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Jeffery-Hamel’s Flows in the Plane

By Teppei Kobayashi

Abstract. We consider a radial steady flow of an incompressible
viscous fluid which either converges or diverges in a two dimensional
wedge domain. We prove the existence of a solution to the stationary
Navier-Stokes equations for the restricted flux condition which depends
only on the angle of the wedge domain.

1. Introduction

1.1. Jeffery-Hamel’s flow

We consider a two-dimensional wedge domain ω between two rays that

emanate from the same initial point at the origin, and form an angle of size

2α, α ∈ (0, π). We also assume that the x1-axis is the angle bisector. Let

Σα
L denote the intersection of ω with a circle of radius L centered at the

origin.

ω = {(r, θ) ∈ R
2; r > 0,−α < θ < α},

Σα
L = {(r, θ) ∈ ω; r = L},

where (r, θ) are the polar coordinates. See Figure 1.

In the wedge domain ω let us consider the steady radial flow of an

incompressible viscous fluid which emerges from the origin or converges on

the origin. The steady radial fluid motion is governed by the steady Navier-

Stokes equations

−ν∆u + (u · ∇)u + ∇p = 0 in ω,(1.1)

divu = 0 in ω,(1.2)

u = 0 on ∂ω,(1.3)

u → 0 as r → ∞(1.4)
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Fig. 1.

with the flux condition∫
Σα

L

u · erdS = γ, (er = (cos θ, sin θ)),(1.5)

where u and p denote the unknown velocity vector and the unknown pres-

sure of the fluid, respectively, while ν is the given viscosity constant and γ

is the given flux. Since the flow is radial, we assume

u =
γg(θ)

r
er,(1.6)

where g(θ) is an unknown scalar function. Then the function u automat-

ically satisfies (1.2). In this paper we prove that for a given flux γ there

exists a solution u of the Navier-Stokes equations (1.1)-(1.4) of the form

(1.6) satisfying the flux condition (1.5). Such a solution is usually called

“Jeffery-Hamel’s flow”.

To obtain a solution of Jeffery-Hamel’s flow, we find a function g satis-

fying

g′′ + 4g +
γ

ν
g2 =

Φ

νγ
on (−α, α)(1.7)

with the boundary condition

g(±α) = 0(1.8)
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and the flux condition ∫ α

−α
g(θ)dθ = 1.(1.9)

We add the following symmetry condition

g(θ) = g(−θ) (θ ∈ (−α, α)),(1.10)

where Φ is an arbitrary constant. In this paper, we add the symmetric

condition (1.10) because the stable flows are symmetric.

L. Rosenhead [8] and L. D. Landau and E. M. Lifshitz [7] prove the

existence of solutions of Jeffery-Hamel’s flow which are given in terms of

Jacobian elliptic functions and investigate the behavior of the solutions of

Jeffery-Hamel’s flow. G. P. Galdi, M. Padula, V. A. Solonnikov [6] obtain a

unique solution of Jeffery-Hamel’s flow for α = π
2 under the restricted flux

condition applying functional analysis. See Lemma 5.1 and Appendix of [6].

In this paper we succeed in proving the existence of the unique solution

of Jeffery-Hamel’s flow for any α ∈ (0, π) under the restricted flux condition

flux in a wedge domain using a method similar to that of [6].

L. Rosenhead [8] and L. D. Landau and E. M. Lifshitz [7] show the be-

havior of the solution γg(θ) of the ODE (1.7) with (1.9)-(1.10). The ratio

R = | γνρ | is dimensionless and plays the role of the Reynolds number in

this problem, where ρ is the density. For simplicity ρ = 1 in this paper.

L. Rosenhead [8] and L. D. Landau and E. M. Lifshitz [7] show that if γ is

negative then for any α ∈ (0, π2 ) and any R there exists a convergent sym-

metrical flow. In other words, the solution γg(θ) is symmetric with respect

to θ = 0 and negative for any θ ∈ (−α, α). See Figure 2. L. Rosenhead [8]

and L. D. Landau and E. M. Lifshitz [7] show that if γ is positive then for

any α ∈ (0, π2 ) there exists Rmax > 0 such that for R < Rmax a symmetrical

flow, everywhere divergent, appears. In other words, the solution γg(θ) is

symmetric with respect to θ = 0 and positive for any θ ∈ (−α, α). These

two flow are stable. See Figure 3. It is shown that Rmax → 0 as α → 1
2π

and Rmax → ∞ as α → 0. We have not been able to find the formula for

the relation between γ0 in this paper (see Definition 1.1) and the constant

Rmax.

Note that, as R increases, the steady divergent flow of the kind described

here becomes unstable soon after R exceeds Rmax. A symmetrical flow,



64 Teppei Kobayashi

Fig. 2. Fig. 3.

everywhere divergent, does not appear. The velocity of the flow has one

maximum and one minimum. In other words, soon after R exceeds Rmax,

the solution γg(θ) is not symmetric with respect to θ = 0 and is not always

positive for all θ ∈ (−α, α). See Figure 4.

When R increases further, a symmetrical solution appears. The velocity

becomes symmetric with respect to the x1-axis and has two minima and

one maximum. In other words, when R increases further, the solution γg(θ)

becomes symmetric with respect to θ = 0 and is not always positive for any

θ ∈ (0, α). See Figure 5. As R goes to infinity, the number of alternating

maxima or minima increases without limit.

But the total flux of both the flows of Figure 4 and Figure 5 is γ.

To the knowledge of the author, the uniqueness and existence of solutions

of Jeffery-Hamel’s problem have seldom been treated for the class of steady

flows. In this paper, we prove the existence and uniquness of the solution of

ODE (1.7) with (1.8)-(1.10) applying functional analysis under the restricted

flux constant which depends only on the angle of size 2α. The result in this

paper is different from the result in L. Rosenhead [8] and L. D. Landau

and E. M. Lifshitz [7], because properties of the solutions and the Reynolds

number are different from each other. See section 5. In this paper the result

for α = π
2 is better than that of G. P. Galdi, M. Padula, V. A. Solonnikov

[6], because they do not use α = π
2 . See Remark 1.1.
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Fig. 4. Fig. 5.

1.2. Function space

We introduce some function spaces.

C[−α, α] is the set of all the continuous scalar functions on [−α, α].

CS [−α, α] := {b ∈ C[−α, α]; b(s) = b(−s) (s ∈ [−α, α])}.
C0[−α, α] := {b ∈ C[−α, α]; b(±α) = 0}.
C+[−α, α] := {b ∈ C[−α, α]; b(s1) ≥ b(s2) and

b(−s1) ≥ b(−s2) (0 ≤ s1 < s2 ≤ α)}.
C−[−α, α] := {b ∈ C[−α, α]; b(s1) ≤ b(s2) and

b(−s1) ≤ b(−s2) (0 ≤ s1 < s2 ≤ α)}.
CS

0 [−α, α] := CS [−α, α] ∩ C0[−α, α].

CS
0,+[−α, α] := CS [−α, α] ∩ C0[−α, α] ∩ C+[−α, α].

CS
0,−[−α, α] := CS [−α, α] ∩ C0[−α, α] ∩ C−[−α, α].

C+[−α, α], C−[−α, α], CS
0,+[−α, α], CS

0,−[−α, α] are closed sets but are not

linear spaces. The norm ‖ · ‖ is the usual norm of C[−α, α].

1.3. Results

To construct a unique solution of the ODE (1.7)-(1.10), we first define

the following upper bound constant:
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Definition 1.1. Let

C(α) :=




1 − cos 2α + sin 2α tan 2α

(
0 < α <

1

4
π

)

1 − cos 2α +
2 − sin 2α

| cos 2α|

(
1

4
π < α ≤ 1

2
π

)

3 + cos 2α +
2 − sin 2α

| cos 2α|

(
1

2
π < α <

3

4
π

)

3 + cos 2α +
4 + sin 2α

cos 2α

(
3

4
π < α < π

)
,

K(α) :=
α(1 − cos 2α)

| tan 2α− 2α|| cos 2α| .

We set

γ0(α) :=
ν

C(α)K(α)(2αK(α) + 1)
.

Our main theorem on the existence of a unique solution of Jeffery-

Hamel’s flow now reads.

Theorem 1.1. Let α ∈ (0, π)\{1
4π, α0,

3
4π}, where 2α0 = tan 2α0, and

ω = {(r, θ);−α < θ < α}. We suppose that |γ| < γ0(α), where the constant

γ0(α) is defined as in Definition 1.1.

Then there exists a solution of the Navier-Stokes equations in ω of the

form

u =
γg(θ)

r
er, p =

2νγg(θ) − 1
2Φ

r2
+ D (D ∈ R)(1.11)

with

g ∈ CS
0 [−α, α] ∩ C∞(−α, α),

∫ α

−α
g(θ)dθ = 1, |g(θ)| ≤ 2K(α).

Moreover the function g is unique in the above class.

Corollary 1.1. Let α ∈ (0, 1
4π). We suppose that 0 < γ < γ0(α).

Then we have g ∈ CS
0,+[−α, α] ∩ C∞(−α, α).
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Remark 1.1. G. P. Galdi, M. Padula, V. A. Solonnikov [6] prove that

for α = π
2 if |γ| < ν

36 , there exists a solution of the Navier-Stokes equations

with the above form (1.11). If α = π
2 , then γ0(

π
2 ) = π

24ν. Therefore this

result is better than that of [6].

Remark 1.2. We do not know whether the constant γ0(α) is optimal.

Remark 1.3. We cannot obtain a solution of Jeffery-Hamel’s flow for

α = 1
4π, α = α0, where 2α0 = tan 2α0, and α = 3

4π by the method in this

paper.

1.4. The properties of the upper bound constant

We state the following easy consequences of the Definition 1.1 without

proof.

Proposition 1.1. We have

lim
α→+0

γ0(α) = ∞,

lim
α→+0

αγ0(α) =
4ν

45
,

lim
α→ 1

4
π
γ0(α) = 0,

lim
α→α0

γ0(α) = 0 (tan 2α0 = 2α0),

lim
α→ 3

4
π
γ0(α) = 0,

lim
α→π−0

γ0(α) = ∞,

lim
α→π−0

γ0(α)(1 − cos 2α) =
π

4
.

1.5. Derivation of ODE (1.7)

In this section we formulate the Navier-Stokes equation into the ODE

(1.7).

The Navier-Stokes equations in polar coordinates are as follows.

ur
∂ur
∂r

+
ur
r

∂uθ
∂θ

− u2
θ

r
= −∂p

∂r
+ ν

(
∇2ur −

ur
r2

− 2

r2

∂uθ
∂θ

)
,(1.12)



68 Teppei Kobayashi

ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

− uruθ
r

= −1

r

∂p

∂θ
+ ν

(
∇2uθ −

uθ
r

+
2

r2

∂ur
∂θ

)
,(1.13)

where

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
.

We set

ur =
γg(θ)

r
, uθ = 0.

From (1.13) we obtain

∂p

∂θ
(r, θ) =

2νγ

r2
g′(θ).

Therefore for a certain function P0(r) we have

p(r, θ) =
2νγ

r2
g(θ) + P0(r),

∂p

∂r
(r, θ) = −4νγ

r3
g(θ) + P ′

0(r).(1.14)

Using (1.14) and (1.12), we deduce

νγg′′ + 4νγg + γ2g2 = P ′
0(r)r

3 on (−α, α).(1.15)

The left hand side of (1.15) depends only on θ and the right hand side of

(1.15) depends only on r. Consequently, we obtain P0(r) = − Φ
2r2

and the

ODE

g′′ + 4g +
γ

ν
g2 =

Φ

νγ
on (−α, α).

2. Linear Equation and Its Properties

2.1. Linear equation

In this subsection for any α ∈ (0, π), we solve the linear problem

h′′ + 4h = b(θ) on (−α, α)(2.1)
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with

h(θ) = h(−θ),(2.2)

h(±α) = 0,(2.3)

where b ∈ CS [−α, α].

The function

hα(θ) =
1

2

∫ α

θ
sin 2(s− θ)b(s)ds(2.4)

− sin 2(α− θ)

2 cos 2α

∫ α

0
cos(2s)b(s)ds (θ ∈ (−α, α))

is the unique solution of (2.1) with (2.2) and (2.3). It is easy to see that

hα ∈ CS
0 [−α, α] ∩ C2(−α, α). We define an operator Lα by

Lα[b] = hα (b ∈ CS [−α, α]).

Remark 2.1. For α = 1
4π and α = 3

4π, we cannot obtain a solution of

the linear problem (2.1) with (2.2) and (2.3).

We apply the linear operator Lα to the nonlinear ODE in the section 3.

Let us consider the reason why the linear problem (2.1) with (2.2) and

(2.3) is not solvable for α = 1
4π. The linear problem (2.1) with (2.2) and

(2.3) is equivalent to the problem on the half interval

h′′ + 4h = b(θ) on (0,
1

4
π)(2.5)

with

h′(0) = 0,(2.6)

h(
1

4
π) = 0.(2.7)

The function

h(θ) =
1

2

∫ 1
4
π

θ
sin 2(s− θ)b(s)ds + C1 cos 2θ + C2 sin 2θ
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is a general solution of the problem (2.5). We choose the constants C1 and

C2 satisfying the initial value (2.6) and (2.7). Such a problem is equivalent

to the following system of linear equations:

(
0 1

0 2

)(
C1

C2

)
=

(
0

q

)
, q =

∫ 1
4
π

0
cos(2s)b(s)ds.(2.8)

The constant q is not zero because a given function b is symmetric. The

rank of this coefficient matrix is 1. The rank of the enlarged coefficient

matrix is 2 because q �= 0. Therefore this system of the linear equations

(2.8) is not solvable on R
2. This implies that the linear symmetric ODE

(2.1) with (2.2) and (2.3) is not solvable for α = 1
4π. We have a similar

result for α = 3
4π.

2.2. The properties of the operator Lα

In this subsection we discuss the properties of the operator Lα for any

α ∈ (0, π)\{1
4π,

3
4π}.

Lemma 2.1. Lα is a linear operator from CS [−α, α] to CS
0 [−α, α].

If b ∈ CS [−α, α], then

‖Lα[b]‖ ≤ 1

4
‖b‖C(α),(2.9)

where the constant C(α) is defined in Definition 1.1.

Proof. Let b ∈ CS [−α, α]. We have

|Lα[b](θ)| ≤ 1

2
‖b‖

(∫ α

0
| sin 2s|ds +

| sin 2(α− θ)|
2| cos 2α|

∫ α

0
| cos 2s|ds

)
.(2.10)

It is easy to prove that

∫ α

0
| sin 2s|ds =




1 − cos 2α

2

(
0 < α ≤ 1

2
π

)

3 + cos 2α

2

(
1

2
π < α < π

)
,

| sin 2(α− θ)| ≤




sin 2α

(
0 < α <

1

4
π

)

1

(
1

4
π < α < π

)
,
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∫ α

0
| cos 2s|ds =




sin 2α

2

(
0 < α <

1

4
π

)

2 − sin 2α

2

(
1

4
π < α <

3

4
π

)

4 + sin 2α

2

(
3

4
π < α < π

)
.

�

Lemma 2.2. If b(θ) = 1, then

Lα[1](θ) =
1

4

(
1 − cos 2θ

cos 2α

)
,(2.11)

‖Lα[1]‖ =
1

4

(
1 − cos 2α

| cos 2α|

)
.(2.12)

Remark 2.2. If b(θ) = 1, the right hand side of (2.9) is larger than

that of (2.12).

We apply (2.9) and (2.12) to the estimates of the solution of the nonlinear

ODE.

2.3. The properties of the operator Lα1 for α1 ∈ (0, 1
4π)

In this subsection we discuss the properties of the operator Lα1 for α1 ∈
(0, 1

4π) in order to prove Corollary 1.1.

Lemma 2.3. Let α1 ∈ (0, 1
4π).

Suppose that b ∈ CS
0,+[−α1, α1]. Then Lα1 [b] ∈ CS

0,−[−α1, α1].

Suppose that b ∈ CS
0,−[−α1, α1]. Then Lα1 [b] ∈ CS

0,+[−α1, α1].

Proof. Let b ∈ CS
0,+[−α1, α1], 0 ≤ θ ≤ α1. Then we have

Lα1 [b](θ) =
1

2

∫ α1

θ
sin 2(s− θ)b(s)ds− sin 2(α1 − θ)

2 cos 2α1

∫ α1

0
cos(2s)b(s)ds.

We obtain

(Lα1 [b])′(θ) = −
∫ α1

θ
cos 2(s− θ)b(s)ds +

cos 2(α1 − θ)

cos 2α1

∫ α1

0
cos(2s)b(s)ds
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≥ −
∫ α1

θ
cos 2(s− θ)b(s)ds +

∫ α1

0
cos(2s)b(s)ds

= −
∫ α1

θ
cos 2(s− θ)b(s)ds +

∫ α1

α1−θ
cos(2s)b(s)ds

+

∫ α1−θ

0
cos(2s)b(s)ds

= −
∫ α1

θ
cos 2(s− θ)b(s)ds +

∫ α1

α1−θ
cos(2s)b(s)ds

+

∫ α1

θ
cos 2(s− θ)b(s− θ)ds

=

∫ α1

θ
cos 2(s− θ)(b(s− θ) − b(s))ds +

∫ α1

α1−θ
cos(2s)b(s)ds

≥ 0.

Since Lα1 [b](α1) = 0, we have Lα1 [b] ∈ CS
0,−[−α1, α1]. �

According to (2.11), the following lemma holds true.

Lemma 2.4. Let α1 ∈ (0, 1
4π) and b(θ) = 1.

Then Lα1 [1] ∈ CS
0,−[−α1, α1].

Applying Lemma 2.3 and 2.4 to the nonlinear ODE, we prove corollary

1.1.

3. Formulation

In this section we rewrite the ODE (1.7)-(1.10) for any α ∈ (0, π)\{1
4π,

3
4π}.

Applying Lα to (1.7), then we have

g =
Φ

νγ
Lα[1] − γ

ν
Lα[g2].

The flux condition (1.9) implies

1 =
Φ

νγ

∫ α

−α
Lα[1](θ)dθ − γ

ν

∫ α

−α
Lα[g2](θ)dθ.
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Therefore the constant Φ must satisfy

Φ =
νγ

1
2α− 1

4 tan 2α

(
1 +

γ

ν

∫ α

−α
Lα[g2](θ)dθ

)
.

Hence a solution g of the ODE (1.7)-(1.10) exists if and only if g ∈ CS
0 [−α, α]

is a solution of the equation

g =
1

1
2α− 1

4 tan 2α

(
1 +

γ

ν

∫ α

−α
Lα[g2](θ)dθ

)
Lα[1](3.1)

− γ

ν
Lα[g2] on [−α, α].

In order to solve the equation (3.1), we consider the operator J α defined

by

J α[g] =
1

1
2α− 1

4 tan 2α

(
1 +

γ

ν

∫ α

−α
Lα[g2](θ)dθ

)
Lα[1] − γ

ν
Lα[g2],(3.2)

where g ∈ CS
0 [−α, α]. It is easy to see that J α[g] ∈ CS

0 [−α, α] for any

g ∈ CS
0 [−α, α]. We find a fixed point of the operator J α in CS

0 [−α, α].

Remark 3.1. We cannot define the operator Jα for α = 1
4π, α = α0,

where 2α0 = tan 2α0, and α = 3
4π, because for α = 1

4π and α = 3
4π we

cannot define the linear operator Lα and for α = α0 the denominator is

zero.

4. The Proof

4.1. Proof of Theorem 1.1

In this subsection let us prove Theorem 1.1. In other words, we prove

that for any α ∈ (0, π)\{1
4π, α0,

3
4π}, where 2α0 = tan 2α0, and |γ| < γ0(α)

the operator J α is a contraction in a suitable ball of CS
0 [−α, α].

For any a > 0, set

B(0, a) := {g ∈ CS
0 [−α, α]; ‖g‖ ≤ a}.

Lemma 4.1. Let α ∈ (0, π)\{1
4π, α0,

3
4π}, where 2α0 = tan 2α0, and

|γ| < γ0(α), where γ0(α) is defined as in Definition 1.1.
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Then the operator J α is a contraction from B(0, 2K(α)) to B(0, 2K(α)),

where K(α) is defined as in Definition 1.1.

Proof. Let g ∈ B(0, 2K(α)). Then we have

|J α[g](θ)| ≤ K(α)

(
1 +

|γ|
ν

∫ α

−α

1

4
‖g‖2C(α)dθ

)
+

|γ|
ν

· 1

4
‖g‖2C(α)

≤ K(α)

(
1 +

|γ|
ν

· 2αK(α)2C(α)

)
+

|γ|
ν

·K(α)2C(α)

= K(α) +
|γ|

γ0(α)
K(α)

< 2K(α).

This proves J α[g] ∈ B(0, 2K(α)).

Let g1, g2 ∈ B(0, 2K(α)). Then we have

|J α[g1](θ) − J α[g2](θ)|

≤ |γ|
ν

· 2αK(α) · 1

4
‖g1 − g2‖‖g1 + g2‖C(α)

+
|γ|
ν

· 1

4
‖g1 − g2‖‖g1 + g2‖C(α)

≤ |γ|
ν

(2αK(α) + 1)K(α)C(α)‖g1 − g2‖

=
|γ|

γ0(α)
‖g1 − g2‖.

This proves that J α is a contraction from B(0, 2K(α)) to B(0, 2K(α)). �

Therefore there exists a unique fixed point of the operator J α in

B(0, 2K(α)) by the fixed point theorem for a contraction operator.

4.2. Proof of Corollary 1.1

In this subsection we prove Corollary 1.1. In other words, we prove that

for any α1 ∈ (0, 1
4π) and 0 < γ < γ0(α1) the operator J α1 is a contraction

in a suitable ball of CS
0,+[−α1, α1].

For any a > 0, set

B+(0, a) := {g ∈ CS
0,+[−α1, α1]; ‖g‖ ≤ a}.
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Lemma 4.2. Let α1 ∈ (0, 1
4π) and 0 < γ < γ0(α1).

Then J α1 is an operator from B+(0, 2K(α1)) to B+(0, 2K(α1)).

Proof. Since we know that, for any g ∈ B+(0, 2K(α1)), Lα1 [g2],

Lα1 [1] ∈ CS
0,−[−α1, α1] and 1

2α1 − 1
4 tan 2α1 < 0, we prove that 1 +

γ
ν

∫ α1

−α1
Lα1 [g2](θ)dθ is positive in order to obtain J α1 [g] ∈ CS

0,+[−α1, α1].

A simple calculation yields

1 +
γ

ν

∫ α1

−α1

Lα1 [g2](θ)dθ ≥ 1 − γ

ν
· 2α1K(α1)

2C(α1)

> 1 − γ

ν
· (2α1K(α1) + 1)K(α1)C(α1)

= 1 − γ

γ0(α1)

> 0. �

Lemma 4.3. Let α1 ∈ (0, 1
4π) and 0 < γ < γ0(α1).

Then the operator J α is a contraction from B+(0, 2K(α1)) to B+(0,

2K(α1)).

The proof of Lemma (4.3) is similar to lemma 4.1.

5. The Maximum Speed and the Reynolds Number

In this section we compare the result in this paper with the previous

work [7] for the maximum speed and the Reynolds number, since we treat

Jeffery-Hamel’s flows by the different method from the previous works [7],

[8].

Firstly, let us consider the maximum speed. Let gα be the unique so-

lution of the ODE. (1.7)-(1.10). The velocity of Jeffery-Hamel’s flow is the

form

u =
γgα(θ)

r
er.

It is easy to see that

|u| ≤ |γ| 1 − cos 2α

| tan 2α− 2α|| cos 2α| ·
1

r
(α ∈ (0, π)\{1

4
π, α0,

3

4
π}),
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where 2α0 = tan 2α0. The right-hand side is the upper bound of the speed

at the point (r, θ) ∈ ω.

On the other hand, let v be a solution of Jeffery-Hamel’s flow in L. D.

Landau and E. M. Lifshitz [7], which is given in terms of Jacobian elliptic

functions. Then we have

|v| ≤ |γ|
α

· 1

r
(α ∈ (0,

1

2
π)).

Lastly, let us consider the Reynolds number. It is easy to see that
the following constants R1(α1), R2(α2), R3(α3), R4(α4) are the Reynolds
number in this paper.

R1(α1) :=
(tan 2α1 − 2α1) cos 2α1

(1 − cos 2α1 + sin 2α1 tan 2α1)

(
2α1(1 − cos 2α1)

(tan 2α1 − 2α1) cos 2α1
+ 1

)
(1 − cos 2α1)

,

R2(α2) :=
|2α2 − tan 2α2|| cos 2α2|(

1 − cos 2α2 +
2 − sin 2α2

| cos 2α2|

) (
2α2(1 − cos 2α2)

(2α2 − tan 2α2)| cos 2α2|
+ 1

)
(1 − cos 2α2)

,

R3(α3) :=
|2α3 − tan 2α3|| cos 2α3|(

3 + cos 2α3 +
2 − sin 2α3

| cos 2α3|

) (
2α3(1 − cos 2α3)

|2α3 − tan 2α3|| cos 2α3|
+ 1

)
(1 − cos 2α3)

,

R4(α4) :=
(2α4 − tan 2α4) cos 2α4(

3 + cos 2α4 +
4 + sin 2α4

cos 2α4

) (
2α4(1 − cos 2α4)

(2α4 − tan 2α4) cos 2α4
+ 1

)
(1 − cos 2α4)

,

where α1 ∈ (0, 1
4π), α2 ∈ (1

4π,
1
2π], α3 ∈ (1

2π,
3
4π), α4 ∈ (3

4π, π).

On the other hand, the Reynolds number in L. D. Landau and E. M. Lif-

shitz [7] is

Rmax = −6β
1 − k2

1 − 2k2
+

12√
1 − 2k2

∫ π
2

0

√
1 − k2 sin2 xdx,

β = 2
√

1 − 2k2

∫ π
2

0

√
1 − k2 sin2 xdx,

k2 =
u0

1 + 2u0
,

where u0 is the maximum value of the solutions of the ODE (1.7)-(1.10)

which are given in the terms of Jacobian elliptic functions.

Acknowledgments. The author would like to express his deepest grat-

itude to Hiroko Morimoto for her unceasing encouragement. The author



Jeffery-Hamel’s Flows in the Plane 77

is indebted to Yusaku Nagata for his valuable advice in the preparation of

this paper. The author is grateful to anonymous referees for their various

comments on this paper to improve presentation (including English).

References

[1] Amick, C. J., Steady solutions of the Navier-Stokes equations in unbounded
channels and pipes, Ann. Scuola Norm. Pisa 4 (1977), 473–513.

[2] Amick, C. J., Properties of steady Navier-Stokes equations for certain un-
bounded channels and pipes, Nonliner Analysis, Theory, Methods & Appli-
cations 2 (1978), 689–720.

[3] Amick, C. J. and L. E. Fraenkel, Steady solutions of the Navier-Stokes equa-
tions representing plane flow in channels of various types, Acta Math. 144
no. 1–2 (1980), 83–151.

[4] Borchers, W., Galdi, G. P. and K. Pileckas, On the uniqueness of Leray-Hopf
solutions for the flow through an aperture, Arch. Rational Mech. Anal. 122
(1993), 19–33.

[5] Fraenkel, L. E., Laminar flow in symmetrical channels with slightly curved
walls I. On the Jeffery-Hamel solutions for flow between plane walls, Proc.
R. Soc. Lond. A 267 (1962), 119–138.

[6] Galdi, G. P., Padula, M. and V. A. Solonnikov, Existence, uniqueness and
asympototic behaviour of solutions of steady-state Navier-Stokes equations
in a plane aperture domain, Indiana Univ. Math. 45 (1996), 961–997.

[7] Landau, L. D. and E. M. Lifshitz, Fluid Mechanics, Translated from Russian
by J. B. Sykes and W. H. Reid, Pregamon Press.

[8] Rosenhead, L., The steady two-dimensional radial flow of viscous fluid be-
tween two inclined plane walls, Proc. R. Soc. Lond. A 175 (1940), 436–467.

[9] Yosida, K., “Functional Analysis-Third Edition”, Springer-Verlag (1980).

(Received May 15, 2012)
(Revised December 19, 2013)

Department of Mathematics
Meiji University
1-1-1 Tama-ku, Kawasaki
Japan, 214-0038
E-mail: teppeik@isc.meiji.ac.jp


