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Abstract. We prove that the target space of an extremal Fano
contraction from a log canonical pair has only log canonical singu-
larities. We also treat some related topics, for example, the finite
generation of canonical rings for compact Kähler manifolds, and so
on. The main ingredient of this paper is the nefness of the moduli
parts of lc-trivial fibrations. We also give some observations on the
semi-ampleness of the moduli parts of lc-trivial fibrations. For the
reader’s convenience, we discuss some examples of non-Kähler mani-
folds, flopping contractions, and so on, in order to clarify our results.
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1. Introduction

Let π : (X,∆) → S be a projective morphism from a log canonical pair

(X,∆) to a variety S. Then the cone theorem

NE(X/S) = NE(X/S)KX+∆≥0 +
∑
i

R≥0[Ci]

holds for π : (X,∆) → S. We take a (KX + ∆)-negative extremal ray

R = R≥0[Ci]. Then there is a contraction morphism

ϕR : (X,∆) → Y

over S associated to R. For the details of the cone and contraction theorem

for log canonical pairs, see [A1], [F6], [F8], [F9], and [F10, Theorem 1.1]

(see also [F13]).

From now on, let us consider a contraction morphism

f : (X,∆) → Y

such that

(i) (X,∆) is a Q-factorial log canonical pair,

(ii) −(KX + ∆) is f -ample, and

(iii) ρ(X/Y ) = 1.

Then we have the following three cases.

Case 1 (Divisorial contraction). f is divisorial, that is, f is a bira-

tional contraction which contracts a divisor.

In this case, the exceptional locus Exc(f) of f is a prime divisor on X

and (Y,∆Y ) is a Q-factorial log canonical pair with ∆Y = f∗∆.

Case 2 (Flipping contraction). f is flipping, that is, f is a birational

contraction which is small.

In this case, we can take the flipping diagram:

X
ϕ ���������

f ���
��

��
��

� X+

f+
����

��
��

��

Y

where f+ is a small projective birational morphism and
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(i′) (X+,∆+) is a Q-factorial log canonical pair with ∆+ = ϕ∗∆,

(ii′) KX+ + ∆+ is f+-ample, and

(iii′) ρ(X+/Y ) = 1.

For the existence of log canonical flips, see [B1, Corollary 1.2] and [HX,

Corollary 1.8].

Case 3 (Fano contraction). f is a Fano contraction, that is, dimY <

dimX.

Then Y is Q-factorial and has only log canonical singularities. Moreover,

if every log canonical center of (X,∆) is dominant onto Y , then Y has only

log terminal singularities.

In Case 3, f : (X,∆) → Y is usually called a Mori fiber space.

The log canonicity of Y in Case 3 is missing in the literature. So we

prove it in this paper. It is an easy consequence of the following theorem.

For the other statements on singularities in the above three cases, see, for

example, [KM, Propositions 3.36, 3.37, Corollaries 3.42, and 3.43] (see also

[F13]).

Theorem 1.1 (cf. [F1, Theorem 1.2]). Let (X,∆) be a sub log canon-

ical pair such that X is smooth and Supp∆ is a simple normal crossing

divisor on X. Let f : (X,∆) → Y be a proper surjective morphism such

that

f∗OX(�−∆<1�) � OY

and that

KX + ∆ ∼Q,f 0.

Assume that KY is Q-Cartier. Then Y has only log canonical singularities.

We further assume that every log canonical center of (X,∆) is dominant

onto Y . Then Y has only log terminal singularities.

Our proof of Theorem 1.1 depends on the nefness of the moduli parts

of lc-trivial fibrations (cf. [Mr, Section 5, Part II], [Ka3], [A2], [F3], [Ko2],

[FG3, Section 3], and so on). In this paper, we use Ambro’s formulation

in [A2] and its generalization in [FG3, Section 3] based on the semiposi-

tivity theorem in [F4]. For the details of the Hodge theoretic aspects of
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the semipositivity theorem, see also [FF] and [FFS]. It is conjectured that

the moduli parts of lc-trivial fibrations are semi-ample (see Conjecture 3.9).

We give some observations on the semi-ampleness of the moduli parts of

lc-trivial fibrations in Section 3.

By the proof of [F1, Theorem 1.2] and [FG3, Section 3] (see Theorem

3.7), we have:

Theorem 1.2 (cf. [F1, Theorem 1.2] and [F3, Theorem 4.2.1]). Let

(X,∆) be a sub log canonical pair such that X is smooth and Supp∆ is

a simple normal crossing divisor on X. Let f : (X,∆) → Y be a proper

surjective morphism such that

f∗OX(�−∆<1�) � OY

and that

KX + ∆ ∼Q f∗D

for some Q-Cartier Q-divisor D on Y . Assume that π : Y → S is a

projective morphism onto a quasi-projective variety S. Let A be a π-ample

Cartier divisor on Y and let ε be an arbitrary positive rational number. We

further assume that every log canonical center of (X,∆) is dominant onto

Y . Then there is an effective Q-divisor ∆Y on Y such that

KY + ∆Y ∼Q,π D + εA

and that (Y,∆Y ) is kawamata log terminal.

Let us recall some results in [R], [Ko1], and [F1] for the reader’s conve-

nience.

Remark 1.3 (Known results). Let f : X → Y be a contraction mor-

phism associated to a KX -negative extremal face such that X is a projective

variety with only canonical singularities. Then it is well known that Y has

only rational singularities by [Ko1, Corollary 7.4]. It was first proved by

Reid when dimX ≤ 3 (see [R]).

Let f : (X,∆) → Y be a contraction morphism associated to a (KX+∆)-

negative extremal face such that (X,∆) is a projective divisorial log terminal

pair. Then there is an effective Q-divisor ∆Y on Y such that (Y,∆Y ) is
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kawamata log terminal by [F1, Corollary 4.5]. In particular, Y has only

rational singularities.

Note that the above results now easily follow from Theorem 1.2.

The following conjecture is related to Theorem 1.1 (cf. [Ka1, Conjecture

7.4]).

Conjecture 1.4. Let (X,∆) be a projective log canonical pair. As-

sume that the log canonical ring

R(X,∆) =
⊕
m≥0

H0(X,OX(	m(KX + ∆)
))

is a finitely generated C-algebra. We put

Y = ProjR(X,∆).

Then there is an effective Q-divisor ∆Y on Y such that (Y,∆Y ) is log canon-

ical.

If (X,∆) is kawamata log terminal in Conjecture 1.4, then we have:

Theorem 1.5. Let (X,∆) be a projective kawamata log terminal pair

such that ∆ is a Q-divisor. We put

Y = ProjR(X,∆).

Then there is an effective Q-divisor ∆Y on Y such that (Y,∆Y ) is kawamata

log terminal.

It is a generalization of Nakayama’s result (see [N, Theorem]), which is a

complete solution of [Ka1, Conjecture 7.4]. Theorem 1.6 is a partial answer

to Conjecture 1.4.

Theorem 1.6. Let (X,∆) be a projective log canonical pair such that

the log canonical ring R(X,∆) is a finitely generated C-algebra. We as-

sume that KY is Q-Cartier where Y = ProjR(X,∆). Then Y has only log

canonical singularities.

Note that KY is not always Q-Cartier in Conjecture 1.4. Therefore,

Theorem 1.6 is far from a complete solution of Conjecture 1.4.
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The following conjecture is open. It is closely related to Conjecture 1.4

and Theorem 1.1.

Conjecture 1.7. Let (X,∆) be a projective log canonical pair and let

f : X → Y be a contraction morphism between normal projective varieties

such that

KX + ∆ ∼R,f 0.

Then there is an effective R-divisor ∆Y on Y such that (Y,∆Y ) is log canon-

ical and

KX + ∆ ∼R f
∗(KY + ∆Y ).

Of course, Conjecture 1.7 follows from the b-semi-ampleness conjec-

ture of the moduli parts of lc-trivial fibrations (see Conjecture 3.9 and

Remark 4.7).

From now on, the variety X is not always algebraic. We treat compact

Kähler manifolds. The following theorem is also missing in the literature.

Note that we can reduce the problem to the case when the variety is pro-

jective by taking the Iitaka fibration. When X is projective, Theorem 1.8

is well known (see [BCHM]).

Theorem 1.8 (cf. [BCHM] and [FM]). Let X be a compact Kähler

manifold and let ∆ be an effective Q-divisor on X such that (X,∆) is kawa-

mata log terminal. Then the log canonical ring

R(X,∆) =
⊕
m≥0

H0(X,OX(	m(KX + ∆)
))

is a finitely generated C-algebra.

As a special case of Theorem 1.8, we have:

Corollary 1.9. Let X be a compact Kähler manifold. Then the

canonical ring

R(X) =
⊕
m≥0

H0(X,ω⊗m
X )

is a finitely generated C-algebra.
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We note that there exists a compact complex non-Kähler manifold whose

canonical ring is not a finitely generated C-algebra (see Example 6.4).

The following conjecture is still open even when X is projective.

Conjecture 1.10. Let X be a compact Kähler manifold and let ∆ be

an effective Q-divisor on X such that (X,∆) is log canonical. Then the log

canonical ring

R(X,∆) =
⊕
m≥0

H0(X,OX(	m(KX + ∆)
))

is a finitely generated C-algebra.

We do not know if we can reduce Conjecture 1.10 to the case when the

variety is projective or not (see Remark 5.9).

From Section 2 to Section 4, we assume that all the varieties are algebraic

for simplicity, although some of the results can be generalized to analytic

varieties. Section 2 collects some basic definitions. In Section 3, we discuss

lc-trivial fibrations and give some new observations. Section 4 is devoted to

the proofs of the main results. In Section 5, we discuss some analytic gener-

alizations and related topics. We note that we just explain how to adapt the

arguments to the analytic settings and discuss Theorem 1.8, Corollary 1.9,

and so on. In Section 6, we discuss some examples of non-Kähler manifolds,

which clarify the main difference between Kähler manifolds and non-Kähler

manifolds. Note that Corollary 1.9 can not be generalized for non-Kähler

manifolds (see Example 6.4). In Section 7: Appendix, we quickly discuss the

minimal model program for log canonical pairs and describe some related

examples by János Kollár for the reader’s convenience.

Acknowledgement . The author was partially supported by the Grant-

in-Aid for Young Scientists (A) �24684002 from JSPS. He would like to

thank Professor Shigefumi Mori and Yoshinori Gongyo for useful comments

and questions.

This paper is a supplement to the author’s previous papers [F1], [F10],

and so on. For some recent related topics, see, for example, [AB], [B3],

[CHP], [HP1], and [HP2].

We will work over C, the complex number field, throughout this paper.

We will make use of the standard notation as in [KM] and [F10].
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2. Preliminaries

Let us recall some basic definitions on singularities of pairs. For the

details, see [KM] and [F10].

2.1 (Pairs). A pair (X,∆) consists of a normal variety X and an R-

divisor ∆ on X such that KX + ∆ is R-Cartier. A pair (X,∆) is called sub

kawamata log terminal (resp. sub log canonical) if for any proper birational

morphism g : Z → X from a normal variety Z, every coefficient of ∆Z is

< 1 (resp. ≤ 1) where

KZ + ∆Z := g∗(KX + ∆).

A pair (X,∆) is called kawamata log terminal (resp. log canonical) if (X,∆)

is sub kawamata log terminal (resp. sub log canonical) and ∆ is effective.

If (X, 0) is kawamata log terminal, then we simply say that X has only log

terminal singularities.

Let (X,∆) be a sub log canonical pair and let W be a closed subset of

X. Then W is called a log canonical center of (X,∆) if there are a proper

birational morphism g : Z → X from a normal variety Z and a prime divisor

E on Z such that multE∆Z = 1 and g(E) = W .

We note that −multE∆Z is denoted by a(E,X,∆) and is called the

discrepancy coefficient of E with respect to (X,∆).

Let D =
∑

i diDi be an R-divisor on X such that Di is a prime divisor

for every i and that Di �= Dj for i �= j. Then �D� (resp. 	D
) denotes the

round-up (resp. round-down) of D. We put

D<1 =
∑
di<1

diDi.

In this paper, we use the notion of b-divisors introduced by Shokurov.

For the details, see, for example, [F11, Section 3].

2.2 (Canonical b-divisors and discrepancy b-divisors). Let X be a nor-

mal variety and let ω be a top rational differential form of X. Then (ω)

defines a b-divisor K. We call K the canonical b-divisor of X. The discrep-

ancy b-divisor A = A(X,∆) of a pair (X,∆) is the R-b-divisor of X with
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the trace AY defined by the formula

KY = f∗(KX + ∆) + AY ,

where f : Y → X is a proper birational morphism of normal varieties.

Similarly, we define A∗ = A∗(X,∆) by

A∗
Y =

∑
ai>−1

aiAi

for

KY = f∗(KX + ∆) +
∑

aiAi,

where f : Y → X is a proper birational morphism of normal varieties.

2.3 (b-nef and b-semi-ample Q-b-divisors). Let X be a normal variety

and let X → S be a proper surjective morphism onto a variety S. A

Q-b-divisor D of X is b-nef over S (resp. b-semi-ample over S) if there

exists a proper birational morphism X ′ → X from a normal variety X ′ such

that D = DX′ and DX′ is nef (resp. semi-ample) relative to the induced

morphism X ′ → S. A Q-b-divisor D of X is Q-b-Cartier if there is a proper

birational morphism X ′ → X from a normal variety X ′ such that D = DX′ .

3. Lc-Trivial Fibrations

Let us recall the definition of lc-trivial fibrations.

Definition 3.1 (Lc-trivial fibrations). An lc-trivial fibration f :

(X,∆) → Y consists of a proper surjective morphism between normal

varieties with connected fibers and a pair (X,∆) satisfying the following

properties:

(i) (X,∆) is sub log canonical over the generic point of Y ,

(ii) rankf∗OX(�A∗(X,∆)�) = 1, and

(iii) there exists a Q-Cartier Q-divisor D on Y such that

KX + ∆ ∼Q f∗D.
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Remark 3.2. Let f : X → Y be a proper surjective morphism between

normal varieties with f∗OX � OY . Assume that (X,∆) is log canonical over

the generic point of Y . Then we have

rankf∗OX(�A∗(X,∆)�) = 1.

We give a standard example of lc-trivial fibrations.

Example 3.3. Let (X,∆) be a sub log canonical pair such that X is

smooth and that Supp∆ is a simple normal crossing divisor on X. Let

f : X → Y be a proper surjective morphism onto a normal variety Y such

that

KX + ∆ ∼Q,f 0

and that

f∗OX(�−∆<1�) � OY .

Then f : (X,∆) → Y is an lc-trivial fibration.

We give a remark on the definition of lc-trivial fibrations for the reader’s

convenience.

Remark 3.4 (Lc-trivial fibrations and klt-trivial fibrations). In [A2,

Definition 2.1], (X,∆) is assumed to be sub kawamata log terminal over

the generic point of Y . Therefore, Definition 3.1 is wider than Ambro’s

original definition of lc-trivial fibrations. When (X,∆) is sub kawamata log

terminal over the generic point of Y in Definition 3.1, we call f : (X,∆) → Y

a klt-trivial fibration (see [FG3, Definition 3.1]).

We need the notion of induced lc-trivial fibrations, discriminant

Q-divisors, moduli Q-divisors, and so on in order to discuss lc-trivial fi-

brations.

3.5 (Induced lc-trivial fibrations by base changes). Let f : (X,∆) → Y

be an lc-trivial fibration and let σ : Y ′ → Y be a generically finite morphism.
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Then we have an induced lc-trivial fibration f ′ : (X ′,∆X′) → Y ′, where ∆X′

is defined by µ∗(KX + ∆) = KX′ + ∆X′ :

(X ′,∆X′)
µ ��

f ′

��

(X,∆)

f

��
Y ′

σ
�� Y,

Note that X ′ is the normalization of the main component of X ×Y Y ′. We

sometimes replace X ′ with X ′′ where X ′′ is a normal variety such that

there is a proper birational morphism ϕ : X ′′ → X ′. In this case, we set

KX′′ + ∆X′′ = ϕ∗(KX′ + ∆X′).

3.6 (Discriminant Q-b-divisors and moduli Q-b-divisors). Let us con-

sider an lc-trivial fibration f : (X,∆) → Y as in Definition 3.1. We take a

prime divisor P on Y . By shrinking Y around the generic point of P , we

assume that P is Cartier. We set

bP = max

{
t ∈ Q

∣∣∣∣ (X,∆ + tf∗P ) is sub log canonical

over the generic point of P

}

and set

BY =
∑
P

(1 − bP )P,

where P runs over prime divisors on Y . Then it is easy to see that BY is

a well-defined Q-divisor on Y and is called the discriminant Q-divisor of

f : (X,∆) → Y . We set

MY = D −KY −BY

and call MY the moduli Q-divisor of f : (X,∆) → Y . Let σ : Y ′ → Y

be a proper birational morphism from a normal variety Y ′ and let f ′ :

(X ′,∆X′) → Y ′ be the induced lc-trivial fibration by σ : Y ′ → Y (see 3.5).

We can define BY ′ , KY ′ and MY ′ such that

σ∗D = KY ′ +BY ′ +MY ′ ,

σ∗BY ′ = BY , σ∗KY ′ = KY , and σ∗MY ′ = MY . Hence there exist a unique

Q-b-divisor B such that BY ′ = BY ′ for every σ : Y ′ → Y and a unique
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Q-b-divisor M such that MY ′ = MY ′ for every σ : Y ′ → Y . Note that

B is called the discriminant Q-b-divisor and that M is called the moduli

Q-b-divisor associated to f : (X,∆) → Y . We sometimes simply say that

M is the moduli part of f : (X,∆) → Y .

Theorem 3.7 is the most fundamental result on lc-trivial fibrations. It

is the main ingredient of this paper. Ambro [A2] obtained Theorem 3.7 for

klt-trivial fibrations. Theorem 3.7 is a direct generalization of [A2, Theorem

0.2].

Theorem 3.7 ([FG3, Theorem 3.6]). Let f : (X,∆) → Y be an lc-

trivial fibration and let π : Y → S be a proper morphism. Let B and M be

the induced discriminant and moduli Q-b-divisors of f . Then,

(1) K + B is Q-b-Cartier,

(2) M is b-nef over S.

Remark 3.8. Theorem 3.7 says that there is a proper birational mor-

phism Y ′ → Y from a normal variety Y ′ such that K + B = KY ′ +BY ′ ,

M = MY ′ , and MY ′ is nef over S. We note that the arguments in [A2, Sec-

tion 5] show how to construct Y ′. For the details, see [A2, p. 245, set-up]

and [A2, Proof of Theorem 2.7].

The following conjecture is one of the most important open problems

on lc-trivial fibrations. It was conjectured by Fujita, Mori, Shokurov and

others (see [N, Problem], [PS, Conjecture 7.13] and so on).

Conjecture 3.9 (b-semi-ampleness conjecture). Let f : (X,∆) → Y

be an lc-trivial fibration and let π : Y → S be a proper morphism. Then the

moduli part M is b-semi-ample over S.

Conjecture 3.9 was only solved for some special cases (see [Ka2], [F2],

and [PS, Section 8]). The arguments in [Ka2] (see also [PS]) and [F2] use

the theory of moduli spaces of curves, K3 surfaces, and Abelian varieties.

We give some observations on Conjecture 3.9.
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3.10 (Observation I). Let f : (X,∆) → Y be an lc-trivial fibration.

For simplicity, we assume that X is smooth and Supp∆ is a simple normal

crossing divisor on X. We write

∆ = ∆+ − ∆−

where ∆+ and ∆− are effective Q-divisors on X such that ∆+ and ∆− have

no common irreducible components. In this situation, we have

OX(�A∗(X,∆)�) � OX(�∆−�)

over the generic point of Y (see [F11, Lemma 3.22]). Therefore, the condi-

tion

rankf∗OX(�A∗(X,∆)�) = 1

is equivalent to

rankf∗OX(�∆−�) = 1.

For Conjecture 3.9, it seems to be reasonable to assume that

rankf∗OX(�m∆−�) = 1

holds for every nonnegative integer m. This condition is equivalent to

κ(Xη,KXη + ∆+|Xη) = 0

where Xη is the generic fiber of f : X → Y . The condition

rankf∗OX(�∆−�) = 1

seems to be insufficient for Conjecture 3.9.

If there are an lc-trivial fibration f † : (X†,∆†) → Y such that (X†,∆†)
is log canonical and a proper birational morphism µ : X → X† such that

KX+∆ = µ∗(KX†+∆†) and f = f †◦µ, then ∆− is µ-exceptional. Therefore

we have

µ∗OX(�m∆−�) � OX†

for every nonnegative integer m. This implies

f∗OX(�m∆−�) � OY
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for every nonnegative integer m. Consequently, this extra assumption that

rankf∗OX(�m∆−�) = 1

for every nonnegative integer m is harmless for many applications.

3.11 (Observation II). Assume that the minimal model program and

the abundance conjecture hold.

Let f : (X,∆) → Y be an lc-trivial fibration such that X is smooth and

Supp∆ is a simple normal crossing divisor on X. Assume that

κ(Xη,KXη + ∆+|Xη) = 0

as in 3.10. By [AK], we can construct the following commutative diagram:

X

f

��

X ′µ��

f ′

��

UX′� ���

��
Y Y ′

σ
�� UY ′ ,� ���

satisfying:

(1) µ and σ are projective birational morphisms.

(2) f ′ : (UX′ ⊂ X ′) → (UY ′ ⊂ Y ′) is a projective equidimensional toroidal

morphism.

(3) KX′ + ∆X′ = µ∗(KX + ∆), Supp∆X′ ⊂ ΣX′ = X ′ \ UX′ , and X ′ is

Q-factorial.

(4) Y ′ is a smooth quasi-projective variety and ΣY ′ = Y ′ \UY ′ is a simple

normal crossing divisor on Y ′.

(5) f ′ is smooth over UY ′ and ΣX′ is a relatively normal crossing divisor

over UY ′ .

We can write

KX′ + ∆X′ ∼Q f ′∗(KY ′ +BY ′ +MY ′)

as in 3.6. Let ΣY ′ =
∑

i Pi be the irreducible decomposition. Then we can

write

BY ′ =
∑
i

(1 − bPi)Pi
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as in 3.6. We put

∆X′ +
∑
i

bPif
′∗Pi = Θ − E

where Θ and E are effective Q-divisors on X ′ such that Θ and E have no

common irreducible components. Then

KX′ + Θ ∼Q f ′∗(KY ′ + ΣY ′ +MY ′) + E ∼Q,f ′ E ≥ 0.

We run the minimal model program with respect to KX′ + Θ over Y ′

(cf. [FG3, Proof of Theorem 1.1]). Note that (X ′,Θ) is a Q-factorial log

canonical pair. Then we obtain a minimal model f̃ : (X̃, Θ̃) → Y ′ such that

K
X̃

+ Θ̃ ∼
Q,f̃

0.

It is easy to see that

K
X̃

+ Θ̃ ∼Q f̃∗(KY ′ + ΣY ′ +MY ′),

that is, ΣY ′ is the discriminant Q-divisor of f̃ : (X̃, Θ̃) → Y ′ and MY ′ is

the moduli part of f̃ : (X̃, Θ̃) → Y ′. Therefore, if we assume that the

minimal model program and the abundance conjecture hold, then we can

replace (X,∆) with a log canonical pair (X̃, Θ̃) when we prove the b-semi-

ampleness of M under the assumption that κ(Xη,KXη + ∆+|Xη) = 0. We

note that the b-semi-ampleness conjecture of M for f̃ : (X̃, Θ̃) → Y ′ can

be reduced to the case when g : (V,∆V ) → W is an lc-trivial fibration such

that (V,∆V ) is kawamata log terminal over the generic point of W and ∆V

is effective. For the details, see [FG3, Proof of Theorem 1.1].

We also note that the existence of a good minimal model of (X ′
η,Θ|X′

η
),

where X ′
η is the generic fiber of f ′ : X ′ → Y ′, is sufficient to construct a

relative good minimal model f̃ : (X̃, Θ̃) → Y ′. Let us go into details. By

replacing (X ′,Θ) with its dlt blow-up, we may assume that (X ′,Θ) is a

Q-factorial divisorial log terminal pair. We run the minimal model program

on KX′ + Θ with ample scaling over Y ′. After finitely many steps, all the

horizontal components of E are contracted if (X ′
η,Θ|X′

η
) has a good minimal

model. Thus we assume that E has no horizontal components. Then it is

easy to see that E is very exceptional over Y ′. For the definition of very

exceptional divisors, see, for example, [B1, Definition 3.1]. Therefore, by

[B1, Theorem 3.4], we obtain a relative minimal model f̃ : (X̃, Θ̃) → Y ′
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with K
X̃

+ Θ̃ ∼
Q,f̃

0. Note that the existence of a good minimal model

of (X ′
η,Θ|X′

η
) is equivalent to the existence of a good minimal model of

(Xη,∆
+|Xη).

3.12 (Observation III). Let f : (X,∆) → Y be an lc-trivial fibration

such that X and Y are quasi-projective and that (X,∆) is log canonical.

By taking a dlt blow-up, we may assume that (X,∆) is a Q-factorial di-

visorial log terminal pair. Let Y be a normal projective variety which is

a compactification of Y . By using the minimal model program, we can

construct a projective Q-factorial divisorial log terminal pair (X,∆) which

is a compactification of (X,∆) such that X \ X contains no log canonical

centers of (X,∆) and that f : X → Y is extended to f : X → Y .

(X,∆)

f
��

(X,∆)� ���

f

��
Y Y�

���

By [B1, Theorem 1.4], we have a good minimal model (X
′
,∆

′
) over Y .

See also [HX, Theorem 1.1 and Corollary 1.2]. Let f
′

: X
′ → Y

′
be the

contraction morphism over Y associated to K
X

′ +∆
′
. Then f

′
: (X

′
,∆

′
) →

Y
′
is an lc-trivial fibration which is a compactification of f : (X,∆) → Y .

Therefore, the b-semi-ampleness of M of f
′
: (X

′
,∆

′
) → Y

′
implies that

the moduli part of f : (X,∆) → Y is b-semi-ample over S, where Y → S is

a proper morphism as in Conjecture 3.9.

By combining the above observations with the results in [A3, Theorem

3.3] and [PS, Theorem 8.1], we have:

Theorem 3.13. Let f : (X,∆) → Y be an lc-trivial fibration such that

X is smooth and Supp∆ is a simple normal crossing divisor on X and let

Y → S be a proper morphism. We write ∆ = ∆+ − ∆− where ∆+ and

∆− are effective Q-divisors and have no common irreducible components.

Assume that κ(Xη,KXη + ∆+|Xη) = 0 where Xη is the generic fiber of f

and that (Xη,∆
+|Xη) has a good minimal model. Then the moduli part M

of f : (X,∆) → Y is b-nef and abundant over S. This means that there is

a proper birational morphism Y ′ → Y from a normal variety Y ′ such that
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M = MY ′ and MY ′ is nef and abundant relative to the induced morphism

Y ′ → S.

We further assume that dimX = dimY + 1. Then the moduli part M

of f : (X,∆) → Y is b-semi-ample over S.

We note that we do not use Theorem 3.13 in the subsequent sections.

Sketch of Proof of Theorem 3.13. By the arguments in 3.11,

we may assume that X and Y are quasi-projective and that (X,∆) is log

canonical. By the arguments in 3.12, we may further assume that X and Y

are projective. Then, by [FG3, Theorem 1.1], we obtain that M is b-nef and

abundant over S. When dimX = dimY +1, we see that M is b-semi-ample

over S by [PS, Theorem 8.1]. �

For the details of lc-trivial fibrations, see also [A2] and [FG3, Section 3].

4. Proof of the Main Results

First, let us prove the log canonicity of Y in Case 3 in the introduction

by using Theorem 1.1.

Proof of the Log Canonicity of Y in Case 3. It is easy to

see that Y is Q-factorial (see, for example, [KM, Proposition 3.36]). By

perturbing ∆, we may assume that ∆ is a Q-divisor. By shrinking Y , we

may assume that Y is affine. We can take an effective Q-divisor ∆′ on X

such that (X,∆ + ∆′) is log canonical and that

KX + ∆ + ∆′ ∼Q,f 0.

Let g : Z → X be a resolution such that

KZ + ∆Z = g∗(KX + ∆ + ∆′)

and that Supp∆Z is a simple normal crossing divisor on Z. Then

g∗OZ(�−∆<1
Z �) � OX .

Therefore,

h∗OZ(�−∆<1
Z �) � OY
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and

KZ + ∆Z ∼Q,h 0

where h = f ◦ g. By Theorem 1.1, Y has only log canonical singularities.

If every log canonical center of (X,∆) is dominant onto Y , then we can

take ∆′ such that every log canonical center of (Z,∆Z) is dominant onto Y .

Thus Y is log terminal by Theorem 1.1 when every log canonical center of

(X,∆) is dominant onto Y . �

Let us prove Theorem 1.1. We use the framework of lc-trivial fibrations.

Proof of Theorem 1.1. Without loss of generality, we may assume

that Y is affine. We can write

KX + ∆ ∼Q f∗(KY +BY +MY )

where BY is the discriminant and MY is the moduli part of the lc-trivial

fibration f : (X,∆) → Y (see 3.6). Note that BY is effective (see, for

example, the proof of [F1, Theorem 1.2]) and the coefficients of BY are

≤ 1. Let E be an arbitrary prime divisor over Y . We take a resolution

σ : Y ′ → Y with

KY ′ +BY ′ +MY ′ = σ∗(KY +BY +MY )

such that E is a prime divisor on Y ′ and that E ∪ SuppBY ′ ∪ Exc(σ) is a

simple normal crossing divisor on Y ′. Note that f ′ : (X ′,∆′) → Y ′ is an

induced lc-trivial fibration by σ : Y ′ → Y (see 3.5) and that BY ′ is the

discriminant and MY ′ is the moduli part of f ′ : (X ′,∆′) → Y ′.

(X ′,∆X′) ��

f ′

��

(X,∆)

f

��
Y ′

σ
�� Y

By taking σ : Y ′ → Y suitably, we may assume that MY ′ is σ-nef (see

Theorem 3.7) and there is an effective exceptional Q-divisor F on Y ′ which

is anti-σ-ample. Without loss of generality, we may assume that the co-

efficients of F are ≤ 1. Let ε be an arbitrary positive rational number.
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Then

KY ′ +BY ′ +MY ′ = KY ′ +BY ′ + εF +MY ′ − εF

∼QKY ′ +BY ′ + εF +G

where G is a general effective Q-divisor on Y ′ such that 	G
 = 0, G ∼Q

MY ′ − εF , and SuppBY ′ ∪ SuppF ∪ SuppG is a simple normal crossing

divisor. Note that MY ′ − εF is σ-ample and that Y is affine. We put

ΘE,ε = σ∗(BY ′ + εF +G).

Then ΘE,ε is an effective Q-divisor on Y whose coefficients are ≤ 1 such

that KY + ΘE,ε is Q-Cartier and

a(E, Y,ΘE,ε) = −multEBY ′ − εmultEF

≥ −1 − ε.

Therefore,

a(E, Y, 0) ≥ a(E, Y,ΘE,ε) ≥ −1 − ε.

This means that a(E, Y, 0) ≥ −1. Thus Y has only log canonical singulari-

ties.

When every log canonical center of (X,∆) is dominant onto Y ,

multEBY ′ < 1 always holds by the construction of BY ′ . Therefore, we

obtain a(E, Y, 0) > −1. Thus Y has only log terminal singularities. �

Remark 4.1. In the proof of Theorem 1.1, if MY ′ is σ-semi-ample and

Y is quasi-projective, then we can take a general effective Q-divisor G on

Y ′ such that

KY ′ +BY ′ +MY ′ ∼Q,σ KY ′ +BY ′ +G.

Thus (Y,∆Y ) is log canonical where ∆Y = σ∗(BY ′ + G). Therefore, the

b-semi-ampleness of M is desirable (see Conjecture 3.9). Of course, if MY ′

is semi-ample, then we can choose G such that

KY ′ +BY ′ +MY ′ ∼QKY ′ +BY ′ +G.

Note that Y in Theorem 1.1 has a quasi-log structure in the sense of

Ambro (see [A1]).
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Remark 4.2 (Quasi-log structure). We use the same notation as in

Theorem 1.1. We can write

KX + ∆ ∼Q f∗ω

for some Q-Cartier Q-divisor ω on Y . Then the pair [Y, ω] has a quasi-

log structure with only qlc singularities (see [A1], [F6], [F8], and [F13]).

Therefore, the cone and contraction theorem holds for Y with respect to ω.

It is a complete generalization of [F1, Theorem 4.1].

Proof of Theorem 1.2. By using Theorem 3.7, the proof of

Theorem 1.2 in [F1] works. We leave the details as an exercise for the

reader. �

Let us start the proof of Theorem 1.6.

Proof of Theorem 1.6. By taking a suitable resolution, we may

assume that f : X → Y is a morphism such that

m0(KX + ∆) = f∗A+ E

where m0 is a sufficiently large and divisible positive integer, A is a very

ample Cartier divisor on Y , and E is an effective divisor on X satisfying

|mm0(KX + ∆)| = |mf∗A| +mE

for every positive integer m (see, for example, [B2, Lemma 3.2]). Without

loss of generality, we may further assume that Supp∆ ∪ SuppE is a simple

normal crossing divisor on X. We put

∆X = ∆ − 1

m0
E.

Then we have

KX + ∆X ∼Q,f 0.

It is easy to see that f∗OX(�−∆<1
X �) � OY (see, for example, the proof of

[B1, Lemma 3.2]). Note that

0 ≤ �−∆<1
X � = � 1

m0
E� ≤ E.
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Therefore, by Theorem 1.1, we have that Y has only log canonical singular-

ities. �

Remark 4.3. In the proof of Theorem 1.6, we have κ(Xη,KXη +

∆|Xη) = 0 where Xη is the generic fiber of f : X → Y . Therefore, if

Conjecture 3.9 holds under the extra assumption that

κ(Xη,KXη + ∆+
X |Xη) = κ(Xη,KXη + ∆|Xη) = 0

as in 3.10, then Conjecture 1.4 also holds (see Proof of Theorem 1.1 and

Remark 4.1).

Remark 4.4. If (X,∆) has a good minimal model in Conjecture 1.4,

then we may assume that there is a morphism f : X → Y such that f∗OX �
OY and KX + ∆ ∼Q,f 0 by replacing (X,∆) with its good minimal model.

In this case, Conjecture 1.4 follows from Conjecture 1.7.

Proof of Theorem 1.5. By combining the proof of Theorem 1.6

with Theorem 1.2, we can find an effective Q-divisor ∆Y on Y such that

(Y,∆Y ) is kawamata log terminal. We leave the details as an exercise for

the reader. �

We give a remark on the finite generation of R(X,∆).

Remark 4.5 (Finite generation of R(X,∆)). Let (X,∆) be a projec-

tive log canonical pair such that ∆ is a Q-divisor. It is conjectured that

the log canonical ring R(X,∆) is a finitely generated C-algebra. It is one of

the most important conjectures for higher-dimensional algebraic varieties.

For the details and various related conjectures, see [FG4]. It is known that

R(X,∆) is finitely generated for dimX ≤ 4 (see [F7, Theorem 1.2]). Note

that R(X,∆) is a finitely generated C-algebra when (X,∆) is kawamata

log terminal and ∆ is a Q-divisor. It was established by Birkar–Cascini–

Hacon–McKernan ([BCHM]) and is now well known.

We close this section with remarks on Conjecture 1.7.

Remark 4.6. If (X,∆) is kawamata log terminal and ∆ is a Q-divisor

in Conjecture 1.7, then we can take a Q-divisor ∆Y such that (Y,∆Y ) is
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kawamata log terminal and KX+∆ ∼Q f∗(KY +∆Y ) by [A2, Theorem 0.2],

which is a complete solution of [F1, Problem 1.1]. Theorem 3.1 in [FG1]

generalizes [A2, Theorem 0.2] for R-divisors.

Remark 4.7 (cf. the proof of Theorem 3.1 in [FG1]). In Conjecture

1.7, we can write

KX + ∆ =

k∑
i=1

ri(KX + ∆i)

such that

(a) ∆i is an effective Q-divisor for every i,

(b) (X,∆i) is log canonical and KX + ∆i is f -nef for every i, and

(c) 0 < ri < 1, ri ∈ R for every i, and
∑k

i=1 ri = 1.

Since KX + ∆ is numerically f -trivial, so is KX + ∆i for every i. By [FG2,

Theorem 4.9], we obtain that KX +∆i ∼Q,f 0 for every i. Therefore, we can

reduce Conjecture 1.7 to the case when ∆ is a Q-divisor with KX+∆ ∼Q,f 0.

Then we can use the framework of lc-trivial fibrations. We can easily check

that Conjecture 1.7 follows from Conjecture 3.9 such that S is a point (see

also Remark 4.1).

5. Some Analytic Generalizations

In this section, we give some remarks on complex analytic varieties in

Fujiki’s class C and compact Kähler manifolds. The following theorem easily

follows from [BCHM] and [FM]. Note that Theorem 5.1 is equivalent to

Theorem 1.8 by taking a resolution.

Theorem 5.1 (cf. [BCHM] and [FM]). Let X be a normal complex

analytic variety in Fujiki’s class C and let ∆ be an effective Q-divisor on X

such that (X,∆) is kawamata log terminal. Then the log canonical ring

R(X,∆) =
⊕
m≥0

H0(X,OX(	m(KX + ∆)
))

is a finitely generated C-algebra.
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As a special case of Theorem 5.1, we have:

Corollary 5.2. Let X be a compact Kähler manifold. Then the

canonical ring

R(X) =
⊕
m≥0

H0(X,ω⊗m
X )

is a finitely generated C-algebra.

Theorem 5.1 and Corollary 5.2 do not hold for varieties which are not

in Fujiki’s class C (see Example 6.4 below).

Note that the proof of Theorem 5.1 is not related to the minimal model

theory for compact Kähler manifolds. We do not discuss the minimal models

for compact Kähler manifolds here (see [CHP], [HP1], and [HP2]).

5.3 (Ideas). Let m be a large and divisible positive integer and let

Φ|m(KX+∆)| : X ��� Y

be the Iitaka fibration. Then Y is projective even when X is only a complex

analytic variety. By taking suitable resolutions, it is sufficient to treat the

case where Φ : X → Y is a proper surjective morphism from a compact

Kähler manifold X to a normal projective variety Y with connected fibers.

In this situation, the arguments in [FM], [A2], [FG3, Section 3], and so on

work with some minor modifications. This is because we can use the theory

of variations of (mixed) R-Hodge structure for Φ : X → Y . In general, the

general fibers of Φ are not projective. They are only Kähler. Therefore, the

natural polarization of the variation of (mixed) Hodge structure is defined

only on R.

Anyway, by the arguments in [FM, Sections 4 and 5], we can find an

effective Q-divisor ∆Y on Y such that the finite generation of R(X,∆) is

equivalent to the finite generation of R(Y,∆Y ) where (Y,∆Y ) is kawamata

log terminal and KY +∆Y is big. Therefore, by [BCHM], R(X,∆) is finitely

generated.

Remark 5.4. Let f : X → Y be a surjective morphism from a com-

pact Kähler manifold (or, more generally, a complex analytic variety in

Fujiki’s class C) X to a projective variety Y . In this setting, we can prove

various fundamental results, for example, Kollár type vanishing theorem,
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torsion-free theorem, weak positivity theorem, and so on. For the details, see

[F12].

By the arguments in [A2, Sections 4 and 5] and the semipositivity theo-

rem in [F4] (see also [FF], [FFS], and [F12, Theorem 1.5]), we can prove an

analytic generalization of Theorem 3.7 without any difficulties (see Example

6.1 and Remark 6.3 for the case when the varieties are not in Fujiki’s class

C).

Theorem 5.5 (cf. [FG3, Theorem 3.6]). Let X be a normal complex

analytic variety in Fujiki’s class C and let ∆ be a Q-divisor on X such that

KX + ∆ is Q-Cartier. Let f : X → Y be a surjective morphism onto a

normal projective variety Y . Assume that f : (X,∆) → Y is an lc-trivial

fibration, that is,

(i) (F,∆|F ) is sub log canonical for a general fiber F of f : X → Y ,

(ii) rankf∗OX(�A∗(X,∆)�) = 1, and

(iii) there exists a Q-Cartier Q-divisor D on Y such that

KX + ∆ ∼Q f∗D.

Let B and M be the induced discriminant and moduli Q-b-divisor of f :

(X,∆) → Y . Then

(1) K+B is Q-b-Cartier, that is, there exists a proper birational morphism

Y ′ → Y from a normal variety Y ′ such that K + B = KY ′ + BY ′,

(2) M is b-nef.

In the setting of Theorem 5.5, we have:

Conjecture 5.6 (cf. Conjecture 3.9). In Theorem 5.5, M is b-semi-

ample.

Conjecture 5.6 may be harder than Conjecture 3.9 because there are no

good moduli theory for compact Kähler manifolds.
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Proof of Theorem 5.1. Let f : X ��� Y be the Iitaka fibration

with respect to KX + ∆. By replacing X and Y bimeromorphically, we

may assume that Y is a smooth projective variety, X is a compact Kähler

manifold, (X,∆) is kawamata log terminal such that Supp∆ is a simple

normal crossing divisor on X, and f is a morphism. By using the theory of

log-canonical bundle formulas discussed in [FM, Section 4] with the aid of

Theorem 5.5, we can apply [FM, Theorem 5.2]. Then there are a smooth

projective variety Y ′, which is birationally equivalent to Y , and an effective

Q-divisor ∆′ on Y ′ such that (Y ′,∆′) is a kawamata log terminal pair,

KY ′ + ∆′ is big, and

R(X,∆)(e) � R(Y ′,∆′)(e
′)

for some positive integers e and e′, where

R(Y ′,∆′) =
⊕
m≥0

H0(Y ′,OY ′(	m(KY ′ + ∆′)
)).

Note that R(e) =
⊕

m≥0Rem for a graded ring R =
⊕

m≥0Rm. By [BCHM],

R(Y ′,∆′) is a finitely generated C-algebra. This implies that R(X,∆) is a

finitely generated C-algebra. �

Remark 5.7. By using Theorem 5.5, we can prove some analytic gen-

eralizations of Theorem 1.1, Theorem 1.2, and so on. We leave the details

for the interested reader.

Conjecture 5.8 is obviously equivalent to Conjecture 1.10 by taking a

resolution.

Conjecture 5.8. Let X be a normal complex analytic variety in Fu-

jiki’s class C and let ∆ be an effective Q-divisor on X such that (X,∆) is

log canonical. Then the log canonical ring

R(X,∆) =
⊕
m≥0

H0(X,OX(	m(KX + ∆)
))

is a finitely generated C-algebra.

We give a remark on Conjecture 5.8.
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Remark 5.9. Conjecture 5.8 is still open even when X is projective.

If Conjecture 5.6 holds true, then we can reduce Conjecture 5.8 to the case

when X is projective by the same way as in [FM, Sections 4 and 5] (see also

5.3, Proof of Theorem 5.1, and Remark 4.1). Note that Theorem 5.5 is not

sufficient for this reduction argument.

We close this section with an observation on Conjecture 5.6.

5.10 (Observation IV). Let f : (X,∆) → Y be an lc-trivial fibration

as in Theorem 5.5. By taking a resolution, we assume that X is a compact

Kähler manifold and that Supp∆ is a simple normal crossing divisor on X.

For Conjecture 5.6, it seems to be reasonable to assume that

rankf∗OX(�m∆−�) = 1

for every nonnegative integer m as in 3.10, equivalently,

κ(F,KF + ∆+|F ) = 0

where F is a sufficiently general fiber of f . The extra assumption κ(F,KF +

∆+|F ) = 0 is harmless for [FM, Sections 4 and 5]. Therefore, Remark

5.9 works even if we add the extra assumption κ(F,KF + ∆+|F ) = 0 to

Conjecture 5.6. Unfortunately, the reduction arguments in 3.11 based on

the minimal model program have not been established for compact Kähler

manifolds.

Anyway, Conjecture 5.6 looks harder than Conjecture 3.9.

6. Examples of Non-Kähler Manifolds

In this section, we discuss some examples of compact complex non-

Kähler manifolds constructed by Atiyah ([A]) and Wilson ([W]) for the

reader’s convenience. These examples clarify the reason why we have to as-

sume that the varieties are in Fujiki’s class C in Section 5. For some related

examples, see [U, Remark 15.3] and [Mg].

The following example is due to Atiyah (see [A, §10, Specific examples]).

This example shows that the Fujita–Kawamata semipositivity theorem does

not hold for non-Kähler manifolds. For the details of the theory of fiber

spaces of complex tori, see [A].
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Example 6.1 (cf. [A, §10]). Let us construct an analytic family of tori

f : X → Y = P1 such that f∗ωX/Y is not semipositive.

We put

I =

(
0, 1

−1, 0

)
, J =

(
0,

√
−1√

−1, 0

)
, K =

(√
−1, 0

0, −
√
−1

)
,

and

E =

(
1, 0

0, 1

)
.

We take s1, s2 ∈ H0(P1,OP1(1)) \ {0} such that s1 and s2 have no common

zeros. We consider the analytic family of tori f : X → Y := P1 where

X = V(OP1(1) ⊕OP1(1))/Λ.

Note that V(OP1(1)⊕OP1(1)) = SpecP1Sym((OP1(1)⊕OP1(1))∗) is the total

space of OP1(1) ⊕OP1(1) and

Λ =

〈
E

(
s1
s2

)
, I

(
s1
s2

)
, J

(
s1
s2

)
, K

(
s1
s2

)〉
.

In other words, the fiber Xp = f−1(p) for p ∈ Y is C2/Λ(p), where Λ(p) is

the lattice 〈
E

(
s1(p)

s2(p)

)
, I

(
s1(p)

s2(p)

)
, J

(
s1(p)

s2(p)

)
, K

(
s1(p)

s2(p)

)〉
Z

in C2. For the details of the construction, see [A]. Then ωX/Y � f∗OP1(−2)

by [A, Proposition 10]. Therefore, we have

f∗ωX/Y � OP1(−2).

This means that f∗ωX/Y is not always semipositive when X is not Kähler.

Note that f is smooth in this example.

Remark 6.2. Let f : V → W be a surjective morphism from a com-

pact complex manifold V in Fujiki’s class C to a smooth projective curve

W . Then we can easily check that f∗ωV/W is semipositive by [Ft]. This

means that X in Example 6.1 is not in Fujiki’s class C.
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Remark 6.3. Example 6.1 shows that Theorem 5.5 does not hold with-

out assuming that X is in Fujiki’s class C. Therefore, the proof of Theorem

5.1 does not work for varieties which are not in Fujiki’s class C.

The following example is essentially the same as Wilson’s example (see

[W, Example 4.3]). It is a compact complex non-Kähler 4-fold whose canon-

ical ring is not a finitely generated C-algebra. Wilson’s example is very im-

portant. Unfortunately, [W, Example 4.3] omitted some technical details.

Moreover, we can not find it in the standard literature for the minimal

model program. So we explain a slightly simplified example in details for

the reader’s convenience.

Example 6.4 (cf. [W, Example 4.3]). Let us construct a 4-dimensional

compact complex non-Kähler manifold X whose canonical ring R(X) is not

a finitely generated C-algebra.

Let C ⊂ P2 be a smooth elliptic curve and let H be a line on P2. We

blow up 12 general points P1, · · · , P12 on C and one point P �∈ C. Let

π : Z → P2 denote this birational modification and let E be the exceptional

curve π−1(P ). Let C ′ be the strict transform of C. We put H ′ = π∗H −E.

Then the linear system |H ′| is free and (H ′)2 = 0. Note that KZ ∼ −C ′+E.

Claim 1. The linear system |nπ∗H +(n− 1)C ′| is free for every n ≥ 1

and the base locus Bs|nπ∗H + nC ′| = C ′ for every n ≥ 1. Therefore, we

have

|nπ∗H + nC ′| = |nπ∗H + (n− 1)C ′| + C ′

for every n ≥ 1.

Proof of Claim 1. It is obvious that |nπ∗H| is free. We consider

the following short exact sequence:

0 → OZ(nπ∗H + (r − 1)C ′) → OZ(nπ∗H + rC ′)(♠)

→ OC′(nπ∗H + rC ′) → 0

for 1 ≤ r ≤ n. Note that degOC′(nπ∗H + rC ′) ≥ 3 for 1 ≤ r ≤ n − 1.

Therefore, |OC′(nπ∗H + rC ′)| is very ample for 1 ≤ r ≤ n − 1 since C ′ is

an elliptic curve. On the other hand,

nπ∗H + (r − 1)C ′ −KZ ∼ nπ∗H + rC ′ − E

= (n− 1)π∗H + rC ′ +H ′



Minimal Model Program 177

is nef and big for 1 ≤ r ≤ n − 1. By the Kawamata–Viehweg vanishing

theorem, we obtain

H1(Z,OZ(nπ∗H + (r − 1)C ′)) = 0

for 1 ≤ r ≤ n − 1. By using the long exact sequence associated to (♠), we

have that |nπ∗H + rC ′| is free for 1 ≤ r ≤ n − 1 by induction on r. Note

that

H0(C ′,OC′(nπ∗H + nC ′)) = 0

for every n �= 0 since P1, · · · , P12 are general points on C. Precisely speak-

ing, we take P1, · · · , P12 such that OC′(π∗H + C ′) is not a torsion element

in Pic0(C ′). This means that the natural inclusion

0 → H0(Z,OZ(nπ∗H + (n− 1)C ′)) → H0(Z,OZ(nπ∗H + nC ′))

is an isomorphism for every n ≥ 1. Thus we have

|nπ∗H + nC ′| = |nπ∗H + (n− 1)C ′| + C ′

for every n ≥ 1. �

Similarly, we can check the following statement.

Claim 2. The linear system |4π∗H + 4H ′ + 6C ′ − 2E| is free.

Proof of Claim 2. We note that

4π∗H + 4H ′ + 6C ′ − 2E = 6H ′ + 2π∗H + 6C ′.

We also note that |H ′| and |π∗H| are free. We consider the linear system

|6H ′ + 2π∗H + rC ′| for 0 ≤ r ≤ 6. If r = 0, then the linear system

|6H ′ + 2π∗H| is free. We consider the following short exact sequence:

0 → OZ(6H ′ + 2π∗H + (r − 1)C ′) → OZ(6H ′ + 2π∗H + rC ′)(♣)

→ OC′(6H ′ + 2π∗H + rC ′) → 0.

Note that

6H ′ + 2π∗H + (r − 1)C ′ −KZ ∼ 6H ′ + 2π∗H − E + rC ′

= 7H ′ + π∗H + rC ′
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is nef and big for 1 ≤ r ≤ 6. Therefore, by the Kawamata–Viehweg vanish-

ing theorem, we obtain

H1(Z,OZ(6H ′ + 2π∗H + (r − 1)C ′)) = 0

for 1 ≤ r ≤ 6. On the other hand,

degOC′(6H ′ + 2π∗H + rC ′) ≥ 6

for 1 ≤ r ≤ 6. Thus |OC′(6H ′ + 2π∗H + rC ′)| is very ample for 1 ≤ r ≤ 6.

Note that C ′ is an elliptic curve. By considering the long exact sequence

associated to (♣) and by induction on r, we obtain that |6H ′ +2π∗H+ rC ′|
is free for 0 ≤ r ≤ 6. In particular, |4π∗H + 4H ′ + 6C ′ − 2E| is free. �

We take a general member C0 of the free linear system |4π∗H + 4H ′ +
6C ′ − 2E| and take the double cover g : Y → Z ramified along C0. Then

we have

KY = g∗(KZ + 2π∗H + 2H ′ + 3C ′ − E)

∼ g∗(2π∗H + 2H ′ + 2C ′).

Note that |g∗H ′| is free on a smooth projective surface Y such that

κ(Y, g∗H ′) = 1. Then we can take s1, s2 ∈ H0(Y,OY (g∗H ′)) \ {0} such

that s1 and s2 have no common zeros. By using s1 and s2, we can construct

the analytic family of tori f : X → Y as in Example 6.1, that is,

X = V(OY (g∗H ′) ⊕OY (g∗H ′))/Λ

and

Λ =

〈
E

(
s1
s2

)
, I

(
s1
s2

)
, J

(
s1
s2

)
, K

(
s1
s2

)〉
.

Then X is a compact complex 4-fold. By [A, Proposition 10], we can check

that

ωX = f∗OY (KY − 2g∗H ′)

= f∗OY (g∗(2π∗H + 2H ′ + 2C ′) − 2g∗H ′)

� f∗OY (g∗(2π∗H + 2C ′)).
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Therefore, if the canonical ring R(X) =
⊕

m≥0H
0(X,ω⊗m

X ) is a finitely

generated C-algebra, then so is

R(Z, 2π∗H + 2C ′) =
⊕
m≥0

H0(Z,OZ(2m(π∗H + C ′))).

Claim 3. R(Z, 2π∗H + 2C ′) =
⊕

m≥0H
0(Z,OZ(2m(π∗H + C ′))) is

not a finitely generated C-algebra.

Proof of Claim 3. By Claim 1,

m−1⊕
a=1

H0(Z,OZ(2a(π∗H + C ′))) ⊗H0(Z,OZ(2(m− a)(π∗H + C ′)))

→ H0(Z,OZ(2m(π∗H + C ′)))

is not surjective for any m ≥ 1. This implies that R(Z, 2π∗H + 2C ′) is not

a finitely generated C-algebra. �

Alternative Proof of Claim 3. Since 2π∗H + 2C ′ is nef and big,

we know that R(Z, 2π∗H+2C ′) is a finitely generated C-algebra if and only

if 2π∗H + 2C ′ is semi-ample (see, for example, [L, Theorem 2.3.15]). On

the other hand, OC′(π∗H + C ′) is not a torsion element in Pic0(C ′). This

implies that π∗H + C ′ is not semi-ample. Therefore, R(Z, 2π∗H + 2C ′) is

not a finitely generated C-algebra. �

Therefore, the canonical ring R(X) of X is not finitely generated as a

C-algebra. Since f∗ωX/Y � OY (−2g∗H ′) is not nef, X is non-Kähler. Note

that X is a compact complex manifold which is not in Fujiki’s class C by

Theorem 5.1.

Example 6.4 shows that the finite generation of canonical rings does not

always hold for compact complex manifolds which are not in Fujiki’s class

C.

Remark 6.5. Wilson’s original example (see [W, Example 4.3]) uses

the fact that nH ′ + (n− 1)C ′ is very ample for all n ≥ 1 (see [W, Claim in

Example 4.3]). Since H ′ is not a big divisor, the statement in [W, Claim in
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Example 4.3] has to be changed suitably. So, we modified his construction

slightly. Note that f : X → Y constructed in Example 6.4 does not coincide

with Wilson’s original example V → S̃ in [W, Example 4.3].

Example 6.4 also shows that there are no generalizations of the abun-

dance conjecture for compact complex non-Kähler manifolds.

Remark 6.6. In Example 6.4, we can check that π∗H +C ′ is nef and

big. Therefore, ωX is a pull-back of a nef and big line bundle on a smooth

projective variety Y . So X should be recognized to be a minimal model.

However, ωX is not semi-ample. This means that the abundance conjecture

can not be generalized for compact complex manifolds which are not in

Fujiki’s class C.

We close this section with a comment on Moriwaki’s result (see [Mw]).

Remark 6.7. Let X be a three-dimensional compact complex mani-

fold. Moriwaki proved that the canonical ring R(X) of X is always a finitely

generated C-algebra even when X is not Kähler (see [Mw, (3.5) Theorem]).

7. Appendix

In this appendix, we quickly discuss the minimal model program for

log canonical pairs and describe some related examples by János Kollár for

the reader’s convenience. We assume that all the varieties are algebraic

throughout this section.

7.1. Minimal model program for log canonical pairs

Let π : (X,∆) → S be a projective morphism such that (X,∆) is a Q-

factorial log canonical pair. Then we can run the minimal model program

on (X,∆) over S since we have the cone and contraction theorem (see, for

example, [F10, Theorem 1.1]) and the flip theorem for log canonical pairs

(see [B1, Corollary 1.2] and [HX, Corollary 1.8]). We can also run the min-

imal model program on (X,∆) over S with scaling by [F10, Theorem 1.1].

Unfortunately, we do not know if the minimal model program terminates

or not.
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Conjecture 7.1 (Flip conjecture II). A sequence of flips

(X0,∆0) ��� (X1,∆1) ��� (X2,∆2) ��� · · ·

terminates after finitely many steps. Namely, there exists no infinite se-

quence of flips.

Note that each flip in Conjecture 7.1 is a flip described in Case 2 in the

introduction.

If Conjecture 7.1 is true, then we can freely use the minimal model

program in full generality. In order to prove Conjecture 7.1 in dimension

n, it is sufficient to solve Conjecture 7.1 for kawamata log terminal pairs

in dimension ≤ n. This reduction is an easy consequence of the existence

of dlt blow-ups and the special termination theorem by induction on the

dimension. For the details, see [F5] and [F13].

More generally, by the cone and contraction theorem (see [F10, Theorem

1.1]), [B1, Theorem 1.1] and [HX, Theorem 1.6], we can run the minimal

model program for non-Q-factorial log canonical pairs (see [F6, Subsection

3.1.2] and [F13]). Note that the termination of flips in this more general

setting also follows from Conjecture 7.1 for kawamata log terminal pairs by

using the existence of dlt blow-ups and the special termination theorem as

explained above (see [F5] and [F13]).

Anyway, Conjecture 7.1 for Q-factorial kawamata log terminal pairs is

one of the most important open problems for the minimal model program.

7.2. On log canonical flops

In this subsection, we discuss some examples, which show the differences

between kawamata log terminal pairs and log canonical pairs. The following

result is well known to the experts (see, for example, [F6, Theorem 3.24]).

Theorem 7.2. Let (X,∆) be a kawamata log terminal pair and let D

be a Q-divisor on X. Then
⊕

m≥0 OX(	mD
) is a finitely generated OX-

algebra.

Proof. If D is Q-Cartier, then this theorem is obvious. So we assume

that D is not Q-Cartier. Since the statement is local, we may assume that

X is affine. By replacing D with D′ such that D′ ∼ D and D′ ≥ 0, we

may further assume that D is effective. By [BCHM], we can take a small
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projective birational morphism f : Y → X such that Y is Q-factorial,

KY + ∆Y = f∗(KX + ∆), and (Y,∆Y ) is kawamata log terminal. Let DY

be the strict transform of D on Y . Note that DY is Q-Cartier because Y

is Q-factorial. Let ε be a small positive number. By running the minimal

model program on (Y,∆Y +εDY ) over X with scaling, we may assume that

DY is f -nef. Then, by the basepoint-free theorem, DY is f -semi-ample.

Therefore, ⊕
m≥0

f∗OY (	mDY 
)

is a finitely generated OX -algebra. Since we have an OX -algebra isomor-

phism ⊕
m≥0

f∗OY (	mDY 
) �
⊕
m≥0

OX(	mD
),

⊕
m≥0 OX(	mD
) is a finitely generated OX -algebra. �

The next example shows that Theorem 7.2 does not always hold for

log canonical pairs. In other words, if (X,∆) is log canonical, then⊕
m≥0 OX(	mD
) is not necessarily finitely generated as an OX -algebra.

Example 7.3 ([Ko3, Exercise 95]). Let E ⊂ P2 be a smooth cubic

curve. Let S be a surface obtained by blowing up nine sufficiently gen-

eral points on E and let ES ⊂ S be the strict transform of E. Let H be a

very ample divisor on S giving a projectively normal embedding S ⊂ PN .

Let X ⊂ AN+1 be the cone over S and let D ⊂ X be the cone over ES .

Then (X,D) is log canonical by Lemma 7.4 below since KS + ES ∼ 0. Let

P ∈ D ⊂ X be the vertex of the cones D and X. Since X is normal, we

have

H0(X,OX(mD)) = H0(X \ P,OX(mD))

�
⊕
r∈Z

H0(S,OS(mES + rH)).

By construction, OS(mES) has only the obvious section which vanishes

along mES for every m > 0. It can be checked by induction on m using the

following exact sequence

0 → H0(S,OS((m− 1)ES)) → H0(S,OS(mES))

→ H0(ES ,OES
(mES)) → · · ·
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since OES
(ES) is not a torsion element in Pic0(ES). Therefore,

H0(S,OS(mES + rH)) = 0

for every r < 0. So, we have⊕
m≥0

OX(mD) �
⊕
m≥0

⊕
r≥0

H0(S,OS(mES + rH)).

Since ES is nef, OS(mES +4H) � OS(KS +ES +mES +4H) is very ample

for every m ≥ 0. Therefore, by replacing H with 4H, we may assume that

OS(mES + rH) is very ample for every m ≥ 0 and every r > 0. In this

setting, the multiplication maps

m−1⊕
a=0

H0(S,OS(aES +H)) ⊗H0(S,OS((m− a)ES))

→ H0(S,OS(mES +H))

are never surjective. This implies that
⊕

m≥0 OX(mD) is not finitely gen-

erated as an OX -algebra.

Let us recall an easy lemma for the reader’s convenience.

Lemma 7.4. Let (V,∆) be a log canonical pair such that V is smooth,

Supp∆ is a simple normal crossing divisor on V , and KV + ∆ ∼Q 0. Let

V ⊂ PN be a projectively normal embedding. Let W ⊂ AN+1 be the cone

over V and let ∆W be the cone over ∆. Then (W,∆W ) is log canonical.

Proof. Let g : W ′ → W be the blow-up at 0 ∈ AN+1 and let E be

the exceptional divisor of g. Note that W ′ is smooth and E � V . Then we

can check that

KW ′ + ∆W ′ + E = g∗(KW + ∆W )

where ∆W ′ is the strict transform of ∆W . Note that Supp(∆W ′ + E) is a

simple normal crossing divisor on W ′. Thus, (W,∆W ) is log canonical. �

Let us recall the definition of log canonical flops.

Definition 7.5 (Log canonical flop). Let (X,∆) be a log canonical

pair. Let D be a Cartier divisor on X. Let f : X → Y be a small contraction



184 Osamu Fujino

such that KX +∆ is numerically f -trivial and −D is f -ample. The opposite

of f with respect to D is called a flop with respect to D for (X,∆) or simply

a D-flop. We sometimes call it flop or a log canonical flop if there is no risk

of confusion.

Remark 7.6. Without loss of generality, we may assume that ∆ is a

Q-divisor and KX+∆ ∼Q,f 0 in Definition 7.5 (see, for example, Remark 4.7

and [FG2, Theorem 4.9 and Subsection 4.1]). Furthermore, if (X,∆ + εD)

is log canonical for some positive number ε, then a D-flop always exists by

[B1, Theorem 1.1 and Corollary 1.2] and [HX, Theorem 1.6 and Corollary

1.8].

The following example shows that log canonical flops do not always exist.

Of course, flops always exist for kawamata log terminal pairs by [BCHM].

Example 7.7 ([Ko3, Exercise 96]). Let E be an elliptic curve and let

L be a degree zero line bundle on E. We put

S = PE(OE ⊕ L).

Let C1 and C2 be the sections of the P1-bundle p : S → E. We note that

KS + C1 + C2 ∼ 0. As in Example 7.3, we take a sufficiently ample divisor

H = aF + bC1 on S giving a projectively normal embedding S ⊂ PN , where

F is a fiber of the P1-bundle p : S → E, a > 0, and b > 0. We may

assume that OS(mCi + rH) is very ample for i = 1, 2, every m ≥ 0, and

every r > 0. Moreover, we may assume that OS(M + rH) is very ample

for any nef Cartier divisor M and every r > 0. Let X ⊂ AN+1 be the

cone over S and let Di ⊂ X be the cones over Ci for i = 1 and 2. Since

KS + C1 + C2 ∼ 0, (X,D1 + D2) is log canonical by Lemma 7.4. We can

check KX + D1 + D2 ∼ 0 by construction. By the same arguments as in

Example 7.3, we can prove the following statement.

Claim 1. If L is a non-torsion element in Pic0(E), then⊕
m≥0

OX(mDi)

is not a finitely generated OX -algebra for i = 1 and 2.
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We note that OS(mCi) has only the obvious section which vanishes along

mCi for every m > 0.

Let B ⊂ X be the cone over F . Then we have the following result.

Claim 2. The graded OX -algebra
⊕

m≥0 OX(mB) is a finitely gener-

ated OX -algebra.

Proof of Claim 2. By the same arguments as in Example 7.3, we

have ⊕
m≥0

OX(mB) �
⊕
m≥0

⊕
r≥0

H0(S,OS(mF + rH)).

We consider V = PS(OS(F )⊕OS(H)). Then OV (1) is semi-ample. There-

fore, ⊕
n≥0

H0(V,OV (n)) �
⊕
m≥0

⊕
r≥0

H0(S,OS(mF + rH))

is finitely generated. �

Let P ∈ X be the vertex of the cone X and let f : Y → X be the

blow-up at P . Let A � S be the exceptional divisor of f . We consider the

P1-bundle π : PS(OS ⊕OS(H)) → S. Then

Y � PS(OS ⊕OS(H)) \G,

where G is the section of π corresponding to

OS ⊕OS(H) → OS(H) → 0.

We consider π∗F on Y . Then OY (π∗F ) is obviously f -semi-ample. So, we

obtain a contraction morphism g : Y → Z over X. We can check that

Z � ProjX
⊕
m≥0

OX(mB)

over X and that h : Z → X is a small projective contraction. On Y , we

have

−A ∼ π∗H = aπ∗F + bπ∗C1.

Therefore, we obtain aB+bD1 ∼ 0 on X. Let B′ be the strict transform of B

on Z and let D′
i be the strict transform of Di on Z for i = 1 and 2. Note that
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B′ is h-ample, aB′ + bD′
1 ∼ 0, and KZ +D′

1 +D′
2 = h∗(KX +D1 +D2) ∼ 0.

If L is not a torsion element, then the flop of h : Z → X with respect to

D′
1 for (Z,D′

1 + D′
2) does not exist since

⊕
m≥0 OX(mD1) is not finitely

generated as an OX -algebra.

Let C be any Cartier divisor on Z such that −C is h-ample. Then the

flop of h : Z → X with respect to C exists if and only if⊕
m≥0

h∗OZ(mC)

is a finitely generated OX -algebra. We can take positive integers m0 and

m1 such that m1C is numerically equivalent to m0D
′
1 over X. Note that

Exc(h) � E. Therefore, we can find a degree zero Cartier divisor N on E

such that

m1C −m0D
′
1 ∼h g∗(π|Y )∗(p∗N).

Thus, ⊕
m≥0

h∗OZ(mm1C)

is a finitely generated OX -algebra if and only if

R =
⊕
m≥0

h∗OZ(m(m0D
′
1 + g∗(π|Y )∗(p∗N)))

is so. Since h is small, R is isomorphic to⊕
m≥0

OX(m(m0D1 + Ñ)),

where Ñ ⊂ X is the cone over p∗N . Anyway,⊕
m≥0

h∗OZ(mC)

is a finitely generated OX -algebra if and only if⊕
m≥0

OX(m(m0D1 + Ñ))
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is so, where Ñ is the cone over p∗N . We note the following commutative

diagram:

Z
h

����
��

��
�

X

��������� Y
f

��

π|Y
��

g
		�������

S

p

��
E

where X ��� S is the natural projection from the vertex P of X.

Claim 3. If L is not a torsion element in Pic0(E), then⊕
m≥0

OX(m(m0D1 + Ñ))

is not finitely generated as an OX -algebra. In particular, the flop of h : Z →
X with respect to C does not exist.

Proof of Claim 3. By the same arguments as in Example 7.3, we

have ⊕
m≥0

OX(m(m0D1 + Ñ))

�
⊕
m≥0

⊕
r∈Z

H0(S,OS(m(m0C1 + p∗N) + rH)).

By considering

0 → H0(S,OS((l − 1)C1 +mp∗N)) → H0(S,OS(lC1 +mp∗N))

→ H0(C1,OC1(lC1 +mp∗N)) → · · ·

for 1 ≤ l ≤ mm0, we obtain that

dimH0(S,OS(m(m0C1 + p∗N))) ≤ 1

for every m ≥ 0. Therefore, we can check that the above OX -algebra is not

finitely generated by the same arguments as in Example 7.3. We note that
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OS(m(m0C1 + p∗N) + rH) is very ample for every m ≥ 0 and every r > 0

because m0C1 + p∗N is nef. �

Anyway, if L is not a torsion element in Pic0(E), then the flop of h :

Z → X does not exist with respect to any divisor.

From now on, in the above setting, we assume that L is a torsion element

in Pic0(E). Then OY (π∗C1) is f -semi-ample. So, we obtain a contraction

morphism g′ : Y → Z+ over X. It is easy to see that⊕
m≥0

OX(mDi)

is finitely generated as an OX -algebra for i = 1, 2 (cf. Claim 2),

Z+ � ProjX
⊕
m≥0

OX(mD1),

over X and that Z+ → X is the flop of Z → X with respect to D′
1.

Let C be any Cartier divisor on Z such that −C is h-ample. If −C ∼Q,h

cB′ for some positive rational number c, then it is obvious that the above

Z+ → X is the flop of h : Z → X with respect to C. If −C �∼Q,h cB
′ for

any positive rational number c, then the flop of h : Z → X with respect to

C does not exist. As above, we take positive integers m0 and m1 such that

m1C is numerically equivalent to m0D
′
1 over X. Then we can find a degree

zero Cartier divisor N on E such that

m1C −m0D
′
1 ∼h g∗(π|Y )∗(p∗N).

Since −C �∼Q,h cB
′ for any positive rational number c, N is a non-torsion

element in Pic0(E). Thus,

⊕
m≥0

h∗OZ(mC)

is finitely generated if and only if⊕
m≥0

OX(m(m0D1 + Ñ))
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is so, where Ñ ⊂ X is the cone over p∗N ⊂ S. By the same arguments as

in the proof of Claim 3, we can check that⊕
m≥0

OX(m(m0D1 + Ñ))

is not finitely generated as an OX -algebra. We note that

dimH0(S,OS(m(m0C1 + p∗N))) = 0

for every m > 0 since N is a non-torsion element in Pic0(E) and L is a

torsion element in Pic0(E) (see the proof of Claim 3).
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[HP1] Höring, A. and T. Peternell, Minimal models for Kähler threefolds,

preprint (2013).
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