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On Fractional Whittaker Equation and Operational

Calculus

By M. M. Rodrigues and N. Vieira

Abstract. This paper is intended to investigate a fractional dif-
ferential Whittaker’s equation of order 2α, with α ∈]0, 1], involving the
Riemann-Liouville derivative. We seek a possible solution in terms of
power series by using operational approach for the Laplace and Mellin
transform. A recurrence relation for coefficients is obtained. The exis-
tence and uniqueness of solutions is discussed via Banach fixed point
theorem.

1. Introduction

The Whittaker functions arise as solutions of the Whittaker differential

equation (see [4], Vol.1)). These functions have acquired a significant in-

creasing due to its frequent use in applications of mathematics to physical

and technical problems [1]. Moreover, they are closely related to the con-

fluent hypergeometric functions, which play an important role in various

branches of applied mathematics and theoretical physics, for instance, fluid

mechanics, electromagnetic diffraction theory, and atomic structure theory.

This justifies the continuous effort in studying properties of these functions

and in gathering information about them. As far as the authors aware, there

were no attempts to study the corresponding fractional Whittaker equation

(see below).

Fractional differential equations are widely used for modeling anomalous

relaxation and diffusion phenomena (see [3], Ch. 5, [6], Ch. 2). A systematic

development of the analytic theory of fractional differential equations with

variable coefficients can be found, for instance, in the books of Samko, Kilbas

and Marichev (see [13], Ch. 3).
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Among analytical methods, which are widely used to solve precisely

fractional equations, there are methods involving integral transforms, for

example, the Laplace, Fourier, Mellin transforms (see [2, 7, 8]). Solutions of

fractional equations are usually given in the form of special functions (see [6],

Ch. 2, [10], Ch. 3, [5]), such as the Mittag-Leffler function, the Wright func-

tion, the Fox H-function and the Meijer G-function. However, since some

useful properties of the standard calculus cannot carry over analogously to

the case of fractional calculus, the analytical solutions of fractional differ-

ential equations under certain initial and boundary conditions are difficult

to obtain.

In the recent paper [12] we have an important application of fractional

calculus techniques. In this paper the authors investigated the fractional

differential Bessel’s equation, involving Riemann-Liouville derivative, and

obtained a possible solution in terms of power series by using operational

calculus for the Laplace and Mellin transform.

The aim of the paper is to study the following fractional Whittaker

equation

−4x2α(D2α
0+w)(x) + (x2α − 4µxα − 4τ2 − 1)w(x) = 0,

where x > 0, α ∈]0, 1[ and λ ∈ C. In particular, the case α = 1 leads

us to the classical Whittaker’s equation (see [4], Vol.1), whose solutions

are, correspondingly, the Whittaker functions. The paper is structured

as follows: in the Preliminaries we recall basic properties of the Mellin

transform and necessary elements of fractional calculus. In Section 3, we

study the existence and uniqueness of solutions appealing to the Banach

fix point theorem. Finally in Section 4, we obtain a recurrence relation for

the coefficients of the series solution associated to the considered fractional

differential equation, and a Mellin transform method for solving fractional

Whittaker equation will be presented.

2. Preliminaries

2.1. The Mellin transform of fractional derivatives

The resolution of differential equations with polynomial coefficients be-

comes more efficient considering the Mellin transform. Usually, this integral
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transform is defined by ([14], Sec. 2.7, [9], Ch. 10)

F (s) = M{f(x); s} =

∫ ∞

0
f(x)xs−1dx,(1)

where s is complex, such as γ1 < Re(s) < γ2. The Mellin transform exists

if f(x) is piecewise continuous in every closed interval [a, b] ⊂]0,+∞[ and∫ 1

0
|f(x)|xγ1−1dx < ∞,

∫ ∞

1
|f(x)|xγ2−1dx < ∞.

If the function satisfies Dirichlet’s condition in every closed interval [a, b] ⊂
]0,+∞[, then it can be restored using the inverse Mellin transform formula

f(x) =
1

2πi

∫ γ+i∞

γ−i∞
M{f(x); s}x−s ds, 0 < x < ∞,(2)

where γ1 < γ < γ2. Moreover, this integral transform has the following

properties (see [9], Ch. 10, [11], Ch. 8)

M{xβf(x); s} = M{f(x); s+ β} ≡ F (s+ β),

γ1 −Re(β) < Re(s) < γ2 −Re(β);
(3)

M{f(βx); s} = β−sM{f(x); s} ≡ β−sF (s),

γ1 < Re(s) < γ2, β > 0;
(4)

M{f(xβ); s} =
1

|β|M
{
f(x);

s

β

}
≡ 1

|β| F
(
s

β

)
,{

βγ1 < Re(s) < βγ2, ⇐ β > 0

βγ2 < Re(s) < βγ1, ⇐ β < 0
.

(5)

Further, if additionally f ∈ Cn(R+), n ∈ N, then

M{f (n)(x); s} =
Γ(1 + n− s)

Γ(1 − s)
F (s− n).(6)

We will appeal to the Mellin transform to examine fractional Whittaker’s

equation. Namely, we will consider the following differential properties of

this transform (see [11], Ch. 8, [13], Ch. 3)

M{x2β(D2β
0+y)(x); s} =

Γ(1 − s)

Γ(1 − s− 2β)
Y (s),(7)
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M{xβ(Dβ
0+y)(x); s} =

Γ(1 − s)

Γ(1 − s− β)
Y (s),(8)

M{x2βy(x); s} = Y (s+ 2β).(9)

We denote by Lp(a, b), p ∈ [1,+∞[, the space of measurable functions

f on (a, b) satisfying ∫ b

a
|f(x)|p dx < ∞,

and we write L instead of L1 (see [14], Sec. 1.7).

Theorem 2.1 (see [14], Sec.2.7). Let xβ−1f(x) and xβ−1g(x) belong

to L(0,+∞), and let

h(x) = (f ∗M g)(x) =

∫ ∞

0
f(y) g

(
x

y

)
dy

y
.

Then xβ−1h(x) belongs to L(0,+∞), and its Mellin transform is F (s)G(s),

where F (s) = M{f(x); s} and G(s) = M{g(x); s}.

2.2. Fractional Calculus

In this section we recall some results about fractional calculus which will

be used below. Let us take 0 ≤ n− 1 < β < n. According to the definition

of Riemann-Liouville fractional derivative (see [6], Ch. 2), we can write

(Dβ
0+f)(x) =

(
d

dx

)n 1

Γ(n− β)

∫ x

0

f(t)

(x− t)β−n+1
dt, n = [β] + 1,(10)

where [β] is the integer part of β. Note that the Riemann-Liouville derivative

is defined for some functions with a singularity at the origin. For example,

if f(x) = xd, d > −1, then

(Dβ
0+f)(x) =

Γ(d+ 1)

Γ(d+ 1 − β)
xd−β,(11)

so that Dβ
0+f = 0 if f(x) = xβ−1. The Caputo derivative of fractional order

β of a function f(x) is defined, in turn, as (see [6], Ch. 2)

CDβ
0+f(x) =

1

Γ(n− β)

∫ x

0
(x− τ)n−β−1f (n)(τ) dτ,(12)
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where n− 1 < β < n and n ∈ N. The Mellin transform (1) of the Riemann-

Liouville derivative (10) is equal to the following formula (see ([6], Ch. 2))

M{(Dβ
0+f)(x); s} =

n−1∑
k=0

Γ(1 + k − s)

Γ(1 − s)
(Dβ−n

0+ f)(x)xs−k−1
∣∣∣+∞

0

+
Γ(1 − s+ β)

Γ(1 − s)
F (s− β).

If f is such that all our integrands terms are vanished, then it takes more

simple form

M{(Dβ
0+f)(x); s} =

Γ(1 − s+ β)

Γ(1 − s)
F (s− β).(13)

In what follows n = [β] + 1 for β /∈ N0 and n = β for β ∈ N0. Moreover,

for n ∈ N we will denote by ACn([a, b]) the space of complex-valued func-

tions f(x) which have continuous derivatives up to order n−1 on [a, b] such

that f (n−1)(x) ∈ AC([a, b]), where AC([a, b]) is the space of all functions

absolutely continuous on [a, b] (see [6], Sec. 1.1).

Theorem 2.2 (see [6], Ch. 2). Let β ≥ 0 and v(x) ∈ ACn([a, b]).

Then Dβ
a+v exists almost everywhere and may be represented in the form

Dβ
a+v =

n−1∑
k=0

v(k)(a)

Γ(1 + k − β)
(x− a)k−β(14)

+
1

Γ(n− β)

∫ x

a

v(n)(t)

(x− t)β−n+1
dt.

We remark that fractional derivatives (10) verify the following relation

C(Dβ
a+v)(x) = (Dβ

a+v)(x) −
n−1∑
k=0

v(k)(a)

Γ(k − β + 1)
(x− a)k−β.(15)

Theorem 2.3 (see [6], Ch. 2). Let β ≥ 0. If v(x) ∈ ACn([a, b]), then

the Caputo fractional derivative CDβ
a+v exists almost everywhere on [a, b],

and if β /∈ N0,
CDβ

a+v is represented by

CDβ
a+v(x) =

1

Γ(n− β)

∫ x

a

v(n)(t)

(x− t)β−n+1
dt := (In−β

a+ Dnv)(x),(16)
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where D = d
dx is the ordinary derivative.

If β /∈ N0 and n = [β] + 1, then (see [6], Ch. 2)

∣∣∣(In−β
a+ Dnv)(x)

∣∣∣ ≤ ‖v(n)‖C
Γ(n− β) (n− β + 1)

(x− a)n−β,(17)

where the Riemann-Liouville fractional integral In−β
a+ is defined by (see [6],

Sec. 2.1)

(Iαa+f)(x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−α
dt, x > a, Re(α) > 0.

Lemma 2.4 (see [6], Ch. 2). Let β > 0. If v(x) ∈ ACn([a, b]) or

v(x) ∈ Cn([a, b]), then

(
Iαa+

CDβ
a+v
)

(x) = v(x) −
n−1∑
k=0

v(k)(a)

k!
(x− a)k.

Lemma 2.5 (see [13], Ch. 3). If the series f(x) =
∑∞

n=0 fn(x),

fn(x) ∈ C([a, b]), is uniformly convergent on [a, b], then its termwise frac-

tional integration is admissible:(
Iβ
a+

∞∑
n=0

fn

)
(x) =

∞∑
n=0

(
Iβ
a+fn

)
(x), β > 0, a < x < b,(18)

the series on the right-hand side being also uniformly convergent on [a, b].

Lemma 2.6 (see [13], Ch. 3). If the fractional derivatives Dβ
a+fn exist

for all n = 0, 1, 2, . . . and let the series

∞∑
n=0

fn and

∞∑
n=0

Dβ
a+fn uniformly

convergent on every sub-interval [a + ε, b], ε > 0. Then, the former series

admits termwise fractional differentiation using the formula(
Dβ

a+

∞∑
n=0

fn

)
(x) =

( ∞∑
n=0

Dβ
a+fn

)
(x), β > 0, a < x < b,(19)
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3. Existence and Uniqueness of Solutions

Here we will use Banach’s fixed point theorem to study the existence

and uniqueness of solution for the fractional Whittaker equation

−4x2α(D2α
0+w)(x) + (x2α − 4µxα − 4τ2 − 1)w(x) = 0, α ∈]0, 1[,(20)

with x ∈ [0, X0], X0 > 1, and µ, τ ∈ C under initial conditions

w(0) = w0, w′(0) = w∗
0.(21)

Let I = [a, b] (a < b, a, b ∈ R) and m ∈ N0. Denote by Cm the usual

space of functions v which are m times continuously differentiable on I with

the norm

‖v‖Cm =
m∑
k=0

‖v(k)‖C =
m∑
k=0

max
x∈I

|v(k)(x)|.

In particular, for m = 0, C0(I) ≡ C(I) is the space of continuous functions

v on I with the norm ‖v‖C = maxx∈I |v(x)|.

Theorem 3.1. The fractional problem (20-21), has a unique solution

for every µ ∈ C and α ∈]0, 1[, if

|τ |2 > 1

4

[
X0

(
X0 + 4|µ| + X0

Γ(2(1 − α)) (3 − 2α)

)
− 1

]
.(22)

Proof. Consider the following Banach spaces

X = {w : w(x) ∈ C2([0, X0])}, Y = {w : w(x) ∈ C([0, X0])}.

Putting T : X → Y ,

(Tw)(x) =
1

1 + 4τ2

[
(x2α − 4µxα)w(x) − 4x2α

(
D2α

0+w
)
(x)
]
,
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we rewrite equation (20) in the form w(x) = (Tw)(x). Taking into account

Theorems 2.2, 2.3, Lemma 2.4 and relations (15), (17), we have

‖Tw1 − Tw2‖Y

=
1

|λ|2
∥∥(x2α − 4µxα)(w1(x) − w2(x)) − 4x2α(D2α

0+(w1 − w2))(x)
∥∥
Y

≤ X2
0 + 4µX0

1 + 4|τ |2 ‖w1 − w2‖Y

+
4X2

0

(1 + 4|τ |2) Γ(2(1 − α)) (3 − 2α)
‖D2(w1 − w2)‖Y

≤ X0

1 + 4|τ |2
(
X0 + 4µ+

4X0

Γ(2(1 − α)) (3 − 2α)

)
‖w1 − w2‖X .

From (22) we conclude that T is a contraction. Hence, we can apply the

Banach fix point theorem to complete the proof. �

4. Fractional Whittaker Equation

The aim of this section is to obtain particular solutions for the following

fractional Whittaker equation (20), i.e.,

−4x2α(D2α
0+w)(x) + (x2α − 4µxα − 4τ2 − 1)w(x) = 0, α ∈]0, 1[,

where µ, τ ∈ C, x ∈ [x0, X0], x0, X0 ∈ R+ and Dα
0+ is the operator of the

Riemann fractional derivative (10).

4.1. Recurrence relation for the coefficients of the series solution

Here, we derive a recurrence relation for coefficients of the series solution

associated to (20). We seek a solution of (20) in the form of a generalized

power series in increasing powers of argument x

w(x) =
+∞∑
n=0

anx
αn,(23)

such that the following condition holds

∞∑
n=0

|an|n2Xn
0 < ∞.(24)
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In fact, by Stirling’s asymptotic formula for Gamma function we have (see

[13], Ch. 1)

Γ(αn+ 1)

Γ(α(n− 2) + 1)
= O(n2α), n → ∞.

Therefore, from relation (11), condition (24) and Lemma 2.4 we can guaran-

tee the absolute and uniform convergence, on [x0, X0], of the corresponding

series in Lemma 2.6. Hence, we get

(D2α
0+w)(x) =

+∞∑
n=0

an
Γ(αn+ 1)

Γ(αn+ 1 − 2α)
xαn−2α.(25)

Substituting expressions (23) and (25) in (20), and collecting the terms

containing equal powers of x, we derive

− 4

+∞∑
n=0

an
Γ(αn+ 1)

Γ(αn+ 1 − 2α)
xαn +

+∞∑
n=2

an−2 x
αn − 4µ

+∞∑
n=1

an−1 x
αn(26)

− (1 + 4τ2)

+∞∑
n=0

an xαn = 0.

Evidently all coefficients of xαn should be equal to zero. Hence


a0

(
− 4

Γ(1 − 2α)
− 1 − 4τ2

)
= 0

a1

(
−4Γ(1 + α)

Γ(1 − α)
− 1 − 4τ2

)
− 4µa0 = 0

an − 4µan+1 −
(

4Γ(αn+ 1)

Γ(α(n− 2) + 1)
+ 1 + 4τ2

)
an+2 = 0,

n ∈ N0.

(27)

The analysis of the previous system will be split into two different cases.

4.1.1 Case of µ = 0

It is immediate from the previous system that the case a0 = a1 = 0

drives to the trivial solution of the equation (20). Moreover, in order to

obtain non-trivial solutions, we will additionally assume that

τ2 �= − Γ(αn+ 1)

Γ(α(n− 2) + 1)
− 1

4
, α ∈]0, 1[, n ∈ N0.
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From the first and second equation of system (27) we obtain the following

equation

Γ(1 + α)

Γ(1 − α)
− 1

Γ(1 − 2α)
= 0.(28)

Numerical simulations indicate that equation (28) is impossible for every

α ∈]0, 1[ and n ∈ N0. Hence, a0 and a1 cannot be simultaneously different

from zero because it will lead to an impossible system. So, consider, for

instance, a0 �= 0. Consequently,

τ2 = − 1

Γ(1 − 2α)
− 1

4
.(29)

Hence the third equation of (27) becomes

an − 4

(
Γ(αn+ 1)

Γ(α(n− 2) + 1)
− 1

Γ(1 − 2α)

)
an+2 = 0, n ∈ N0.

Furthermore, numerical simulations indicate

Γ(αn+ 1)

Γ(α(n− 2) + 1)
− 1

Γ(1 − 2α)
�= 0

for all α ∈]0, 1[ and n ∈ N0. Therefore one can express coefficients an with

even indices by the relation

a2n =
a0

4

n∏
k=1

(
Γ(2(k − 1) + 1)

Γ(2α(k − 2) + 1)
− 1

Γ(1 − 2α)

)−1

, n ∈ N0.(30)

Since in this case a1 = 0, we have, from the third equation of (27), that all

odd coefficients are zero.

The above discussion can be summarized in the following result:

Theorem 4.1. Let µ = 0, a0 �= 0, α ∈]0, 1[, x ∈ [x0, X0], and

τ2 = − 1

Γ(1 − 2α)
− 1

4
.

Then fractional Whittaker equation (20) admits a particular solution in

terms of series as solution the power series (23), with even coefficients sat-

isfying condition (25) and given by formula (30).
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In the odd case, we presume a1 �= 0 and the determining equation be-

comes

τ2 = −Γ(1 + α)

Γ(1 − α)
− 1

4
.(31)

As above, numerical simulations indicate that

Γ(αn+ 1)

Γ(α(n− 2) + 1)
− Γ(1 + α)

Γ(1 − α)
�= 0,

for every α ∈]0, 1[ and n ∈ N0. Hence in the same manner, we express the

odd coefficients by the relation

a2n+1 =
a1

4

n∏
k=1

(
Γ(α(2k − 1) + 1)

Γ(α(2k − 3) + 1)
− Γ(1 + α)

Γ(1 − α)

)−1

, n ∈ N0.(32)

Since in this case a0 = 0, we have, from the third equation of (27), that all

even coefficients are zero. We summarize the above discussion in the next

theorem:

Theorem 4.2. Let µ = 0, a1 �= 0, α ∈]0, 1[, x ∈ [x0, X0], and

τ2 = −Γ(1 + α)

Γ(1 − α)
− 1

4
.

Then fractional Whittaker equation (20) admits a particular solution in

terms of series as solution the power series (23), with odd coefficients sat-

isfying condition (25) and given by formula (32).

4.1.2 Case of µ �= 0

The case a0 = a1 = 0 leads to the trivial solution of equation (20)

(similar to what happened when µ = 0). If we consider a0 = 0 and a1 �= 0,

we are in the odd case when µ = 0 which was studied in the previous

subsection. When a1 = 0 and a0 �= 0 the second equation of system (27)

become impossible.

Hence, it remains to study the case a0 �= 0 and a1 �= 0. For this situation,

we obtain from the first and second equations of (27) the following equation

− 1

Γ(1 − 2α)
+

Γ(1 + α)

Γ(1 − α)
= −µa0

a1
.(33)
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Numerical simulations indicate that the previous equation is only possible

when µ, a0 and a1 are such that µa0

a1
∈] −M, 0[, where M is the maximum

of

− 1

Γ(1 − 2α)
+

Γ(1 + α)

Γ(1 − α)
,

with α ∈]0, 1[. For this case the coefficients of the series will be given by

an+2 =

(
Γ(αn+ 1)

Γ(α(n− 2) + 1)
− Γ(α+ 1)

Γ(α− 1)
− µa0

a1

)−1

(34)

× an − 4µan+1

4
, n ∈ N0.

The above discussion can be summarized in the following theorem:

Theorem 4.3. Let x ∈ [x0, X0], µ �= 0, a0 �= 0, a1 �= 0 such that
µa0

a1
∈] −M, 0[, where M is the maximum of

− 1

Γ(1 − 2α)
+

Γ(1 + α)

Γ(1 − α)
,

with α ∈]0, 1[. Then fractional Whittaker equation (20) admits a particular

solution in terms of series as solution the power series (23), with coefficients

satisfying condition (25) and given by formula (34).

4.2. The Mellin transform method for solving fractional Whit-

taker’s equation

The aim of this section is to obtain an approximate solution of fractional

Whittaker equation by using the direct and inverse Mellin transforms M

and M−1, respectively (1) and (2). Applying Mellin’s transform to (20)

and taking into account properties (7), (8) and (9), we have

− 4
Γ(1 − s)

Γ(1 − s− 2α)
W (s) − W (s) + W (s+ 2α)(35)

− 4µ W (s+ α) − 4τ2 W (s) = 0.

Denoting H(s) = Γ(1 − s)W (s) and

h(x) =

∫ ∞

0
e−xtw(t) dt,(36)
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we get owing to Theorem 2.1 that h(x) is the inverse Mellin transform of

H(s). Thus, (35) became

− 4 H(s) − Γ(1 − s− 2α)

Γ(1 − s)
H(s) + H(s+ 2α)(37)

− 4µ
Γ(1 − s− 2α)

Γ(1 − s− α)
H(s+ α) − 4τ2 Γ(1 − s− 2α)

Γ(1 − s)
H(s) = 0.

Taking the inverse Mellin transform we obtain, correspondingly, the equality

(x2α − 4) h(x) − 4µ

∫ ∞

0

(x
t

)α
h
(x
t

)
k2(t)

dt

t
(38)

− (1 + 4τ2)

∫ ∞

0
h
(x
t

)
k1(t)

dt

t
= 0,

where

k1(t) = M−1

{
Γ(1 − s− 2α)

Γ(1 − s)

}
=

1

Γ(2α)
(t− 1)2α−1

+ ,

k2(t) = M−1

{
Γ(1 − s− 2α)

Γ(1 − s− α)

}
=

tα

Γ(α)
(t− 1)α−1

+ .(39)

Consider that h(x) admits formal series representation

h(x) ∼
∞∑
n=1

bnx
−αn,(40)

i.e.,

h(x) =
N∑

n=1

bnx
−αn +O(x−αN ), x → ∞, N ∈ N.

Substituting this into (38) and using Lemma 2.5 with (39), we come out

with asymptotic equality

(x2α − 4)

N∑
n=1

bnx
−αn − 4µ

Γ(α)
xα

N∑
n=1

bnx
−αn

∫ ∞

1
tαn−1(t− 1)α−1dt(41)

− (1 + 4τ2)

Γ(2α)

N∑
n=1

bnx
−αn

∫ ∞

1
tαn−1(t− 1)2α−1dt = O(x−αN ).
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At the meantime, the elementary Beta-integrals that appear in (41) are

calculated explicitly under condition α < 1
N+2 .∫ ∞

1
tαn−1(t− 1)2α−1dt

=
Γ(2α) Γ(−α(n+ 2) + 1)

Γ(−αn+ 1)
, n = 0, . . . , N,∫ ∞

1
tαn−1(t− 1)α−1dt(42)

=
Γ(α) Γ(−α(n+ 1) + 1))

Γ(−αn+ 1)
, n = 0, . . . , N.

Therefore, substituting (42) into (41), we arrive at the following truncated

equation

(x2α − 4)

N∑
n=1

bnx
−αn − 4µxα

N∑
n=1

bn
Γ(−α(n+ 1) + 1)

Γ(−αn+ 1)
x−αn

− (1 + 4τ2)

N∑
n=1

bn
Γ(−α(n+ 2) + 1)

Γ(−αn+ 1)
x−αn = 0.

Collecting the terms which contain equal powers of x and equating them to

zero, we find

bn+2 − 4µ
Γ(1 − α(n+ 2))

Γ(1 − α(n+ 1))
bn+1(43)

−
[
4 + (1 + 4τ2)

Γ(1 − α(n+ 2))

Γ(1 − αn)

]
bn = 0.

Analysis of the equation (43) is made considering several cases, depending

on the values assumed by some of the parameters, in particular,τ, µ, b1, and

b2.

4.2.1 Case 1

Suppose that

τ2 �= − Γ(1 − αn)

Γ(1 − α(n+ 2))
− 1

4
,

with α ∈
]
0, 1

N+2

]
, n ∈ N, n ≤ N . This means, from the previous equation,

that the case b1 = b2 = 0 leads to the trivial solution of the equation (20).



On Fractional Whittaker Equation and Operational Calculus 141

In order to obtain non-trivial solutions, we need to split our study in sub-

cases.

Sub-case 1.1 : µ = 0 and b1, b2 non simultaneously zero.

Suppose that b1 �= 0 and b2 = 0. Hence (43) becomes

b2n+1 =

[
4 + (1 + 4τ2)

Γ(1 − α(2n+ 1))

Γ(1 − α(2n− 1))

]
b2n−1, n ∈ N, n ≤ N.

Therefore one can express coefficients bn with odd indices by the relation

b2n+1 = b1

n∏
k=1

[
4 + (1 + 4τ2)

Γ(1 − α(2k + 1))

Γ(1 − α(2k − 1))

]
, n ∈ N.(44)

Since in this case b2 = 0, we have, from the equation (43), that all even

coefficients are zero. Therefore, we get an approximate solution of equation

(41) in the form

h(x) ∼
∞∑
n=1

b2n+1 x
−α(2n+1).

We obtain the corresponding expression for the solution w(t) employing

operational relation for the Laplace transform. Namely, equality (36) gives

w(t) as a formal series

w(t) ∼
∞∑
n=1

b2n+1

Γ(α(2n+ 1))
tα(2n+1)−1.(45)

The above discussion can be summarized in the following result:

Theorem 4.4. Let b1 �= 0, µ = b2 = 0, α ∈
]
0, 1

N+2

]
, N ∈ N0,

x ∈ [x0, X0], and

τ2 �= − Γ(1 − αn)

Γ(1 − α(n+ 2))
− 1

4
.

Then fractional Whittaker equation (20) admits a particular solution in

terms of series as solution the power series (45), with odd coefficients given

by formula (44).
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Now we turn to the even case. Assuming that b2 �= 0, equation (43)

becomes

b2n+2 =

[
4 + (1 + 4τ2)

Γ(1 − 2α(n+ 1))

Γ(1 − 2αn)

]
b2n, n ∈ N, n ≤ N.

for all α ∈
]
0, 1

N+2

]
, N,n ∈ N with n ≤ N . In the same manner, we have

the following relation for the even coefficients

b2(n+1) = b2

n∏
k=1

[
4 + (1 + 4τ2)

Γ(1 − α(2k + 2))

Γ(1 − α2k)

]
, n ∈ N.(46)

Since in this case b1 = 0, we have, from the equation of (43), that all odd

coefficients are zero. Hence, we get an approximate solution of equation

(41) in the form

h(x) ∼
∞∑
n=1

b2nx
−2αn.

Similarly as we had done for the odd case, equality (36) gives w(t) as a

formal series

w(t) ∼
∞∑
n=1

b2n
Γ(2nα)

t2αn−1.(47)

The above discussion can be summarized in the following theorem:

Theorem 4.5. Let b2 �= 0,µ = b1 = 0, α ∈
]
0, 1

N+2

]
, N ∈ N0, x ∈

[x0, X0], and

τ2 �= − Γ(1 − αn)

Γ(1 − α(n+ 2))
− 1

4
.

Then fractional Whittaker equation (20) admits a particular solution in

terms of series as solution the power series (47), with even coefficients given

by formula (46).

Finally, consider that b1 �= 0 and b2 �= 0. In this case equation (43)

becomes

bn+2 =

[
4 + (1 + 4τ2)

Γ(1 − α(n+ 2))

Γ(1 − αn)

]
bn, n ∈ N, n ≤ N,(48)
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and we get an approximate solution of equation (41) in the form

h(x) ∼
∞∑
n=1

bnx
−αn.

Then, equality (36) gives w(t) as a formal series

w(t) ∼
∞∑
n=1

bn
Γ(nα)

tαn−1.(49)

The above discussion can be summarized in the following result:

Theorem 4.6. Let b1, b2 �= 0,µ = 0, α ∈
]
0, 1

N+2

]
, N ∈ N0, x ∈

[x0, X0], and

τ2 �= − Γ(1 − αn)

Γ(1 − α(n+ 2))
− 1

4
.

Then fractional Whittaker equation (20) admits a particular solution in

terms of series as solution the power series (49), with coefficients given

by formulas (48).

Sub-case 1.2 : µ �= 0 and b1, b2 non simultaneously zero.

In this case, there is no possible simplification of relation (43) for the coe-

ficientes. Hence, from operation techniques previously used for the Laplace’s

transform, we obtain w(t) as a formal series

w(t) ∼
∞∑
n=1

bn
Γ(nα)

tαn−1.(50)

The above discussion can be summarized in the following theorem:

Theorem 4.7. Let b1, b2 non simultaneously zero, µ = 0, α ∈]
0, 1

N+2

]
, N ∈ N0, x ∈ [x0, X0], and

τ2 �= − Γ(1 − αn)

Γ(1 − α(n+ 2))
− 1

4
.

Then fractional Whittaker equation (20) admits a particular solution in

terms of series as solution the power series (50), with coefficients given

by formulas (43).
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4.2.2 Case 2

Suppose that

τ2 = − Γ(1 − αn)

Γ(1 − α(n+ 2))
− 1

4
,

with α ∈
]
0, 1

N+2

]
, n ∈ N, n ≤ N . It is immediate that our conclusions

will be independent from the value of b1. However, we need to consider two

sub-cases.

Sub-case 2.1 : µ = 0.

From equation (43), if b1 = b2 = 0 we get the trivial solution of the

equation (20). If b1 = 0 and b2 �= 0, or b1 �= 0 and b2 = 0 then bn = b2,

bn = b1, n ∈ N, respectively. Finally, bn = b1 + b2, with n ∈ N, in the case

that b1 and b2 are both different form zero.

Sub-case 2.2 : µ �= 0.

In this case we only need to take into account the value of b2 because

the conclusions will be the same for all b1. From (43), if b2 = 0 we obtain

the trivial solution of the equation (20). So, let, for instance, b2 �= 0. Hence,

(43) becomes

bn+2 = 4µ
Γ(1 − α(n+ 2))

Γ(1 − α(n+ 1))
bn+1, n ∈ N, n ≤ N.

Therefore one can express coefficients bn by the relation

bn+2 = b2

n∏
k=1

4µ
Γ(1 − α(k + 2))

Γ(1 − α(k + 1))
, n ∈ N.(51)

Since in this case b2 �= 0, we get, from (43), an approximate solution of

equation (41) in the form

h(x) ∼
∞∑
n=1

bnx
−αn.

Since h(x) is approximated by the previous series, we use Laplace opera-

tional calculus to conclude that equality (36) gives w(t) as a formal series

w(t) ∼
∞∑
n=1

bn
Γ(nα)

tαn−1.(52)
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The above discussion can be summarized in the following result:

Theorem 4.8. Let b2 �= 0, µ �= 0, α ∈
]
0, 1

N+2

]
, N ∈ N0, x ∈ [x0, X0],

and

τ2 = − Γ(1 − αn)

Γ(1 − α(n+ 2))
− 1

4
.

Then fractional Whittaker equation (20) admits a particular solution in

terms of series as solution the power series (52), with coefficients given

by formula (51).
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