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Dixmier Approximation and Symmetric Amenability
for C*-Algebras

By Narutaka OzZAwWA

Abstract. We study some general properties of tracial C*-alge-
bras. In the first part, we consider Dixmier type approximation the-
orem and characterize symmetric amenability for C*-algebras. In the
second part, we consider continuous bundles of tracial von Neumann
algebras and classify some of them.

1. Introduction

The general study of tracial states on C*-algebras has a long history, but
recently it gained a renewed interest in connection with the ongoing classifi-
cation program for finite nuclear C*-algebras. In this note, we record several
facts about tracial C*-algebras which may be useful in the future study. The
results are two-fold. First, we consider Dixmier type approximation prop-
erty for C*-algebras and relate it to symmetric amenability. The Dixmier
approximation theorem (Theorem III.5.1 in [Di]) states a fundamental fact
about von Neumann algebras that for any von Neumann algebra N and
any element a € N, the norm-closed convex hull of {uau* : v € U(N)}
meets the center Z(N) of N. Here U(N) denotes the unitary group of N.
If N is moreover a finite von Neumann algebra, then this intersection is a
singleton and consists of ctr(a). Here ctr denotes the center-valued trace,
which is the unique conditional expectation from N onto Z(N) that sat-
isfies ctr(zy) = ctr(yz). It is proved by Haagerup and Zsido ([HZ]) that
the Dixmier approximation theorem holds for simple C*-algebras having
at most one tracial states (and obviously does not for simple C*-algebras
having more than one tracial states). Recall that a C*-algebra A has the
quotient tracial state property (QTS property) if every non-zero quotient
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C*-algebra of A has a tracial state ([Mu]). We denote by T'(A) the space of
the tracial states on A, equipped with the weak*-topology.

THEOREM 1. For a unital C*-algebra A, the following are equivalent.
(i) The C*-algebra A has the QTS property.

(ii) For every e >0 and a € A that satisfy sup,cp(ay|7(a)| <&, there are
k and uy, ... ,ur € U(A) such that ||+ S wiaut]| < e.

Unlike the case for von Neumann algebras, there is no bound of k in
terms of € and ||a|| that works for an arbitrary element a in a C*-algebra
(see Section 3, where we study a relation between trace zero elements and
commutators). Recall that a Banach algebra A is said to be amenable if
there is a net (Ay,),, called an approximate diagonal, in the algebraic tensor
product A ®c A (we reserve the symbol ® for the minimal tensor product)
such that

(1) sup, [[An[[n < 400,
(2) (m(Ap))n is an approximate identity,
(3) limy, |la- A, — Ay, - al|p = 0 for every a € A.

Here || - ||s is the projective norm on A ®c A, m: A ®c A — A is the
multiplication, and a - (3,2, ® y;) = Y ,az; ® y; and (D, 2, ®y;) - a =
> Ti®y;a. The celebrated theorem of Connes-Haagerup ([Co, Hal]) states
that a C*-algebra A is amenable as a Banach algebra if and only if it is
nuclear. The Banach algebra A is said to be symmetrically amenable ([Jo])
if the approximate diagonal (A,), can be taken symmetric under the flip
T ®y — y®x. We characterize symmetric amenability for C*-algebras.

THEOREM 2. For a unital C*-algebra A, the following are equivalent.

(i) The C*-algebra A is nuclear and has the QTS property.

(ii) The C*-algebra A has an approzimate diagonal A, = ng) zi(n)* ®

zi(n) such that lim, S0 [|l2;(n)[? = 1, m(A,) = 1, and lim,, |1 —
k(n "
S g (n)ai(n)*] = 0.
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(ili) The C*-algebra A is symmetrically amenable.

(iv) The C*-algebra A has a symmetric approximate diagonal (Ay)y in

D ajemedocA: ) Jul* <1}

Recall that a unital C*-algebra A is strongly amenable if there is an
approximate diagonal that consists of convex combinations of {u* ®@u : u €
U(A)}. This property is formally stronger than symmetric amenability, but
it is unclear whether there is really a gap between these properties.

Second, we describe what is the C*-completion A" of a unital C*-alge-
bra A under the uniform 2-norm. This work is strongly influenced by the
recent works of Kirchberg—Rgrdam ([KR]), Sato ([Sa2]), and Toms—White—
Winter ([TWW]), who studied the central sequence algebra of a C*-algebra
modulo uniformly 2-norm null sequences, in order to extend Matui—Sato’s
result ([MS]) from C*-algebras with finitely many extremal tracial states to
more general ones. In fact, our result is very similar to theirs (particularly
to Kirchberg-Rgrdam’s). Let A be a C*-algebra and S C T'(A) be a non-
empty metrizable closed face. The reason we assume S be metrizable is
because it makes the description of the boundary measures simpler. We
define the uniform 2-norm on A corresponding to S by

lall2,s = sup{r(a*a)'/? : 7 € S}.
The uniform 2-norm satisfies

lablla,s < min{[|al[[[bll,s, [lall2,s[b]l} and Sgng(a)l < |lallz,s-
T

The C*-completion A" is defined to be the C*-algebra of the norm-bounded
uniform 2-norm Cauchy sequences, modulo the ideal of the uniform 2-norm
null sequences. For 7 € T(A), we denote by 7 the corresponding GNS
representation and also ||alj2,r = 7(a*a)"/?2. Let N = (B,cgmr)(A)" be the
enveloping von Neumann algebra with respect to S. When S = T'(A), it is
the finite summand A;* of the second dual von Neumann algebra A**. The
tracial state 7 € S and the GNS representation 7, extend normally on V.
For the center-valued trace ctr: N — Z(N), one has ||alj2,s = || ctr(a*a)|'/?
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and A" coincides with the closure 4" of A in N with respect to the strict
topology associated with the Hilbert Z(V)-module (N, ctr).

Recall that the trace space T'(A) of a unital C*-algebra is a Choquet
simplex and so is the closed face S. We denote by Aff(S) the space of the
affine continuous functions on S and consider the function system Aff(S) =
{flas : f € Aff(S)} in B(0S), where B(9S) denotes the C*-algebra of the
bounded Borel functions on 9S. For every a € A, the formula a(7) = 7(a)
defines a function a in Aff(S) (or Aff(S)). We note that {a : a € A}
is dense in Aff(S) (in fact equal, see [CP]). Let M’ (9S) be the space of
the probability measures on the extreme boundary 95 of S. Since S is a

metrizable Choquet simplex, every 7 € S has a unique representing measure
pr € MY(8S), which satisfies

r(a) = / Aa) dur (1) = / a(\) dpr (V)

for every a € A (Theorem I1.3.16 in [Al]). The center Z(Aff(S)) is defined
to be

Z(AF(S)) = {f € B(dS) : f Af(S) C AfE(S)} C AF(S).

When 95 is closed (i.e., when S is a Bauer simplex), one has Aff(S) = C(95)
and Z(Aff(S)) = C(0S). However in general, the center Z(Aff(S)) can be
trivial (see Section II.7 in [Al]).

THEOREM 3. Let A, S, and N be as above. Then, there is a unital *-

homomorphism 6: B(9S) — Z(N) with ultraweakly dense range such that
0(a) = ctr(a) and

r(0()0) = [ FON@ dur3) = [ fads
for everya € A and 7 € S. One has
T = (€ N : ctr(zA) C O(AH(S)), ctr(z*z) € O(AF(S))}.
In particular,

AN Z(N)={0(f) : f € Z(AH(S)))}.
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Moreover, if 0S is closed, then for every T € 05, one has WT(ZSt) =7 (N)=
7 (A).

Takesaki and Tomiyama ([TT]) have studied the structure of a C*-alge-
bra, for which the set of pure states is closed in the state space, by using
a continuous bundle of C*-algebras (see also [Fe]). We carry out a simi-
lar study in Section 5 for a C*-algebra A, for which 0S is closed, in terms
of a continuous W*-bundle, and present W*-analogues of a few results for
C*-bundles obtained in [HRW, DW]. In particular, we give a criterion for
a continuous W*-bundle over a compact space K with all fibers isomor-
phic to the hyperfinite II; factor R to be isomorphic to the trivial bundle
Cy(K,R), the C*-algebra of the norm-bounded and ultrastrongly continu-
ous functions from K into R. We denote the evaluation map at A € K by
evy: Co(K,R) — R. As an application, we show that A Cy(0S,R) for
certain A.

THEOREM 4. Let A be a separable C*-algebra and S C T'(A) be a closed
face. Assume that m.(A)” =2 R for all T € 0S and that S is a compact
space with finite covering dimension. Then, one can coordinatize the iso-
morphisms 7.(A)” = R in such a way that they together give rise to a
x-homomorphism 7: A — Cy(0S, R) such that 7 = ev,;om. The image of
m is dense with respect to the uniform 2-norm.

Acknowledgment. The author is grateful to Yasuhiko Sato for many
illuminating conversations. The author was partially supported by JSPS
(23540233).

2. QTS Property and Symmetric Amenability

PrROOF OF THEOREM 1. Ad (i) = (ii). Although the proof becomes
a bit shorter if we use Theorem 5 in [HZ], we give here a more direct proof
of this implication. Let a € A and € > 0 be given as in condition (ii). Let
€0 = Sup,cp(a) |7(a)| < e. We decompose the second dual von Neumann al-
gebra A™ into the finite summand Af* and the properly infinite summand
A%r. We denote the corresponding embedding of A by 7y and 7., and
the center-valued trace of Af* by ctr. We note that || ctr(m¢(a))|| = eo.
By the Dixmier approximation theorem, there are vi,...,v; € U(AF")
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such that || ctr(me(a)) — 1 le vime(a)v]| < € —ep. On the other hand,
by Halpern’s theorem ([Hal]), there are wi,... ,w; € U(AL) such that

7 22:1 wiToo (a)w}|| < €. Before giving the detail of the proof of this fact,
we finish the proof of (i) = (ii). By allowing multiplicity, we may assume
that k = [ and consider u; = v; ® w; € A**. Then, |1 Z§:1 wiaul]| < €
in A**. For each i, take a net (u;(\))) of unitary elements in A which
converges to u; € A* in the ultrastrong*-topology. By the Hahn-Banach
theorem, conv{} Zle u;i(A)au;(N)*}x contains an element of norm less than
€.

Now, we explain how to apply Halpern’s theorem. Let Z (resp. I) be
the center (resp. strong radical) of A%*. Let A be the directed set of all
finite partitions of unity by projections in Z, and A = {py;}; € A be given.
Applying the QTS property to the non-zero x-homomorphism A > z +—
Pri(Too(z) + I) € pai((To(A) +I)/I), one obtains a (tracial) state 7y ; on
Too(A) 4+ I such that 7y ;(px;) =1, h:(1) = 0, and |7y i(7eo(a))| < 0. Let
T, be a state extension of it on py ;A%r. We define the linear map ¢y : A% —
Z by pa(x) =D, Tni(x)prs, and take a limit point ¢: A%} — Z. The map
¢ is a unital positive Z-linear map such that (1) = 0 and ||p(7e0(a))]| < 0.
By Halpern’s theorem (Theorem 4.12 in [Hal]), the norm-closed convex hull
of the unitary conjugations of m(a) contains (7 (a)).

Ad (ii) = (i). Suppose that there is a closed two-sided proper ideal I in A
such that A/I does not have a tracial state. Let e, be the approximate unit
of I. Then, one has 7(1 —e,) \, 0 for every 7 € T(A). By Dini’s theorem,
there is n such that ¢ = 1 — e, satisfies 7(¢) < 1/2 for all 7 € T(A). By
condition (ii), there are uy, ... ,u, € U(A) such that ||+ Z?:l wiqut|| < 1/2,
which is in contradiction with the fact that Zle uiqu; € 1+1.0

PROOF OF THEOREM 2. The implication (iv) = (iii) is obvious and
(iii) = (i) is standard: Since amenability implies nuclearity by Connes’s
theorem ([Co]), we only have to prove the QTS property. Let (A,), be
a symmetric approximate diagonal and define ma(a) = >, z;ay; for A =
Y, ri®y € A®c A and a € A. Then, for any proper ideal I in A and
a state ¢ on A such that ¢(I) = 0, any limit point 7 of (¢ oma, ), is a
bounded trace such that 7(I) = 0 and 7(1) = 1. By polar decomposition,
one obtains a tracial state on A which vanishes on I.

We prove the implication (i) = (ii) = (iv). Since A is nuclear, it is
amenable thanks to Haagerup’s theorem (Theorem 3.1 in [Hal]). Moreover,
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there is an approximate diagonal (Al), in the convex hull of {z* ® z :
llz]] < 1}. We note that &, := ||1 — m(A/,)|] — 0. We fix n for the mo-
ment and write A, = Y. ® x;. By replacing x; with ; m(A!) 712 we
may assume m(A/) = 1 but >, ||z;||* < (1—e,) "', Since 7(3; ziz}) = 1 for
all 7 € T(A), Theorem 1 provides ug,...,u; € U(A) such
that ||%Z§:1 Yuririuil| < 14 e, Thus, A, = %Z” Tiui @ ujw;
satisfies condition (ii). Now, rewrite A, as >, yf ® y;. Then, Al =
> y:]|?) 2 Z” Yy ® y;-‘yi is a symmetric approximate diagonal that
meets condition (iv). OJ

3. Trace Zero Elements and Commutators

In this section, we consider the trace zero elements in a C*-algebra. A
simple application of the Hahn—Banach theorem implies that a € A satisfies
7(a) = 0 for all 7 € T(A) if and only if it belongs to the norm-closure of the
subspace [A, A] spanned by commutators [b, c] = bc—cb, b, ¢ € A. Moreover,
such a can be written as a convergent sum of commutators ([CP]). There
are many works as to how uniformly this happens ([PP, Fa, FH, Ma, Po]
just to name a few). The following fact is rather standard.

THEOREM 5. There is a constant C > 0 which satisfies the following.
Let A be a C*-algebra and a € A and e > 0 be such that sup,cp(a) |7(a)| < e.

Then, there are k € N and b; and ¢; in A such that Zle 10i|lllcill < C|lal|
k
and [la =3y [bi, ci]|| <e.

Unlike the case for von Neumann algebras, there is no bound on k in
terms of € and ||a|| that works for general C*-algebras. A counterexample
is constructed by Pedersen and Petersen (Lemma 3.5 in [PP]: the element
Tn—Yn € [Apn, Ap] constructed there has the property that || (z,—yn)—2| > 1
for any sum z of n self-commutators). This also means that &k in Theorem 1
depends on the particular element a in A. Nevertheless one can bound k
under some regularity condition. Recall that A is said to be Z-stable if
A = Z® A for the Jiang—Su algebra Z. The Jiang—Su algebra Z is a simple
C*-algebra which is an inductive limit of prime dimension drop algebras and
such that Z = Z%% (Theorem 2.9 and Theorem 4 in [JS]).

THEOREM 6. There is a constant C > 0 which satisfies the following.
Let A be an exact Z-stable C*-algebra, and ¢ > 0 and a € A be such
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that sup,cpay|7(a)] < e. Then, for every R € N, there are b(r) and c(r)
in A such that Y701 [b(r)lle(r)|| < Clla]| and Ja — 3272, [b(r), e(r)]]| <
e+ Clla||R/2.

PrROOF OF THEOREM 5. Let a € A. We denote by ctr the center-
valued trace from the second dual von Neumann algebra A** onto the
center Z(Af*) of the finite summand Af* of A**. One has | ctr(a)|| =
sup,cr(a) [T(a)] < € and @’ := a — ctr(a) has zero traces. By a theorem of
Fack and de la Harpe, for C = 2 - 122 and m = 10, there are b;,¢; € A**
such that ", [|bill|lei|| < Clla]| and o' = > [bi, ¢i]. See [Ma, Po] for
a better estimate of C' and m. By Kaplansky’s density theorem, there is
a net (b;(\))x in A such that [|b;(A)|| < ||bi]| and b;(A) — b; ultrastrongly.
Likewise for (¢;(A))a. Since

m

[im(a — DB, s = lla — ')l <,

=1

there is a” € conv{} ;" [bi(A), c;(\)]}x which satisfies [la — a”| <e. O

The proof of Theorem 6 is inspired by [Ha2] and uses the free semi-
circular system and random matrix argument of Haagerup—Thorbjgrnsen
([HT]). Let O be the Cuntz algebra generated by isometries [;(r) such
that I;(r)*l;(s) = 6; j6r.s, and let S;(r) := {;(r) +1;(r)* be the corresponding
semicircular system. We note that € := C*({S;(r) : ¢,r}) is *-isomorphic
to the reduced free product of the copies of C([—2,2]) with respect to the
Lebesgue measure (see Section 2.6 in [VDN]), and the corresponding tracial
state coincides with the restriction of the vacuum state on O to €.

LEMMA 7. Let bj,¢c; € A be such that ||b;|| = [|c;l|. Then, for every
R €N, letting b(r) = > i, Si(r) ® b; and &(r) =327, Sj(r) ® ¢j, one has

R
%Z o(r)lller)l < 4 billlles]

and

R

n 1 ~ ) 6
11® ;[bi,&l] 7 Z[b(r),c(r)]” < i ; 11B: llcs]-

r=1
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ProOF. For every r, one has

o)l < 11D L(r) @ball + 1D Li(r)* @ bil
= | D0l 1D bl < 23 b)Y,

and likewise for é(r). It follows that ||b(r)||||¢(r)]| < 4 3 ||bs]|||ei]|. Moreover,

b(r)e(r) =Y (8i1+ Li(r)i(r) + L) (r)* + Li(r) 1 (r)*) @ bicj,

,J
and
1D L) () @ bics|| = 1D e5bibici |2 < RY2 S |[bil[lell,
7%, 78,7 7
1> L) 3(r)* @ bics | = 1Y bic;ejb; |2 < RWZ 152l lles ],
7%, 7%,
1> (r) ®bcg|r—maxuzz ®chH<ZHb el
]

Likewise for &(r)b(r), and one obtains the conclusion. [J

PrROOF OF THEOREM 6. Let a € A \ {0} be such that
SUD,er(ay |7(a)| < e. Since Z = Z®%° we may assume that A = Z ®
Ap and a € Ag. By Theorem 5, there are b;,¢; such that [|bi] = |lall,
S billllell < Cllall, and fla — % [bs, ¢]|| < e. Recall the theorem of
Haagerup and Thorbjgrnsen ([HT]) which states that the C*-algebra € can
be embedded into [[ M,/ @ M,,. By exactness of Ay, there is a canonical
*-isomorphism

(JIM./ P M) @ Ao = (][ Mn) @ Ao)/ (@D M., @ Ag).

Lemma 7, combined with this fact, implies that there are matrlces s )( ) €

(n
M, such that 5™ (r) = % 5’”( ) @ b; and & (r) = Y5 s (r) @ ¢
satisfy

lim sup 2 Z B ) 1™ ()| < 4D llbillles]) < 4Cal|
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and

limsup |1 ®a — i ), &™) ()] < e+ 6Cla
n — - VR

For every relatively prime p,q € N, the Jiang—Su algebra Z contains the
prime dimension drop algebra

I(p,q) ={f € C([0,1],M, ® M) : f(0) e M,, ® C1, f(1) € C1 ® M}

and hence tM, and (1 —¢)M,, also, where t € I(p, ¢) is the identity function
on [0,1]. Tt follows that there are b(r),c(r),b'(r),d(r) € Z ® Ay such that

R
EZ I | + BN < 9Cal
and
R
Ja 223 + (), <>1>|r<z—:+73”g”.

Here, we note that ||t ® z + (1 — t) ® y|| = max{||z||, |ly|} for any 2 and
y. U

Let (Ay)n be a sequence of C*-algebras and U be a free ultrafilter on N.
We denote by

[T4n = {(an);2: : an € An, sup [lan|| < +oo}
the loo-direct sum of (A,), and by

TT An/tt = (T An)/A(@n)32y : limgg | = 0}
the ultraproduct of A,. For every m, we view 7 € T(4,,) as an element
of T([] An) by 7((an)n) = 7(am). For each (7,), € [[T(A,), there is a

corresponding tracial state 7, := limy7, on [[ A, /U, defined by

Tu((an)n) = limy 7, (ay).
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The set of tracial states that arise in this way is denoted by [[T(Ay)/U. We
note that as soon as 0T (][ An/U) is infinite, the inclusion [[T(A4,)/U C
T(]] An/U) is proper (see [BF]). Moreover, if we take A,, to be the coun-
terexamples of Pedersen and Petersen ([PP]), then [[T(An)/U (resp.
conv | |T'(Ay)) is not weak*-dense in T'([[ An/U) (resp. T([[ An)). The fol-
lowing theorem is proved by Sato [Sal] (see also [Rg]) in the case where
A is a simple nuclear C*-algebra having finitely many extremal tracial
states.

THEOREM 8. Let (A,)n be a sequence of exact Z-stable C*-algebras
and U be a free ultrafilter on N. Then, [[T(An)/U (resp. conv| |T(A,))
is weak*-dense in T([] An/U) (resp. T(]] An )) In particular, for every
7 € T([TAn/U) and every separable C*-subalgebra B C [[ An/U, there is
7 e [[T(An) /U such that T|p = T'|B.

PROOF OF THEOREM 8. Let A be either [[ A, or [[ An/U, and denote
by ¥ C T(A) either conv(| |T'(A,)) or [[T(A,)/U accordingly. Suppose
that the conclusion of the theorem is false for ¥ C T'(A). Then, by the
Hahn-Banach theorem, there are 7 in T'(A) and a self-adjoint element ag
in A such that v := 7(ag) — supyex 0(ag) > 0. Let o = (|infyex o(ag)| —

7(ap)) V 0, and take b € A4 such that 7(b) = « and [|b|| < a + . It follows
that a = ag + b satisfies sup, ¢y |o(a)| < 7(a). Now, expand a € A as (an)n.
We may assume that |la,| < ||a|| for all n. Let I € U (or I = N in case
A =[] An) be such that g9 := sup,c; Supser(a,) o(an) < 7(a). Let R € N
be such that e; := g9 + C|ja||R~Y? < 7(a). Then, by Theorem 6, for each
n € I there are b,(r),c,(r) € A, such that Zle 16n (") | llen ()| < Cllal|
and ||a, — Zle[bn(r),cn(r)m < ¢;. It follows that for b(r) = (b,(r)), and
c(r) = (cn(r))n € A, one has
R R
7(a) = 7(a— Y _[b(r),e(r)]) < lla =Y _[b(r), e(r)]]| < r(a),
r=1 r=1
which is a contradiction. This proves the first half of the theorem.

For the second half, let 7 and B be given. Take a dense sequence
(z(7))$°, in B and expand them as (i) = (2, (7))n. By the first half, for
every m, there is (Tn ) € [IT(Ay) such that |7(z(7)) —Tu ( (1)) <m~
fori=0,...,m. Let

Ip={neN:|r(z(i) — 7™ (z,()) <m  foralli =0,... ,m} el
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(so Iy = N), and J,, = (2oL, € U. We define 7, to be ™ for n €
JIm \ Jm+1. It is not too hard to check 7 = 7y on B. O

In passing, we record the following fact.

LEMMA 9. Let A be a (non-separable) C*-algebra and X C A be a sep-
arable subset. Then there is a separable C*-subalgebra B C A that contains
X and such that the restriction from T(A) to T(B) is onto.

PrROOF. We may assume that A is unital. We first claim that for every
T1,...,Tn, € A and € > 0, there is a separable C*-subalgebra C' which
satisfies the following property: for every 7 € T'(C') there is o € T'(A) such
that max; |7(x;) — o(z;)| < e. Indeed if this were not true, then for every C
there is 7¢ € T'(C') such that max; |7¢(x;) —o(x;)| > € for all o € T'(A). The
set of separable C*-subalgebras of A is upward directed and one can find
a limit point 7 of {7¢}. Then, we arrive at a contradiction that 7 € T'(A)
satisfies max; |7(z;) — o(x;)| > € for all 0 € T(A). We next claim that
for every separable C*-subalgebra By C A, there is a separable C*-subalge-
bra By C A that contains By and such that Resp, T'(B1) = Resp, T'(A) in
T(By), where Res is the restriction map. Take a dense sequence x1, zg,. ..
in By, and let Cy = By. By the previous discussion, there is an increasing
sequence of separable C*-subalgebras Cy C C7 C --- such that for every
7 € T(C,) there is 0 € T(A) satisfying |7(z;) — o(x;)| < n~! for i =
1,...,n. Now, letting By = J,, C, and we are done. Finally, we iterate this
construction and obtain X C By C By C --- such that Resp, T'(Bp11) =
Resp, T(A). The separable C*-subalgebra B = J B,, satisfies the desired
property. [

Murphy ([Mu]) presents a non-separable example of a unital non-simple
C*-algebra with a unique faithful tracial state and asks whether a separable
example of such exists. The above lemma answers it. There is another
example, which is moreover nuclear. Kirchberg ([Ki]) proves that the Cuntz
algebra O (or any other unital separable exact C*-algebra) is a subquotient
of the CAR algebra Miy~. Namely, there are C*-subalgebras J and B in Maeo
such that J is hereditary in Me and is an ideal in B such that B/J = O.
It follows that B is a unital separable nuclear non-simple C*-algebra with a
unique faithful tracial state.
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4. Uniform 2-Norm and the Completion

Recall S € T(A), N = (@,cq7-)(A)”, and the center-valued trace
ctr: N — Z(N). Since S is a closed face of T'(A), any normal tracial state
on N restricts to a tracial state on A which belongs to S. Hence, one has

lallz,s = sup{llal|z;- : 7 € S} = sup{[lallz,r : 7 € 3} = || ctr(a*a)|| /2.

Since S is a metrizable closed face of the Choquet simplex T'(A), it is also
a Choquet simplex and there is a canonical one-to-one correspondence

S57 € ML(DS), T(a) = /A(a) dpir () for a € A.

By uniqueness of the representing measure ., this correspondence is an
affine transformation and extends uniquely to a linear order isomorphism
between their linear spans.

LEMMA 10. For every T € S, there is a normal *-isomorphism 0 :
L>®(0S, pur) — Z(mr(A)") such that

/f a) dpr(A)

PrROOF. Let f € L*(0S,u;) be given. The right hand side of the
claimed equality defines a tracial linear functional on A whose modulus is
dominated by a scalar multiple of 7. Hence, by Sakai’s Radon—-Nikodym
theorem, there is a unique 0.(f) € Z(n.(NN)) that satisfies the claimed
equality. This defines a unital normal positive map 6, from L*°(9S, u;)
into Z(m;(A)"). Next, let z € Z(7(N))+ be given. Then, the tracial linear
functional z7 on A defined by (27)(a) = 7(az) is dominated by ||z||7. Hence
one has i, < HZH,UT and z = 97<d,uz7—/d,u7—> with dﬂzr/d,uT € Loo(aS’ M’r)'
This proves 6, is a positive linear isomorphism such that pg 5y = fur
Therefore one has pg_(rg)r = f9lr = flie,(g)r = Ho.(f)6,(g)r>» Which proves

0-(fg9) = 0-(f)0-(g). U

ProOr oOF THEOREM 3. We first find the x-homomorphism 6:
B(0S) — Z(N) that satisfies
/f a) dpr (M)

forae A.
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for every a € A and 7 € S, or equivalently, 7 (0(f)) = 0-(f) in m(A)".
For this, it suffices to show that the maps 0;|p(ss), given in Lemma 10, are
compatible over 7 € S. We recall that associated with the representation 7.,
there is a unique central projection p, € Z(N) such that (1—p,;)N = ker 7.
Since pr V ps = P(r40)/2, the family {p; : 7 € S} is upward directed and
sup, pr = 1. We will show that if 7 and ¢ are such that 7 < C'o for some
C > 1, then 0.(f) = p0,(f) in Z(N). We note that p, is the support
projection of dr/do € Z(N). For every f € B(0S5), one has

o6 N = [ (d“”f)(A)A( ) diao ()
- / FA@) dpr(A)

and p;0,(f) = 0-(f) in Z(N). Therefore, we may glue {0;},cs togeth(f;r
and obtain a globally defined *-homomorphism 0: B(0S) — Z(N). Since
T(0(a)) = [ a(X)dp-(A) = 7(a) for every 7 € S, one has 6(a) = ctr(a) for
every a € A. This proves the first part of the theorem.

This implies 6, (dﬁ; f) = 90.(f) for every f. In particular, 6, (dﬁf) = dr

For the second part, it suffices to prove
A 5 {z € N:ctr(zA) C Aff(9S), ctr(z*z) € AF(DS)},

as the converse inclusion is trivial. Take z from the set in the right hand
side. We will prove a stronger assertion that if a net (b;); in A converges
to x ultrastrongly in IV, then z is contained in the strict closure of the
convex hull of {b; : j}. We note that Aff(S) > f — flas € Aff(9S) is an
affine order isomorphism and that every positive norm-one linear functional
p on Aff(S) is given by the evaluation at a point 7, € S. (Indeed by
the Hahn-Banach theorem, we may regard p as a state on C(S), which
is a probability measure on S by the Riesz—Markov theorem. The point
T, = [ Adu()) satisfies f(7,) = p(f) for f € Aff(S).) Thus, one has
ctr((bj — )*(b; — x)) — 0 weakly in Aff(0S5). Therefore, by the Hahn-
Banach theorem, for every € > 0 there is a finite sequence o;; > 0, > oj =1
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such that || >, ajctr((b; — z)*(b; — 2))|| < . By reindexing, we assume
j=1,... k. Let b= a;b;. We note that

1/2

aq b1
b = ai/z e a}r{2:| : =:TcC.
a,ﬁ{Qbm

Hence, b*b = c*r*re < ||r||>c*c = Y7 a;b5b;. Tt follows that

ctr((b —x)*(b—z)) = ctr(b*b — b*z — x™b + x™x)

< ctr(z a;bib; — Z ajbir — x* Z ajb; + z*x)
= ctr(Y | a;(b; — 2)*(b; — x))

< E.

This proves the claimed inclusion. The last assertion will be proved in more
general setting as Theorem 11. [

5. Continuous W*-Bundles

Let K be a metrizable compact Hausdorff topological space. We call M
a (tracial) continuous W*-bundle over K if the following axiom hold:

(1) There is a unital positive faithful tracial map E: M — C(K).

(2) The closed unit ball of M is complete with respect to the uniform
2-norm

Iz = | E(z"2) 2.

(3) C(K) is contained in the center of M and F is a conditional expecta-
tion.

In case M satisfies only conditions (1) and (2), we say it is a continuous
quasi-W*-bundle. If we denote by g the GNS representation of M on the
Hilbert C(K)-module L?(M, E), condition (2) is equivalent to that 7z (M)
is strictly closed in B(L?(M, E)). For each point A € K, we denote by
m) the GNS representation for the tracial state 7, := evyoFE, and also
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[2]l2.n = Ta(z*2)/2. We call each 7y (M) a fiber of M. A caveat is in order:
the system (M, K,m\(M)) need not be a continuous C*-bundle because
ker my may not coincide with Co(K \ {\})M—rather it coincides with the
strict closure of that. In particular, for x € M, the map X\ — ||m)\(z)|| need
not be upper semi-continuous (but it is lower semi-continuous). The strict
completion A studied in Section 4 is a continuous quasi-W*-bundle over
S, and by Theorem 3, it is a continuous W*-bundle over 95 if 0.5 is closed
in S. Conversely, if each fiber m)\(M) is a factor, then K can be viewed
as a closed subset of the extreme boundary of 7'(M) and hence the closed
convex hull S of K is a metrizable closed face of T'(M) such that 0S = K.

THEOREM 11. Let M be a continuous W*-bundle over K. Then,
(M) = 7x(M)" for every X\ € K. Moreover, if a bounded function
f: K2 X— f(X\) € ma(M) is continuous in the following sense: for every
Ao € K and € > 0, there are a neighborhood O of A\g and ¢ € M such that

sup |[ma(c) = f(N) ]2 < €
A€O

then there is a € M such that my(a) = f(N).

PrROOF. Let A € K be given. By Pedersen’s up-down theorem (The-
orem 2.4.4 in [Pe]), it suffices to show that 7)(M) is closed in 7y(M)"”
under monotone sequential limits. Let (z,)52, be an increasing sequence in
mx(M)4 such that z,, /" @ in wx(M)"”. We may assume that ||z, — x|z <
27" We lift (x,)0%, to an increasing sequence (an)2%, in M such that
an < ||lz|| + 1. Let b, = ap — an_1 for n > 1. Since 75(bib,) < 47 "2, there
is fn € C(K)4 such that 0 < f, <1, fo(\) = 1, and |[E(bby) f2]] < 4772
It follows that the series ag+Y oo by fr is convergent in the uniform 2-norm.
Moreover, since ag+ Y p—q b fe < ao+ D pq bk = an < ||lz| +1, the series is
norm bounded. Therefore, the series converges in M, by the completeness
of the closed unit ball of M. The limit point a satisfies 7y (a) = =.

We prove the second half. Let us fix n for a while. For each A, there
is by € M such that ||by| < [[f(N)] and mx(bx) = f(A). By continuity,
there is a neighborhood Oy of A such that |7, (b)) — f(7)|l2 < n~! for
7 € O). Since K is compact, it is covered by a finite family {O,,}. Let
gi € C(K) C Z(M) be a partition of unity subordinated by it. Then, a,, :=
22 9ibx; € M satisfies [lan|| < ||flloo and sup, [|7r(an) = f(7)ll2r < 07"
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It follows that (ay) is a norm bounded and Cauchy in the uniform 2-norm.
Hence it converges to a € M such that my(a) = f(X) for every A € K. [

The following is a W*-analogue of the result for C*-algebras in [HRW],
and is essentially the same as Proposition 7.7 in [KR].

COROLLARY 12. Let M be a continuous W*-bundle over K. Assume
that each fiber wx(M) has the McDuff property and that K has finite cov-
ering dimension. Then, for every k, there is an approximately central ap-
proximately multiplicative embedding of My into M, namely a net of uni-
tal completely positive maps p,: My — M such that limsup,, ||on(xy) —
en(x)en(y)ll2n = 0 and limsup, [[[pn(2), a]ll2u = 0 for every x,y € My
and a € M.

PrRoOOF. The proof is particularly easy when K is zero-dimensional:
Since ) (M) is McDuff, there is an approximately central embedding of M,
into 7y (M). We lift it to a unital completely positive map ¥y : My — M. It
is almost multiplicative on a neighborhood O, of A. Since K is compact and
zero-dimensional, there is a partition of K into finitely many clopen subsets
{Vi} such that V; C O,,. By Theorem 11, one can define ¢: M — M by
the relation 7y o ¢ = my o9y, for A € V;. The case 0 < dim K < 400 is
more complicated but follows from a standard argument involving order-
zero maps. See Section 7 in [KR] (or [Sa2, TWW]) for the detail. (]

Every separable hyperfinite von Neumann algebra with a faithful normal
tracial state has a trace preserving embedding into the separable hyperfinite
IT; factor R. We consider coordinatization of such embeddings for strictly
separable fiberwise hyperfinite continuous quasi-W*-bundle. We define the
C*-algebra C,(K,R) to be the subalgebra of ¢, (K, R) which consists of
those norm-bounded functions f: K — R that are continuous from K into
L*(R,TR).

THEOREM 13. Let M be a strictly separable continuous quasi-W™*-
bundle over K such that wx(M)" is hyperfinite for every A\ € K. Then,
there are an embedding 6: M — C,(K,R) and embeddings ty: mx(M) — R
such that evy o = 1y omy. If M is moreover a continuous W*-bundle, then
one has

O(M) ={f € Co(K,R) : f(A) € (1t omn)(M)"}.
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Recall the fact that if (A,7) is a separable hyperfinite von Neumann
algebra with a distinguished tracial state, then a trace-preserving embedding
of A into the tracial ultrapower R* of the hyperfinite II; factor is unique
up to unitary conjugacy (see [Ju]). For every n-tuples z1,...,2, € P and
Yi,--- ,Yn € @ in hyperfinite I factors P and @, we define

d({witizy, {yitizt) = inf max||m(2:) — p(y)ll2,

where the infimum runs over all trace-preserving embeddings of P and @
into R¥. Then, d is a pseudo-metric and it depends on (W*({z1,... ,x,}),
7), i.e., the joint distribution of {x1, ... , 2z, } with respect to 7p, rather than
the specific embedding of W*({x1,... ,2,}) into P. Once *-isomorphisms
P 2 Q =R are fixed, P and ) are embedded into R¥ as constant sequences
and

d({x¥iy, {y},) =  inf Ady(z;) — yill2.
({zitizis {witiz1) Uebgnw)m?X!! u(i) = yill2

It follows that
d({zi}ioy, {yikiny) = mfmax |7 (zi) — yill2,

where infimum runs over all trace-preserving x-homomorphisms 7« from

W*({x1,... ,xz,}) into @, or over all x-isomorphisms 7 from P onto Q.
If M is a continuous quasi-W*-bundle, then for every ai,...,a, € M, the
map

K3 A= {m(ai) i,
is continuous with respect to d.

LEMMA 14. Let N = C,(K,R) or any other continuous W*-bundle
over K such that evy(N) = R for every A € K and such that for every k € N
there is an approximately central approximately multiplicative embedding of
My, into N. Let M be a continuous quasi-W*-bundle over K such that
mA(M)" is hyperfinite for every A € K, and let Fy C Fy be finite subsets in
the unit ball of M and € > 0. Assume that there is a map 0y from Fy into
the unit ball of N such that

sup d({mx(a)}aery; {eva(00(a)) }acry) < e
AEK
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Then, for every 6 > 0, there is a map 61 from Fy into the unit ball of N
such that

sup d({mx(a)}aery; {eva(01(a)) tacr) <6
AeK

and

max |61 (a) — fo(a) 2 <&

Here the symbol ev), instead of my, is used for the N side to make a
distinction from the M side.

ProOOF. For each A, there is a trace-preserving embedding p):
(M) — eva(N). By the remarks preceding this lemma, we may assume
that

max [|px(ma(a)) — eva(fo(a))[l2 <e.

For each a € Fy, we lift (py o my)(a) € eva(N) to a* € N with [ja*|| < 1.
There is a neighborhood O) of A such that 7 € O, implies

d({m-(a)}acr, {evr(a*) }aer) < 6
and

max || ev,(a) — ev,(6p(a))||2 < e.
a€Fy

By compactness, K is covered by a finite family {OAJ.}. Take a partition of
unity g; € C(K) subordinated by {Oy,}. Let hg = 0 and h; = >>7_, g;. For
each k, take an approximately central approximately multiplicative embed-

ding ¢y, ,, of M, into N. Since the closed unit ball of M, is norm-compact,
one has

Va € N limsup sup{||[prn(z),d]|l2u: € Mg, ||z]| <1} = 0.

For t € [0, 1], we define p; € My, to be diag(1,...,1,t — [¢],0,...,0), with
Is in the first |¢] diagonal entries, ¢t — [t in the (|¢] + 1)-th entry, and Os
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in the rest. It follows that t — p; is continuous, 0 < p; < 1, tr(p;) = t, and
7(ps — p?) < (4k)~1. We write Plsy] = Pt — Ps- With the help of Theorem
11, we define f , ; € N to be the element such that

eVa(fin,i) = eVa(@rn(Plr;_ (0),0;(0])-

For a € F1, we define 0" (a) € N by oF" (a) = -fl/2 a 7% Since
1 1 7

k7n7j k7n7j.
F|:= Fyu{a% : a € Fy, j} is finite, it is not too hard to see

lim sup lim sup max He’f’”(a) —bp(a)ll2u < €.
k n aclFy

It remains to estimate

d({7-(a)}aer,, {ev- (01" () bacr)-

Let k be fixed for the moment. Since (¢, 5, )n is approximately multiplicative,
there are unital x-homomorphisms ¢7 , : M, — ev-(IN) such that

lim sup sup sup H evr Oﬁpk,n(x) - wgn(w)Hz = 0.
n T xzeMy, [|z||<1

Let EJ , be the trace-preserving conditional expectation from ev,(N) onto
the relative commutant Y7 (My)' N ev-(N), which is given by ET  (b) =
Gl ea Y7, (WbYf | (u)* for the group G of permutation matrices in
U(My). It follows that

limsupsup || evr(b) — Ef ,(evr(b))[2 =0

n T

for every b € N. This implies

lim sup . Sug d({ﬂ-T(a)}GEFN {El::—,n(eVT(a)\j))}aEFﬁ) < 67
n 7, TE by

limsup suIO) d({ev,(a™)}aer,, {Eg,n(evr(a)‘f))}aepl) =0,
n 1, TE >‘j
and

limsup sup d({evT(Glf’n(a))}aeFl ,
n 7 TGOAJ.

O WPy 2000, 00) Ern(eve (@) Yaer ) = 0.
i
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If we view ev,(N) = My (¢f ,(Mg) Nev(N)), then o' = Ef | (ev;(a)) looks
like diag(a’,d’, ... ,a’), and ¥f. ,(pe) looks like diag(1, ... ,1,¢—[t],0...,0).
Hence, one has

sup d({m-(a)Yaers D ka0t _ 0y 00 B (€V7(a) Yac )
j

2{Ox, }| , |
< T r + Z 9;(T)d({mr(a) }aeF {Ek,n(eVT(a)\J ))}a€F1)2-
J
Altogether, one has

limksup lim sup sup d({m-(a) ey, {ev+ (05" (a) Yaer, ) < 6.

Therefore, for some k, n, the map 6, = Glf’n satisfies the desired properties. [J

PrROOF OF THEOREM 13. Let (ay,)0; be a strictly dense sequence in

the unit ball of M. We use Lemma 14 recursively and obtain sequences
({O0n(ai)}1-1)5>; in Cy(K, R) such that

Sup d({eva(On(ai)) iz, {malai) bis,) <27"
and

Cmax |0n(a;) — Ono1(a;)l|2n < 2770,
i=1,...,n—1

Then, each sequence (0,,(a;))s2; converges to an element 6(a;) € Cr(K,R).

The map 6 extends to a *-homomorphism from M into C, (K, R), and ev) of

factors through 7. This proves the first assertion. The second follows from
Theorem 11. J

We give a criterion for a continuous R-bundle to be a trivial bundle.

THEOREM 15. Let M be a strictly separable continuous W*-bundle
over K such that m\(M) = R for every A\ € K. Then, the following are
equivalent.

(i) M = C,(K,R) as a continuous W*-bundle.
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(ii) There is a sequence (py)n in M such that 0 < p, < 1, [[pn—p2|l2.u — 0,
|E(prn) —1/2|| — 0, and ||[pn, a]|l2u — O for alla € M.

(iii) For every k, there is an approximately central approximately multi-
plicative embedding of My, into M.

PrOOF. The implication (i) = (ii) is obvious. For (ii) = (iii), we we
observe that since 7y (M)’s are all factors, the central sequence (p,,), satisfies
|E(pna) — E(pn)E(a)|| — 0 for every a € M. Indeed, let a € M and € > 0
be given. By the Dixmier approximation theorem and the proof of Theorem
3, there are uy,... ,u € U(M) such that |E(a) — %Zle wiau] |2 < e. It
follows that

k
limsup || E(p) E(a) — E(pna)|| = lim sup | E(p, Z (uipnauy)
e
= limsup | E(pa(E(a) - 2;
< E.
Let m € N be arbitrary. For a given finite sequence (py)nq, 0 < p; < 1,

and v € {0,1}™, we define ¢, € M by

qv = r}/z . Ti{21rmT:yL/21 1/2 e M,
where r; = p; or 1 — p; depending on v(i) € {0,1}. We note that ¢, > 0
and > ¢, = 1. By choosing (p,)", appropriately, we obtain an approxi-
mately central approximately multiplicative embedding of /o, ({0, 1}™) into
M. Now, condition (iii) follows by choosing at the local level approximately
central approximately multiplicative embeddings of M, into 7y (M) and glue
them together, as in the proof of Lemma 14, by an approximately central
approximately projective partition of unity.

The proof of (iii) = (i) is similar to that of Theorem 13. Let (ay)52,
(resp. (bn)22,) be a strictly dense sequence in the unit ball of M (resp.
Cy(K,R)). We recursively construct finite subsets F; C Fy C --- of M and
maps 6, F, — Cy(K,R) such that {a1,...,an} C Fp,

Sl;\p d({ev)\(en(a))}aGan {71',\((1)},16}7‘”) < 2—717
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max [|6,(a) — O,_1(a)|ou < 277,

ackF, 1

and {b1,...,b,} C 0,(F,). Let Fy = 0 and suppose that we have con-
structed up to n — 1. Let F), = F,,_1 U{a,}. We use Lemma 14 and obtain
amap 0], : F, — C,(K,R) such that

Sup d({eva(0),(a) }acrr, {mx(a) acry) < 27
and

max ||0),(a) — 0p—1(a)|l2u < o~ (n—1),

a€Fn_1

We may assume that 6/, is injective and 6/ (F),) does not contain any of
bi,...,b,. Weuse Lemma 14 again but this time to 6/, (F)) C F := 0] (F!)U
{b1,... by} and (6,,)" 1. Then, there is 1o: F' — M such that

sup d({m (¥ (0) bye - {eva () }oerr) < 9—(n+1)

and

max [|a — (60, (a))| 20 < 27D,
a€F}

Now, we set F,, = F, U {¢(b1),...¢¥(b,)} (which can be assumed to be
a disjoint union) and define 6,,: F,, — Cy(K,R) by 6, = 0, on F] and
0, (¢ (b;)) = b;. One has

Sup d({eva(On(a))}acF,, {mr(a) }acF, )
< Slip(d({e‘//\(b)}beﬁy {ma(@ () ) + max [7A(1(05,(a))) — ma(a)l2)
< 27"

as desired. By taking the limit of (6,,),, one obtains a *-isomorphism 6 from
M onto C,(K,R). O

By combining Corollary 12 and Theorem 15, one obtains the following
W*-analogue of Theorem 1.1 in [DW]. This also implies Theorem 4. It is
unclear whether the finite-dimensionality assumption is essential.
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COROLLARY 16. Let M be a strictly separable continuous W*-bundle
over K. If every fiber m\(M) is isomorphic to R and K has finite covering
dimension, then M = Cy(K,R) as a continuous W*-bundle.
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