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Multidimensional Backward Stochastic Differential

Equations with Left-Lipschitz Coefficients

By Yuhong Xu

Abstract. In this note, we consider multidimensional backward
stochastic differential equations with coefficients which are left-
Lipschitz w.r.t. y and Lipschitz w.r.t. z and without explicit con-
straints on the growth. An existence theorem of minimal solution is
established in this framework. We also relate it to the hedging problem
for interacting economic agents.

1. Introduction and Preliminaries

Backward stochastic differential equations (BSDEs) have been studied

by many authors during the last two decades since the pioneering work of

Pardoux and Peng [8]. An m-dimensional BSDE defined on [0, T ] is of the

form:

kyt = kξ +

∫ T

t

kg
(
s,1 ys, . . . ,

kys, . . . ,
mys,

1zs, . . . ,
kzs, . . . ,

mzs

)
ds(1)

−
∫ T

t

kzsdBs, t ∈ [0, T ],

where k = 1, . . . ,m, (Bt)t∈[0,T ] is a standard d-dimensional Brownian mo-

tion on a probability space (Ω,FT ,P) and (Ft)t∈[0,T ] is the augmented

Brownian filtration. We denote by M2
F (0, T ;Rm×d) the space of all Ft-

progressively measurable Rm×d-valued processes such that E
[∫ T

0 |ψt|2dt
]
<

∞ and H2
F (0, T ;Rm) the space of all continuous processes in M2

F (0, T ;Rm)

such that E[ sup
0≤t≤T

|ϕt|2] < ∞ . The function g : Ω× [0, T ]×Rm×Rm×d 	−→
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Rm is called the generator of BSDE (1) and the Rm-valued FT -measurable

random variable ξ is the terminal condition. A BSDE is determined by its

standard parameters (ξ, g, T ).

The solution of BSDE (1) is a pair of processes (Yt, Zt)t∈[0,T ] ∈
H2

F (0, T ;Rm) ×M2
F (0, T ;Rm×d). The simplest case, g ≡ 0, corresponds

to the Martingale Representation Theorem. Multidimensional BSDEs are

more complicated than the 1-dimensional one because that different dimen-

sions are interacted in the generator g and the monotonicity of yt with

respect to (w.r.t. for short) ξ does not hold naturally. Xu [10] found some

applications of multidimensional BSDEs in finance.

Comparison theorems for multidimensional BSDEs were first studied in

Zhou, H. [11], extended by Zhou, S. [12], generalized by Hu and Peng [4] and

Xu [10]. It says that, for two multidimensional BSDEs (ξi, gi, T ), i = 1, 2,

when kgi does not depend on
(
jz
)
j �=k

, if for one of gi, for each k = 1, . . . ,m,
kgi is nondecreasing in

(
jy
)
j �=k

and for any
(
y, kz

)
∈ Rn × Rd,

kg1(t, y, kz) ≥ kg2(t, y, kz),(2)

and ξ1 ≥ ξ2, then Y 1
t ≥ Y 2

t , ∀t ∈ [0, T ], P -a.s. We say x ≥ y, for x, y ∈ Rm,

if xi ≥ yi, for all i = 1, 2, ...,m.

Based on the Comparison Theorem for BSDEs, we present an existence

theorem for (1). Thus our results generalize Jia [5, 6] to the multidimen-

sional case.

Due to the Comparison Theorem, we will consider generators kg, k =

1, . . . ,m, which do not depend on
(
jz
)
j �=k

. The well known Lipschitz con-

dition for multidimensional BSDEs is, for each k = 1, . . . ,m, ∀t, ∀(y, y′),
∀(kz, kz′),

|kg
(
t, y, kz

)
− kg

(
t, y′, kz′

)
| ≤ L

(
|y − y′| + |kz − kz′|

)
, L � 0.(3)

Note that if kg is nondecreasing in
(
jy
)
j �=k

, the above Lipschitz condition

is equivalent to

− L


∑

l �=k

(
ly − ly′

)−
+

∣∣∣ky − ky′
∣∣∣ +

∣∣∣kz − kz′
∣∣∣

(4)

≤ kg
(
t, y, kz

)
− kg

(
t, y′, kz′

)
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≤ L


∑

l �=k

(
ly − ly′

)+
+

∣∣∣ky − ky′
∣∣∣ +

∣∣∣kz − kz′
∣∣∣

 .(5)

If y ≥ y′, then (4) becomes

kg
(
t, y, kz

)
− kg

(
t, y′, kz′

)
≥ −L

((
ky − ky′

)
+

∣∣∣kz − kz′
∣∣∣) .(6)

So we will use (6) as the left-Lipschitz condition. Left-Lipschitz condition

is a kind of discontinuous condition, in which the generator g may not be

continuous w.r.t. y. By the well known Feynman-Kac formula ([9]), BSDE is

in fact a random version of semilinear parabolic partial differential equation

(PDE), i.e., there is a one to one relationship between BSDE and semilinear

parabolic PDE. Many physical phenomenons are described by PDEs with

discontinuous coefficients. An important example of best response dynamics

model arising in the theory of games comes from Hofbauer [2] and Hofbauer

and Simon [3] in which the generator g(y) satisfies:

{
g(y) < 0, y ∈ (0, a) ,

g(y) > 0, y ∈ (a, 1) .

This is one of the reasons we study BSDEs with discontinuous left-Lipschitz

condition. On the other hand, some financial problems are related to BSDEs

with left-Lipschitz condition. See Example 2.2 at the end of the paper.

We make the following assumptions throughout the paper.

(H1) For each k, kg does not depend on
(
jz
)
j �=k

and is nondecreasing in(
jy
)
j �=k

, left-continuous1 w.r.t. y and condition (6) holds.

(H2) There are two multidimensional BSDEs with generators kgi : Ω ×
[0, T ] × R × Rd 	−→ R, i = 1, 2, k = 1, . . . ,m, such that kg1

(
s, y, kz

)
≤

kg
(
s, y, kz

)
≤ kg2

(
s, y, kz

)
, and for any ξ ∈ L2(FT ;Rm), they have at least

a solution respectively, denoted by
(
Y i
t , Z

i
t

)
, i = 1, 2, with Y 1

t ≤ Y 2
t and

gi
(
t, Y i

t , Z
i
t

)
∈ M2

F (0, T ;Rm).

(H3) g1 (t, ·, ·) is Lipschitz continuous.

Remark 1.1. Condition (6) implies that g is in fact Lipschitz-contin-

uous w.r.t. z. Taking y′ = y, we get that kg(t, y,k z)−kg(t, y,k z′) ≥ −L|kz−
1“kg is left-continuous w.r.t. y” means that for an increasing sequence in {yn}∞n=1 in

Rm with yn converging to y ∈ Rm, kg(t, y, kz) = lim
yn↑y

kg(t, yn, kz).
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kz′|, then change the position of kz, kz′, we have kg(t, y,k z)− kg(t, y,k z′) ≤
L|kz − kz′|, therefore kg is Lipschitz-continuous w.r.t. z.

The following lemma which is a special case of Comparison Theorem 2.2

coming from [1].

Lemma 1.1. Assume ξ ∈ L2(FT ;R), the function g(s, y, z) = ay +

b|z|+ ϕs for some constants a, b ∈ R, (ϕs) ∈ M2
F (0, T ;R). Let (Yt, Zt)

denote the solutions of the corresponding 1-dimensional BSDE (ξ, g, T ). If

ϕs ≥ 0, and ξ ≥ 0, then Yt ≥ 0.

2. Main Result

We now show the existence of a solution to BSDE (1) under assumptions

(H1) and (H2). Let (Y i
t , Z

i
t), i = 1, 2, denote solutions of the following two

BSDEs:

Y i
t = ξ +

∫ T

t
gi
(
t, Y i

t , Z
i
t

)
ds−

∫ T

t
Zi
sdBs, 0 ≤ t ≤ T,(7)

where gi satisfies (H2). Now we consider the following sequence of m-

dimensional BSDEs parameterized by n = 1, 2, . . .

kynt = kξ +

∫ T

t

(
kg

(
s, yn−1

s , kzn−1
s

)
(8)

− L(
(
kyns − kyn−1

s

)
+

∣∣∣kzns − kzn−1
s

∣∣∣) ds−
∫ T

t

kzns dBs,

where k = 1, . . . ,m. Define (y0
t , z

0
t ) :=

(
Y 1
t , Z

1
t

)
. For the sequence {ynt },

we have

Lemma 2.1. Under (H1) and (H2), the following properties hold true:

(i) For any n=1,2, . . . , there is a unique solution (ynt , z
n
t ) ∈

H2
F (0, T ;Rm) ×M2

F (0, T ;Rm×d) for BSDE (8).

(ii) For any n=1,2, . . . , Y 1
t ≤ ynt ≤ yn+1

t ≤ Y 2
t , ∀t ∈ [0, T ], P -a.s.

Proof. We first prove the case n = 1. By Y 2
t ≥ Y 1

t and conditions

(H1), (H2), it follows that, for each k = 1, . . . ,m,

kg
(
t, Y 2

t ,
kZ2

t

)
− kg

(
t, Y 1

t ,
kZ1

t

)
≥ −L

((
Y 2
t − Y 1

t

)
+

∣∣∣kZ2
t − kZ1

t

∣∣∣) .
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Hence

kg2
(
t, Y 2

t ,
k Z2

t

)
+ L

((
Y 2
t − Y 1

t

)
+

∣∣∣kZ2
t − kZ1

t

∣∣∣)

≥ kg
(
t, Y 2

t ,
kZ2

t

)
+ L

((
Y 2
t − Y 1

t

)
+

∣∣∣kZ2
t − kZ1

t

∣∣∣)

≥ kg
(
t, Y 1

t ,
kZ1

t

)
≥ kg1

(
t, Y 1

t ,
kZ1

t

)
.

Therefore kg
(
t, Y 1

t ,
kZ1

t

)
∈ M2

F (0, T ;R) and by Pardoux and Peng [8],

there is a unique solution
(
y1
t , z

1
t

)
∈ H2

F (0, T ;Rm) ×M2
F (0, T ;Rm×d) for

BSDE (8).

By BSDE (7) and BSDE (8), we have

ky1
t − kY 1

t =

∫ T

t

(
−L(

(
ky1

s − kY 1
s

)
+

∣∣∣kz1
s − kZ1

s

∣∣∣) + kϕs

)
ds

−
∫ T

t

(
kz1

s − kZ1
s

)
dBs,

where kϕs = kg
(
t, Y 1

t ,
kZ1

t

)
− kg1

(
t, Y 1

t ,
kZ1

t

)
≥ 0 and ϕs ∈ M2

F (0, T ;Rm).

Then by Lemma 1.1, we deduce that ky1
t ≥ kY 1

t , for each k = 1, . . . ,m.

By (7) and (8) again, we get that

kY 2
t − ky1

t =

∫ T

t

(
−L(

(
kY 2

s − ky1
s

)
+

∣∣∣kZ2
s − kz1

s

∣∣∣) + kψs

)
ds

−
∫ T

t

(
kZ2

s − kz1
s

)
dBs,

where

kψs = kg2
(
t, Y 2

t ,
kZ2

t

)
− kg

(
t, Y 1

t ,
kZ1

t

)

+ L
((

kY 2
s − ky1

s

)
+

∣∣∣kZ2
s − kz1

s

∣∣∣) + L(
(
ky1

s − kY 1
s

)
+

∣∣∣kz1
s − kZ1

s

∣∣∣)
≥ kg

(
t, Y 2

t ,
kZ2

t

)
− kg

(
t, Y 1

t ,
kZ1

t

)
+ L(

(
Y 2
t − Y 1

t

)
+

∣∣∣kZ2
t − kZ1

t

∣∣∣)
≥ 0.

Obviously ψs ∈ M2
F (0, T ;Rm). Then by Lemma 1.1, we deduce that kY 2

t ≥
ky1

t , for each k = 1, . . . ,m.
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Similarly to the above procedure,

kg2
(
t, Y 2

t ,
k Z2

t

)
− kg

(
t, y1

t ,
k z1

t

)
≥ kg

(
t, Y 2

t ,
k Z2

t

)
− kg

(
t, y1

t ,
k z1

t

)

≥ −L(
(
kY 2

t − ky1
t

)
+
∣∣∣kZ2

t − kz1
t

∣∣∣).
Hence kg2

(
t, Y 2

t ,
k Z2

t

)
+ L(

(
kY 2

t − ky1
t

)
+

∣∣kZ2
t − kz1

t

∣∣) ≥ kg
(
t, y1

t ,
kz1

t

)
.

On the other hand, kg
(
t, y1

t ,
kz1

t

)
≥ kg1

(
t, y1

t ,
kz1

t

)
− L(

(
ky1

s − kY 1
s

)
+∣∣kz1

s − kZ1
s

∣∣), which implies that kg
(
t, y1

t ,
kz1

t

)
∈ M2

F (0, T ;R) and BSDE

(8) has a unique solution when n = 2. By an analogous proof, we can

obtain that

y2
t ≥ y1

t and y2
t ≤ Y 2

t .

Now we use the induction method to prove this lemma. Assume that

Y 1
t ≤ yn−1

t ≤ ynt ≤ Y 2
t and g

(
t, yn−1

t , zn−1
t

)
∈ M2

F (0, T ;Rm).

Consider the (n+ 1)’th BSDE with the form:

kyn+1
t = kξ +

∫ T

t

(
kg

(
s, yns ,

kzns

)
(9)

− L(
(
kyn+1

s − kyns

)
+

∣∣∣kzn+1
s − kzns

∣∣∣)) ds−
∫ T

t

kzn+1
s dBs.

By direct calculation,

kg2
(
t, Y 2

t ,
kZ2

t

)
− kg

(
t, ynt ,

kznt

)
≥ kg

(
t, Y 2

t ,
kZ2

t

)
− kg

(
t, ynt ,

kznt

)

≥ −L(
(
kY 2

t − kynt

)
+

∣∣∣kZ2
t − kznt

∣∣∣).
Hence kg2

(
t, Y 2

t ,
k Z2

t

)
+ L(

(
kY 2

t − kynt
)

+
∣∣kZ2

t − kznt
∣∣) ≥ kg

(
t, ynt ,

kznt
)
.

On the other hand, kg
(
t, ynt ,

kznt
)

≥ kg
(
t, Y 1

t ,
kZ1

t

)
− L(

(
kyns − kY 1

s

)
+∣∣kzns − kZ1

s

∣∣) ≥ kg1
(
t, Y 1

t ,
kZ1

t

)
− L(

(
kyns − kY 1

s

)
+

∣∣kzns − kZ1
s

∣∣), which im-

plies that kg
(
t, ynt ,

kznt
)
∈ M2

F (0, T ;R) and BSDE (9) has a unique solution(
yn+1
t , zn+1

t

)
∈ H2

F (0, T ;Rm) ×M2
F (0, T ;Rm×d). Similarly we can get that

ynt ≤ yn+1
t ≤ Y 2

t . The proof is complete. �

Now we present an existence theorem for BSDE (1).
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Theorem 2.1. Let (H1) and (H2) hold for g and ξ ∈ L2(FT ;Rm).

Then the sequence (ynt , z
n
t ) converges in H2

F (0, T ;Rm) ×M2
F (0, T ;Rm×d)

to (y
t
, zt) and (y

t
, zt) is a solution of BSDE (1). Assume further that (H3)

holds for g1, then (y
t
, zt) is the minimal solution of BSDE (1), i.e., for any

solution (yt) of (1), we have y
t
≤ yt.

Proof. By Lemma 2.1, the sequence {ynt } converges to a process(
y
t

)
∈ H2

F (0, T ;Rm) and sup
n

E[ sup
0≤t≤T

|ynt |2] ≤ E[ sup
0≤t≤T

|Y 1
t |2] +

E[ sup
0≤t≤T

|Y 2
t |2] < ∞. By the last paragraph in the proof of Lemma 2.1,

we have∣∣∣kg (t, ynt , kznt
)∣∣∣ ≤ ∣∣∣kg2

(
t, Y 2

t ,
kZ2

t

)
+ L(

(
kY 2

t − kynt

)
+

∣∣∣kZ2
t − kznt

∣∣∣)∣∣∣
+

∣∣∣kg1
(
t, Y 1

t ,
kZ1

t

)
− L(

(
kyns − kY 1

s

)
+

∣∣∣kzns − kZ1
s

∣∣∣)∣∣∣
≤

2∑
i=1

(
kgi

(
t, Y i

t ,
kZi

t

)

+ L(
∣∣∣kY i

t

∣∣∣ +
∣∣∣kZi

t

∣∣∣) + 2L(
∣∣∣kynt

∣∣∣ +
∣∣∣kznt

∣∣∣)) .
It follows from an application of Itô’s formula to

∣∣kyn+1
t

∣∣2 that

E

[∫ T

0
|kzn+1

t |2dt
]

= 2E[

∫ T

0

kyn+1
t (kg

(
t, ynt ,

kznt

)

− L(
(
kyn+1

s − kyns

)
+

∣∣∣kzn+1
s − kzns

∣∣∣))dt
+ E|ξ|2 −

∣∣∣kyn+1
0

∣∣∣2]
≤ C +

1

16
E[

∫ T

0

(
|kzn+1

t |2 + |kznt |2
)
dt],

where C is a constant independent of n. Consequently we have

E

[∫ T

0
|kzn+1

t |2dt
]
≤ 16C

15
+

1

15
E[

∫ T

0
|kznt |2dt],

which yields that sup
n

E[
∫ T
0 |kznt |2dt] < ∞ and kΦn+1

s = kg
(
t, ynt ,

kznt
)
−

L(
(
kyn+1

s − kyns
)

+
∣∣kzn+1

s − kzns
∣∣) are uniformly bounded in M2

F w.r.t. n.
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Set C̃ = sup
n

E[
∫ T
0 |Φn

s |2ds]. Then by Itô’s formula, for any two positive

integers n, n′,

E
[
|kynt − kyn

′
t |2

]
+ E

[∫ T

0
|kznt − kzn

′
t |2dt

]

= 2E

[∫ T

0

(
kyns − kyn

′
s

)
(kΦn

s − kΦn′
s )ds

]

≤ 4C̃
1
2

(
E

∫ T

0

∣∣∣kyns − kyn
′

s

∣∣∣2 ds
) 1

2

.

Thus {znt } is a Cauchy sequence and converges to some process zt ∈
M2

F (0, T ;Rm×d). Now by passing to the limit on both sides of BSDE (8),

we obtain that (y
t
, zt) satisfy BSDE (1).

Assume further that (H3) hold for g1, for any solution yt of (1), by the

multidimensional comparison theorem (Zhou, S. [12] Theorem 2.1), we can

obtain that Y 1
t ≤ yt. Then it is easy to prove that y1

t ≤ yt and ynt ≤ yt,

n > 1. Thus the limit y
t
≤ yt. The proof is complete. �

Remark 2.1. If we set (ȳ0
t , z̄

0
t ) :=

(
Y 2
t , Z

2
t

)
and assume that g(t, ·, z)

is right-continuous in condition (H1) and g2 (t, ·, ·) is Lipschitz continuous,

consider the following sequence

kynt = kξ +

∫ T

t

(
kg

(
s, yn−1

s , kzn−1
s

)
(10)

+ L(
(
kyn−1

s − kyns

)
+

∣∣∣kzn−1
s − kzns

∣∣∣)) ds−
∫ T

t

kzns dBs,

then we can prove that

(i) For any n, Y 1
t ≤ yn+1

t ≤ ynt ≤ Y 2
t , ∀t ∈ [0, T ], P -a.s.

(ii) The sequence (ynt , z
n
t ) converges in H2

F (0, T ;Rm) ×M2
F (0, T ;Rm×d)

to (yt, zt) and (yt, zt) is the maximal solution of BSDE (1), i.e., for any

solution (yt) of (1), we have yt ≥ yt.

Recall that Lepeltier and San Martin [7] established an existence theo-

rem of minimal and maximal for 1-dimensional BSDE with continuous coef-

ficients. Here we have considered multidimensional BSDEs with coefficients

which may be discontinuous w.r.t. y.
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Remark 2.2. The following condition, for y ≥ y′ ∈ Rm, kz, kz′ ∈ Rd,

kg
(
t, y, kz

)
− kg

(
t, y′, kz′

)
≥ −L


 m∑

j=1

(
jy − jy′

)
+

∣∣∣kz − kz′
∣∣∣

(11)

does not work, because the multidimensional comparison theorem could not

be applied to prove that the following sequence

kynt = kξ +

∫ T

t


kg

(
s, yn−1

s , kzn−1
s

)
(12)

− L


 m∑

j=1

(
jyns − jyn−1

s

)
+

∣∣∣kzns − kzn−1
s

∣∣∣



 ds

−
∫ T

t

kzns dBs,

is increasing in n, since its generator

kgn
(
t, y, kz

)
= kg

(
t, yn−1

t , kzn−1
t

)
− L


 m∑

j=1

(
jy − jyn−1

t

)
+

∣∣∣kz − kzn−1
t

∣∣∣



is not nondecreasing in
(
jy
)
j �=k

.

Example 2.1. Consider the following m-dimensional BSDE

kyt =

∫ T

t

k

m

m∑
j=1

1{jys>0} (ys) ds−
∫ T

t

kzsdBs, 0 ≤ t ≤ T.(13)

Since (H1) and (H2) hold for kg = k
m

∑m
j=1 1{jys>0} (ys), and kg is left-

continuous w.r.t. y, so there is a minimal solution to (13). In fact, the

minimal solution is
(
y
t
, zt

)
= (0,0). Since 0 ≤ kg ≤ k, by the Multidi-

mensional Comparison Theorem, for any solution of (13), we have, for each

k = 1, . . . ,m, 0 ≤ kyt ≤ k (T − t).

The solutions of (13) are not unique. One can check that for any c ∈
[0, T ],

(
kyt,

k zt
)

= (kmax {c− t, 0} , 0) is a solution of (13). The maximal



124 Yuhong Xu

solution of (13) also exists and
(
kyt,

k zt
)

= (k (T − t) , 0), though kg is not

right-continuous w.r.t. y.

Now we consider the following

kyt =

∫ T

t

k

m

m∑
j=1

1{jys≥0} (ys) ds−
∫ T

t

kzsdBs, 0 ≤ t ≤ T(14)

with a little difference from (13). Conditions (H1) and (H2) still hold for
kf = k

m

∑m
j=1 1{jys≥0} (ys), but kf is right -continuous w.r.t. y. So the max-

imal solution of (14) exists and
(
kyt,

k zt
)

= (k (T − t) , 0). Since solutions

of (14) can not be negative and kf satisfies the right-Lipschitz condition (5)

on { y ∈ Rm|y ≥ 0}, therefore the solution of (14) is unique.

Correlation is a huge issue in finance. It comes into play in the prod-

ucts (multi-assets, hybrids), in the models (price/volatility correlation), in

asset allocation (diversification) and in credit (between names). Much ef-

fort is now being expended on the study of market microstructure to try

to better understand price formation. Multidimensional BSDEs provide an

alternative way to study complicated financial issues. Correlation could be

reflected in the generators. See the following example.

Example 2.2. Consider a firm with two subsidiaries hedging their pos-

sible risk positions ξ1 and ξ2 at time T respectively. Let (r1
t , r

2
t ) and (θ1

t , θ
2
t )

be their risk exposure to the spot interest and risky investment. Let (Y 1
t , Y

2
t )

and (Z1
t , Z

2
t ) be their hedging processes and portfolios of risk investment.

Assume that if the whole wealth of the company is below certain scale

(φt) ∈ M2
F (0, T ;R), i.e., Y 1

t + Y 2
t ≤ φt, then the two subsidiaries will re-

ceive sectoral subsidies (h1
t ),(h

2
t ) ∈ M2

F (0, T ;R+) respectively. Therefore in

a complete financial market the hedging processes should satisfy:




Y 1
t = ξ1 −

∫ T
t

(
r1
sY

1
s + h1

s · 1{Y 1
s +Y 2

s ≤φs}
(
Y 1
s , Y

2
s

)
+ θ1

sZ
1
s

)
dr

+
∫ T
t Z1

sdBt, t ∈ [0, T ],

Y 2
t = ξ2 −

∫ T
t

(
r2
sY

2
s + h2

s · 1{Y 1
s +Y 2

s ≤φs}
(
Y 1
s , Y

2
s

)
+ θ2

sZ
2
s

)
dr

+
∫ T
t Z2

sdBt, t ∈ [0, T ].

(15)

It is easy to check that the generator gi(s, y1, y2, zi) = −(risy
i + his ·

1{y1+y2≤φs}
(
y1, y2) + θisz

i
)
, i = 1, 2, satisfies (H1)∼(H3) with gi =
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−
(
risy

i + θisz
i
)
, gi = −

(
risy

i + his + θisz
i
)
. Hence by Theorem 2.1 there

is a minimal solution for BSDE (15). The minimal solution is the least

endowment to hedge their risk positions.

In the above example, different dimensions represent different sub-

sidiaries. See Xu [10] for more applications of multidimensional BSDEs

on risk measuring for interacted subsidiaries. Multidimensional BSDEs can

be also applied to differential games with interacted players.

References

[1] El Karoui, N., Peng, S. and M. C. Quenez, Backward stochastic differential
equations in finance, Math. Finance 7 (1997), 1–71.

[2] Hofbauer, J., The spatially dominant equilibrium of a game, Ann. Over. Res.
89 (1999), 233–251.

[3] Hofbauer, J. and P. L. Simon, An existence theorem for parabolic equations
on Rn with discontinuous nonlinearity, Electronic Journal of Qualitative
Theory of Differential Equations 8 (2001), 1–9.

[4] Hu, Y. and S. Peng, On the comparison theorem for multidimentional BS-
DEs, C. R. Acad. Sci. Paris, Ser. I 343 (2006), 135–140.

[5] Jia, G., A generalized existence theorem of BSDEs, C.R. Acad. Sci. Paris,
Ser. I 342 (2006), 685–688.

[6] Jia, G., A class of BSDEs with discontinuous coefficients, Statist. Probab.
Lett. 78 (2007), 231–237.

[7] Lepeltier, J. P. and J. San Martin, Backward stochastic differential equations
with continuous coefficients, Statist. Probab. Lett. 34 (1997), 425–430.

[8] Pardoux, E. and S. Peng, Adapted solution of a backward stochastic differ-
ential equation, Systems Control Letters 14 (1990), 55–61.

[9] Pardoux, E. and S. Peng, Backward stochastic differential equations and
quasilinear parabolic partial differential equations, in Stochastic Partial Dif-
ferential Equations and Their Applications; Rozuvskii, B. L., Sowers, R. B.,
Eds.; Lect. Notes Control Inf. Sci., vol. 176, Berlin Heidelberg New York:
Springer, 200–217 (1992).

[10] Xu, Y. H., Multidimensional dynamic risk measure via conditional g-expec-
tation, submitted to Math. Finance, now available at arXiv:1011.3685v4 [q-
fin.RM] (2010).

[11] Zhou, H. B., Comparison theorem for multidimentional BSDEs and applica-
tion, Master’s thesis, Shandong university, 1999.

[12] Zhou, S. W., Comparison theorem for multidimentional BSDEs, Chin. J.
Appl. Prob. Stat. 20 (2004), 225–228.



126 Yuhong Xu

(Received August 20, 2012)
(Revised February 6, 2013)

Department of Mathematics
Soochow University
Suzhou 215006, P.R.China
and
Laboratoire de Mathématiques
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