from the definition of Bs

Be, (f5+(z,t); n* (2, 1)) > M for all k > k(z,t),
8€k

which implies

(4.16) Jim Be, (f5F(x,t);n* (2, 1)) = 00 = B(f(z,t); n(x,1)).
We see from (4.15) and (4.16) that the following inequality is satisfied:
(4.17) B(f:n) < liminf B, (f*5n) on Qr.

By applying Fatou’s lemma with (4.17) and using Lemma 4.3, we have

/ B(f:n) < limin / B (f*:n%) < TCap.
Qr Qr

k—o0

Since 3(f;-) is the indicator function on [0, o — f], we see that the following

equality must hold:
J[ dtsim=o,
Qr



600 Akio ITO

which implies that 0 < n < a — f a.e. in Q7. Since T' > 0 is arbitrary, we
see from the compact imbedding H'(2) < C(£) that this lemma holds. [J

Next, we give the approximation of a test function n € L2(0,T; H'(2))
satisfying the constraint condition 0 <7 < o — f a.e. in Q7.

LEMMA 4.5. Let {ex} and (n, f,m) be the same sequence and triplet
that are obtained in Proposition 4.1. For anyT > 0 andn € L*(0,T; H'(Q))
with 0 < n < a — f a.e. in Qr there exists a sequence {n*} C L?(0,T;
HY(Q)) such that the following properties are satisfied:

(4.18) 0<n"<a—f* aein Qr forallkéeN,
(4.19) n® —mn in L2(0,T; HY(Q)) as k — oo.

ProoF. For each k € N we define n* = max {0, n + f — f*}. Then,
it is clear that {n*} C L?(0,T; H'(2)) and satisfies (4.18). We put Q% =
{(2,1) € Qr|n(,1) < f*(z,t) — f(z,1)}. Then, we have

—n(z,t) if (x,t) € Q’%,

k%t_ z,t) =
n"(z,t) —n(z,t) {f(x’t)_f&‘k(x’t) if(x,t)EQT\Ql%'

Since it is clear that
0> n*(z,t) —n(z,t) = —n(e,t) > —f*(z,t) + f(z,1)
whenever (z,t) € Q%, we have
(4.20) Ik (z,t) — n(z, t)| < |f(x,t) — f(z,t)| for all (z,t) € Qr.
From (4.8) and (4.20), we have
(4.21) " —mn in L*0,T;L*(Q) as k— oo.
Moreover, we see from (4.8) that the following convergence holds:

(4.22) f— f in C([0,T);C() as k — oo.



Asymptotic Behaviors of Solutions to One-dimensional Tumor Invasion Model 601

From 1 > 0 a.e. in Qp with (4.22), we have |Qr \ Q%| — |Q7|, hence,

(4.23) Q% — 0 as k — oo,

hﬁmﬁ—mﬁ—-[/Mﬁ+[/ o = fP

T Qk. QT\Q%

S il 155 = oo
T

From (4.8), (4.23) and (4.24), we have

besides

(4.24)

IN

(4.25) nt—mn, in L*0,T;L*Q)) as k— ooc.

Hence, we see from (4.21) and (4.25) that {n*} is a desired approximate
sequence. []

Now, we are in a position to give the proof of Theorem 1.1.

Proor or THEOREM 1.1. From Propositions 4.1 and 4.2 it is enough
to show that the limit (n, f, m), which is obtained in Proposition 4.1, satis-
fies (1.1). In order to do this, let {e;} be the same sequence that is obtained
Proposition 4.1. We take any test function n € L?(0,T; H'(2)) satisfying
the constraint conditions 0 < n < a— f a.e. in Q7 and consider the sequence
{nk } which is constructed in Lemma 4.5. We multiply the first equation in
(P), by nF — n* and integrate its result on Q7. Then, we have

[/ o (ne +¢/7T (n2k — 1)
(4.26) /7T (%)™ 5 (S m)+// B (£555 1) (0 — 1)
://T,upnak(l—n — ) (n®F — //Tudn —1").

By using the convexity of G, (f°*;-) and (4.18), we have

(4.27) /QﬂMfHWWWLW%E/QBMFhMW
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By substituting (4.27) into (4.26), we have

// ¥ (nf +m/7 ng|2 - m// nenk
(4.28) -] A k) + / By (F525m50)
g//Tﬂank(l—n — foF)(n®k — //Tudn — ).

Since we see from Lemma 4.1 and Proposition 4.2 that there exists C3g > 0
such that

([ IA(for)nse for — A OInfallLzom029)

< Cs(1+7T) (IIn* = nll 20020 + 15 = Fllezorsa @) »

[1pn (1 = nk — fF) — ppn(1 —n — f)ll20,1020))

< O3z (||n6’“ —nll 20,1 020) + 1 = fllzorc2@)) -

we see from Proposition 4.1 that the following convergences hold as k — oo:
(4.20) A(feF)n for — Mf)nfe  in L*(0,T; L*(Q)),
T (1= = o) — (1 —n— f) in L2(0,T5 L(Q).

By taking liminfy_ .., in (4.28) and using Propositions 4.1 and 4.2 as well
as (4.29), we see that (1.1) holds. O

In the rest of this section, we make the quasi-variational structure of
(P) clear. For each T > 0 and v € L>(0,T; H'(2)) satisfying the con-
straint conditions 0 < v < a a.e. in Q we prepare a functional ¥ (-) on
L?(0,T; L*(Q)) by the following way. We denote by Asv = m? a unique
solution to the system

my = dom?, + bv — em? in Qr,
mg(£L,t) =0 for any ¢ > 0,
m(0) = myg in €,

and Ajv by (1.2), in which (f,m) = (Ajv,Agv). Then, we note that the
following lemma holds. Since its proof is quite standard and the similar
results have already been obtained in Lemmas 3.1-3.3, we omit it here.
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LEMMA 4.6. The following boundedness are satisfied:

bC _
0<Av<a, 0<Aw<|molleo+ Yalis i oo,
C

where él and Chg are the same constants that are obtained in Lemmas 3.2
and 3.3, respectively.
Moreover, there exists C39(T) > 0 such that

HA1U||L°°(0,T;H1(Q)) + ||A2UHL2(0,T;H1(Q)) < O39(T).

Now, we define a functional WI'(-) on L?(0,T; L?(2)) by

ﬁ 2 V)V v i T
HOER S //QT - //QT Adw)v(Arw)ens: it n € D(V, )
oo if n € L2(0,T; L2(Q)) \ D(VT),

where D(UD) = {n € L?(0,T; H(Q)) |0 <n < a— Ajv a.e. in Qr}. Then,
we have the following proposition, which gives the characterization of the
subdifferential of the functional Wl (-) on L2(0,T; L?(12)).

PROPOSITION 4.3. For each T > 0 and v € L>=(0,T; H' () satisfying
the constraint conditions 0 < v < « a.e. in Qr, the functional WI(.) is
proper, l.s.c. and convex on L*(0,T; L*(Q)).

Moreover, £ € OVL(€) if and only if € € L?(0,T; H*(Q)) and the fol-
lowing properties are satisfied:

(1)0<¢<a—Awv ae inQr,
(2) The following inequality is satisfied:

| eem<a [] eten— | Adwptine —m)
for any n € L*(0,T; HY(Q)) with 0 <n < a — Av a.e. in Qr,
where OVL(-) is the subdifferential of WL () on L?(0,T; L?(52)).

PROOF. It is clear that W1 (-) is proper and convex on L%(0, T; L*(Q2)).
So, we show the lower semi-continuity of WI'(-) on L2(0,T;L?(R2)). For
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any r € R, we put the level set D, = {n € L?(0,T; L*(Q)) | ¥
and consider any sequence {n*} C D, and any element n € L?(0,
satisfying

r}

) <
T: L*(2))

(4.30) n* —n in L*0,T;L*(Q)) as k— oco.
Then, we see from Lemma 4.6 that the following estimate is satisfied:

// |77k|2 < ﬁ + 40&2([/)\0[ + A(O))QTC39(T)2
S z ’

which implies that D, is bounded in L?(0,7T; H(£2)). Hence, without loss
of generality, we may assume that the following convergence is satisfied:

(4.31) n® —n weakly in L?(0,T; HY(Q)) as k — oo.
From (4.30) and (4.31), we have

OT(n) < liminf O7(n*) < r,

k—o00

so, € D,.. Thus, D, is closed in L?(0,T; L*(92)). Hence, we see that UI'(-)
is Ls.c. on L%(0,T; L*(Q)).

Next, we assume £* € OWL(¢). Then, we see from the definition of the
subdifferential 9T (-) that ¢ € D(¥T), which implies that (1) holds, and

(4.32) / /Q £ (n—€) < WT () — WT(€) for any n € D(VT).

For any € € (0,1) we substitute £ + £(n — £) as n in (4.32) to have

/QTs*(n—S)édl/QTfi( 5x+@//T g

(4.33)
[ Mot~ &) or any e D(ED),

T
By taking the limit ¢ — 0 in (4.33), we see that (2) holds.

Conversely, we assume that (1) and (2) are satisfied. Then, we see that
(4.32) holds. Hence, &* € U7 (¢). O

By using Proposition 4.3, we make the quasi-variational structure of (P)
clear in Theorem 4.1.
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THEOREM 4.1. Let (n, f,m) be a non-negative global-in-time solution
to (P). Then, for each T > 0 the following relations are satisfied: f = Ain,
m = Aan and

—ng + ppn(l —n — An) — pgn € VI (n).

ProoOF. We see from (1) and (4) in Theorem 1.1 and Proposition 4.3
that this theorem holds. U

REMARK 4.2. Theorem 4.1 says that the kinetics of the distribution of
tumor cells, denoted by n, is governed by the subdifferential of W’'(-), which
is regarded as the subgradient flow in L2(0,T; L?(f2)). It is quite important
that the functional WI(-) depends upon n itself. Actually, ¥I'(.) contains
not only n but also f = Ain in its definition, which is a non-local term
generated by m = Agn (cf. (1.2)) and plays a role like a memory effect of
m, so, n itself. This quasi-variational structure is a characteristic in tumor
invasion model of Chaplain—Anderson type with constraint conditions.

5. Asymptotic Behavior of a Global-in-time Solution to (P)

In this section, we consider the asymptotic behavior of the global-in-
time solution as time goes to oco. Throughout this section, we assume that
(A1), (A2), (A3)’, (A4)—(A9) are fulfilled and use the same notations in the
previous sections. In the following argument, we let (n, f, m) the global-in-
time solution to (P) constructed in Section 4. We begin with showing the
positivity of n on € x [0,00) by using the argument similar to that of [14,
Lemma 6.1].

LEMMA 5.1.  There ezists Cag > 0 such that n > Cyg on Qoo.
PRrROOF. Let {e;} and {(n°k, f¢,mk)} be the same sequences that are

obtained in Proposition 4.1. Then, we note that (w®k, f, m) is a solution
0 (2.2). We fix any 7' > 0 and take
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We put (w — Cyo)— = max{Cyp — w,0} and multiply the first equation
in (2.2) by (2°%)~!(w — Cyo)_. By integrating its result on Q and using
the non-negativities of (w®k, f m), we see that the following inequality
is satisfied a.e. in (0,7):

1d
2dt

(51 < /Q B (7 (™ (z5%) 1)) (w™ — Ci)-

(=) 7 (w™ — Cio)-I?

_/Qupwsk(zsk)—l {1 _ (wsk(zsk)—l) _ fsk} (wsk _ 040)__

Since for any x € € the function f¢*(z,-) is decreasing on [0, T], we see from
(A8) and Lemma 3.1 that

(5.2) Cuo(2°)™ P <ny <1— f* on Qr,

hence

(5.3) 1—w*(z%) " = f* >0 on | Q(t)x {t},
0<t<T

where Qi (t) = {z € Q|w(x,t) < Cyo} for all ¢ € [0,T]. Besides, since for
any (z,t) € Qr the function f;, (f*(z,t);-) is increasing on R, we see from
(5.2) that the following inequality is satisfied:

(5.4) Bep (FF5w ™ (2%) ) (w™ = Cao) 20 on | Qu(t) x {t}.

0<t<T
We see from (5.1), (5.3) and (5.4) that the following inequality is satisfied:

d

7 (25) L) (wo* (t) — Cyo)_|* <0 for a.e. t € (0,T).
Q

Since wg > Cyo on Q, we have w(t) > Cyo, hence, n*(t) > Cy on ( for
all t € [0,T]. By taking the limit k¥ — oo and using (4.14) (cf. (4.7)), we
have n(t) > Cyo on Q for all t € [0,T]. Since T > 0 is arbitrary, we see that
this lemma holds. [

Moreover, we can show the boundedness of m in the following lemma.



Asymptotic Behaviors of Solutions to One-dimensional Tumor Invasion Model 607

LEMMA 5.2. m satisfies the following estimates:

b _
(1) my <m < maX{Hmo]oo, _a} on Qoo
c

(2) There exists Cq1 > 0 such that

/ |ma|? < Cu(1+1t) forall t > 0.
Q¢

PrROOF. By using (A9) and the comparison theorem for parabolic
PDEs to the third equation in (P), it is clear that (1) holds. In order to
show (2), we substitute ¢ = m(t) into (1.3). Then, we see from Proposition
4.2 that

b2a2L
S—[lm()[|5 + da|lm.(t)]5 < for a.e. t >0,

- 2
which implies that (2) holds. O

By using (1.2) and Lemma 5.2, we see that the next lemma holds, which
gives the decay estimate of f and the boundedness of f,.

LEMMA 5.3. f satisfies the following estimates:

(1) ||f(t)Hc(Q) < e st for all t > 0.
(2) There exists Cyo > 0 such that

| fe(®)|l2 € Caa(1 +t)e ™t for all t > 0.

PrOOF. We see from (1.2), Lemma 5.2 that (1) holds. Moreover, by
using the following equality:

oot = () exp (=a [ e, s)ds ) —af(e.0) [ mae,s)as,

which has already used in the previous sections, for example, the uniqueness
part of Theorem 1.1, Lemma 3.4 and Proposition 4.1, we have

(5.5) || fa(®)]|3 < 2~ 20mt (\\fo||i2 +a2t// \me) for all t > 0.
Qt
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Hence, we see from (5.5) and Lemma 5.2 that (b) holds. O

Finally, by using Lemma 5.3, we can show the asymptotic convergences
of (n,m) as time goes to co in the next lemmas.

LEMMA 5.4. There exists Cy3 > 0 such that

o0
/ In(t) — 112 dt < Cus.
0

ProoF. For any T' > 0, we substitute n = 1 — f into (1.1) to derive

//Tntn-l—f—l +d1//Tnm N
//T infe(ne + fz) // ppn(1—n— f)(n+f—1).

By using the second equation in (P), and Lemmas 5.2 and 5.3, we see that
there exist Cyy > 0 and Cy5 > 0 such that

//Tnt(n~l—f—1)

T
> 2 In(T) + F(T) — 1] — 12 /0 In(®) + £(6) = 13 dt

a’L ba\? [T 9
- i D2 dt — L
2 (max {2 4) [ 17OIR

T
SIn(T) + (1)~ 1] — 12 /0 In(®) + £(8) = 13 dt = Cia,

AV

d T
59) [[ Attt <G [l i [ 1o
69 a[[ nx+fx>z—/ ||nz<>||2dt—@ I1£(8) 3t

(5.10) // ppn(L—n— f)(n+ f—1) < — . /0 In(t) + £(t) — 1|3 dt.

T
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By substituting (5.7)—(5.10) into (5.6) and using Lemma 5.3, we see that
the following inequality is satisfied for any 7" € (0, 00):

T
(5.11)  [[n(T) + f(T) — 1|5 + Mln*/o In(t) + f(t) = 1|3 dt < Cug,
where -
C@ZQGM+CéMy+%%{/ (14 t)%e29m=t ¢,
0
By applying Gronwall’s lemma, we have

Cue

H1T0

T
/]M@+f®—ﬂ@ﬁ§ for all T > 0,
0

Since T > 0 is arbitrary, we see from (1) of Lemma 5.3 that this lemma
holds. [J

LEMMA 5.5. There exists Cy7 > 0 such that

2

PRrROOF. For any T' > 0 we substitute ¢ = m(t)—b/c into (1.3) to derive

Z+ e [me) (m)=2) <b [ nio) (m) - 2)

for a.e. t € (0,T), hence, from Lemma 5.4

1d

b
Sdi Hm@) e

b 2 t 2
(5.12) Hm(t) - + c/ m(s) — —|| ds < Cyg foralltel0,T],
Cll2 0 Cll2
where
R )
Cag = ||mo— —|| +— In(t) — 1|5 dt.
Cllz € Jo

By applying Gronwall’s lemma to (5.12), we have
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Since T' > 0 is arbitrary, we see that this lemma holds. [J

Theorem 1.2 is a direct consequence of Lemmas 5.3-5.5.
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