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A Generalized Hypergeometric System

By Hiroyuki OcHIAI and Uuganbayar ZUNDERIYA

Abstract. We give a combinatorial formula of the dimension of
global solutions to a generalization of Gauss-Aomoto-Gelfand hyperge-
ometric system, where the quadratic differential operators are replaced
by higher order operators. We also derive a polynomial estimate of the
dimension of global solutions for the case in 3 x 3 variables.

1. Introduction

A new type of hypergeometric differential equations was introduced and
studied by H. Sekiguchi in [17], [18]. The investigated system of partial
differential equation generalizes the Gauss-Aomoto-Gelfand system which in
its turn stems from the classical set of differential relations for the solutions
to a generic algebraic equation introduced by K. Mayr in [15].

Gauss-Aomoto-Gelfand systems can be expressed as the determinants of
2 x 2 matrices of derivations with respect to certain variables. The Gauss-
Aomoto-Gelfand hypergeometric system arises in numerous problems of al-
gebraic geometry, partial differential equations, the theory of special func-
tions, representation theory and combinatorics. It has been in the focus of
intensive research since its introduction by K. Aomoto in 1977. H. Sekiguchi
generalized this construction by looking at determinants of [ x [ matrices of
derivations with respect to certain variables.

In this paper we study the dimension of global solutions to the general-
ized systems of Gauss-Aomoto-Gelfand hypergeometric systems. The main
results in the paper are the combinatorial formula for the dimension of global
(and local) solutions of the generalized Gauss-Aomoto-Gelfand system.

1.1. Generalized Gauss-Aomoto-Gelfand hypergeometric sys-
tems

Let k and n be integers such that 0 < k < n and o = (aq, 2, ... ,ap),

B =(061,02,...,0n) € C". Let M(n,C) be the space of n x n complex ma-
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211 "t Zln
trices Z = S . Consider the systems of partial differential
Znl " Znn
equations, denoted by M and N, (e, B), for a holomorphic function ¢(Z)
of n? variables Z = (z;;) € M(n,C) ~ cr*:

( 9 ... 9

0z 41 8zi1jk+1
(M) o ... _o
9ziy 171 OZiy  1ipa
1<V < -+ < Vigy <,
1<V < <Vjgp1 <n

and
" 0
ZZZJWJQZ)(Z) = aj¢(Z)’ jzla"'ana
(N, 8)) sl
0
Zzz-qub(Z) = Bio(2), i=1,...,n.
=1 Y

We will denote by E,gk)(a, () the system of partial differential equations
consisting of both M and Niu(a, B). The system E,(ll)(oz,ﬁ) is called
a Gauss-Aomoto-Gelfand hypergeometric system or general hypergeometric
system (see section 6.4.4 of [21], Proposition 1 of [11], and [9]). Holomor-
phic solutions of this system Eg)(a,ﬁ) are called Gauss-Aomoto-Gelfand
hypergeometric functions or general hypergeometric functions. The hyperge-
ometric system ET(Lk)(a, B) is a natural generalization of the Gauss-Aomoto-
Gelfand hypergeometric system to higher order. This system is introduced
by Sekiguchi, where Joi (a, B) is denoted by ka(y) in [17], Mnk(V) in [18]
with a = (v1 — k, ... ,vp — k) and 8 = (—vpy1,... , —Vop).

It is well known that the space of global solutions to the system
E}lk)(a,ﬁ) is finite dimensional if E}lk)(a,ﬂ) is holonomic [10]. The phe-
nomenon that the solution space is finite dimensional even when E,(lk) (a, )
is not a holonomic system was observed in connection with the theory of
admissible restrictions [12], namely, in the setting where irreducible unitary
representation decomposes discretely with finite multiplicities with respect
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to reductive subgroups. By using geometric realization of admissible restric-

tions, explicit computations were first carried out by H. Sekicughi [17], [18]

in special cases of [12] related to the system Eﬁk)(a, B).

1.2.

Summary of known results of the hypergeometric system

EP (a, B)

Up to now, there are the following results on the hypergeometric system

(k)

Ey (a, B):

(i)

If (n,l) = (2,1) then the system Eél)((al,ag), (61, 02)) is essentially
equivalent to the Gauss hypergeometric equation. Namely, any solu-
tion of Egl)((al, as2), (81, 32)) can be represented in the form

_ a1 2= [ 2127221
P(Z) = 211215 TPy <— )
211222

where y(x) satisfies the Gauss hypergeometric equation

d*y(x) dy(z)
x(1—x) 122 +(c—(a+b+1)x) i aby(z) =0,
where a = —a1, b= -0 and c = g — 3o + 1.

For an arbitrary n, the hypergeometric system Egl)(a,ﬂ) is the
Aomoto-Gelfand hypergeometric system and has been studied exten-
sively, in particular,

e The system Efll)(a, B) is holonomic (see [3], [7]), and the dimen-

sion of solutions to the system EY (a, B) near a generic point is
equal to (2”_2) (see [8], [20]).

n—1
e The dimension of global solutions to the system Efll)(oz, B) is at
most one ([18]). Global solutions to this hypergeometric system
are Louck polynomials, which are, up to constant multiples, of
the form

1
Paﬁ(Z) = Z szv
!
YEH(B)
where 7! = H Yisl, Z7 = H z;?'j, and see section 2.1
1<i,j<n 1<i,j<n

for definition of H(3). These polynomial solutions of the system



288 Hiroyuki OcHIAI and Uuganbayar ZUNDERIYA

Eq(ll)(oz, () arise naturally in the theory of representations of the
group GL(n,C), (for details see section 3.5 of [4], and [5]). There
exists a generating function for the polynomials P, 3(Z) (see [5],
section 1.7 of [9]).

(iii) For an arbitrary pair (n,k), the space of solutions of the system
E7(1k)(a, () near the origin is finite dimensional (see [17], [18]).

(iv) The system oI (ar, ) is not always holonomic, if k£ > 1 (see [19]).

(v) A combinatorial formula and the estimates of the dimension of global
solutions of E:,()Q) (cv, B) are obtained in [18].

1.3. Summary of our results of the hypergeometric system
B (a, B)
In this paper, we consider the dimension of the space of global (and
local) solutions of the hypergeometric system E,(Lk)(oz, B).
Our results are stated briefly as followings:

(i) For an arbitrary n, we give a combinatorial formula of the dimension
of global solutions to the system E,gn_l)(a, () (Theorem 2.6).

(ii) We give a simple formula for the Kostka number K, in the case when
the length of u is less than or equals to 3 (Corollary 3.2)(see section
2.2 for Kostka numbers and notations).

(iii) We also give a polynomial estimate for the dimension of global solu-
tions to the system E§2)(a, B3) (Theorem 3.4).

This paper is organized as follows: in Section 2, we consider the space of
global solutions of the system of homogeneous equations N, (a, 3). We show
the finite dimensionality and that the compatibility condition ay+- - -+, =
Bi+--+0pon(a,f) € Z2>’6 is necessary to have a non-trivial space of global
solutions. As a direct corollary, we also have the same conclusion on the
system g (cv, B), which has been obtained in [18].

We give an upper estimate of the dimension of the space of global so-
lutions of the system EW (o, B) by using the cardinality of some sets H(3)
of integral matrices (Theorem 2.3). For the case k = n — 1, we show that

the system of linear equations corresponding to the equation M%n_l) is an
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upper triangular form with respect to an appropriate linear order on H(3).
We also have an expression for the cardinality of H(3) by Kostka numbers,
which enables us to give a combinatorial formula of the global dimensions
by Kostka numbers (Theorem 2.6).

In Section 3, we consider the case n = 3 with £ = 2, that is, the space of
global solutions of the system E?Ez)(a, (). In this case we only need Kostka
numbers K, where the length of u is at most 3. We obtain a piecewise
linear expression of such Kostka numbers (Corollary 3.2).

We give an explicit polynomial estimate of third order for the dimension
of global solutions to the system E§2)(a, B) (Theorem 3.4). This improves
the estimate in [18, Theorem 4.1]. In the case o = 3, the upper and lower
estimates coincide with each other, so we have a concise formula for the
dimension (Corollary 3.8).

REMARK 1.1. In this article, we consider holomorphic solutions of the
generalized Gauss-Aomoto-Gelfand system E,glc) (a, B) on the complex mani-
fold M (n,C). We have the same conclusion if we consider analytic solutions
of the same system on the real manifold M (n,R).

2. A Combinatorial Formula of the Dimension of Global Solu-
tions to the System Efln_l)(a,ﬂ)

2.1. Preliminary notations and an upper estimate of the dimen-
sion of global solutions to the system E,(Lk)(a,ﬁ)
Let a1, a9,... ,an, 51,02, . .., 0B, be complex numbers. We define

HE =1 (G55 ) = =) € MnZan)|

n
Z'yij:ﬁiforizl,...,n; Z'yij:ajforjzl,...,n}.
=1 i=1

From the definition of H(3), it is obvious that if at least one of o, ... , ap,
B1, ..., Bn is not a nonnegative integer, then H(3) is an empty set.

In this paper, a domain means an open connected subset of M (n,C) ~
C"’. For each domain W of M (n,C) ~ C"*, we denote by Sol(W, g (o, B))
the space of holomorphic solutions of the system E}lk) (o, ) on W, and by
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Sol(W, Ny, (a, 8)) that of N, («, 3). Tt then follows immediately that
(2.1) Sol(W, E{!(a, 8)) C Sol(W, EP)(a, 3)) € -+~ € Sol(W, E{'"V(a, §)).

Note that for any permutations o = (af,... ,al,) of a and 5’ = (0},...,5))
of 3, we have

(2.2) dim Sol(W, EX¥) (o, 8')) = dim Sol(W, E¥) (a, 3)),

Sol(W, E®) (e, 8)) € Sol(W, Ny (v, B)).

For each open subset W of M(n,C) ~ C", we denote by Sol(W,
N, (e, B)) the space of holomorphic solutions of the system N, (a, ) on
W. We define

SOl(Nn(CYH@))Z = hi)ll SOI(Wan(avﬂ))

W>Z

(or Sol(Eflk) (o, B))z = lim Sol(W, E®) (a, B)))
WsZ

the germs of the solution sheaf of the system N, («a, ) (or Er(lk)(a, B)) at a
point Z € M(n,C). In particular, the germs of the solutions at the origin

of M(n,C) is denoted by Sol(N,,(«, 3))o (or Sol(E,,(lk)(a,ﬁ))o).
LEMMA 2.1.

(i) If Sol(NMp(a, B))o # {0} then o, ... ,an,B1,...,0n € Z>o and oy +
"‘+04n:/61+"‘+5n~

(i) If Sol(Nu(a, 3))o # {0} then

{(z7= 1] = 1v=(w)eH®B)}

1<i,j<n
is a basis of Sol(Ny(«, 3))o-
(iii) dim Sol(Ny (e, 3))o < 0.

(iv) For any domain W in M(n,C) containing the origin, the restriction
maps induce the isomorphisms

Sol(C™, Ny (e, B)) = Sol(W, Nip(ar, 8)) = Sol(N (e, B))o-
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PROOF. (i) Since Sol(NV,(a, 3))o # {0}, there exists a nonzero function
&(Z) € Sol(N,(a, B))o. By the first equation of the system N, (a, 3),

Zzzja Z):Z<Zzzja )) :(Zaj)d)(z)
ij=1 j=1 \i=1 j=1

and, by the second equation of the system N, (a, 3),
Z Zij A (9 Z Z Zzya ) = (Z 5@)¢(Z)
,j=1 i=1 \j=1 i=1

Since ¢(Z) # 0, then Z a; = Zﬁi'
= i=1

Since ¢(Z) is a holomorphic function at the origin, we denote the Taylor
expansion by

o2)= > ez, 2= 1] &

YEM(n,Z>0) 1<i,j<n

Because

0
zUa 77 =y 27,

the first equation of the system Nn(a, B) is

0 = (Zzij%—aj> ¢(Z)

i=1 “J

-y (zzwaz )
YyEM(n,Z>o) \i=1
YEM(n,Z50) \i=1

n

Thus, (Z Yij — o)y = 0 for any v € M(n,Z>o) and j = 1,... ,n. Since
i=1

#(Z) # 0, there exists a nonzero coefficient ¢, of ¢(Z). If ¢y # 0, then
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n
satisfies Z vij = ;. Since all 7;; are nonnegative integers, then all o; are
i=1
nonnegative integers. The proof for f; is similar.
(ii) The proof of (i) shows that the Taylor expansion of every function
in Sol(Ny(a, 3))o turns to be a polynomial of the form

NZ)= ) 2.
vEH ()
Conversely, for any v = (745)1<ij<n € H(3),

n n

0
Y zijn 20 =0 7)) 2 =27,
i=1 9z

=1

n a n
Z%’j%zv = (Z Yij) 27 = B Z7.
j=1 j=1
Thus,
{27 |ve HB)}

is a basis of Sol(NV,(«, 3))o.

(iii) Since H(3) is a bounded subset of M (n,Zs>), it is a finite set. By
(i), it shows that dim Sol(N,(a, 3))g < o0.

(iv) Every element in Sol(NV,,(«, 3))o has a Taylor expansion, which is a
finite linear combination of monomials, that is, such an element is always a
polynomial. So, it extends to whole space (C"2, and, by the restriction, to
domain in C"* containing the origin. [

Together with the inclusion (2.2), Lemma 2.1 implies the following:

COROLLARY 2.2.

(1) IfSol(E,(Lk)(a,ﬁ))o # {0}, then ay,... ,an,B1,... ,0n € Z>0 and a1 +
et a, =014+ On.

(2) dim Sol(EY (e, B))o < o0.
(3) For any domain W in M (n,C) containing the origin,

Sol(C™, EP(a, B)) = Sol(W, EP)(a, B)) = Sol(EX (e, B))o-
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Now, we give an upper estimate of the dimension of the space of global
solutions of the system E,gk) (a, B).

THEOREM 2.3. Let W be a domain in M (n,C) containing the origin.
Then

dim Sol(W, EW¥) (a, 3))
<#HG) —* (0 = () e 1) 13

such that viyj, > 0,%iy5, >0, .., Yipi1jess > 0},

1<iy < <ip <n
I1<ip<--<jgpr1<n

here # A means the cardinality of a set A.

Proor. If at least one of ay,...,an,B1,...,0, is not a nonnegative
integer or ay + -+ -+ an # 1+ -+ -+ Op is satisfied, then the theorem is true
by Corollary 2.2. Thus, let aq,...,an, 01, ..., O, be nonnegative integers

such that a1 + -+ ap = 61 + - + 8. We denote

Ho(3) = {7 = (vy) € H) | 3 (

such that 7,5, > 0,%iyj, > 0,.. ., Yig1jess > 0}

1<y < <1 <n
I<pn<--<jrg1<n

Lemma 2.1 implies

Sol(Nn(a, B)o={ > ¢Z"|e,€C}

vEH(3)

and dim Sol(NV,,(a, 3))o = # H(3). To conclude the proof of the theorem, we
will show that there exists a system (A) of linear equations of rank greater
than or equal to # H(3) with # H (%) variables such that

Sol(EP (. 8)o={ 3 27| (&), ey € TP

3)
YEH(3)

is a solution of (A)}.
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We define

H_(3)
Bi — > i vij € {0,1}
forall i=1,...,n,
= qv=(v;) € M(n,Z>0) | aj — 3 7 vi €{0,1}
forall j=1,...,n,
and ZZj:l Vij = Z?:l a5 — (k + 1)

For v e H (), weput I = {i | ;=37 vy =1}, and J = {j | aj —
> i, vij = 1}. We introduce the numbering so that I = {iy,... ,ig41} with
1<y < <ik+1 §nand[z{j1,... ,jk+1} with 1 S]l < .- <jk+1 <
n. We denote by E;j € M(n,Z) the matrix unit. Note that for v € H_(3),
we see that v+ Ejj, + -+ Ej,j,., € H(3). This defines a map

viH_(3)sve—v+Eyy +-+Ei ., €H@).

We denote by Sky1 the symmetric group of (k + 1) letters, and the
signature of a permutation o € Sgi1 by sgn(o). For v € H(3) and v €

H_(3), we define
k+1

ayy = sgn(o) H Yitjoc)
t=1

ifthereexist 1 <43 < -+ <ipp1 <n, 1 <51 <+ <Jgy1 <nando € Sk
such that v —v = Ej ., + -+ Eiy1j, 41y and define a,, = 0 otherwise.

(0%
Using these integers a,+’s, we define the linear forms on cTHp) by

QV(C): Z Ay~Cr,
vEH(3)
cCHH®.

for C = (CV)WGH(%)

For C = (¢y) a € C#H(g), we put

YEH ()

o(Z;C0) = Z cyZ7 € Sol(Ny (e, B))o.

vEH ()
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Then

det( 0 ) §Z:0) = Y al0)7.
0%ij, tor=1,.. k+1

=1,.., ver_ (%)

In fact, we compute

0
det < ) o(Z;C)
Oziyj, tr=1,- k+1

)

= Z sgn(o)

0ESk+1

6k+1

Z A

VEH(3)

= Z Z sgn(a)cw’hl]a(l) o "YZk+1Ja<k+1)Z P
VEH (§) 7€k

= > a0z

veH (3)

8Zi1jg(1)azi2jg(2) o '8zik+1jo<k+1)

Eik+1ja(k+1)

Here we have used the fact that if v € H(3), 0 € Sk41 such that Y= (Eirjpqyt+
ot Bijogry) € H- (5), then Virdo) " Viksrinrny = 0- Then ¢(Z;C)
satisfies the system Eflk)(a,ﬁ) if and only if g,(C) = 0 for all v € H_(3).
So, we denote by (A) the system

g,(C)=0for all v € H_(3).

Now we consider the rank of the linear system (A). We define a linear
order < on H(3) as follows:
for n = (ni;), 7 = (1j) € H(3), 7 > n < if there exists i € N such that for
any j <1, 7; = 1; and 7; > n;, where

(11,12, -+ 5 7n2)
- (nlnanln—l oM 2nsM2n—1--- 571215 -+« 5 nnsy ain—1 - - - 777711)
and
(T1, 72y v y Th2)
= (Tin, Ttn—1 -+ » T11: T2, T2n—1 - - - » 215+ » Tnns Tan—1 - - - » Tnl)-

Then we will show that
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(i) avy #0if v = 1(v).

(ii) ayy =0if v < 1(v).

PROOF OF (i). For~vy = i(v), weseethat a,y = ay,v+E; j,+Eiyjo+ -+
k+1

Eik+1jk+1 = H(Vitjt +1)>0.0
t=1

PROOF OF (ii). By the way of contradiction, we suppose that for a
v € H(3) such that v+ Ej j, + Eiyjo + -+ Eiy, jury > 7 Gy # 0. Then,
there exists a permutation o € Si41 such that

V=Vt Bioy + Bigjooy T+ B

Since v + By, j, + Eigj, + -+ + Eiy1je, > 7 we have
1 2 -+ k41
‘77é<1 2 ... k+1>‘
Thus, there exists k such that for any ¢ < k, (i) = ¢ and o(k) > k. So

Yy=v+Ey;+-+Ey_ g, + Eikja(k) +ot Eik+1ja(k+1)
> v+ EByj + Eiyj, + 0 F Eik+1jk+1'

However, it contradicts to the assumption v+ Fj; j,  +Eiy 5+ -+ Eip 5 >
. Therefore (ii) is proved. O

Note that the image of the map ¢ is Hy(3). Let us take a subset H’
of H_(3) such that the map ¢ is bijective from H’ to H,(3). Then the

square submatrix (a,-) ) of the matrix (a,-) is an

veH' yeH, veH (3)yeH(3)
upper triangular matrix whose diagonal elements never be zero. This means
that the rank of the system has the rank at least H4 (). The proof of the

theorem is completed. [

The following Corollary has been obtained in [18], but we will give an-
other proof.

COROLLARY 2.4. Let W be a domain in M (n,C) containing the origin.
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(1) If (1, vv s am, By ee s Bn) € 25y or g+ -+ # B1+ -+ B then

dim Sol(W, EV(a, 8)) = 0.

(ii) If (a1,... ,Qn, B1s--- ,00) € 222% and oy + -4+ = B1+ -+ Bn
then
dim Sol(W, EV(a, 8)) = 1.

Proor. (i) It follows from Corollary 2.2.
(ii) Let a = (a1,... ,an) € Z%y, 8= (B1,--- , Br) eZ’gO with o + -+
an =01+ -+ Br. We denote

Hyn(8) = {7 = (Vi) € Mpn(Z30) | > i = Bi
j=1
k

fori=1,...,k; nyij:aj forj=1,...,n}.
=1

In particular, we have H,,,(3) = H(3). By induction of k+n, we prove that

there exists an unique element ¢ in Hy,(3) of the following form
00 0 0 0 00 ... 0 % % ... * %
0 0 00 0 0 O 0O 0 ... 00
00 00 0 0O 0 « 0 00
00 00 0 * % * 0 00
* x X x % 000 .. 0O0®O.. 00O

It is obvious when n + k = 2. Assume that there exists unique element
¢ for any pair (ni,m1) when ny +m; < n + k and prove for n + k.

If 31 > ay,, there exists an unique element ¢’ in H ;m_l(g;) of above form
by induction, where o/ = (af,...,a},_4), 8/ = (B81,...,5;,) is defined by
o) ==a1,... .0 = ap_1, and [ = B1 — an, By = Fo,... B = B
then of + -+ +al_; = B{ + -+ 3. Then the element £ is (& G ).
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We can see that the element £ is unique because we have only one choice

gln:an>§2n:07'--7£nn:0' )
If 31 = a,, there exists an unique element & in Hpg_1n-1(3) of above

form by induction, where o/ = (a},... ,a},_), 8 = (B1,... ,B_;) is defined
by a{[ =01,... 70/n—1 = an—laa;z—l = Qp—1, ﬂi = Bla o 7ﬁ]lﬁ;_1 = ﬁk*lv
then oy +---4+af,_; = 1+ -+ F)_;. Then the element ¢ is ( g, C:)n > :

We can see that the element £ is unique because we have only one choice
gln = Oén,égn = 0,.. . ,fnn = Oafll = 0,512 = O,.. . ,glnfl =0.
If 81 < a, then it will be proved analogously for the case 61 > .
Since every element of H(3) except the unique element ¢ belongs in
H,(3), we have

FH(G) —#{y = (i) € H) |
< 1<y <19<n

1 <ii<in<n > such that v;, 5, > 0, 7i,5, > 0} = 1.

Thus dim Sol(W, E,(LI)(a,ﬂ)) < 1. On the other side, an easy computation
shows that a Louck polynomial

1
Paﬁ(z>: Z %Z’ya
vEH ()
i i (1) | — 7T =
is a solution of the system Ejy’(a,3), where 7! = H STV ANE

1<ij<n
H Z;?j- Thus dim Sol(W, Eﬁll)(a,ﬂ)) > 1.0

1<i j<n

2.2. Kostka numbers and main theorem
A partition of an integer m > 1 is a (finite or infinite) sequence A =
(A1, A2, ...) of nonnegative integers such that \y > Ay > -+ > A\, > 0,

T

Ai = 0 for ¢ > r, and Z)\i = m. The number r is called the length
i=1

of A. We shall find that it is convenient not to distinguish between two

such sequences which differ only by a string of zeros at the end. Thus,
for example, we regard (2,1), (2,1,0), (2,1,0,0,...) as the same partition.
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We denote by P, the set of all partitions of m. The Young diagram of a
partition A is an array of m boxes having r left-justified rows with row ¢
containing \; boxes for ¢ = 1,2,...r. Let u = (1, p2,...) be a partition
of m. A Young tableau of shape A and content p is an array of numbers
which is obtained from the Young diagram of A by replacing u; boxes with
number ¢ for all 4, such that

i) the entries in every row of the diagram are weakly increasing,
ii) the entries in every column of the diagram are strictly increasing.

Young tableaux arise in various branches of mathematics (see [2] and [14]).

For Py, > A, u, we denote by Ky, the number of Young tableaux of
shape A and weight ;. Sometimes, the numbers K, are called Kostka
numbers. It is well known that for general linear groups the dimension of
the p-weight space in the irreducible highest weight module with highest
weight X is equal to K, (see [2]). There are some combinatorial formulae,
which gives Kostka numbers (for example, see [13]). To the given ordering
on Py, corresponds a unique matrix K = (Kx,)x uep,, and there are many
ways to compute this matrix.

LEMMA 2.5 (6.7 of [14]). For partitions A = (A1, A2,... ,A\n), b =
(/’l’lalfl'Qv e 7/1’7'1) € Pm,

FH) = Y KK
VEPm

We state the following theorem which gives a combinatorial formula for
the dimension of the space of global solutions of the system Efln_l)(a, B).
By (2.2), we may assume that a1 > ag > -+ > ap and 81 > 2 > -+ > (.

THEOREM 2.6. Let « = (a1,09,...,04),8 = (B1,02,...,0,) € C”
and W be connected domain in M (n,C) containing the origin.

(i) If (a1, yam, B1y- -, Bn) QZQE% oraj+--+ay # B+ -+ P then

dim Sol(W, E™~Y(a, 3)) = 0.
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(11) If(ala o 7an7ﬁ17 o 7/671) € Z>OJ - Oél+' . +an - ﬁl—i_ . +ﬁn with
ap>a > >y, f1 > P> >3,y and min(ay, ... o, 01, ..,
Br) =0, then

dim Sol(W, E¢* Y (a, B)) = Z Koo, an)Ku(Bi,... Ba)
VEPm

(iii) If(al, ey Oy, B, ,ﬂn) c Z>0, =1+ ta, = 01+ - -+ 8, with
>y > >y, f1 > P> > By and min(ag, ..., B,
Bn) > 0, then

dim Sol(W, E(”_l)(a ﬂ))

= Kt onEuior, o)

vEPm
Y Kt an ) EKup1, pa)-

VEPm—n

PrOOF. We will use the notation of the proof of Theorem 2.3. Since
we here consider the case k+ 1 =n, we have H_(3) = H(an — 1,... , o, —
1,01,...,0,), and 1(v) = v+ E, for all v € H_(3). Especially, since ¢ is
injective, we take H' = H_(3) in the proof of Theorem 2.3. This shows the
linear system (A) is of full rank, and its rank is equal to the cardinality of
H_(3) as well as the cardinality of H, (o, ). O

Ezample 2.7. Let W be a domain in M (4,C) containing the origin.
Find the dimension of the space

Sol(W, BV ((1,1,3,1), (2.1,2,1))).
By Theorem 2.6,

Sol(W; E{((1,1,3,1), (2,1,2,1)))
= dim Sol(W, E(3)((3, 1,1,1),(2,2,1,1)))

Z K311 Kv@221,1) — Z K(2,0,0,0)K0(1,1,0,0)-
vePg vEP2
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Using the table of given Kostka numbers in page 111 of [13], we have

> KoK = Ke000)6.1,1,1)K6,000/22,.1,1)

vEPs

+ K(5,1,0,0)3,1,1,1)5(5,1,00)(2,2,1,1) + K(4,2,0,0)(3,1,1,1) K(4,2,0,0)(2,2,1,1)

+ K4,1,1,003,1,1,1) K (4,1,1,002,2,1,1) T £(3,3,0,0)3,1,1,1)5(3,3,0,0)(2,2,1,1)

+ K(3,21,003,1,1,0)5K3,2,1,002.2,1,0) + K3,1,1,1)3,1,1,0K(3,1,1,1)(2,2,1,1)
—1-14+3-343-443-341-24+2-44+1-1=42

and

> K000 Ku1,100) = K2,000)2000K(2000/1,100 = 1

vEP2

Thus

Sol(W, BV ((1,1,3,1),(2,1,2,1))) =42 — 1 = 41.
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3. A Combinatorial Formula and Polynomial Estimate of the Di-
mension of Global Solutions to the System E§2)(o¢,ﬁ)

3.1. A formula of Kostka numbers for the system E§2)(a,ﬁ)

Combinatorial formulae for calculation of Kostka numbers are not
straightforward, rather they are quite complicated to use. Still, they are
computable when (n,k) = (3,2), and we may then apply Theorem 2.6 to
derive a simple explicit formula for calculation of the dimension of global

solutions of the system E§2)(a, B).

LEMMA 3.1.  For (A1, A2, A3), (p1, p2, p3) € P,

K (ai 20 00) (1,12,3)
0,
1

)

K(Al*2,A2*17>\3)(H1*1,#2*1#3*1) +1,

A1 < 1 or pg < Ag;
A1 = 1 or A3 = ug or
)\1:)\2 0’/’)\2:>\3
for A\t > p1, p3 > As;
A1 > A > )\3,)\1 > U1,
p3 > As.
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PrROOF. It is easily seen that if Ay < pu; or pus < Az then
K\ dos)(uropzons) = 0. 1t is also obvious if A\j = p3 or A3 = pg or A = Ao
or Ao = A3 for A\; > p1, pg > A3 then K(>\17>\27>\3)(M17H21H3) = 1. Hence, we can
assume that Ay > Ao > A3, Ay > pp and pu3 > A3. So Ay —22> Ay — 1> A3.

We will denote by 7(x; xy,x3)(u1,u2.u3) the set of Young tableaux of shape
(A1, A2, A3) and content (u1, o, p3). We will consider the map

[ T(>\1—2)\2—17)\3)(#1—1,u2—1,/t3—1) - T(>\17>\2,>\3)(M17u2»u3)

given by for any element

qi1 | q12 | | Qixg | | Qie—1 |t ‘ qix;—2 ‘
q21 | g22 | " | G2x3 | | 92X0—1
431 | 432 | *-° | G3)3

of T(/\l—2)\2—17/\3)(#1—1,u2—17u3—1)’

Q1| Q12 | o | Quixg | | Qixg-1 | ‘ qix -2 \
f q21 | 922 | ©cc | Q23 | | 92X9—1
g31 | 432 | *°* | 93)3
Q| Q2| qi)\g q/1,\2 ’ qi,\l ‘
=| a5 | @2 | qéAg q/2)\2 )
! / /
431 | 932 | " | 93x,
where ¢}; = qui for i = 1,... ;pn =15 ¢4, = 1 @l 1 = 25 Qe = Qu
for i = pup,... ;A1 =25 gy = qoifori =1,... ;0 —1; g5, = 3; ¢3; = g3

for i = 1,...,A3. We notice that f is well-defined (the image satisfies the
conditions (i) and (ii) in the definition of tableaux). From the definition
of f it is clear that f is injective. Now, we show that the cardinality of
image of f is less than the cardinality of iz, x, \3)(u1,u0,us) PY One. This
will conclude the proof of the lemma. For this, we consider the following
four cases.

a) Let p1 > A9 and pg > Ao. Then there exists an element

1]...]71]--. 1‘1‘2“2‘3“3‘
T=|2|--12
3 ... 13

of T(x; Ao, ha)(uruzus)- Lhe unique distinguishing features of T are that first
row must contain at leat one 2 and the right end of the second row must be
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2. For each element of 7y, x, x;)( except T', there exists an inverse
image.
b) Let u1 > A2 and pg < Ag. Then there exists an element
1] 71~ T1T11... 71 3‘ ‘3‘

T=2---T27.--]213]---13
3 ... 13

1,142,143 )

of T(x; Aa,hs)(u1,pz,nz)- Lhe unique distinguishing features of 7" are that the
first row doesn’t contain 2 and the second row must contain at leat one
except T', there exists an inverse

3. For each element of 7y, x, x3)(u1 po.u3)
image.
c) Let puy > Ao and g = Ag. Then there exists an element
1] 1] T1]... ‘1‘3‘ ‘3‘
T=[9]...72]... 12
3 ... 13

Of T(x; Ao, \3)(u1,pz,nz)- Lhe unique distinguishing features of 7' are that the

first row doesn’t contain 2 and the right end of second row must be 2. For

each element of 7\ x, A3)(u1,p2,ps) €XCePt T, there exists an inverse image.
d) Let p1 < Ag. Then there exists an element

1]~ T1l---T1T1l---T112]--. 23‘...‘3‘
T=/20... 1201 12]3].--13[3]---13
31 ... 13
of T(x; Mo hs) (o). Lhe Gy, 41 = 3 and gy, = 3 are the unique distin-
guishing features of 7. For each element of 7(x; x, x3)(u1,p2,ps) €XCePt T,

there exists an inverse image. U

The following corollary to Lemma 3.1 gives us a simple formula for
calculation of Kostka numbers for the case E§2) (o, B).

COROLLARY 3.2.  For (A1, e, ...), (1, p2, pu3) € Pm,

K ha,) (1 pioss)
0, A F# 0 or M < q
or p3z < A3;
min()\l — )\2, )\2 — /\37 )\1 — M1, 43 — )\3) + 1, )\4 = 0, )\1 Z 1251
and pg > As.
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PROOF. A proof is straightforward from Lemma 3.1. [J

Ezample 3.3. Let W be a domain in M (3,C) containing the origin.
Find the dimension of global solutions of the system

EY((5.4,3),(7,3,2))
using corollary 3.2.

dim Sol(W, B ((5,4,3), (7,3,2)))

= Y KyanKoasn — O KuusaKuea):
veEP1o vEPy

Moreover,

Z Ky (54380732 = £(12,0,0)(5,4,3) 5 (12,0,0)(7,3,2)
vEP12

+ K(11,1,0)(5,4,3) 5 (11,1,0)(7,3.2) T £(10,2,0)(5.4,3) 5 (10,2,0)(7,3,2)

+ K(10,1,1)(5,4,3) 5£(10,1,1)(7,3,2) T £(9,3,0)(5,4,3)££(9,3,0)(7,3,2)

+ K(9,2,1)(5,4,3)5K(9,2,1)(7,3,2) T £(8,4,0)(5,4,3) 1£(8,4,0)(7,3.2)

+ K(8,3,1)(5.4,3)5(8,3,1)(7,3.2) T 5£(8,2,2)(5.4,3) K (8.2,2)(7,3.2)

+ K(7,50)(5,4,3)K(7,5,0)(7,3.2) T K(7,4,1)(5.4,3) K (7,4,1)(7,3.2)

+ K(7’372)(57473)K(7’372)(7’372) =1-14+2-243-3+1-14+4-3
+2-244-243-24+1-14+3-14+3-14+2-1=54

and

D KoasKue21) = K©.00)@32K 000621
veEPy

+ K(8,1,0)(4,3,2)5(8,1,0)(6,2,1) + K (7,2,0)(4,3,2) K (7,2,0)(6,2,1)
+ K132 K@116,21) T K6,3,0)4,3.2) 8630621
+ K(G,Q,l)(4,3,2)K(G,Q,l)(G,Q,l) = 1 . 1 —|— 2 . 2 —|— 3 . 2 + 1 . 1 + 3 . 1 + 2 . 1 == 17

Thus
dim Sol(W, B ((5,4,3), (7,3,2))) = 54 — 17 = 37.
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3.2. A polynomial estimate of the dimension of the global solu-
tions to the system E§2)(a,ﬁ)

It follows from Corollary 2.2 that if (a1, a2, as, 51,52, 83) ¢ 7%, or
a1 + ag + ag # (1 + B2 + B3 then the dimension of global solutions to the
system E32 (a, B) is equal to zero. Therefore, we can assume (aq, a2, as, (1,
B2, 03) € Zgo and a1 + as + a3 = [B1 + B2 + B3. Now, we give a polynomial

estimate of the dimension of global solutions for the case E§2) (o, B).

THEOREM 3.4. Let W be a domain in M (3,C) containing the origin,
AL, Ao, A, p1, W2, pus be nonnegative integers such that Ay > Ao > Mg,
p1 > po > p3 and A\ + Ao+ A3 = p1 + po + ps. Then

filer,m — e1 — es, e3) < dim Sol(W, B (A1, o, As), (1, iz, 13))
< f2(A1, A2, A3) + fa(pn, 2, p3) + fz(er,m — e1 — es, e3),
where we put e = max(A1, 1), es = min(As, u3), m = A; + Ag + As,

(z+1)(3yz — 22 + 3y + 2 + 3), y+z<uz;
(z+1)(Byz — 22 +3y+2+3) - (V7*5°), y+z>u,

o~ |

W=l =

Faw,9,2) = G2z + DBy — 2+ 1) = foaly + 2 ),

0, t<1;
faalt) = ¢ st(t+2)(2t — 1), t>1,t is even;
Sttt +2)(2t—1) =, t>1,t is odd,

and
f3(x7y7 Z) = (y + ]-)(Z + ]-) - f32(y+ z — ZIJ),

0, t <0
faa(t) = it(t +2), t>0,t1is even,
1t+1)% t>0,tis odd.

Note that fi, f2, f3 are maps from {(z,y,2) € 2320 |z >y > 2z} to Z>o.
For a partition (A1, A2, A3), we have fi1(A1, A2, A3) < fi(Aa+ A3, Ag, Az), and
fl()‘ly )\27 >‘3) 2 f1(>‘27 >\23 >\3) 2 f1(>\37 >\3a )‘3)

Before going into the proof of the theorem let us introduce lemmas.
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LEMMA 3.5. For a partition (1, p2, p3) € P, the number of all par-
titions (A1, A2, A3) of Pm such that K(x; xy xs)(uypopus) = 1 18 equal to

T+ pe+ps,  pa > p2 + ps;
%fl’ w1 < po + ps, 1+ po + pg is even;
sttt tl ) < o+ ps, i+ po + ps is odd.

PROOF. Let (A1, A2,A3) be a partition of P, such that \; > p; and
p3 > Az. Since by Corollary 3.2, K| x, \3)(u1,u2.u3) = 1 18 equivalent to the
condition A\ = A9, Ao = A3, Ay = p1 or A3 = ug, it is sufficient to compute
the cases \; = Ao, Ao = A3, Ay = g1 or A3 = pu3. We introduce notations

M = {()‘17)‘27>‘3) € Pm | K(/\1,)\2,)\3)(,u1,p2,u3) = 1}7
My = {(A1,A2,A3) € P | A1 = 115 K (ag dohg) (uios) = 1)
My = {(M1,A2,A3) € P | A1 # 111, A3 = 113, K 2o hg) (1 posis) = 1

)\1 #}ula)\fﬁ 7é:u37)\2 = >\37 }

Ma — by 7)\ ,)\ c pm
3 {( 1 A2, 2) | K 20,08) (12 p5) = 1

H1s Az 7 13, A2 F Az, A1 = Mg, }
K(A1,A27/\3)(u1,u2,u3) =1 7

A
M, = {(Al,Az,Ag) €Pn| M7
we have #M = # M, + # My + # Mz + # M.
CAseE 1. Let p3 > p2 + ps. Then

{1 pe +i,pu3 —1) € Py | 0 <0 < s},

{(pa + po — pg — i, i3 + 4, p13) € Py | 0 <4 < g — s},
{(p1 + pio + pg — 2i,4,3) € P | 0 < i < pig},
0

M
My
Ms3
My
Hence

M = (us + 1) + (p2 — p3) + ps +0 =1+ pio + pes.
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CASE 2. Let pp < pg + p3. Then

My = {(p1, p2 + i, 03 — 1) € Py | 0 <4 < iy — pa},
My = {(p1 + p2 — pz — 4, pu3 + 4, p43) € Py | 0 <@ < po — pz},
Mz = {(p1 + p2 + p3 — 24,4,7) € Pry | 0 <3 < g}

This shows # My + # My +#Ms = (1 — po + 1) + (2 — p3) 4+ p3 = pu1 + 1.
If p1 + po + ps is even, then

. . . 1
My = {(u + i, + 4 pz + 3 — i = 20) € Py | 0 <d < Sz + i3 = p) }-
If g1 + p2 + pa3 is odd, then

. . . 1
My = {(pa i, pa+is pp s — 1 = 20) € P | 0 < < S(pa+ps —pn — 1}

Hence

(p2 + p3 — p1), p1 + p2 + p3 1s even

Vi .
5(pe +p3 —p1 — 1), p1+ po + ps3 is odd

[

(u1+1)+{

B W-FL w1+ po + ps is even;

_ O
{ %WH, p1 + o + p3 is odd.

LEMMA 3.6. For a partition (p1, po, p3) € Pm such that ps > 1, we
have

Z KA(M1—1,M2—1,M3—1) = f2(ﬂla 2, M3)-
/\EPm—:s

ProOOF. For a partition (u1, pe, u3) € Pm, we denote by Md,(mwm%)
the set of all partitions (v, v2,v3) € Py, such that K1 vo03) (ur pzopz) =
From Lemma 3.1, we can define the bijective map

[ Md,(m,uz,us) - ML(Mfd+1,uzfd+1,u37d+1)

given by
f((l/l,ljg,ljg)) = (1/1 - 2(d - 1), vy — (d - 1),V3).

Therefore’ #Mdﬂ(ﬂl,ﬂzzlﬁ%) = #Ml,(ﬂl—d+1,ﬂ2—d+1,/.l;3—d+1)'
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By Lemma 3.5,

#Md,(m,#z:#s)

po + ps — 2d + 3, p1 > po + ps —d+1;
5(u1 4 po +p3 —3d+5), < po+pz—d+1,
= w1+ po + ps — 3d + 3 is even;
5(u1+po+ps —3d+4), < po+pz—d+1,
w1+ p2 + ps — 3d + 3 is odd.

CasE 1. Let pug > po + p3 — 1. Then

H3
_ C e N
§ : KV(/LI*L#Z*LMS*D = § :l % MZ,(M*LM*LM*U

VEPm -3 i=1
H3 1

= ilpg+ps—2i+1) = gHs(us +1)(Buz — ps +1)
=1

= f2(M17M27M3)-

CAseE 2. Let pu; < po+ ps — 1. Then

potpz—p1—1
_ C e AT
Z KV(IM—L//Q—L,US—U - Z ¢ X MZ,(M1—1,M2—17/L3—1)
VEPm_3 =1
M3
+ Z i X P M (31 pg—13—1)
1=p2+pu3—p1
and
w3 M3
Yo XMty = Y, il —2i+1)
t=pa+p3—p1 t=p+p3—p1
~ y
= Z\M1 — U2 —
6 H H

X (Bpapz + paps — Aps — ps — Bpaps — 63 — Sur + 6ps + Sug).
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p2t+pz—p1—1
Let us compute the sum Z 7 X #M (
i=1
alternative cases of even m and odd m. First, suppose m is even. Then
po + pz — 1 — 1 = 2m” + 1 for a nonnegative integer m” and

p1—1,ua—1,us—1) for the two

p2tpg—p1—1

§: i X M (1 —1,u2—1,u3—1)
=1

m' m'

= 2(21 +1) x #M2i+1,(#171,u271,,u371) + Z 21 X #MQi,(,ulfl,,ugfl,,ugfl)
i=0 i=0

m//

— Z(2i+1)<m 61 — >+ZQ <m 6z+2>

1=0
1
= gzt ps — ) ((n2 + pa)Bpn — 22 — 203 +7) — 647 — 111 — 6).
Suppose m is odd. Then ps + pug — 1 — 1 = 2m” for an integer m” and

p2tpz—p1—1
E: i X M (1 —1,p2—1,u3—1)
=1
m'’—1
= 2: (20 +1) x M22+1 (m1—1,p2—1,u3—1)
=0

m
+§ :22 X MQZ (w1 —1,p2—1,u3-1)
=0

m'

_ :;(21+1)<m 0l ) 22 (m 61“)

)

1
= g2tz —m—1)

X ((pg + p3)(8p1 — 2 — 213 +5) — 6% — 5ug — 1).

Thus
§ : Koy —1,12—1,13—1)
VEPy—3
petpz—p1—1 M3

_ #ar. i #AT. ;
= E : Mz,(url,url,usfl)l + Mz,(url,uzflwrl)z
i=1 i=p2+p3— 1
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_ [ =5 (@M = 1)M(M +2) + N, m is even;
Ol -H@M - D)M(M+2)+ N+, misodd,

where M = po + p3 — pp and N = %ug(ﬂg +1)(3ug — pug +1). This is equal
to f2(/i17/i27/i3)‘ 0

LEMMA 3.7. For a partition (A1, A2, A3) € Pp,, we have

Z 1 = f3(A1, A2, Az).

(Vl 7”27”3)€P7rL7
v12A1,03<A3

PrOOF. For integers y > z > 0 we define

Py(x) = (v, 10) €Z° |11 > 10 > 0,11 > x,v1 + 19 = y}.

Then we have

y—xz+1, 222>y
Pyz)=1q 5y—1), 2z<y,yisodd;
%y — 1, 2x < y,y is even.
This shows

A3
> 1= Pusi(h—i)
=0

(v1,v2,v3)EPm,
V1 2A1,0>A3

(A2 +1)(A3 +1), 2\ > m;
=14 1(4+mBm+2)) —mAa — A7 — N3 — A3, 2X\; < m,m is even;
1B+ mBm+2)) —mAy — A2 — M3 — A3, 2X\; < m,m is odd.
This is equal to f3(A1, A2, A3). O

PrROOF OF THEOREM 3.4. We consider the following three cases.
CASE 1. Let A3 # 0 and us # 0. We have

Z KV(>\1»>\27)\3)KV(//411N27M3)
Vepm

- Z K(Vl7'/27'/3)()\1:AzJ\s)K(Vl7V2,V3)(u1,u2,u3)

(v1,v2,v3)EPm,
V1>V >U3
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+ Z Kwy,0s05) Ot Mo ha) B (v1,02,03) (1 a2 a3)

(v1,v2,v3)EPm,
V1=V Or V2=V3

= Z (K(1—2,00—1,03) M —1,00—1,03—1) T 1)

(v1,v2,V3)EPm,
V1>V >3,
viel,vz<es

X (K(yl—2,y2—1,1/3)(u1—1,;},2—1,#3—1) + 1)

+ 0> 1

(v1,v2,03)EPm,
v12>e1,v3<es,
V1=U9 Or Ua3=VU3

= E Kl/()\l71,)\271,)\371)Kl/(,u,lfl,,uzfl,,ugfl)

VvEPm_3

+ Z (K(V1,V27V3)(>\1—17/\2—1)\3—1) + K(Vl7'/27'/3)(#1—17/12—1,#3—1))

(v1,v2,03)EPm—3,
v1>e1—2,v3<es

+ f3(e1,m — e — €3, e3).

Here we use Lemma 3.1 and Corollary 3.2 for the second equality, and
Lemma 3.7 for the last equality. Then by using Theorem 2.6 we have

dim Sol(W, ES? (A1, Az, As), (ti1, iz 113)))

- Z (K(V17V27V3)(>\1—1,>\2—1,>\3—1) + K(Vl71’271’3)(#1—17#2—17#3—1))

(v1,v2,v3)€EPm—3,
vize1—2,v3<es
+ fa(er,m —e1 — e3, e3).
Now we give the estimates of the truncated sums of Kostka numbers
appearing above.
By Lemma 3.6,

dim Sol(W, ES? (A1, Ao, As), (1, pia, 13)))

< Z (Kuoa—100-10—-1) T Ko —1,p0—1,u3-1))
1/67)771,73

+ f3(617m — €1 — 63763)
= fa(A1, A2, A3) + fa(per, pi2, 13) + fa(er,m —ep — e3, e3).

This gives the upper estimate.
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Now we will prove the lower estimate. By Corollary 3.2,

K(V17V2,V3)(>\1,>\2,>\3) > K(VlyVZ,VS)(.U‘laH%l/«B)

for ()\17)\27)‘3>1 (/-1/17/J/27,U'3)7 (V17y27y3) € 7)TYL—3 such that A1 < 241 and )\3 >
3. Then

Z K0y va,05) (M =100 -1, 203-1)

(v1,v2,v3)EPm—3,
v1>e1—2,v3<es

v

E K(IJ17I/2,Z/3)(61—l,m—61—63—1,€3—1)

(v1,v2,V3)EPm—3,
v1>e1—2,vz<es

= E Ku(el—l,m—el—eg—l,e;,v—l)

vEPm_3

= fa(er,m —e1; —e3,e3),

where the last equality follows from Lemma 3.6. This shows

dim SO](W, E?()Q) (()\1, )\27 )‘3)7 (Ml? H2, M3)))

> 2fa(er,m—er —es, e3)+ fs(er,m—e; —ez, e3) = fi(er,m—e; —es, e3).

Here we compute
1

. . 0, t <0;
and explicitly, (2fa + f32)(t) = { (t+2) >0
3 /) t=b

CASE 2. Let A3 # 0 and pu3 = 0. We have
dim Sol (W, ES? (A1, Az, As), (1, 12, 0)))

= Z Ko 2o 23) Ko (i 2,0)
vEPM

= Z K (w1 ,03,08) 01,00, 08) I (01 02,08) (111,112,0)

(v1,v2,V3)EPm,
V1 >1V2>V3

+ Z K(Vl’v27l/3)(>\1,>\2,>\3)K(V171/2,1/3)(#1#2,0)

(v1,v2,03)EPm,
V1=V Or V2=V3
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= Z (K1 —2,00—1,03) (M =1 )a—125—1) + 1) + Z 1

(V19V27V3)€7)m7 (Vl,VQ,Vg)EPm,
V1>v2>13, vizel,v3<es,
v12>e1,v3<es V1=Us Or Ua=U3

= § K(lll,VQ,Vg)()q—l,/\Q—l,)\g—l)
(v1,v2,v3)E€EPm—3,
v12>e1—2,v3<e3

+ Y 1+ )

(v1,v2,03)EPm, (v1,v2,03)EPm,
V1>v2>Vs, v1>er,v3<es,
vi12>e1,v3<es V1=V Or UVa=U3

= Z K(V17V2,V3)(>\1—1,/\2—17>\3—1) + fa(er,m —e1 —e3, €3).

(Vlal/27’/3)€73’mf37
v12>e1—2,v3<e3

Since fa(e1,m —e1,0) = fa(p1, p2,0) = 0 and

Z K(l/l,V27V3)()\171,)\271,)\371) S f2(>\17 )\27 )\3)7

(v1,v2,v3)€EPm -3,
v1>e1—2,v3<es

the theorem is true.

CASE 3. Let A3 = ug = 0. We have

dim SOI(W, E:gz) (()\17 >‘2’ 0)7 (Mla H2, 0)))

= Z Ku()q ,A2,0) KV(HI ,142,0)
VEPm

= Z 1:f3(61,m—6170)'

(v1,02)EPm,
vi>el

Since fi(e1,m — e1,0) = fa(A1, A2,0) + fa(p1, p2,0) + fs(er,m — e1,0) =
f3(e1,m — e1,0), the theorem is true. O

In the case A = p, the upper estimate and the lower estimate in Theorem
3.4 are equal to f1(A1, A2, A3) since e; = A1, e3 = A3 and m — e; — ez = Ao.

Then we obtain the following:

COROLLARY 3.8. Let W be a domain in M (3,C) containing the origin.
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Then for nonnegative integers a > b > c,

dim Sol(W, E{? ((a, b, ¢), (a, b, c)))

[ e+ 1)(3bc—* +3b+c+3), b+c<a;
T Set+D)@Bbe—c+3b+c+3) - ("T?), btce>a

In particular,

dim Sol(W, EéQ)((a, a,a),(a,a,a))) = %(a +1)(a* + 2a + 2).

Acknowledgement. The authors thank Professors T. Kobayashi and A.
Mekei for helpful discussions.
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