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Abstract. We find the complete branching law for the restric-
tion of certain unitary representations of O(1, n+ 1) to the subgroups
O(1,m+ 1) ×O(n−m), 0 ≤ m ≤ n. The unitary representations we
consider are those induced from a character of a parabolic subgroup
or its irreducible quotient. They belong either to the unitary spherical
principal series, the spherical complementary series or discrete series
for the hyperboloid.

In the crucial case 0 < m < n the decomposition consists of a
continuous part and a discrete part. The continuous part is given
by a direct integral of unitary principal series representations whereas
the discrete part consists of finitely many representations which either
belong to the complementary series or are discrete series for the hy-
perboloid. The explicit Plancherel formula is computed on the Fourier
transformed side of the non-compact realization of the representations
by using the spectral decomposition of a certain hypergeometric type
ordinary differential operator. The main tool connecting this differen-
tial operator with the representations are second order Bessel operators
which describe the Lie algebra action in this realization.

To derive the spectral decomposition of the ordinary differential
operator we use Kodaira’s formula for the spectral decomposition of
Schrödinger type operators.
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Introduction

Among his various different mathematical contributions, the spectral

theory of self-adjoint differential operators is one of the earlier works of Pro-

fessor Kunihiko Kodaira. The so-called Weyl–Stone–Kodaira–Titchmarsh

theory gives eigenfunction expansions for self-adjoint second order differen-

tial operators in one variable. It provides a uniform treatment of classical

eigenfunction expansions such as spectral decompositions into Bessel func-

tions, Hermite polynomials or Laguerre functions.

Kodaira [21] considered a differential operator L = d
dxp(x)

d
dx + q(x) on

a possibly unbounded interval (a, b) ⊂ R (see [21, 22] for the precise set-

ting). Then L extends to a self-adjoint operator on the space of square

integrable functions on (a, b) with domain given by functions satisfying cer-

tain boundary conditions, and we have an expansion into eigenfunctions of

the form:

u(x) =
2∑
j=1

2∑
k=1

∫ ∞

−∞
sj(x, λ)

∫ b

a
sk(y, λ)u(y) dy dρjk(λ).

Here, the functions s1(·, λ) and s2(·, λ) are linearly independent solutions to

the equation Lu = λu.

The existence of the density measure dρjk for which the above expan-

sion holds was first proved by Weyl [39]. Later Stone gave in [34, Theorem

10.22] a different proof using the general theory of operators on Hilbert

spaces. About forty years after Weyl’s result, Kodaira [21, 22] found an

explicit formula for dρjk in terms of the characteristic functions, reveal-

ing the explicit relation between the density measures and the asymptotic

behaviour of eigenfunctions. The same formula was also obtained indepen-

dently by Titchmarsh [35] using a different method, and it is called the

Kodaira–Titchmarsh formula. In the second half of [22] and in [23] Kodaira
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studied the eigenfunctions and the density matrix in detail for some partic-

ular cases, which are important for applications. Moreover, in a subsequent

paper [24] he generalized this formula to differential operators of any even

order.

In his Gibbs lecture [40] Weyl wrote about Kodaira: ‘The formula [40,

(12)] was rediscovered by Kunihiko Kodaira (who of course had been cut

off from our Western mathematical literature since the end of 1941); his

construction of ρ and his proofs for [40, (12)] and the expansion formula [40,

(9)], still unpublished, seem to clinch the issue. It is remarkable that forty

years had to pass before such a thoroughly satisfactory direct treatment

emerged; the fact is a reflection on the degree to which mathematicians

during this period got absorbed in abstract generalizations and lost sight of

their task of finishing up some of the more concrete problems of undeniable

importance.’

The Kodaira–Titchmarsh formula makes it possible to apply the spectral

decomposition theorem to concrete settings and in particular it has a sig-

nificant impact on the harmonic analysis on Lie groups. For a given variety

X and a Lie group G acting on it, a fundamental problem in the harmonic

analysis on X is to expand arbitrary function on X into joint eigenfunctions

for the G-invariant differential operators on X. An explicit description of

such an expansion is called Plancherel Theorem. When X is a symmetric

space of rank one, it amounts to eigenfunction expansions for the Laplacian.

In this case the problem can be reduced to an eigenfunction expansion for

a self-adjoint second order differential operator in one variable and hence

the Kodaira–Titchmarsh formula can be applied directly. In fact, a special

case studied in the second half of [22] and in [23] is enough to deduce the

Plancherel Theorem for all symmetric spaces of rank one. For Riemannian

symmetric spaces G/K of arbitrary rank the Plancherel Theorem was es-

tablished by Harish-Chandra (see [11]). In this case the Plancherel measure

is given by the c-function which can be explicitly written in terms of the

Gamma function by the work of Gindikin–Karpelevič [9]. As the c-function

is defined in terms of the asymptotic behaviour of joint eigenfunctions, we

see once more the spirit of the Kodaira–Titchmarsh formula in this setting.

For pseudo-Riemannian symmetric spaces G/H, special cases like hyper-

boloids O(p, q)/O(p, q − 1) were studied in the sixties by Shintani [31] and

Molčanov [26]. The Plancherel Theorem for general semisimple symmet-
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ric spaces of arbitrary rank was established by the works of T. Oshima,

Delorme [4], and van den Ban–Schlichtkrull [36].

Plancherel Theorems for reductive homogeneous spaces G/H can be

viewed as induction problems, decomposing the induced representation

L2(G/H) = IndGH(1) into irreducible G-representations. As well as induc-

tion problems we may consider restriction problems as advocated in [16],

namely, we may ask how a representation decomposes when restricted to a

subgroup. The restriction problem was e.g. solved in [18, 29] for the most de-

generate principal series representations ofG = GL(n,R) andG = GL(n,C)

with respect to any symmetric pair (G,H). Since (degenerate) principal se-

ries representations are realized on L2-sections of line bundles on a flag vari-

ety G/P , Mackey theory relates these restriction problems to the Plancherel

type problems for the open H-orbits in G/P . Our focus is on the indefinite

orthogonal group O(1, n + 1), n ≥ 1, for which we study the restriction of

certain unitary representations using the Kodaira–Titchmarsh formula.

We now introduce some notation in order to describe our results. Let

G = O(1, n + 1). It is known that on the level of (g,K)-modules all irre-

ducible unitary representations of G are obtained as subrepresentations of

representations induced from a parabolic subgroup P = MAN . Up to con-

jugation P is unique and there are group isomorphisms M ∼= O(n)×(Z/2Z),

A ∼= R+ and N ∼= R
n. We restrict our attention to representations induced

from characters of P . Denote by π
O(1,n+1)
σ,ε the representation of G, which is

induced from the character of P given by the character σ ∈ C of A and the

character ε ∈ Z/2Z of the second factor of M ∼= O(n)× (Z/2Z) (normalized

parabolic induction).

In our parameterization π
O(1,n+1)
σ,ε is irreducible and unitarizable if and

only if σ ∈ iR ∪ (−n, n). By abuse of notation we denote by π
O(1,n+1)
σ,ε also

the corresponding irreducible unitary representations. For σ ∈ iR these

representations are called unitary principal series representations and for

σ ∈ (−n, 0) ∪ (0, n) they are called complementary series representations.

We have natural isomorphisms π
O(1,n+1)
−σ,ε ∼= π

O(1,n+1)
σ,ε for σ ∈ iR ∪ (−n, n).

Further, for σ = n + 2u, u ∈ N, the representation π
O(1,n+1)
σ,ε has

a unique non-trivial subrepresentation π
O(1,n+1)
σ,ε,sub . This subrepresentation

is irreducible and unitarizable and we use the same notation to also de-

note the corresponding irreducible unitary representation. Its underlying

(g,K)-module is isomorphic to Zuckerman’s module Aq(λ) for certain q
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and λ and it occurs discretely in the Plancherel formula for the hyperboloid

O(1, n + 1)/O(1, n). We refer to these representations as discrete series

representations for the hyperboloid.

In this paper we study the restriction of π
O(1,n+1)
σ,ε , σ ∈ iR ∪ (−n, n),

and π
O(1,n+1)
σ,ε,sub , σ ∈ n + 2N, ε ∈ Z/2Z, with respect to any symmetric pair

(G,H). By Berger’s list [1] of symmetric pairs, the subgroup H is conjugate

to

H = O(1,m+ 1) ×O(n−m), − 1 ≤ m < n.

Since H is a maximal compact subgroup of G if m = −1, the branching law

for the restriction of π
O(1,n+1)
σ,ε and π

O(1,n+1)
σ,ε,sub to O(1) × O(n + 1) is simply

the K-type decomposition (1.1) or (1.2) which is well-known. Moreover, for

H = O(1, 1) × O(n), i.e. the case m = 0, the branching law can easily be

derived using classical Fourier analysis, see Section 1.4. The most interesting

case is the branching to H for 0 < m < n. In the formulation of the

branching law we use the conventions [0, α) = ∅ for α ≤ 0 and [0, α] = ∅ for

α < 0.

Theorem (see Theorem 4.7). The unitary representations πGσ,ε and

πGσ,ε,sub of G = O(1, n + 1) decompose into irreducible representations of

H = O(1,m+ 1) ×O(n−m), 0 < m < n, as follows: for σ ∈ iR ∪ (−n, n)

and ε ∈ Z/2Z we have

πGσ,ε
∣∣
H

∼=
∞∑⊕

k=0

(∫ ⊕

iR+

π
O(1,m+1)
τ,ε+k dτ

⊕
⊕

j∈N∩
[
0,

|Reσ|−n+m−2k
4

) π
O(1,m+1)
|Reσ|−n+m−2k−4j,ε+k

)
�Hk(Rn−m),

and for σ = n+ 2u, u ∈ N, and ε ∈ Z/2Z we have

πGσ,ε,sub

∣∣
H

∼=
∞∑⊕

k=0

(∫ ⊕

iR+

π
O(1,m+1)
τ,ε+k dτ ⊕

⊕
j∈N∩[0,u−k

2 ]

π
O(1,m+1)
m+2u−2k−4j,ε+k,sub

⊕
⊕

j∈N∩(u−k
2
,m+2u−2k

4 )

π
O(1,m+1)
m+2u−2k−4j,ε+k

)
�Hk(Rn−m),
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where Hk(Rn−m) denotes the irreducible representation of O(n−m) on the

space of solid spherical harmonics of degree k on R
n−m.

The explicit Plancherel formula is given in Theorem 4.1. We remark

that the branching laws are multiplicity-free, a fact which is not true for

general irreducible representations of G restricted to H if m < n− 1.

Let us explain the branching formula in more detail. First of all, the

restriction πGσ,ε|H resp. πGσ,ε,sub|H is decomposed with respect to the action

of O(n − m), the second factor of H. Then the decomposition of each

Hk(Rn−m)-isotypic component into irreducible representations of O(1,m+

1) contains continuous and discrete spectrum in general. The continu-

ous spectrum is a direct integral of unitary principal series representa-

tions π
O(1,m+1)
τ,ε+k of O(1,m + 1). The discrete spectrum appears if and only

if k < |Reσ|−n+m
2 and is a direct sum of finitely many complementary series

representations in the case πGσ,ε|H and additionally finitely many discrete se-

ries representations for the hyperboloid in the case πGσ,ε,sub|H . Therefore the

whole branching law of πGσ,ε|H resp. πGσ,ε,sub|H contains only finitely many

discrete components and the discrete spectrum is non-trivial if and only if

|Reσ| > n−m. In particular for m > 0 there is always at least one discrete

component in the restriction of the discrete series representations for the

hyperboloid πGσ,ε,sub|H and also in the restriction of complementary series

representations πGσ,ε|H if σ is sufficiently close to the first reduction point n

or −n.

For σ ∈ iR the decomposition is purely continuous. In this case the

branching law is actually equivalent to the Plancherel formula for the Rie-

mannian symmetric space O(1,m+ 1)/(O(1)×O(m+ 1)) (see Appendix A

or [3]) and therefore well-known. However, neither for the complementary

series representations nor the discrete series representations for the hyper-

boloid can the decomposition be obtained in the same way.

The proof of the Plancherel formula we present works uniformly for all

σ ∈ iR∪ (−n, n)∪ (n+2N), i.e. for both unitary principal series representa-

tions, complementary series, and discrete series representations for the hy-

perboloid. It uses the “Fourier transformed realization” of πGσ,ε resp. πGσ,ε,sub

on L2(Rn, |x|−Reσ dx). For this consider first the non-compact realization

on the nilradicalN of the parabolic subgroup P opposite to P . We then take

the Euclidean Fourier transform on N ∼= R
n to obtain a realization of πGσ,ε
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resp. πGσ,ε,sub on L2(Rn, |x|−Reσ dx). The advantage of this realization is

that the invariant form is simply the L2-inner product. The Lie algebra ac-

tion in the Fourier transformed picture is given by differential operators up

to order two, the crucial operators being second order Bessel type operators.

We remark that these operators are a special case of the Bessel operators

on Jordan algebras introduced by Dib [5] (see also [6, 12]). In the context

of indefinite orthogonal groups these operators first appeared explicitly in

the study of the minimal representation of O(p, q) by Kobayashi–Mano [17]

where they are called fundamental differential operators (see also [25]). Us-

ing these operators in our case we reduce the branching law to the spectral

decomposition of an ordinary differential operator of hypergeometric type

on L2(R+) (see Section 2). The spectral decomposition of this operator is

derived in Section 3 from Kodaira’s result on the Schrödinger type opera-

tors and is used in Section 4 to obtain the branching law and the explicit

Plancherel formula for the restriction of the representations. An interesting

formula for the intertwining operators realizing the branching law in the

non-compact picture on N is computed in Section 5. These intertwining

operators will be subject of a subsequent paper.

Here are some related results on the branching laws studied by different

methods:

• For n = 2 and m = 1 the full decomposition of the complementary

series was given by Mukunda [30] using the non-compact picture. This

case corresponds to the branching law SL(2,C) ↘ SL(2,R).

• For n arbitrary and m = 1 the full decomposition of the complemen-

tary series was given by Boyer [2]. He obtained an expansion of matrix

coefficients using analytic continuation in σ and a result for principal

series [3].

• Boyer’s result [2] was extended to the case SO(m,n+ 1) ↘ SO(m,n)

by Molčanov [27].

• Extending his study on branching laws for discretely decomposable re-

strictions [14], Kobayashi constructed discrete components for Zuck-

erman’s modules of O(p, q) when restricted to O(p′, q′) × O(p′′, q′′),

which was announced in his talk [15]. The restriction of π
O(1,n+1)
σ,ε,sub ,

σ ∈ (n + 2N) is a special case of his result. By our Theorem it turns
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out that his construction gives all the discrete components of the re-

striction π
O(1,n+1)
σ,ε,sub |O(1,m+1)×O(n−m) for σ ∈ (n+ 2N).

• After the announcement of Kobayashi’s result [15], Speh–

Venkataramana [32, Theorem 1] proved the existence of the discrete

component π
O(1,n)
σ−1,0 in π

O(1,n+1)
σ,0 |O(1,n) for n ≥ 2, m = n − 1 and

σ ∈ (1, n) as well as the existence of the discrete component π
O(1,n)
n−1,0,sub

in π
O(1,n+1)
n,0,sub |O(1,n) (special case j = k = 0, σ ∈ (1, n] in our Theorem).

They also use the Fourier transformed picture for their proof. This

is a special case of their more general result for complementary se-

ries representations of G on differential forms, i.e. induced from more

general (possibly non-scalar) P -representations.

• The same special case was obtained by Zhang [41, Theorem 3.6]. He

actually proved that for all rank one groups G = SU(1, n + 1; F),

F = R,C,H, resp. G = F4(−20) certain complementary series repre-

sentations of H = SU(1, n; F) resp. H = Spin(8, 1) occur discretely in

some spherical complementary series representations of G. His proof

uses the compact picture and explicit estimates for the restriction of

K-finite vectors.

Acknowledgements. The authors thank Toshiyuki Kobayashi and Bent

Ørsted for helpful discussions. They also thank the referee for drawing their

attention to the papers [2, 3, 27]. Most of this work was done during the

second author’s visit to Aarhus University supported by the Department of

Mathematics.

Notation. Z+ = {1, 2, 3, . . . }, N = Z+ ∪ {0}, R+ = {x ∈ R : x > 0}.

1. L2-model of Some Representations of O(1, n+ 1)

In this section we recall the necessary geometry of the group G =

O(1, n+ 1) and some of its representation theory. The L2-models discussed

in Section 1.3 were for the complementary series previously constructed by

Vershik–Graev [37] and are new for the discrete series representations for

the hyperboloid.
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1.1. Subgroups and decompositions

Let G = O(1, n + 1), n ≥ 1, realized as the subgroup of GL(n + 2,R)

leaving the quadratic form

R
n+2 → R, x = (x1, . . . , xn+2)

t �→ x2
1 − (x2

2 + · · · + x2
n+2),

invariant. We fix the Cartan involution θ of G given by θ(g) = g−t = (gt)−1,

g ∈ G, which corresponds to the maximal compact subgroup K := Gθ =

O(1) × O(n + 1). On the Lie algebra level the Lie algebra g of G has

the Cartan decomposition g = k ⊕ p into the ±1 eigenspaces k and p of θ

where k is the Lie algebra of K. Choose the maximal abelian subalgebra

a := RH ⊆ p spanned by the element

H := 2(E1,n+2 + En+2,1),

where Eij denotes the (n+2)× (n+2) matrix with 1 in the (i, j)-entry and

0 elsewhere. The root system of the pair (g, a) consists only of the roots

±2γ where γ ∈ a∗C is defined by γ(H) := 1. Put

n := g2γ , n := g−2γ = θn

and let

N := expG(n), N := expG(n) = θN

be the corresponding analytic subgroups of G. Since dim(n) = dim(n) = n

the half sum of all positive roots is given by ρ = nγ. We introduce the

following coordinates on N and N : For 1 ≤ j ≤ n let

Nj := E1,j+1 + Ej+1,1 − Ej+1,n+2 + En+2,j+1,

N j := E1,j+1 + Ej+1,1 + Ej+1,n+2 − En+2,j+1.

For x ∈ R
n let

nx := exp
( n∑
j=1

xjNj

)
∈ N, nx := exp

( n∑
j=1

xjN j

)
∈ N.
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Further put M := ZK(a) and A := exp(a) and denote by m the Lie algebra

of M . We write M = M+ ∪m0M
+ where

M+ := {diag(1, k, 1) : k ∈ O(n)} ∼= O(n) and

m0 := diag(−1, 1, . . . , 1,−1).

Via conjugation the element m0 acts on N and N by

m0nxm
−1
0 = n−x and m0nxm

−1
0 = n−x

and the action of m ∈ M+ ∼= O(n) on N and N by conjugation is given by

mnxm
−1 = nmx and mnxm

−1 = nmx

for x ∈ R
n, where mx is the usual action of O(n) on R

n. Further A acts on

N and N by

etHnxe
−tH = ne2tx and etHnxe

−tH = ne−2tx

for x ∈ R
n, t ∈ R. The following decomposition holds

g = n ⊕ m ⊕ a ⊕ n (Gelfand–Naimark decomposition).

The groups

P := MAN and P := MAN = θ(P )

are opposite parabolic subgroups in G and NP ⊆ G is an open dense subset.

Let W := NK(a)/ZK(a) be the Weyl group corresponding to a. Then

W = {1, [w0]} where the non-trivial element is represented by the matrix

w0 = diag(−1, 1, . . . , 1) ∈ K.

The element w0 has the property that w0Nw
−1
0 = N and hence w0Pw

−1
0 =

P . More precisely,

w0nxw
−1
0 = n−x and w0e

tHw−1
0 = e−tH .

We have the disjoint union

G = P ∪ Pw0P (Bruhat decomposition).
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The following lemma is a straightforward calculation:

Lemma 1.1. For x ∈ R
n, x �= 0, we have w−1

0 nx = nyme
tHnz ∈ NP

with

y = − |x|−2 x,

z = |x|−2 x,

t = log |x| ,
m =

 −1

1n − 2 |x|−2 xxt

−1

 .

Let τ be the involution of G given by conjugation with the matrix

diag(1m,−1n−m, 1).

Then the subgroup H := Gτ is isomorphic to O(1,m+ 1) ×O(n−m). The

subgroup H is generated by the subgroups NH , NH , MH and A, where

(viewing R
m as the subspace R

m × {0} ⊆ R
n)

NH := {nx : x ∈ R
m} and NH := {nx : x ∈ R

m}

and MH := M+
H ∪m0M

+
H with

M+
H := {diag(1, k1, k2, 1) : k1 ∈ O(m), k2 ∈ O(n−m)}

∼= O(m) ×O(n−m).

Also denote by

PH := MHANH and PH := MHANH

the corresponding parabolic subgroups. We write h for the Lie algebra of

H.

1.2. Principal series representations – non-compact picture and

standard intertwining operators

We identify a∗C with C by λ �→ λ(H), i.e. σ ∈ C corresponds to σγ ∈ a∗C.

Under this identification ρ corresponds to n. For σ ∈ C let eσ be the

character of A given by eσ(etH) = eσt, t ∈ R. Further, for ε ∈ Z/2Z

denote by ξε the character of M = M+ ∪m0M
+ with ξε(m0) = (−1)ε and
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ξε(m) = 1 for m ∈ M+. For σ ∈ C and ε ∈ Z/2Z we consider the character

χσ,ε := ξε ⊗ eσ ⊗ 1 on P = MAN and induce it to a representation of G:

ĨGσ,ε := IndGP (χσ,ε)

= {f ∈ C∞(G) : f(gman) = ξε(m)−1a−σ−ρf(g)∀ g ∈ G,

man ∈ P = MAN}.

The group G acts on ĨGσ,ε by left-translations and this action will be denoted

by π̃Gσ,ε. Restricting to K it is easy to see that the K-type decomposition of

the representations π̃Gσ,ε is given by

π̃Gσ,ε
∣∣
K

∼=
∞∑⊕

k=0

signε+k�Hk(Rn+1),(1.1)

where sign denotes the non-trivial character of O(1), and O(n + 1) acts

as usual on the space Hk(Rn+1) of spherical harmonics of degree k on R
n,

giving combined the action of K ∼= O(1) ×O(n+ 1).

The following fact on the structure of π̃Gσ,ε is known (see [13]).

Fact 1.2.

(i) The representation (π̃Gσ,ε, Ĩ
G
σ,ε) is irreducible if and only if σ /∈ ±(n +

2N). It is unitarizable if and only if σ ∈ (−n, n) ∪ iR.

(ii) For σ = n+2u, u ∈ N, the representation (π̃Gσ,ε, Ĩ
G
σ,ε) has a unique non-

trivial subrepresentation (π̃Gσ,ε,sub, Ĩ
G
σ,ε,sub). This subrepresentation is

irreducible and unitarizable and its K-type decomposition is given by

π̃Gσ,ε,sub

∣∣
K

∼=
∞∑⊕

k=u+1

signε+k�Hk(Rn+1),(1.2)

(iii) For σ = −n − 2u, u ∈ N, the representation (π̃Gσ,ε, Ĩ
G
σ,ε) has a unique

non-trivial subrepresentation (π̃Gσ,ε,sub, Ĩ
G
σ,ε,sub). This subrepresenta-

tion is finite-dimensional and irreducible and the quotient ĨGσ,ε/Ĩ
G
σ,ε,sub

is unitarizable and isomorphic to ĨG−σ,ε,sub.
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Since NP ⊆ G is dense, a function in ĨGσ,ε is already uniquely determined

by its values on N and for f ∈ ĨGσ,ε we put

fN (x) := f(nx), x ∈ R
n.

Let IGσ,ε :=
{
fN : f ∈ ĨGσ,ε

}
and denote by πGσ,ε the corresponding induced

action, i.e.

πGσ,ε(g)fN := (π̃Gσ,ε(g)f)N , f ∈ ĨGσ,ε.

Further, denote by (πGσ,ε,sub, I
G
σ,ε,sub) the corresponding subrepresentations

of (πGσ,ε, I
G
σ,ε) for σ ∈ ±(n + 2N). Note that if f ∈ ĨGσ,ε is a k-fixed vector,

namely, in the k = 0 term on the right hand side of (1.1), then fN is equal

to (1 + |x|2)−σ+n
2 up to a constant multiple.

In view of the Bruhat decomposition G = P ∪Pw0P the action πGσ,ε can

be completely described by the action of P and w0. Using Lemma 1.1 we

find

πGσ,ε(na)f(x) = f(x− a), na ∈ N,

πGσ,ε(m)f(x) = f(m−1x), m ∈ M+ ∼= O(n),

πGσ,ε(m0)f(x) = (−1)εf(−x),
πGσ,ε(e

tH)f(x) = e(σ+n)tf(e2tx), etH ∈ A,

πGσ,ε(w0)f(x) = (−1)ε |x|−σ−n f(− |x|−2 x).

This also gives the following expressions for the differential action dπGσ =

dπGσ,ε of the Lie algebra g, which is independent of ε:

dπGσ (N j)f(x) = − ∂f

∂xj
(x), j = 1, . . . , n,

dπGσ (T )f(x) = −DTxf(x), T ∈ m ∼= so(n),

dπGσ (H)f(x) = (2E + σ + n) f(x),

dπGσ (Nj)f(x) = − |x|2 ∂f

∂xj
(x) + xj (2E + σ + n) f(x), j = 1, . . . , n,

where Da denotes the directional derivative in direction a ∈ R
n and E =∑n

j=1 xj
∂
∂xj

is the Euler operator on R
n. For the action of n we have used

the identity dπGσ (Na) = πGσ,ε(w0)dπ
G
σ (N−a)πGσ,ε(w

−1
0 ).
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For σ ∈ iR the usual L2-inner product on R
n provides unitarizations

(HG
σ,ε, π

G
σ,ε) on HG

σ,ε = L2(Rn) and these representations form the unitary

principal series.

Now consider the normalized Knapp–Stein intertwining operators

J̃(σ, ε) : ĨGσ,ε → ĨG−σ,ε which are for Reσ > 0 given by

J̃(σ, ε)f(g) :=
(−1)ε

Γ(σ2 )

∫
N
f(gw0n) dn, g ∈ G, f ∈ ĨGσ,ε,

where dn is the Haar measure on N given by the push-forward of the

Lebesgue measure on R
n by the map R

n → N, x �→ nx, and extended

analytically to all σ ∈ C. This intertwining operator induces an intertwin-

ing operator J(σ, ε) : IGσ,ε → IG−σ,ε by J(σ, ε)fN := (J̃(σ, ε)f)N , f ∈ ĨGσ,ε.

Using Lemma 1.1 we obtain

J(σ, ε)fN (x) =
(−1)ε

Γ(σ2 )

∫
Rn

f(nxw0nz) dz

=
1

Γ(σ2 )

∫
Rn

|z|−σ−n fN (x− |z|−2 z) dz.

Consider the coordinate change y := x − |z|−2 z. Its Jacobian
∣∣∣det(∂y∂z )

∣∣∣ is

homogeneous of degree −2n, O(n)-invariant and has value 1 for z = e1.

Hence it is equal to |z|−2n. This finally gives

J(σ, ε)f(x) =
1

Γ(σ2 )

∫
Rn

|x− y|σ−n f(y) dy =
1

Γ(σ2 )
(|−|σ−n ∗ f)(x),(1.3)

so J(σ, ε) is up to a constant given by convolution with the distribution

|−|σ−n and its residues. We define a G-invariant Hermitian form (− | −)σ,ε
on IGσ,ε by

(f | g)σ,ε := (f | J(σ, ε)g)L2(Rn)(1.4)

=
1

Γ(σ2 )

∫
Rn

∫
Rn

|x− y|σ−n f(x)g(y) dxdy.

For σ ∈ (−n, n) this form is in fact positive definite and in this case the

completion HG
σ,ε of IGσ,ε with respect to the inner product (− | −)σ,ε gives

an irreducible unitary representation (HG
σ,ε, π

G
σ,ε) of G. The intertwining
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operator extends to an (up to scalar) unitary isomorphism J(σ, ε) : HG
σ,ε →

HG
−σ,ε. These representations comprise the complementary series.

For σ = n + 2u, u ∈ N the operator J(−σ, ε) vanishes on the finite-

dimensional subrepresentation I−σ,ε,sub and maps onto the infinite-dimen-

sional subrepresentation Iσ,ε,sub. Therefore the Hermitian form (− | −)−σ,ε
vanishes on the finite-dimensional subrepresentation IG−σ,ε,sub and induces

a G-invariant positive definite Hermitian form on the unitarizable quo-

tient IG−σ,ε/I
G
−σ,ε,sub. Since this quotient is isomorphic to the subrepresen-

tation IGσ,ε,sub via the intertwining operator J(−σ, ε) we also obtain an ir-

reducible unitary representation (HG
σ,ε,sub, π

G
σ,ε,sub). These representations

are isomorphic to the unitarizations of certain Zuckerman’s modules Aq(λ)

of G and occur discretely in the Plancherel formula for the hyperboloids

O(1, n + 1)/O(1, n). We call them discrete series representations for the

hyperboloid.

Note that for any σ ∈ iR ∪ (−n, n) the intertwining operator J(σ, ε)

extends to an isometry between the irreducible unitary representations

(HG
σ,ε, π

G
σ,ε) and (HG

−σ,ε, π
G
−σ,ε).

1.3. The Fourier transformed picture

Consider the Euclidean Fourier transform FRn : S ′(Rn) → S ′(Rn) given

by

FRnu(x) = (2π)−
n
2

∫
Rn

e−i(x | y)u(y) dy.(1.5)

For ε ∈ Z/2Z and σ ∈ iR∪ (−n, n) resp. σ ∈ (n+ 2N) we define a represen-

tation ρGσ,ε of G on F−1
Rn IGσ,ε resp. F−1

Rn IGσ,ε,sub by

πGσ,ε(g) ◦ FRn = FRn ◦ ρGσ,ε(g), g ∈ G.

resp.

πGσ,ε,sub(g) ◦ FRn = FRn ◦ ρGσ,ε(g), g ∈ G.

It is easy to calculate the group action of P = MAN :

ρσ,ε(na)f(x) = ei(x | a)f(x), na ∈ N,(1.6)

ρσ,ε(m)f(x) = f(m−1x), m ∈ M+ ∼= O(n),(1.7)

ρσ,ε(m0)f(x) = (−1)εf(−x),(1.8)
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ρσ,ε(e
tH)f(x) = e(σ−n)tf(e−2tx), t ∈ R.(1.9)

The action of w0 in the Fourier transformed picture is more involved (see

e.g. [37, Proposition 2.3]). Note that by these formulas the restriction ρσ,ε|P
also acts on C∞(Rm \ {0}). Using the classical intertwining relations

xj ◦ FRn = FRn ◦ (−i ∂∂xj ),
∂
∂xj

◦ FRn = FRn ◦ (−ixj)

it is easy to compute the differential action dρGσ of ρGσ,ε:

dρGσ (N j)f(x) = ixjf(x), j = 1, . . . , n,(1.10)

dρGσ (T )f(x) = −DTxf(x), T ∈ m ∼= so(n),(1.11)

dρGσ (H)f(x) = − (2E − σ + n) f(x),(1.12)

dρGσ (Nj)f(x) = −iBn,σj f(x), j = 1, . . . , n,(1.13)

where we abbreviate

Bn,σj := xj∆ − (2E − σ + n)
∂

∂xj
.

The operators Bn,σj are called Bessel operators and are polynomial differen-

tial operators on R
n. Therefore the action dρGσ defines a representation of

g on C∞(Ω) for every open subset Ω ⊆ R
n.

Remark 1.3. The operators Bn,σj are called Bessel operators since they

resemble the classical Bessel operators on R given by

d2

dx2
+
ν

x

d

dx
.

They are a special instance of the Bessel operators in the theory of Jordan

algebras which were already studied by Dib [5] in the early 90s and investi-

gated further in [6, 12]. In the special case of indefinite orthogonal groups

these operators first occur in the work by Kobayashi–Mano [17] on the min-

imal representation of O(p, q) where they are called fundamental differential

operators and denoted by Pj(b) (see also [25]). In fact, for (p, q) = (n+1, 1)

we have the relation Pj(b) = Bn,2bj .
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To describe the representation spaces HG
σ,ε resp. HG

σ,ε,sub in the Fourier

transformed picture we recall that the Fourier transform FRn intertwines

convolution and multiplication operators. Further, the Riesz distributions

Rλ ∈ S ′(Rn) given by

〈Rλ, ϕ〉 =
2−

λ
2

Γ(λ+n2 )

∫
Rn

ϕ(x) |x|λ dx, ϕ ∈ S(Rn),

for Reλ > −n and extended analytically to λ ∈ C satisfy the following

classical functional equation (see [8, equation (2’) in II.3.3])

FRnRλ = R−λ−n.

With this observation as well as (1.3) and (1.4) we see that in the Fourier

transformed picture the G-invariant inner product is simply given by the

inner product of L2(Rn, |x|−Reσ dx) and hence the map F−1
Rn : IGσ,ε →

L2(Rn, |x|−Reσ dx) extends to F−1
Rn : HG

σ,ε → L2(Rn, |x|−Reσ dx) for σ ∈
iR ∪ (−n, n). Similarly, the map F−1

Rn : IGσ,ε,sub → L2(Rn, |x|−Reσ dx) ex-

tends to F−1
Rn : HG

σ,ε,sub → L2(Rn, |x|−Reσ dx) for σ ∈ (n + 2N). We note

that already the action of the parabolic subgroup P given by (1.6)–(1.9) ex-

tends to an irreducible unitary representation of P on L2(Rn, |x|−Reσ dx)

by Mackey theory and therefore F−1
Rn HG

σ,ε resp. F−1
Rn HG

σ,ε,sub is actually equal

to L2(Rn, |x|−Reσ dx). This yields the L2-realizations

(ρGσ,ε, L
2(Rn, |x|−Reσ dx))

for σ ∈ iR ∪ (−n, n) ∪ (n+ 2N). The Fourier transform is a unitary (up to

scalar multiples) isomorphism FRn : L2(Rn, |x|−Reσ dx) → HG
σ,ε resp. FRn :

L2(Rn, |x|−Reσ dx) → HG
σ,ε,sub intertwining the representations ρGσ,ε and

πGσ,ε resp. πGσ,ε,sub. For σ ∈ iR ∪ (−n, n) the standard intertwining operators

J(σ, ε) are in this picture (up to scalar multiples) given by multiplication

L2(Rn, |x|−Reσ dx) → L2(Rn, |x|Reσ dx), f(x) �→ |x|−σ f(x).

The explicit K-type decompositions (1.1) and (1.2) are difficult to see in

the Fourier transformed picture. However, one can still describe the spaces

of K-finite vectors. For this consider the renormalized K-Bessel function

K̃α(z) from Appendix B.1. For σ ∈ iR ∪ (−n, n) ∪ (n+ 2N) put

ψGσ (x) := K̃−σ
2
(|x|), x ∈ R

n \ {0}.(1.14)
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By Appendix B.4 and the integral formula (B.11), FRnψGσ is equal to (1 +

|x|2)−σ+n
2 up to a constant multiple and hence ψGσ is a k-fixed vector

in F−1
Rn IGσ,ε. If σ ∈ iR ∪ (−n, n), it constitutes the minimal k-type in

L2(Rn, |x|−Reσ dx). Note that as K-representation the minimal K-type

is for ε �= 0 not the trivial representation since m0 ∈ K acts on it by (−1)ε.

To describe the underlying (g,K)-module we denote for f ∈ C∞(R+) and

k ∈ N by f ⊗ |x|2k the function f(|x|) |x|2k and by f ⊗ |x|2k C[x] the space

of all functions of the form f(|x|) |x|2k p(x) for some polynomial p ∈ C[x].

Lemma 1.4. For σ ∈ iR ∪ (−n, n) ∪ (n + 2N) the underlying (g,K)-

module of F−1
Rn IGσ,ε is given by

(F−1
Rn I

G
σ,ε)K =

∞∑
k=0

K̃−σ
2
+k ⊗ |x|2k C[x] =

∑
k=0,1

K̃−σ
2
+k ⊗ |x|2k C[x].(1.15)

If σ ∈ iR ∪ (−n, n) the underlying (g,K)-module of the representation

(ρσ,ε, L
2(Rn, |x|−Reσ dx)) is given by

L2(Rn, |x|−Reσ dx)K =

∞∑
k=0

K̃−σ
2
+k ⊗ |x|2k C[x].(1.16)

Proof. Since g = k + a + n the universal enveloping algebra U(g) of

g decomposes by the Poincaré–Birkhoff–Witt Theorem into U(g) =

U(n)U(a)U(k). The (g,K)-module (F−1
Rn IGσ,ε)K is generated by the k-fixed

vector ψGσ and hence

(F−1
Rn I

G
σ,ε)K = U(g)ψGσ = U(n)U(a)ψGσ .

By (1.10) and (1.12) we have U(n) = C[x] and U(a) = C[E]. Using (B.4)

we further find that the Euler operator E acts on functions of the form

K̃α(|x|) |x|2k, α ∈ R, k ∈ N, by

E
(
K̃α(|x|) |x|2k

)
= −1

2K̃α+1(|x|) |x|2k+2 + 2kK̃α(|x|) |x|2k

Hence

U(n)U(a)ψGσ = U(n)

∞∑
k=0

C

(
K̃−σ

2
+k ⊗ |x|2k

)
=

∞∑
k=0

K̃−σ
2
+k ⊗ |x|2k C[x]
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which proves the first equality in (1.15). The second equality in (1.15)

follows immediately from (B.5). Since the K-finite vectors do not depend

on the globalization, (1.16) follows. �

Now let σ = n + 2u, u ∈ N. For f ∈ C∞(R+) and j, k ∈ N we denote

by f ⊗ |x|2kHj(Rn) the space of functions of the form f(|x|)|x|2kp(x) with

p ∈ Hj(Rn). Further, let C[x]>j be the space of all polynomials which are

sums of homogeneous polynomials of degree > j. Then f ⊗ |x|2k C[x]>j
denotes the space of functions of the form f(|x|)|x|2kp(x) with p ∈ C[x]>j .

Lemma 1.5. Let σ = n + 2u, u ∈ N. The lowest K-type signε+u+1 �
Hu+1(Rn+1) in the representation (ρσ,ε, L

2(Rn, |x|−Reσ dx)) is given by

u+1⊕
k=0

K̃−σ
2
+k ⊗ |x|2kHu−k+1(Rn).(1.17)

and for the underlying (g,K)-module the following inclusion holds:

L2(Rn, |x|−Reσ dx)K ⊆
∞∑
k=0

K̃−σ
2
+k ⊗ |x|2k C[x]>u−k.(1.18)

Proof. By (1.15), we see that (1.17) is contained in (F−1
Rn IGσ,ε)K . We

now show that (1.17) is a K-subrepresentation of (F−1
Rn IGσ,ε)K . The group

O(n) leaves Hj(Rn) invariant for every j ∈ N and hence M leaves each

summand in (1.17) invariant. It remains to show that k∩(n+n) = span{N j−
Nj : j = 1, . . . , n} leaves (1.17) invariant. An easy calculation using (B.4)

and (B.5) shows that for p ∈ Hu−k+1(Rn) we have

dρGσ (N j −Nj)
[
K̃−σ

2
+k(|x|) |x|2k p(x)

]
= i(Bn,σj + xj)

[
K̃−σ

2
+k(|x|) |x|2k p(x)

]
= 4ikK̃−σ

2
+k−1(|x|) |x|2k−2 p+

j (x)

+ i(n+ 2u− k)K̃−σ
2
+k+1(|x|) |x|2k+2 p−j (x),

where xjp = p+
j + |x|2 p−j with p±j ∈ Hu−k+1±1(Rn) given by

p+
j = xjp− |x|2

2u− 2k + n

∂p

∂xj
, p−j =

1

2u− 2k + n

∂p

∂xj
.
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As in [28, Lemma B.1.2], we can construct an explicit isomorphism between

(1.17) and signε+u+1 �Hu+1(Rn+1) which respects K-actions. In view of

(1.1) the K-type signε+u+1 �Hu+1(Rn+1) occurs only once in F−1
Rn IGσ,ε|K

and hence (1.17) must coincide with the lowest K-type in F−1
Rn IGσ,ε,sub and

in L2(Rn, |x|−Reσ dx). This shows the first part of the claim. Now an

argument similar to the proof of Lemma 1.4 shows the inclusion (1.18). �

1.4. Branching rule for m = 0

Using the L2-model (ρGσ,ε, L
2(Rn, |x|−Reσ dx)) we can now easily derive

the branching rule for the restriction of ρGσ,ε to H = O(1, 1) × O(n) (the

case m = 0). Taking conjugation if necessary we may and do assume that

H = MA ∪ w0MA. Note that MA = SO(1, 1) × O(n) and the action of

MA is given by (1.7), (1.8) and (1.9). Therefore the isometric isomorphism

L2(Rn, |x|−Reσ dx) → L2(Rn), f(x) �→ |x|−σ
2 f(x)

is an intertwining operator ρGσ,ε|MA → ρG0,ε|MA and the restrictions ρGσ,ε|MA
are pairwise equivalent. The decomposition of ρG0,ε|MA can be done by the

Mellin transform with respect to the variable |x| giving

L2(Rn) =

∞∑⊕

k=0

(∫ ⊕

iR
π′SO(1,1)
τ,ε+k dτ

)
�Hk(Rn),

where π′SO(1,1)
iλ,δ (λ ∈ R, δ ∈ Z/2Z) denotes the unitary character of

SO(1, 1) = A ∪m0A given by

π′SO(1,1)
iλ,δ (etH) = eiλt, π′SO(1,1)

iλ,δ (m0) = (−1)δ.

Let π
O(1,1)
iλ,δ (λ ∈ R+, δ ∈ Z/2Z) denote the two-dimensional irreducible

unitary representation of O(1, 1) = A ∪m0A ∪ w0A ∪m0w0A given by

π
O(1,1)
iλ,δ (etH) =

(
eiλt 0

0 e−iλt

)
,

π
O(1,1)
iλ,δ (m0) = (−1)δ, π

O(1,1)
iλ,δ (w0) =

(
0 1

1 0

)
.

Any irreducible unitary representation of O(1, 1) is either isomorphic to

π
O(1,1)
iλ,δ or a character which factors through O(1, 1)/A # Z/2Z × Z/2Z.
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Therefore, the only possibility for the branching law to H is

L2(Rn) =

∞∑⊕

k=0

(∫ ⊕

iR+

π
O(1,1)
τ,ε+k dτ

)
�Hk(Rn).

2. Reduction to an Ordinary Differential Operator

This section deals with the reduction of the branching problem for ρGσ,ε|H
to an ordinary differential equation on R+. For this we assume 0 < m < n

throughout the rest of this paper.

Consider the L2-realization L2(Rn, |(x, y)|−Reσ dxdy) of the represen-

tation ρGσ,ε where we split variables (x, y) ∈ R
m × R

n−m. We realize the

unitary representations ρ
O(1,m+1)
τ,δ of the first factor O(1,m + 1) of H =

O(1,m + 1) × O(n −m) in the same way on L2(Rm, |x|−Re τ dx). For the

second factor O(n − m) denote by Hk(Rn−m) its representation on solid

spherical harmonics on R
n−m of degree k ∈ N by left-translation.

In the following proposition we construct h-isotypic components in

C∞(Rn \ {x = 0}) using a hypergeometric differential equation. This is

motivated by the work of Speh–Venkataramana [32] who studied the spe-

cial case m = n− 1, k = 0 and τ = σ− 1 (i.e. u ≡ 1) of the following result:

Proposition 2.1. Let σ ∈ iR ∪ (−n, n) ∪ (n + 2N) and τ ∈ iR ∪
(−m,m) ∪ (m + 2N). For every solution F ∈ C∞(R+) to the second order

ordinary differential equation

t(1 + t)u′′(t) +
(−σ+2k+n−m+2

2 t+ 2k+n−m
2

)
u′(t)

+1
4

((−σ+2k+n−m
2

)2 −
(
τ
2

)2)
u(t) = 0

which is regular at t = 0 the map

Ψ : C∞(Rm \ {0}) �Hk(Rn−m) → C∞(Rn \ {x = 0}),

Ψ(f ⊗ φ)(x, y) := |x|
σ−τ−2k−n+m

2 F ( |y|
2

|x|2 )f(x)φ(y),

is PH- and h-equivariant. Here, PH- and h-actions on C∞(Rm \ {0}) are

given by (1.6)–(1.13) and actions on C∞(Rn \ {x = 0}) are given by the

restriction of (1.6)–(1.13) for P and g.
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Proof. Put µ := 2k + n−m and α := σ−τ−µ
2 so that

Ψ(f ⊗ φ)(x, y) = |x|α F ( |y|
2

|x|2 )f(x)φ(y).

Since h = nH + mH + a + nH it suffices to check the intertwining property

for NH , MH , A and nH .

(i) For na ∈ NH both ρGσ,ε(na) and ρ
O(1,m+1)
τ,ε+k (na) are by (1.6) the mul-

tiplication operators ei(x | a) and hence the intertwining property is

clear.

(ii) Let m = diag(1, k1, k2, 1) ∈ M+
H , k1 ∈ O(m), k2 ∈ O(n − m). Then

with m′ = diag(1, k1,1n−m+1) we have by (1.7)

ρGσ,ε(m)Ψ(f ⊗ φ)(x, y) = Ψ(f ⊗ φ)(k−1
1 x, k−1

2 y)

=
∣∣k−1

1 x
∣∣α F (

|k−1
2 y|2

|k−1
1 x|2 )f(k−1

1 x)φ(k−1
2 y)

= |x|α F ( |y|
2

|x|2 )f(k−1
1 x)φ(k−1

2 y)

= Ψ(ρ
O(1,m+1)
τ,ε+k (m′)f ⊗ (k2 · φ))(x, y).

Further, for m0 we have with (1.8)

ρGσ,ε(m0)Ψ(f ⊗ φ)(x, y) = (−1)εΨ(f ⊗ φ)(−x,−y)

= (−1)ε |(−x)|α F ( |(−y)|
2

|(−x)|2 )f(−x)φ(−y)

= (−1)ε+k |x|α F ( |y|
2

|x|2 )f(−x)φ(y)

= Ψ(ρ
O(1,m+1)
τ,ε+k (m0)f ⊗ φ)(x, y).

(iii) For a = etH ∈ A we obtain with (1.9)

ρGσ,ε(a)Ψ(f ⊗ φ)(x, y) = e(σ−n)tΨ(f ⊗ φ)(e−2tx, e−2ty)

= e(σ−n)t
∣∣e−2tx

∣∣α F (
|e−2ty|2
|e−2tx|2 )f(e−2tx)φ(e−2ty)

= e(σ−n−2α−2k)t |x|α F ( |y|
2

|x|2 )f(e−2tx)φ(y)

= e(τ−m)t |x|α F ( |y|
2

|x|2 )f(e−2tx)φ(y)

= Ψ(ρ
O(1,m+1)
τ,ε+k (a)f ⊗ φ)(x, y).



Restriction of Most Degenerate Representations of O(1, N) 301

(iv) To show the intertwining property for nH it suffices by (1.13) to show

the identity

Bn,σj Ψ(f ⊗ φ) = Ψ(Bm,τj f ⊗ φ)

for j = 1, . . . ,m which follows from the next lemma. �

For σ, µ ∈ C we introduce the ordinary differential operator

Dσ,µ := t(1 + t)
d2

dt2
+

(
µ− σ + 2

2
t+

µ

2

)
d

dt
.(2.1)

Lemma 2.2. Let σ, τ, α ∈ C, k ∈ N, µ = 2k+ n−m, F ∈ C∞([0,∞)),

f ∈ C∞(Rm \ {0}) and φ ∈ Hk(Rn−m). Then for every j = 1, . . . ,m we

have

Bn,σj
[
|x|α F ( |y|

2

|x|2 )f(x)φ(y)
]

= |x|α F ( |y|
2

|x|2 )Bm,τj f(x)φ(y)

+ xj |x|α−2 f(x)φ(y) (4Dσ,µ + α(σ − µ− α))F ( |y|
2

|x|2 ).

Proof. We first note the following basic identities, where ∂
∂x and ∂

∂y

are the gradients in x ∈ R
m and y ∈ R

n−m respectively, and ∆x and ∆y the

Laplacians on R
m and R

n−m respectively:

∂

∂x
|x|α = α |x|α−2 x, ∆x |x|α = α(α+m− 2) |x|α−2 ,

∂

∂x
F ( |y|

2

|x|2 ) = −2 |y|2

|x|4
F ′( |y|

2

|x|2 )x, ∆xF ( |y|
2

|x|2 ) = 4
|y|4

|x|6
F ′′( |y|

2

|x|2 )

− 2(m− 4)
|y|2

|x|4
F ′( |y|

2

|x|2 ),

∂

∂y
F ( |y|

2

|x|2 ) =
2

|x|2
F ′( |y|

2

|x|2 )y, ∆yF ( |y|
2

|x|2 ) =
4 |y|2

|x|4
F ′′( |y|

2

|x|2 )

+
2(n−m)

|x|2
F ′( |y|

2

|x|2 ).

The calculation is split into several parts. In what follows we abbreviate

t := |y|2
|x|2 .
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(i) We begin with calculating xj∆xΨ(f ⊗ φ):

xj∆xΨ(f ⊗ φ)(x, y)

= Ψ(xj∆xf ⊗ φ)(x, y) + xj∆x |x|α · F ( |y|
2

|x|2 )f(x)φ(y)

+ xj∆xF ( |y|
2

|x|2 ) · |x|α f(x)φ(y) + 2xj
∂ |x|α
∂x

· ∂f
∂x

(x) · F ( |y|
2

|x|2 )φ(y)

+ 2xj
∂ |x|α
∂x

·
∂F ( |y|

2

|x|2 )

∂x
· f(x)φ(y)

+ 2xj
∂F ( |y|

2

|x|2 )

∂x
· ∂f
∂x

(x) · |x|α φ(y)

= Ψ(xj∆xf ⊗ φ)(x, y) + xj |x|α−2Ef(x)φ(y)
(
−4tF ′(t) + 2αF (t)

)
+ xj |x|α−2 f(x)φ(y)

(
4t2F ′′(t) − 2(2α+m− 4)tF ′(t)

+α(α+m− 2)F (t)) .

(ii) Next we calculate xj∆yΨ(f ⊗ φ):

xj∆yΨ(f ⊗ φ)(x, y)

= xj∆yF ( |y|
2

|x|2 ) · |x|α f(x)φ(y) + xj∆yφ(y) · |x|α F ( |y|
2

|x|2 )f(x)

+ 2xj
∂F ( |y|

2

|x|2 )

∂y
· ∂φ
∂y

· |x|α f(x)

= xj |x|α−2 f(x)φ(y)
(
4tF ′′(t) + 2(2k + n−m)F ′(t)

)
since Eφ = kφ and ∆yφ = 0.

(iii) We now calculate ∂
∂xj

Ψ(f ⊗ φ):

∂

∂xj
Ψ(f ⊗ φ)(x, y)

=
∂ |x|α
∂xj

· F ( |y|
2

|x|2 )f(x)φ(y) +
∂F ( |y|

2

|x|2 )

∂xj
· |x|α f(x)φ(y)

+
∂f

∂xj
(x) · |x|α F ( |y|

2

|x|2 )φ(y)
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=
∂f

∂xj
(x) · |x|α F ( |y|

2

|x|2 )φ(y)

+ xj |x|α−2 f(x)φ(y)
(
−2tF ′(t) + αF (t)

)
.

(iv) Next we find (2E − σ + n) ∂
∂xj

Ψ(f ⊗ φ) by using (iii):

(2E − σ + n)
∂

∂xj
Ψ(f ⊗ φ)(x, y)

= (2E − σ + n+ 2(α+ k))
∂f

∂xj
(x) · |x|α F ( |y|

2

|x|2 )φ(y)

+ 2xj |x|α−2Ef(x)φ(y)
(
−2tF ′(t) + αF (t)

)
+ (2(α+ k − 1) − σ + n)xj |x|α−2 f(x)φ(y)

(
−2tF ′(t) + αF (t)

)
since E |x|β = β |x|β, EF ( |y|

2

|x|2 ) = 0 and Eφ = kφ.

Now, putting (i), (ii) and (iv) together gives the claimed identity. �

3. Spectral Decomposition of an Ordinary Second Order Differ-

ential Operator

Proposition 2.1 and Lemma 2.2 suggest that the decomposition of the

O(n−m)-isotypic component of Hk(Rn−m) in ρGσ,ε into irreducible O(1,m+

1)-representations is given by the spectral decomposition of the second order

differential operator Dσ,µ defined in (2.1) where µ = 2k + n − m. In this

section we find the spectral decomposition of Dσ,µ acting on L2(R+, t
µ−2

2 (1+

t)−
Reσ

2 dt) using the theory developed by Weyl–Stone–Kodaira–Titchmarsh.

3.1. Kodaira’s result

The spectral decomposition formula for general self-adjoint ordinary dif-

ferential operators of the second order was established by Kodaira [21, 22]

and Titchmarsh [35]. In [22] and [23], Kodaira studied Schrödinger type op-

erators in detail and deduced a simpler formula for the spectral measure of

these operators, which also laid a mathematical foundation for Heisenberg’s

S-matrix theory. We can apply this simpler formula to our setting, because

Dσ,µ turns out to be a Schrödinger type operator after a suitable change of

variables.
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We first recall Kodaira’s spectral decomposition theorem for Schrödinger

type operators (see the original papers [22] or [23] for the proof). Let

L = − d2

dx2
+
ν(ν + 1)

x2
+ V (x) (0 < x < ∞),

where ν ≥ −1
2 and V (x) is a real-valued continuous function such that

V (x) = O(x−2+ε) as x → 0, V (x) =
α+O(x−ε)

x
as x → ∞

for some α ∈ R and ε > 0. A system of two solutions s1(x, λ), s2(x, λ) to

Lu = λu (λ ∈ C) is called a system of fundamental solutions if it has the

following three properties:

• W (s2, s1) = 1, where W (u, v) = u
dv

dx
− v

du

dx
denotes the Wronskian,

• sj(x, λ) = sj(x, λ) for j = 1, 2,

• sj(x, λ) and
d

dx
sj(x, λ) are holomorphic in λ ∈ C for j = 1, 2.

For Schrödinger type operators there exists a system of fundamental

solutions s1, s2 with the following asymptotic behaviour as x → 0:

s1(x, λ) ∼ xν+1, s2(x, λ) ∼ 1

2ν + 1
x−ν if ν > −1

2
,

s1(x, λ) ∼ x
1
2 , s2(x, λ) ∼ −x 1

2 log x if ν = −1

2
.

We note that the function s1 is uniquely determined because a solution to

Lu = λu with u(x) ∼ xν+1 is unique. Since s1 is L2 near x = 0 for any

ν ≥ −1
2 and s2 is L2 near x = 0 if and only if ν < 1

2 , we conclude that

x = 0 is of limit point type (LPT) if ν ≥ 1
2 and of limit circle type (LCT)

if −1
2 ≤ ν < 1

2 . In the case of (LCT) at x = 0 we impose the following

additional boundary condition (which is automatic in the case of (LPT)):

lim
x→0

W (s1(−, 0), u)(x) = 0.(BC)

Then in both the (LPT) and the (LCT) case s1(x, λ) is the unique solution to

Lu = λu which is L2 near x = 0 and satisfies the boundary condition (BC).
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On the other hand, the point x = ∞ is always of (LPT) and we have:

Theorem 3.1 ([22, Theorem 5.1], [23, Theorem 26]). If Imκ ≥ 0 and

κ �= 0, the equation Lu = κ2u has one and only one solution u0(−, κ) such

that

u0(x, κ) ∼ exp

(
iκx− iα

2κ
log x

)
as x → ∞.

As functions of the two variables x and κ, u0(x, κ) and d
dxu0(x, κ) are con-

tinuous in 0 < x < ∞, Imκ ≥ 0 and κ �= 0. As functions of κ, they are

holomorphic in Imκ > 0.

The differential operator L defines a self-adjoint operator on L2(R+)

with domain the space of functions u satisfying the following five conditions:

• u ∈ L2(R+),

• u is differentiable,

• du

dx
is absolutely continuous in every closed interval [a, b] (0 < a < b <

∞),

• Lu ∈ L2(R+),

• u satisfies the boundary condition (BC).

The spectral decomposition of L is given in terms of the functions A(κ)

and B(κ) defined by

u0(x, κ) = A(κ)s2(x, κ
2) −B(κ)s1(x, κ

2).

This equation implies

A(κ) = W (u0(−, κ), s1(−, κ2)) and B(κ) = W (u0(−, κ), s2(−, κ2)).

The functions A(κ) and B(κ) are holomorphic in Imκ > 0 and continuous in

Imκ ≥ 0 and κ �= 0. In Imκ > 0, all zeros of A(κ) lie on the imaginary axis

and are of order one. Denote these zero points by κj = i|κj | (j ∈ J). Then it

can be proved that the discrete spectrum of L is λ = κ2
j and possibly λ = 0.
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The continuous spectrum of L is the interval [0,∞). The eigenfunction

expansion formula for L is

Theorem 3.2 ([22, 23]). In the setting and the notation above, we

have an expansion of any L2-function u(x) of the following form

u(x) =
∑
j∈J

s1(x, κ
2
j )ρj

∫ ∞

0
s1(y, κ

2
j )u(y) dy(3.1)

+ s1(x, 0)ρ0

∫ ∞

0
s1(y, 0)u(y) dy

+
2

π

∫ ∞

0
s1(x, κ

2)
κ2

|A(κ)|2
∫ ∞

0
s1(y, κ

2)u(y) dy dκ,

where

ρj =
1

π
|κj |B(κj)

∮
κj

dκ

A(κ)
, and ρ0 = lim

ε→+0

1

π

∫ π

0

B(εeiθ)

A(εeiθ)
ε2e2iθ dθ.

We remark that ρ0 = 0 in many cases.

To reformulate it as an isomorphism between Hilbert spaces put

S := {κ2
j : j ∈ J}(∪{0}) ∪ R+,

where {0} is included if ρ0 > 0. Define a measure on S by∫
S
g(λ) dρ(λ) :=

∑
j∈J

ρjg(κ
2
j )(+ρ

0g(0)) +
1

π

∫ ∞

0

√
λ

|A(
√
λ)|2

g(λ) dλ.

Then by [22, Theorem 4.2] or [23, Theorem 19]:

Theorem 3.3. The map

L2(R+)
∼−−→ L2(S, dρ), u �→ g(λ) =

∫ ∞

0
s1(x, λ)u(x) dx,

is a unitary isomorphism with inverse

L2(S, dρ)
∼−−→ L2(R+), g �→ u(x) =

∫
S
s1(x, λ)g(λ) dρ(λ).
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3.2. Simplifications

In the rest of this section we apply the above result to find the spectral

decomposition of Dσ,µ. We fix σ ∈ iR ∪ (0,∞). (In the case σ ∈ (−∞, 0)

only the derivation of the discrete spectrum is slightly different. However,

since πσ,ε ∼= π−σ,ε for σ ∈ (−n, n) the decomposition of the representations

is again the same and it suffices to consider σ ∈ iR∪(0,∞) for our purpose.)

Further fix k ∈ N and put µ := 2k + n − m. We assume m < n so that

µ > 0. Writing

Dσ,µ = t(1 + t)
d2

dt2
+ ((a+ b+ 1)t+ c)

d

dt

with

a = −σ − µ

4
+
τ

4
, b = −σ − µ

4
− τ

4
, c =

µ

2
,

it is easy to see from (B.6) that the hypergeometric function

F (t, τ) := 2F1 (a, b; c;−t)(3.2)

solves the equation

Dσ,µf + λ∗f = 0, λ∗ = ab =

(
σ − µ

4

)2

−
(τ

4

)2
.

We find a spectral decomposition of Dσ,µ in terms of F (t, τ).

First make the transformation t = sinh2(x2 ). Using t d
dt = tanh(x2 ) d

dx we

write the operator Dσ,µ as

Dσ,µ =
1

t

(
(1 + t)

(
t
d

dt

)2

+

(
µ− σ

2
t+

µ− 2

2

)
t
d

dt

)

=
d2

dx2
+ β(x)

d

dx

with

β(x) =
µ− 1

2
tanh

(x
2

)−1
− σ − 1

2
tanh

(x
2

)
.

Putting

u(x) = r(x)−1f
(
sinh2

(x
2

))
with r(x) = sinh

(x
2

)−µ−1
2

cosh
(x

2

)σ−1
2
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we finally see that the differential equation Dσ,µf +λ∗f = 0 is equivalent to

−d2u

dx2
+ q∗(x)u = λ∗u

with

q∗(x) = 1
4β(x)2 + 1

2β
′(x)

=
(µ− 1)(µ− 3)

16
tanh

(x
2

)−2

− µ(σ − 2) + 1

8
+

(σ + 1)(σ − 1)

16
tanh

(x
2

)2
.

To stay in line with the setting in Section 3.1 we shift the eigenvalues by

putting q(x) := q∗(x) −
(σ−µ

4

)2
and λ := λ∗ −

(σ−µ
4

)2
and obtain

−d2u

dx2
+ q(x)u = λu.(3.3)

Note that q(x) is real-valued for σ ∈ iR ∪ R and hence the operator − d2

dx2 +

q(x) is formally self-adjoint on L2(R+). Moreover by putting ν = µ−3
2 and

α = 0, the differential operator L = − d2

dx2 + q(x) is of Schrödinger type if

µ ≥ 2. This is also true for µ = 1 if we put ν = 0. However, we should

rather put ν = −1 in order to impose an appropriate boundary condition.

Thus we cannot use the general result in Section 3.1 directly for µ = 1, but

one can see that the proof of Theorem 3.2 in [22] or [23] is still valid in this

case and thus (3.1) gives the correct formula.

3.3. Singularities and the boundary condition

We put ν = µ−3
2 for µ ≥ 1 and κ =

√
λ. The differential equation

(3.3) has regular singular points at x = 0 and x = ∞. The corresponding

asymptotic behaviour of solutions at x = 0 is given by x
µ−1

2 and x−
µ−3

2 for

µ �= 2 and by x
1
2 and log(x)x

1
2 for µ = 2. Hence x = 0 is of limit point type

(LPT) if µ ≥ 4 and of limit circle type (LCT) if µ = 1, 2, 3. The solution

s1(x, λ) = 2
µ−1

2 r(x)−1
2F1(a, b; c;− sinh2(x2 ))

has asymptotic behaviour x
µ−1

2 (= xν+1) near x = 0, where

a = −σ − µ

4
+ iκ, b = −σ − µ

4
− iκ, c =

µ

2
.
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Note that s1(x, λ) is holomorphic in λ ∈ C and s1(x, λ) = s1(x, λ) if σ ∈
R ∪ iR by Kummer’s transformation formula (B.9). For µ ≥ 2, s1 is the

unique solution which has asymptotic behaviour x
ν+1
2 near x = 0. Hence

we can find s2 such that s1, s2 is a system of fundamental solutions. For

µ = 1, put

s2(x, λ) = −2r(x)−1 sinh(x2 )2F1(1 + a− c, 1 + b− c; 2 − c;− sinh2(x2 )).

Then s2 has asymptotic behaviour −x near x = 0 and s1, s2 is a system of

fundamental solutions.

In the case of (LCT) at x = 0 we impose the additional boundary

condition (BC). Then in both the (LPT) and the (LCT) case (i.e. for every

µ ≥ 1) s1(x, λ) is the unique solution to (3.3) which is L2 near x = 0 and

satisfies the boundary condition (BC).

In view of Theorem 3.1 we consider another solution

u0(x, κ) = 22iκr(x)−1 sinh−2b(x2 )2F1(b, b− c+ 1; b− a+ 1;− sinh−2(x2 )),

which has asymptotic behaviour eixκ as x → ∞ and hence is L2 near x = ∞
for Imκ > 0. Note that a linearly independent solution is obtained by

interchanging a and b and has asymptotics e−ixκ whence x = ∞ is always

of (LPT).

Altogether the operator in (3.3) extends to a self-adjoint operator on

L2(R+) under the boundary condition (BC) and its spectral decomposition

is given by Theorem 3.2. We now make this spectral decomposition explicit.

3.4. The function A(κ)

We calculate the Wronskian

A(κ) = W (u0(−, κ), s1(−, κ2))

= 2
µ−1

2
+2iκr(x)−2

×W (sinh−2b(−2 )2F1(b, b− c+ 1; b− a+ 1;− sinh−2(−2 )),

2F1(a, b; c;− sinh2(−2 )))(x)

= 2
µ−1

2
+2iκr(x)−2 sinh(x2 ) cosh(x2 )

×W (z−b2F1(b, b− c+ 1; b− a+ 1;−1
z ), 2F1(a, b; c;−z))(sinh2(x2 ))
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= 2
µ−1

2
+2iκr(x)−2 sinh(x2 ) cosh(x2 )

Γ(b− a)Γ(c)

Γ(b)Γ(c− a)

×W (z−b2F1(b, b− c+ 1; b− a+ 1;−1
z ),

z−a2F1(a, a− c+ 1; a− b+ 1;−1
z ))(sinh2(x2 ))

= 2
µ−1

2
+2iκ(b− a)

Γ(b− a)Γ(c)

Γ(b)Γ(c− a)

= 2
µ−1

2
+2iκ Γ(−2iκ+ 1)Γ(µ2 )

Γ(−σ−µ
4 − iκ)Γ(σ+µ4 − iκ)

.

Then we see that all the zeros of A(κ) in the upper half-plane Imκ > 0 are

of order one and exactly at the points where −σ−µ
4 − iκ ∈ −N. This gives

iκ = −σ−µ
4 + j and λ = −

(σ−µ
4 − j

)2
for j ∈ N with j < σ−µ

4 . Hence A(κ)

has zeros in Imκ > 0 if and only if σ ∈ R and σ > µ. If this is the case, we

put κj = i(σ−µ4 − j) for j ∈ [0, σ−µ4 )∩Z. Using resz=−nΓ(z) = (−1)n

n! we find

resκ=κj
1

A(κ)
= 2−

µ−1
2

−2iκj
Γ(σ2 − j)

Γ(σ−µ2 − 2j + 1)Γ(µ2 )
(3.4)

× resκ=κjΓ

(
−σ − µ

4
− iκ

)
= 2−

µ−1
2

−2iκj
Γ(σ2 − j)

Γ(σ−µ2 − 2j + 1)Γ(µ2 )

(−1)j

(−i)j! .

To calculate B(κ) for κ = κj , we note that b = −j and therefore, by (B.7)

2−
µ−1

2 s1(x, κ
2
j ) =

(a)jΓ(c)

Γ(c+ j)
2−2iκju0(x, κj)

= 2−2iκj
(−σ−µ

2 + j)jΓ(µ2 )

Γ(µ2 + j)
u0(x, κj).

Here, (a)j = a(a+ 1) · · · (a+ j − 1) denotes the Pochhammer symbol. As a

result,

B(κj) = −2−
µ−1

2
+2iκj

Γ(µ2 + j)

(−σ−µ
2 + j)jΓ(µ2 )

.(3.5)

3.5. The spectral theorem for Dσ,µ
For µ ≥ 2 Theorem 3.2 gives the spectral formula (3.1). Following the

proof in [22] or [23] it is easy to see that (3.1) is still valid for µ = 1. For
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κ > 0 we calculate

κ2

|A(κ)|2 = 2−(µ−1)κ2

∣∣∣∣∣Γ(−σ−µ
4 − iκ)Γ(σ+µ4 − iκ)

Γ(−2iκ+ 1)Γ(µ2 )

∣∣∣∣∣
2

= 2−(µ+1)

∣∣∣∣∣Γ(−σ−µ
4 + iκ)Γ(σ+µ4 + iκ)

Γ(2iκ)Γ(µ2 )

∣∣∣∣∣
2

.

For j ∈ [0, Reσ−µ
4 ) ∩ Z we have

ρj =
1

π
|κj |B(κj)

∮
κj

dκ

A(κ)

=
1

π

(
σ − µ

4
− j

)
× −2−

µ−1
2

+2iκjΓ(µ2 + j)

(−σ−µ
2 + j)jΓ(µ2 )

× 2πi
2−

µ−1
2

−2iκj i(−1)jΓ(σ2 − j)

j!Γ(σ−µ2 − 2j + 1)Γ(µ2 )

=
2−(µ−1)(σ−µ2 − 2j)Γ(σ2 − j)Γ(µ2 + j)

j!Γ(µ2 )2Γ(σ−µ2 − j + 1)

by (3.4) and (3.5). Moreover, since B(κ)
A(κ) has at most a pole of order one at

x = 0,

ρ0 = lim
ε→+0

1

π

∫ π

0

B(εeiθ)

A(εeiθ)
ε2e2iθ dθ = 0.

Consequently, (3.1) gives the expansion formula:

u(x) =
∑

j∈[0,Reσ−µ
4

)∩Z

s1(x, κ
2
j )

2−(µ−1)(σ−µ2 − 2j)Γ(σ2 − j)Γ(µ2 + j)

j!Γ(µ2 )2Γ(σ−µ2 − j + 1)

×
∫ ∞

0
s1(y, κ

2
j )u(y) dy

+
1

π

∫ ∞

0
s1(x, κ

2)2−µ
∣∣∣∣∣Γ(−σ−µ

4 + iκ)Γ(σ+µ4 + iκ)

Γ(2iκ)Γ(µ2 )

∣∣∣∣∣
2

×
∫ ∞

0
s1(y, κ

2)u(y) dy dκ.
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Using the different normalization

η1(x, λ) := r(x)−1
2F1(a, b; c;− sinh2(x2 ))(= 2−

µ−1
2 s1(x, λ)),

this can be rewritten as

u(x) =
∑

j∈[0,Reσ−µ
4

)∩Z

η1(x,−
(σ−µ

4 − j
)2

)
(σ−µ2 − 2j)Γ(σ2 − j)Γ(µ2 + j)

j!Γ(µ2 )2Γ(σ−µ2 − j + 1)

×
∫ ∞

0
η1(y,−

(σ−µ
4 − j

)2
)u(y) dy

+
1

4π

∫ ∞

0
η1(x, λ)

∣∣∣∣∣Γ(−σ−µ
4 + i

√
λ)Γ(σ+µ4 + i

√
λ)

Γ(2i
√
λ)Γ(µ2 )

∣∣∣∣∣
2

×
∫ ∞

0
η1(y, λ)u(y) dy

dλ√
λ
.

To obtain an isomorphism between Hilbert spaces let

S(σ, µ) := (0,∞) ∪
⋃

j∈[0,Reσ−µ
4

)∩Z

{
−
(
σ − µ

4
− j

)2
}
.

Note that S(σ, µ) = (0,∞) for σ ∈ iR. On S(σ, µ) we define a measure

dνσ,µ by∫
S(σ,µ)

g(λ) dνσ,µ(λ)

:=
1

4π

∫ ∞

0
g(λ)

∣∣∣∣∣Γ(−σ−µ
4 + i

√
λ)Γ(σ+µ4 + i

√
λ)

Γ(2i
√
λ)Γ(µ2 )

∣∣∣∣∣
2

dλ√
λ

+
∑

j∈[0,Reσ−µ
4

)∩Z

(σ−µ2 − 2j)Γ(σ2 − j)Γ(µ2 + j)

j!Γ(µ2 )2Γ(σ−µ2 − j + 1)
g(−

(σ−µ
4 − j

)2
).

Then by Theorem 3.3:

Theorem 3.4. For σ ∈ iR ∪ (0,∞) and µ ∈ Z+ the map

L2(R+)
∼−−→ L2(S(σ, µ), dνσ,µ), u �→ g(λ) =

∫ ∞

0
η1(x, λ)u(x) dx,
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is a unitary isomorphism with inverse

L2(S(σ, µ), dνσ,µ)
∼−−→ L2(R+),

g �→ u(x) =

∫
S(σ,µ)

η1(x, λ)g(λ) dνσ,µ(λ).

For our application we need the spectral decomposition of the opera-

tor Dσ,µ which follows from Theorem 3.4 by the transformation f(t) �→
r(x)−1f(sinh2(x2 )). To state this put

T (σ, µ) := iR+ ∪
⋃

j∈[0,Reσ−µ
4

)∩Z

{σ − µ− 4j}

and define a measure dmσ,µ on T (σ, µ) by∫
T (σ,µ)

g(τ) dmσ,µ(τ) :=
1

8π

∫
iR+

g(τ)

∣∣∣∣∣Γ(−σ+µ+τ4 )Γ(σ+µ+τ4 )

Γ( τ2 )Γ(µ2 )

∣∣∣∣∣
2

dτ

+
∑

j∈[0,Reσ−µ
4

)∩Z

(σ−µ2 − 2j)Γ(σ2 − j)Γ(µ2 + j)

j!Γ(µ2 )2Γ(σ−µ2 − j + 1)
g(σ − µ− 4j).

Corollary 3.5. For σ ∈ iR ∪ (0,∞) and µ ∈ Z+ the map

L2(R+, t
µ−2

2 (1 + t)−
Reσ

2 dt)
∼−−→ L2(T (σ, µ), dmσ,µ),

f �→ g(τ) =

∫ ∞

0
F (t, τ)f(t)t

µ−2
2 (1 + t)−

σ
2 dt

is a unitary isomorphism with inverse

L2(T (σ, µ), dmσ,µ)
∼−−→ L2(R+, t

µ−2
2 (1 + t)−

Reσ
2 dt),

g �→ f(t) =

∫
T (σ,µ)

F (t, τ)g(τ) dmσ,µ(τ).

Remark 3.6. For the discrete part, namely for τ = σ− µ− 4j, j ∈ N,

the Gauß hypergeometric function F (t, τ) degenerates to a polynomial in t

of degree j. More precisely, we have (see (B.10))

F (t, σ − µ− 4j) =
j!

(µ2 )n
P

(µ−2
2
,−σ

2
)

j (1 + 2t),
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where P
(α,β)
n (z) denote the Jacobi polynomials.

Remark 3.7. For σ ∈ (0,∞) the results of Corollary 3.5 can also

be found in [7, formula (A.11)] where the hypergeometric transform ap-

pears (essentially) as the radial part of the spherical Fourier transform on

SU(1, n)/SU(n). Since our approach provides a unified treatment of both

complementary series, discrete series representations for the hyperboloid

and principal series, including the case σ ∈ iR, we gave a detailed proof in

this section for convenience.

4. Decomposition of Representations and the Plancherel For-

mula

Using the spectral decomposition of Dσ,µ obtained in Corollary 3.5 we

find in this section the explicit Plancherel formula for the decomposition of

ρGσ,ε|H .

Let us first consider the action of O(n−m) on L2(Rn, |(x, y)|−Reσ dxdy)

which gives the following decomposition as O(n−m)-representations:

L2(Rn, |(x, y)|−Reσ dxdy)(4.1)

=

∞∑⊕

k=0

L2(Rm × R+, (|x|2 + r2)−
Reσ

2 r2k+n−m−1 dxdr)

�Hk(Rn−m),

where r = |y|. We fix a summand for some k ∈ N and put again µ =

2k + n−m. The coordinate change t := r2

|x|2 gives

L2(Rm × R+, (|x|2 + r2)−
Reσ

2 rµ−1 dxdr)

= L2(Rm × R+,
1
2 |x|−Reσ+µ t

µ−2
2 (1 + t)−

Reσ
2 dxdt).

Since

L2(Rm × R+,
1
2 |x|−Reσ+µ t

µ−2
2 (1 + t)−

Reσ
2 dxdt)

∼= L2(Rm, 1
2 |x|−Reσ+µ dx)⊗̂L2(R+, t

µ−2
2 (1 + t)−

Reσ
2 dt)
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we can apply Theorem 3.4 to find that the map

L2(Rm × R+,
1
2 |x|−Reσ+µ t

µ−2
2 (1 + t)−

Reσ
2 dxdt)

→
∫ ⊕

T (σ,µ)
L2(Rm, 1

2 |x|−Re τ dx) dmσ,µ(τ)

given by

f(x, t) �→ f̂(x, τ) := |x|−
σ−τ−µ

2

∫ ∞

0
F (t, τ)f(x, t)t

µ−2
2 (1 + t)−

σ
2 dt

is a unitary isomorphism, where F (t, τ) is defined by (3.2) and the measure

dmσ,µ is given by (3.5). Its inverse is given by

g(x, τ) �→ ǧ(x, t) :=

∫
T (σ,µ)

|x|
σ−τ−µ

2 F (t, τ)g(x, τ) dmσ,µ(τ).

Now we put these things together. For σ ∈ iR ∪ (0,∞) and k ∈ N we

put µ := 2k + n−m and define an operator

Ψ(σ, k) :

(∫ ⊕

T (σ,µ)
L2(Rm, 1

2 |x|−Re τ dx) dmσ,µ(τ)

)
�Hk(Rn−m)

→ L2(Rn, |(x, y)|−Reσ dxdy)

by

Ψ(σ, k) (f ⊗ φ) (x, y)

:= φ(y)

∫
T (σ,µ)

|x|
σ−τ−µ

2 2F1

(
µ−σ+τ

4 , µ−σ−τ4 ; µ2 ;− |y|2
|x|2
)
f(x, τ) dmσ,µ(τ).

Theorem 4.1. For σ ∈ iR ∪ (0, n) ∪ (n + 2N) and ε ∈ Z/2Z the map

Ψ(σ, k) is H-equivariant between the representations∫ ⊕

T (σ,µ)
ρ
O(1,m+1)
τ,ε+k dmσ,µ(τ) �Hk(Rn−m) → ρGσ,ε

∣∣
H
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and constructs the Hk(Rn−m)-isotypic component in ρGσ,ε|H . The following

Plancherel formula holds:

‖Ψ(σ, k)(f ⊗ φ)‖2
L2(Rn,|(x,y)|−Reσ dx dy)

=

∫
T (σ,µ)

‖f(−, τ)‖2
L2(Rm, 1

2
|x|−Re τ dx)

dmσ,µ(τ) · ‖φ‖2
L2(Sn−m−1) .

Proof. We have already seen that Ψ(σ, k) gives a unitary isomorphism

so that the Plancherel formula above holds. Further, by Proposition 2.1 the

map Ψ(σ, k) intertwines the actions of MHANH on smooth vectors and

hence on the Hilbert spaces. Since H is generated by MHANH and NH it

remains to prove the intertwining property for NH . For this we use the Lie

algebra action.

Lemma 4.2. Let L be a connected Lie group with Lie algebra l and

let (ρ1,H1) and (ρ2,H2) be unitary representations of L. Suppose that a

continuous linear map ϕ : H1 → H2 is given and there exist subspaces

V1 ⊂ H1 and V2 ⊂ H2 such that

(i) Vi is dense in Hi for i = 1, 2,

(ii) Vi is contained in the space of analytic vectors Hω
i for i = 1, 2,

(iii) Vi is dρi-stable for i = 1, 2,

(iv) (ϕ(dρ1(X)v1) | v2)H2 = −(ϕ(v1) | dρ2(X)v2)H2 for v1 ∈ V1, v2 ∈ V2

and X ∈ l.

Then ϕ is L-equivariant.

Proof. For v1 ∈ V1 and v2 ∈ V2 we put

fv1,v2(g) := (ϕ(ρ1(g)v1) | v2)H2 , g ∈ L,

hv1,v2(g) := (ρ2(g)ϕ(v1) | v2)H2 = (ϕ(v1) | ρ2(g
−1)v2)H2 , g ∈ L,

which are analytic functions on L by (ii). For a smooth function f on L

and X ∈ l we define derivatives by

(R(X)f)(g) := lim
t→0

f(getX) − f(g)

t
,

(L(X)f)(g) := lim
t→0

f(e−tXg) − f(g)

t
.
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We have R(X)f(e) = −L(X)f(e) for the identity element e ∈ L and R(X)

commutes with L(X ′) for any X,X ′ ∈ l. Hence

R(X1)R(X2) · · ·R(Xk)f(e) = − L(X1)R(X2) · · ·R(Xk)f(e)

= −R(X2) · · ·R(Xk)L(X1)f(e)

...

= (−1)kL(Xk) · · ·L(X2)L(X1)f(e)

for X1, . . . , Xk ∈ l. Then (iv) implies

R(X1) · · ·R(Xk)fv1,v2(e) = fdρ1(X1)···dρ1(Xk)v1,v2(e)

= (−1)khv1,dρ2(Xk)···dρ2(X1)v2(e)

= (−1)kL(Xk) · · ·L(X1)hv1,v2(e)

= R(X1) · · ·R(Xk)hv1,v2(e).

Since fv1,v2 and hv1,v2 are analytic functions, they coincide. Therefore

ϕ(ρ1(g)v1) = ρ2(g)ϕ(v1) for v1 ∈ V1 and hence ϕ(ρ1(g)v) = ρ2(g)ϕ(v) for

any v ∈ H1 by (i). �

We apply the lemma to the map ϕ = Ψ(σ, k) : H1 → H2 where

H1 :=

(∫ ⊕

T (σ,µ)
L2(Rm, 1

2 |x|−Re τ dx) dmσ,µ(τ)

)
�Hk(Rn−m),

H2 := L2(Rn, |(x, y)|−Reσ dxdy).

So let ρ1 and ρ2 be the restrictions of(∫ ⊕

T (σ,µ)
ρ
O(1,m+1)
τ,ε+k dmσ,µ(τ)

)
� 1 and ρGσ,ε

to L = NH , respectively. To define V1, we regard an element

f ∈
∫ ⊕

T (σ,µ)
L2(Rm, 1

2 |x|−Re τ dx) dmσ,µ(τ)

as a function f(x, τ) on (Rm\{0})×T (σ, µ). Let V1,c be the space consisting

of linear combinations of the functions on (Rm \ {0}) × iR+ × R
n−m of the

form

(x, τ, y) �→ (dρO(1,m+1)
τ (X)ψO(1,m+1)

τ )(x)φ(y)χ(τ),
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where X ∈ U(h), ψ
O(1,m+1)
τ is the spherical vector of ρ

O(1,m+1)
τ,ε+k as defined

in (1.14), φ ∈ Hk(Rn−m) and χ ∈ Cc(iR+), i.e. χ is a continuous function

on iR+ with compact support. Let V1,d be the space consisting of sum of

functions on (Rm \ {0}) × (T (σ, µ) ∩ (0,∞)) × R
n−m of the form

(x, τ, y) �→ fτ (x)φ(y),

where fτ ∈ L2(Rm, |x|−Re τ dx)K∩O(1,m+1), a (K∩O(1,m+1))-finite vector

in ρ
O(1,m+1)
τ,ε+k , and φ ∈ Hk(Rn−m). Then we put V1 := V1,c ⊕ V1,d. Further

let V2 be the space of all K-finite vectors in L2(Rn, |(x, y)|−Reσ dxdy). We

now check conditions (i)–(iv):

(i) V1 is dense in H1 since Cc(iR+) is dense in L2(iR+, dmσ,µ) and the

space of (K ∩ O(1,m + 1))-finite vectors for ρ
O(1,m+1)
τ is generated

by ψ
O(1,m+1)
τ (x) and dense in L2(Rm, |x|−Re τ dx) for τ ∈ iR+. The

space V2 is dense in H2 since it is the space of K-finite vectors for

ρ
O(1,n+1)
σ,ε .

(ii) K-finite vectors are analytic vectors for G and in particular for NH ⊆
G, hence V2 ⊆ Hω

2 . Similarly, V1,d ⊆ Hω
1 . The inclusion V1,c ⊆ Hω

1

follows from the lemma below.

(iii) It is clear that V2 is dρ2-stable since the space of K-finite vectors is

dρ
O(1,n+1)
σ -stable. That V1 is dρ1-stable follows from the definition of

V1.

Lemma 4.3. Let

(ρ′1,H′
1) :=

(∫ ⊕

T (σ,µ)
ρ
O(1,m+1)
τ,ε+k dmσ,µ(τ),

∫ ⊕

T (σ,µ)
L2(Rm, 1

2 |x|−Re τ dx) dmσ,µ(τ)

)
.

A function f(x, τ) on (Rm \ {0}) × iR+ of the form

f(x, τ) := (dρO(1,m+1)
τ (X)ψO(1,m+1)

τ )(x)χ(τ)

for X ∈ U(h) and χ ∈ Cc(iR+) is an analytic vector of ρ′1.
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Proof. It is enough to prove that for any g0 ∈ O(1,m+1) there exists

a neighborhood 0 ∈ U ⊂ so(1,m+ 1) such that

aN :=
∥∥∥ρ′1(expY )ρ′1(g0)f(x, τ) −

N∑
l=0

1

l!
dρ′1(Y )lρ′1(g0)f(x, τ)

∥∥∥2

H′
1

→ 0

as N → ∞ for Y ∈ U . Consider the Euclidean Fourier transform FRm

with respect to the variable x (see (1.5)) which gives a unitary equivalence

between

ρ′1 =

∫ ⊕

T (σ,µ)
ρ
O(1,m+1)
τ,ε+k dmσ,µ(τ) and π1 :=

∫ ⊕

T (σ,µ)
π
O(1,m+1)
τ,ε+k dmσ,µ(τ).

Put h(x, τ) := FRm(dρ
O(1,m+1)
τ (X)ψ

O(1,m+1)
τ )(x) then

aN =

∫
iR+

∥∥∥π1(expY )π1(g0)h(x, τ)

−
N∑
l=0

1

l!
dπ1(Y )lπ1(g0)h(x, τ)

∥∥∥2

L2(Rm, 1
2
|x|−Re τ dx)

|χ(τ)|2 dmσ,µ(τ).

As in Section 1.2 the function h(x, τ) corresponds to a function h̃(g, τ)

on O(1,m + 1) × iR+ satisfying h̃(gman, τ) = ξε+k(m)−1a−τ−ρh̃(g, τ) for

m ∈ O(1,m+ 1) ∩M , a ∈ A and n ∈ NH . Consequently, aN is given as∫
iR+

(∫
O(1)×O(m+1)

∣∣∣πO(1,m+1)
τ,ε+k (g0)h̃(exp(−Y )k, τ)

−
N∑
l=0

1

l!
dπO(1,m+1)
τ (Y )lπ

O(1,m+1)
τ,ε+k (g0)h̃(k, τ)

∣∣∣2 dk
)
|χ(τ)|2 dmσ,µ(τ)

up to a constant factor, where dk is the Haar measure on O(1)×O(m+ 1).

Since π
O(1,m+1)
τ,ε+k (g0)h̃ is analytic on O(1,m+ 1) × iR+, the sequence

N∑
l=0

1

l!
dπO(1,m+1)
τ (Y )lπ

O(1,m+1)
τ,ε+k (g0)h̃(k, τ)

converges uniformly to π
O(1,m+1)
τ,ε+k (g0)h̃(exp(−Y )k, τ) on the compact set

(k, τ) ∈ (O(1) ×O(m+ 1)) × suppχ, which proves aN → 0. �
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To verify the intertwining condition (iv) we first prove the intertwining

property for each single space L2(Rm, |x|−Re τ dx) for fixed τ by embed-

ding it into the C-antilinear algebraic dual of the Harish-Chandra module

L2(Rn, |(x, y)|−Reσ dxdy)K of K-finite vectors. For τ ∈ iR+ and X ∈ U(h)

let

fτ,X(x) := (dρO(1,m+1)
τ (X)ψO(1,m+1)

τ )(x), x ∈ R
m \ {0}.

Proposition 4.4. Let φ ∈ Hk(Rn−m) and g ∈ L2(Rn,

|(x, y)|−Reσ dxdy)K .

(i) For every X ∈ U(h) and τ ∈ iR+ the integral∫
Rn

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)fτ,X(x)φ(y)g(x, y) |(x, y)|−Reσ dxdy

converges absolutely and defines a continuous function in τ .

(ii) For every X ∈ U(h), τ ∈ iR+ and j = 1, . . . ,m we have

∫
Rn

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)(B
m,τ
j fτ,X)(x)φ(y)g(x, y) |(x, y)|−Reσ dxdy(4.2)

=

∫
Rn

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)fτ,X(x)φ(y)(Bn,σj g)(x, y)

× |(x, y)|−Reσ dxdy.

(iii) For τ ∈ T (σ, µ)∩ (0,∞) and fτ ∈ L2(Rm, |x|−Re τ dx)K∩O(1,m+1), the

integral∫
Rn

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)fτ (x)φ(y)g(x, y) |(x, y)|−Reσ dxdy

converges absolutely.

(iv) For τ ∈ T (σ, µ) ∩ (0,∞), fτ ∈ L2(Rm, |x|−Re τ dx)K∩O(1,m+1), and

j = 1, . . . ,m, we have

∫
Rn

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)(B
m,τ
j fτ )(x)φ(y)g(x, y) |(x, y)|−Reσ dxdy(4.3)
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=

∫
Rn

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)fτ (x)φ(y)(Bn,σj g)(x, y)

× |(x, y)|−Reσ dxdy.

Proof. We first note that by (1.16) the function fτ,X(x) is a linear

combination of functions of the form

f(x) = K̃− τ
2
+a(|x|) |x|2a p(x)

for a ∈ N and p ∈ C[x] with coefficients depending smoothly on τ . Similarly,

by (1.16) and (1.18), fτ (x) is a linear combination of the form f(x) above.

Note that in the case τ = m + 2v ∈ m + 2N we additionally have p ∈
C[x]>v−a. We may replace fτ,X(x) and fτ (x) by one of these functions

f(x). For the same reason we may assume that

g(x, y) = K̃−σ
2
+b(|(x, y)|) |(x, y)|2b q(x, y)

for some b ∈ N and q ∈ C[x, y] where for σ = n+2u ∈ n+2N we additionally

have q ∈ C[x, y]>u−b.

(i)&(iii) By (B.2) and (B.3) there exists a continuous function C1(τ) > 0

on T (σ, µ) and N1 > 0 such that for x �= 0:∣∣∣K̃− τ
2
+a(|x|) |x|2a p(x)

∣∣∣
≤ C1(τ)|x|−δ1(1 + |x|)N1e−|x|

{
1 for 0 ≤ Re τ < m,

|x|
Re τ−m

2
+1 for Re τ ≥ m,

for some arbitrarily small δ1 > 0 (covering the possible log-term for

τ = 2a). For the hypergeometric function we have by (B.7) and (B.10)

(checking the cases τ ∈ iR+ and τ ∈ (Reσ−µ− 4N)∩R+ separately)

|F (t, τ)| ≤ C2(τ)(1 + t)
Reσ−Re τ−µ

4 , t > 0,

for some continuous function C2(τ) > 0 on T (σ, µ). We estimate

|φ(y)| ≤ C3 |y|k ≤ C3 |(x, y)|k .
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Further, for the K-Bessel function of parameter −σ
2 + b we again find

by (B.2) and (B.3) that for (x, y) �= 0:∣∣∣K̃−σ
2
+b(|(x, y)|) |(x, y)|2b q(x, y)

∣∣∣
≤ C4 |(x, y)|−δ2 (1 + |(x, y)|)N2e−|(x,y)|

×
{

1 for 0 ≤ Reσ < n,

|(x, y)|
Reσ−n

2
+1 for Reσ ≥ n,

for some arbitrarily small δ2 > 0 (covering the possible log-term for

σ = 2b) and C4, N2 > 0. Now assume 0 ≤ Re τ < m and 0 ≤ Reσ < n

then we obtain∣∣∣|x|σ−τ−µ
2 F ( |y|

2

|x|2 , τ)f(x)φ(y)g(x, y)
∣∣∣

≤ C1(τ)C2(τ)C3C4 |x|
Reσ−Re τ−µ

2

(
1 + |y|2

|x|2
)Reσ−Re τ−µ

4

× |x|−δ1 (1 + |x|)N1e−|x| |(x, y)|k−δ2 (1 + |(x, y)|)N2e−|(x,y)|

≤ C(τ) |x|−δ1 |(x, y)|
Reσ−n+m−Re τ

2
−δ2 (1 + |(x, y)|)Ne−|(x,y)|

with C(τ) = C1(τ)C2(τ)C3C4 and N = N1 + N2. Since δ1 and δ2
can be chosen arbitrarily small the right hand side is integrable on R

n

with respect to the measure |(x, y)|−Reσ if and only if

−Reσ − n+m− Re τ

2
> −n.

This inequality holds by assumption and hence the integral converges

absolutely. Moreover, we even have n−Reσ+m−Re τ > n−Reσ > 0

for all τ and hence the convergence is uniformly in τ varying in a

compact subset of T (σ, µ). The other two possibilities 0 ≤ Re τ < m,

Reσ ≥ n and Re τ ≥ m, Reσ ≥ n are treated similarly which finishes

the proof of (i) & (iii).

(ii)&(iv) First recall from Proposition 2.1 that

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)(B
m,τ
j f)(x)φ(y)

= Bn,σj
[
|x|

σ−τ−µ
2 F ( |y|

2

|x|2 , τ)f(x)φ(y)
]
.

Therefore we have to show that
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Rn

Bn,σj Φ(x, y) · g(x, y) · |(x, y)|−Reσ dxdy(4.4)

!
=

∫
Rn

Φ(x, y) · Bn,σj g(x, y) · |(x, y)|−Reσ dxdy,

where we abbreviate

Φ(x, y) = |x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)f(x)φ(y).

The operator Bn,σj is formally self-adjoint with respect to |(x, y)|−Reσ

since dρGσ (Nj) = −iBn,σj is, as part of the Lie algebra action, formally

skew-adjoint on C∞
c (Rn \ {0}) ⊆ L2(Rn, |(x, y)|−Reσ dxdy)∞. There-

fore it remains to show that we can integrate by parts without leaving

any boundary terms. Fix j ∈ {1, . . . ,m} and consider the domain

Ωj,ε := {(x, y) ∈ R
n : |xj | > ε} ⊆ R

n

for ε > 0. Clearly R
n \
⋃
ε>0 Ωj,ε is of measure zero and hence (4.4) is

equivalent to

lim
ε→0

∫
Ωj,ε

Bn,σj Φ(x, y) · g(x, y) · |(x, y)|−Reσ dxdy(4.5)

!
= lim
ε→0

∫
Ωj,ε

Φ(x, y) · Bn,σj g(x, y) · |(x, y)|−Reσ dxdy.

On Ωj,ε both |x| and |(x, y)| are bounded from below by ε. Hence,

by (B.4) and (B.8), all factors in the integrand

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)f(x)φ(y)g(x, y) |(x, y)|−Reσ

can be arbitrarily often differentiated in x and y and the result is

a smooth function on Ωj,ε. Since further the hypergeometric func-

tion grows at most polynomially and the K-Bessel functions decay

exponentially near ∞, all such differentiated terms decay exponen-

tially as |(x, y)| → ∞ and are hence integrable on Ωj,ε. Therefore we

can arbitrarily integrate by parts and all intermediate integrals ex-

ist. It remains to show that for ε → 0 all boundary terms that occur

while integrating by parts vanish. By the asymptotic behaviour of
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the K-Bessel functions at ∞ the boundary terms at ∞ always vanish.

Hence, by the choice of Ωj,ε, the only boundary terms that occur are

for derivatives in xj at xj = ±ε. Therefore we only need to consider

the parts

xj
∂2

∂x2
j

,
∂

∂xj
and E

∂

∂xj

of Bn,σj . We treat these three parts separately. Here we start with the

right hand side of (4.5) and then integrate by parts once or twice. We

only carry out the details for the case 0 ≤ Re τ < m and 0 ≤ Reσ < n,

the other cases are treated similarly with the corresponding estimates

derived in part (i) & (iii).

(a) ∂
∂xj

. The boundary terms that occur when integrating by parts

are (up to multiplication with a constant) of the form∫
Rn−1

(
Φ(x′, ε, y)g(x′, ε, y)

∣∣(x′, ε, y)∣∣−Reσ

− Φ(x′,−ε, y)g(x′,−ε, y)
∣∣(x′,−ε, y)∣∣−Reσ

)
dx′ dy

where we write x = (x′, xj) with x′ = (x1, . . . , x̂j , . . . , xm) ∈
R
m−1. The integrand obviously converges pointwise almost ev-

erywhere to 0 as ε → 0 and it suffices to find an integrable

function independent of ε dominating the integrand to apply the

Dominated Convergence Theorem. For this note that in both

Φ(x, y) and g(x, y) the only terms dependent on the sign of xj
are the polynomials p(x) and q(x, y), respectively. Using the

same estimates as in the proof of part (i) & (iii) we find that∣∣∣Φ(x′, ε, y)g(x′, ε, y)
∣∣(x′, ε, y)∣∣−Reσ

−Φ(x′,−ε, y)g(x′,−ε, y)
∣∣(x′,−ε, y)∣∣−Reσ

∣∣∣
≤ C

∣∣(x′, ε, y)∣∣−Reσ−n+m−Re τ
2

−δ
(1 +

∣∣(x′, ε, y)∣∣)Ne−|(x′,ε,y)|

×
∣∣∣p(x′, ε)q(x′, ε, y) − p(x′,−ε)q(x′,−ε, y)

∣∣∣
for some N > 0 and an arbitrarily small δ > 0. Now note that

p(x′, ε)q(x′, ε, y) − p(x′,−ε)q(x′,−ε, y) is an odd polynomial in
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ε and hence of the form ε · r(x′, ε, y). For the extra ε from this

observation we use the estimate |ε| ≤ |(x′, ε, y)|. We further

estimate |r(x′, ε, y)| ≤ C ′(1 + |(x′, ε, y)|)N ′
for some C ′, N ′ > 0

and find (assuming ε ≤ 1)

≤ CC ′ ∣∣(x′, ε, y)∣∣−Reσ−n+m−Re τ
2

+1−δ

× (1 +
∣∣(x′, 1, y)∣∣)N+N ′

e−|(x′,y)|.

Now suppose the exponent −Reσ−n+m−Re τ
2 + 1 is ≤ 0. Then we

can estimate

≤ CC ′ ∣∣(x′, y)∣∣−Reσ−n+m−Re τ
2

+1−δ

× (1 +
∣∣(x′, 1, y)∣∣)N+N ′

e−|(x′,y)|,

which is independent of ε ∈ (0, 1) and integrable on R
n−1 for

small δ > 0 since Reσ < n and Re τ < m. If the exponent
−Reσ−n+m−Re τ

2 + 1 − δ is positive the estimate ε ≤ 1 also yields

a dominant integrable function independent of ε. Therefore, in

both cases we can apply the Dominated Convergence Theorem

and obtain that as ε → 0 the boundary terms vanish.

(b) xj
∂2

∂x2
j
. Integrating by part once gives (up to multiplication by a

constant) the boundary terms∫
Rn−1

(
Φ(x′, ε, y)

(
xj

∂g

∂xj
(x, y)

)
xj=ε

∣∣(x′, ε, y)∣∣−Reσ
(4.6)

− Φ(x′,−ε, y)
(
xj

∂g

∂xj
(x, y)

)
xj=−ε

∣∣(x′,−ε, y)∣∣−Reσ
)

dx′ dy.

We have

g(x, y) = K̃−σ
2
+b(|(x, y)|) |(x, y)|2b q(x, y)

and use the product rule to find xj
∂g
∂xj

(x, y). The first term is by

(B.4)

−
x2
j

2
K̃−σ

2
+b+1(|(x, y)|) |(x, y)|2b q(x, y)

= −
x2
j

2 |(x, y)|2
K̃−σ

2
+b+1(|(x, y)|) |(x, y)|2(b+1) q(x, y)
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and putting xj = ±ε gives

= − ε2

2 |(x′, ε, y)|2
K̃−σ

2
+b+1(

∣∣(x′, ε, y)∣∣)
×
∣∣(x′, ε, y)∣∣2(b+1)

q(x′,±ε, y).

Again ε2 can be estimated by |(x′, ε, y)|2 and we find that

ε2

2 |(x′, ε, y)|2
K̃−σ

2
+b+1(

∣∣(x′, ε, y)∣∣) ∣∣(x′, ε, y)∣∣2(b+1)
and

K̃−σ
2
+b(|(x, y)|) |(x, y)|2b

satisfy the same estimates (see the proof of (i) & (iii)). The

same argument applies to the other two terms in the product

rule. Therefore the same argument as in (a) yields the vanishing

of the boundary terms (4.6). Similar arguments yield the vanish-

ing of the boundary terms that occur when integrating by parts

for the second time. For this note that the formal adjoint of
∂
∂xj

on L2(Rn, |(x, y)|−Reσ dxdy) is − ∂
∂xj

+ (Reσ)
xj

|(x,y)|2 . Both

summands are treated separately as above.

(c) E ∂
∂xj

. We have

E
∂

∂xj
= xj

∂2

∂x2
j

+
∑
k �=j

xk
∂

∂xk

∂

∂xj
+
∑
k

yk
∂

∂yk

∂

∂xj
.

The first term was already treated in part (b). For the other

two terms note that we can first integrate by parts the deriva-

tives with respect to xk (k �= j) and yk without any boundary

terms occurring. Secondly, integration by parts of the derivative

with respect to xj is dealt with as in part (b). This finishes the

proof. �

Remark 4.5. It is necessary in the proof of Proposition 4.4 (ii) & (iv)

to restrict integration to the domain Ωj,ε. This is because the operator Bn,σj
is of second order and we have to integrate by parts twice. The intermediate

result, i.e. after integrating by parts once, may not be integrable on R
n
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and hence we need to restrict to a subdomain on which these intermediate

results are integrable. The same problem occurs when one considers the two

summands xj∆ and −(2E − σ + n) ∂
∂xj

separately. Here the integral over

R
n for each of the two summands may not converge while the integral for

the sum Bn,σj does by Proposition 4.4 (i) & (iii).

Remark 4.6. The assertions (i) & (iii) of Proposition 4.4 construct an

embedding of

L2(Rm, |x|−Re τ dx)K∩O(1,m+1) �Hk(Rn−m)

into the C-antilinear algebraic dual of L2(Rn, |(x, y)|−Reσ dxdy)K for every

τ ∈ T (σ, µ). By (ii) & (iv) this embedding is h-equivariant.

Let us now continue the proof of Theorem 4.1 by showing property (iv)

in Lemma 4.2. Let v1 ∈ V1,c and v2 ∈ V2. Suppose that

v1(x, τ, y) = fτ,X(x)φ(y)χ(τ) and v2(x, y) = g(x, y)

with X ∈ U(h), χ ∈ Cc(T (σ, µ)), φ ∈ Hk(Rn−m), and g ∈ L2(Rn,

|(x, y)|−Reσ dxdy)K . We have

(ϕ(dρ1(Nj)v1) | v2)H2

= −i
∫
Rn

∫
T (σ,µ)

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)(B
m,τ
j fτ,X)(x)φ(y)g(x, y) |(x, y)|−Reσ

χ(τ) dmσ,µ(τ) dxdy

= −i
∫
T (σ,µ)

∫
Rn

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)(B
m,τ
j fτ,X)(x)φ(y)g(x, y) |(x, y)|−Reσ

χ(τ) dxdy dmσ,µ(τ),

where we were able to change the order of integration, because by Propo-

sition 4.4 (i) the inner integral in the last line converges absolutely and

is continuous in τ and the integration is only over the compact subset

suppχ ⊆ T (σ, µ). Now, by Proposition 4.4 (ii) we find

= −i
∫
T (σ,µ)

∫
Rn

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)fτ,X(x)φ(y)Bn,σj g(x, y) |(x, y)|−Reσ

χ(τ) dxdy dmσ,µ(τ)
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= −i
∫
Rn

∫
T (σ,µ)

|x|
σ−τ−µ

2 F ( |y|
2

|x|2 , τ)fτ,X(x)φ(y)Bn,σj g(x, y) |(x, y)|−Reσ

χ(τ) dmσ,µ(τ) dxdy

= (ϕ(v1) | dρ2(Nj)v2)H2 ,

again using Proposition 4.4 (i) to change the order of integration. This

shows property (iv) of Lemma 4.2 for v1 ∈ V1,c. A similar argument with

Proposition 4.4 (iii) and (iv) shows Lemma 4.2 (iv) for v1 ∈ V1,d. We

therefore obtain that ϕ = Ψ(σ, k) intertwines the group action of NH and

hence of H. Thus the proof of Theorem 4.1 is complete. �

We obtain the whole spectral decomposition of ρGσ,ε|H from (4.1) and

Theorem 4.1.

Theorem 4.7. For σ ∈ iR∪ (−n, n)∪ (n+2N) the representation ρGσ,ε
decomposes under the restriction to H = O(1,m+1)×O(n−m), 0 < m < n,

as

ρGσ,ε
∣∣
H

∼=
∞∑⊕

k=0

(∫ ⊕

iR+

ρ
O(1,m+1)
τ,ε+k dτ

⊕
⊕

j∈Z∩
[
0,

|Reσ|−n+m−2k
4

) ρ
O(1,m+1)
|Reσ|−n+m−2k−4j,ε+k

)
�Hk(Rn−m).

5. Intertwining Operators in the Non-compact Picture

In Proposition 2.1 we explicitly found an intertwining operator C∞(Rm\
{0})�Hk(Rn−m) → C∞(Rn \ {x = 0}). In the Fourier transformed picture

this operator is given by

A(σ, τ)(f ⊗ φ)(x, y)

= |x|
σ−τ−µ

2 2F1

(
µ− σ + τ

4
,
µ− σ − τ

4
;
µ

2
;−|y|2

|x|2

)
f(x)φ(y),

where again µ = 2k + n − m. In Proposition 4.4 we even showed that

for fixed σ ∈ iR ∪ (−n, n) ∪ (n + 2N), k ∈ N and τ ∈ T (σ, 2k − n + m)
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the operator A(σ, τ) is intertwining between the Harish-Chandra module of

ρ
O(1,m+1)
τ,ε+k � Hk(Rn−m) and the C-antilinear algebraic dual of the Harish-

Chandra module of ρ
O(1,n+1)
σ,ε . We now find a formal expression for this

intertwiner in the non-compact picture.

Consider the following diagram

C∞
c (Rm \ {0}) ⊗ Hk(Rn−m)

A(σ,τ) ��

FRm⊗id
��

S ′(Rn)

FRn

��
FRmC∞

c (Rm \ {0}) ⊗ Hk(Rn−m)
I(σ,τ)

�� S ′(Rn).

We extend the operator A(σ, τ) for all σ, τ ∈ C and determine the operator

I(σ, τ) for Reσ ) Re τ ) 0. We have

FRnA(σ, τ)(f ⊗ φ)(ξ, η)

= (2π)−
n
2

∫
Rm

∫
Rn−m

e−ix·ξ−iy·η |x|
σ−τ−µ

2

× 2F1

(
µ− σ + τ

4
,
µ− σ − τ

4
;
µ

2
;−|y|2

|x|2

)
f(x)φ(y) dy dx.

We first calculate the integral over y ∈ R
n−m. Using Appendix B.4 and the

integral formula (B.11) we find

(2π)−
n−m

2

∫
Rn−m

e−iy·η2F1

(
µ− σ + τ

4
,
µ− σ − τ

4
;
µ

2
;−|y|2

|x|2

)
φ(y) dy

= i−kφ(η) |η|−
µ−2

2

∫ ∞

0
Jµ−2

2
(|η| s)

× 2F1

(
µ− σ + τ

4
,
µ− σ − τ

4
;
µ

2
;− s2

|x|2
)
s

µ
2 ds

= i−kφ(η) |η|−
µ−2

2
2

σ+2
2 Γ(µ2 )

Γ(µ−σ+τ4 )Γ(µ−σ−τ4 )
|x|

µ−σ
2 |η|−

σ+2
2 K τ

2
(|x| · |η|).

If we let

ψ(x, η) :=
2

σ+2
2 i−kΓ(µ2 )

Γ(µ−σ+τ4 )Γ(µ−σ−τ4 )
|η|−

σ+µ
2 |x|−

τ
2 K τ

2
(|x| · |η|)
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then we find that

FRnA(σ, τ)(f ⊗ φ)(ξ, η) = FRm(f · ψ(−, η))(ξ) · φ(η)

= (2π)−
m
2 (FRmψ(−, η) ∗ FRmf)(ξ) · φ(η).

Therefore we compute, using again Appendix B.4 and the integral formula

(B.12) (noticing that Kν(x) = K−ν(x))

(FRmψ(−, η))(ξ)

=
2

σ+2
2 i−kΓ(µ2 )

Γ(µ−σ+τ4 )Γ(µ−σ−τ4 )
|η|−

σ+µ
2 |ξ|−

m−2
2

×
∫ ∞

0
Jm−2

2
(|ξ| s)s− τ

2K τ
2
(|η| s)sm

2 ds

=
2

σ−τ+m
2 i−kΓ(µ2 )Γ(m−τ

2 )

Γ(µ−σ+τ4 )Γ(µ−σ−τ4 )
|η|−

σ+τ+µ
2 (|ξ|2 + |η|2) τ−m

2 .

Altogether we see that I(σ, µ) is a partial convolution operator combined

with a multiplication operator

I(σ, τ)(f⊗φ)(ξ, η) = const · |η|−
σ+τ+µ

2 φ(η)

∫
Rm

(
∣∣ξ − ξ′

∣∣2+ |η|2) τ−m
2 f(ξ′) dξ′.

For m = n − 1 this operator appears in [19, 20] as a special case. This

expression for I(σ, τ) is valid for Reσ ) Re τ ) 0. It has a holomorphic

extension to all σ, τ ∈ C for f ∈ FRmC∞
c (Rm \ {0}).

A. Decomposition of Principal Series

We give a short alternative proof for the decomposition of the principal

series πGσ,ε, σ ∈ iR, ε ∈ Z/2Z, into irreducible H-representations. This de-

composition turns out to be essentially equivalent to the Plancherel formula

for L2(O(1,m+1)/(O(1)×O(m+1)),L′
δ), where L′

δ are the line bundles over

the Riemannian symmetric space O(1,m + 1)/(O(1) × O(m + 1)) induced

by the characters (a, g) �→ aδ of O(1) ×O(m+ 1), δ ∈ Z/2Z.

Consider the flag variety X = G/P . Since G/P ∼= K/M we can identify

X with the unit sphere Sn ⊆ R
n+1. For this we define a G-action on Sn by

the formula

g ◦ x :=
prx(g(1, x))

pr0(g(1, x))
, x ∈ Sn,
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where pr0 : R
n+2 → R and prx : R

n+2 → R
n+1 denote the projections onto

the first coordinate and the last n+ 1 coordinates, respectively, and g(1, x)

is the usual action of g on (1, x) ∈ R × R
n+1 ∼= R

n+2. Then it is easy to

prove the following:

Lemma A.1. The operation ◦ defines a transitive group action of G

on Sn. The stabilizer of the point en+1 = (0, . . . , 0, 1) ∈ Sn is equal to the

parabolic subgroup P . The maximal compact subgroup K also acts transi-

tively on Sn and the stabilizer subgroup of the point x0 is equal to M .

Let us consider a slightly different embedding of O(1,m+1)×O(n−m)

into G = O(1, n+ 1). Let

H ′ := {diag(g, h) : g ∈ O(1,m+ 1), h ∈ O(n−m)} .

Then clearly H and H ′ are conjugate and hence the branching to H is

equivalent to the branching to H ′. We shall therefore only deal with H ′ in

this section.

Lemma A.2. Under the action ◦ of the group H ′ the sphere Sn decom-

poses into the two orbits

O0 := H ′ ◦ e1 =
{
(x′, 0) : x′ ∈ Sm

}
,

O1 := H ′ ◦ en+1 =
{
(x′, x′′) ∈ Sn : x′ ∈ R

m+1, x′′ ∈ R
n−m, x′′ �= 0

}
.

The orbit O1 is open and dense in Sn. The isotropy group of en+1 in H ′ is

S = {(a, g, h, a) : a ∈ O(1), g ∈ O(m+ 1), h ∈ O(n−m− 1)} .

Now consider the realization of πσ,ε in the compact picture, i.e. on

L2(G/P,Lσ,ε), where Lσ,ε denotes the line bundle over G/P associated to

the character man �→ ξε(m)aσ+ρ of P . Since the orbit O1 ⊆ G/P is open

and dense we have

L2(G/P,Lσ,ε) ∼= L2(O1,Lσ,ε|O1).

Now the stabilizer S of eP ∈ G/P in H is contained in P and hence the

restriction of the line bundle Lσ,ε to O1
∼= H ′/S is induced by the restriction
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of the corresponding character of P to S which is simply ξε|S . Therefore we

find

L2(G/P,Lσ,ε) ∼= L2(O1,Lε),
where Lε is the line bundle over O1

∼= H ′/S induced by the character ξε|S .
Using the decomposition of L2(Sn−m−1) into spherical harmonics we find

L2(O1,Lε) ∼=
∞∑⊕

k=0

L2(O(1,m+ 1)/(O(1) ×O(m+ 1)),L′
ε+k) �Hk(Rn−m)

as H ′-representations, where for δ ∈ (Z/2Z) we denote by L′
δ the line bundle

over the symmetric space O(1,m + 1)/(O(1) × O(m + 1)) induced by the

character (a, g) �→ aδ of O(1) ×O(m+ 1). Together we obtain

πGσ,ε
∣∣
H

∼=
∞∑⊕

k=0

L2(O(1,m+ 1)/(O(1) ×O(m+ 1)),L′
ε+k) �Hk(Rn−m)

and hence the decomposition of πGσ,ε|H into irreducible H-representations is

equivalent to the decomposition of L2(O(1,m+ 1)/(O(1) ×O(m+ 1)),L′
δ)

into irreducible O(1,m + 1)-representations, δ ∈ Z/2Z. Since O(1,m +

1)/(O(1) × O(m + 1)) is a Riemannian symmetric space of rank one the

decomposition of L2(O(1,m+ 1)/(O(1)×O(m+ 1)),L′
δ) is well-known and

given by

L2(O(1,m+ 1)/(O(1) ×O(m+ 1)),L′
δ)

∼=
∫ ⊕

iR+

π
O(1,m+1)
τ,δ dτ ,

the unitary isomorphism established by the spherical Fourier transform.

This proves Theorem 4.7 for the special case σ ∈ iR.

B. Special Functions

For the sake of completeness we collect here the necessary formulas for

certain special functions needed in this paper.

B.1. The K-Bessel function

We renormalize the classical K-Bessel function Kα(z) by

K̃α(z) :=
(z

2

)−α
Kα(z).
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Then K̃α(z) solves the differential equation

d2u

dz2
+

2α+ 1

z

du

dz
− u = 0.(B.1)

It has the following asymptotic behaviour as x → 0 (see [38, Chapters III

& VII]):

K̃α(x) =


Γ(α)

2

(
x
2

)−2α
+ o(x−2α), for Reα > 0,

− log
(
x
2

)
+ o
(
log
(
x
2

))
, for Reα = 0,

Γ(−α)
2 + o(1), for Reα < 0.

(B.2)

Further, as x → ∞ we have

K̃α(x) =

√
π

2

(x
2

)−α− 1
2
e−x
(

1 + O
(

1

x

))
.(B.3)

For the derivative of K̃α(z) the following identity holds (see [38, equation

III.71 (6)]):

d

dz
K̃α(z) = −z

2
K̃α+1(z).(B.4)

This identity can be used to write the differential equation (B.1) as the

three-term recurrence relation (see [38, equation III.71 (6)]):

z2K̃α+1(z) = 4αK̃α(z) + 4K̃α−1(z).(B.5)

B.2. The Gauß hypergeometric function

Consider the classical Gauß hypergeometric function

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
n!(c)n

zn,

where (a)n = a(a+ 1) · · · (a+n− 1) denotes the Pochhammer symbol. The

function 2F1(a, b; c; z) is holomorphic in z for z /∈ [1,∞) and meromorphic

in the parameters a, b, c ∈ C. It solves the differential equation

(1 − z)z
d2u

dz2
+ (c− (a+ b+ 1)z)

du

dz
− abu = 0.(B.6)
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The following formula allows to study the asymptotic behaviour of the Gauß

hypergeometric function near z = −∞ (see [10, equation 9.132 (2)]):

2F1(a, b; c; z) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−z)−a2F1(a, a− c+ 1; a− b+ 1; 1

z )(B.7)

+
Γ(a− b)Γ(c)

Γ(a)Γ(c− b)
(−z)−b2F1(b, b− c+ 1; b− a+ 1; 1

z ).

Both summands on the right hand side of (B.7) are generically linear inde-

pendent solutions to (B.6). Their Wronskian is given by

W (z−a2F1(a, a− c+ 1; a− b+ 1;−1
z ), z

−b
2F1(b, b− c+ 1; b− a+ 1;−1

z ))

= (a− b)(1 + z)c−a−b−1z−c.

The following simple formula for the derivative of the hypergeometric func-

tion holds:

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z).(B.8)

We recall Kummer’s transformation formula (see [10, equation 9.131 (1)]):

2F1(a, b; c; z) = (1 − z)c−a−b2F1(c− a, c− b; c; z).(B.9)

For a ∈ −N the hypergeometric function 2F1(a, b; c; z) degenerates to a poly-

nomial which can be expressed in terms of the Jacobi polynomials P
(a,b)
n (z)

(see [10, equation 8.962 (1)]):

2F1(−n, b; c; z) =
n!

(c)n
P (c−1,b−c−n)
n (1 − 2z), n ∈ N,(B.10)

where

P (a,b)
n (z) =

1

n!

n∑
k=0

(−n)k(a+ b+ n+ 1)k(a+ k + 1)n−k
k!

(
1 − z

2

)k
.

B.3. Integral formulas

We consider the J-Bessel function Jν(z) and the K-Bessel function

Kν(z). For the J-Bessel function and the hypergeometric function the
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following integral formula holds for y > 0, Reλ > 0 and −1 < Re ν <

2 max(Reα,Reβ) − 3
2 (see [10, equation 7.542 (10)])∫ ∞

0
2F1(α, β; ν + 1;−λ2x2)Jν(xy)x

ν+1 dx(B.11)

=
2ν−α−β+2Γ(ν + 1)

λα+βΓ(α)Γ(β)
yα+β−ν−2Kα−β

(y
λ

)
.

For the J-Bessel function and the K-Bessel function we have the following

integral formula for Reµ > |Re ν| − 1 and Re b > |Im a| (see [10, equa-

tion 6.576 (7)])∫ ∞

0
xµ+ν+1Jµ(ax)Kν(bx) dx = 2µ+νaµbν

Γ(µ+ ν + 1)

(a2 + b2)µ+ν+1
.(B.12)

B.4. Fourier and Hankel transform

Let FRn denote the Euclidean Fourier transform on R
n as defined in

(1.5). Let k ∈ N and φ ∈ Hk(Rn). For f ∈ L2(R+, r
n+2k−1 dr) denote by

f ⊗ φ ∈ L2(Rn) the function

(f ⊗ φ)(x) := f(|x|)φ(x), x ∈ R
n.

Then by [33, Chapter IV, Theorem 3.10]

FRn(f ⊗ φ) = i−k(Hn+2k−2
2

f) ⊗ φ,

where Hν is the modified Hankel transform of parameter ν ≥ −1
2

Hνf(r) = r−ν
∫ ∞

0
Jν(rs)f(s)sν+1 ds,

which is a unitary isomorphism (up to a scalar multiple) on L2(R+,

r2ν+1 dr).
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