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On the Fusion Algebras of Bimodules Arising

from Goodman-de la Harpe-Jones Subfactors

By Satoshi Goto

Abstract. By using Ocneanu’s result on the classification of all
irreducible connections on the Dynkin diagrams, we show that the
dual principal graphs as well as the fusion rules of bimodules arising
from any Goodman-de la Harpe-Jones subfactors are obtained by a
purely combinatorial method. In particular we obtain the dual princi-
pal graph and the fusion rule of bimodules arising from the Goodman-
de la Harpe-Jones subfactor corresponding to the Dynkin diagram E8.
As an application, we also show some subequivalence among A-D-E
paragroups.

1. Introduction

Since V. F. R. Jones initiated the index theory for subfactors in [15],

intensive studies on the classification of subfactors have been made by many

people. The classification of subfactors of the AFD type II1 factor with index

less than 4 has been completed by many people’s contribution ([2, 13, 14,

15, 16, 21], see also [9]) after A. Ocneanu’s announcement [18].

Goodman-de la Harpe-Jones subfactors (abbreviated as GHJ subfactors)

[11] are known as a series of interesting non-trivial examples of irreducible

subfactors with indices greater than 4, though some of them have indices

less than 4. The indices of all GHJ subfactors are given in [11]. They are

constructed from the commuting squares arising from the embeddings of

type A string algebras into other string algebras of type ADE. (See [9,

Chapter 11] for the construction of GHJ subfactors from a viewpoint of

string algebra embedding.) The principal graphs of these subfactors are

easily obtained by a simple method but the dual principal graphs as well

as their fusion rules are much more difficult to compute. (Okamoto first

computed their principal graphs in [20].)

One of the most important examples of GHJ subfactor has index 3+
√

3

and it is constructed from the embedding of the string algebra of A11 into
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that of E6. In this particular case it happens that it is not very difficult

to compute the dual principal graph (see [17], [9, Section 11.6]). But it is

more difficult to determine its fusion rules. Actually D. Bisch has tried to

compute the fusion rule just from the graph but there were five possibilities

and it turned out that the fusion rule cannot be determined from the graph

only [3]. Some more information is needed and Y. Kawahigashi obtained

the fusion rule as an application of paragroup actions in [17].

In his lectures at The Fields Institute A. Ocneanu introduced a new

algebra called double triangle algebra by using the notion of essential paths

and extension of Temperley-Lieb recoupling theory of Kauffman-Lins [19].

He also announced a solution to the problem of determining the dual prin-

cipal graphs and their fusion rules of the GHJ subfactors as one of some

applications of his theory. But the details have not been published.

After A. Ocneanu’s works, F. Xu and J. Böckenhauer-D. E. Evans have

revealed a relation between the GHJ subfactors and conformal inclusions

([22], [5], [6], [7]) and J. Böckenhauer, D. E. Evans and Y. Kawahigashi

([8]) obtained essentially the same fusion algebras of GHJ subfactors of

type D2n, E6, E8 by using conformal field theory and the Cappelli-Itzykson-

Zuber’s classification of modular invariant [10].

In this paper we give detailed computations of the dual principal graphs

and the fusion rules for any GHJ subfactors by a purely combinatorial

method. For this purpose we will make the most use of Ocneanu’s result on

the classification of all irreducible connections on the Dynkin diagrams (See

[19]. Our method here is based on the observation in [12]). Especially we

will make use of Figures 21∼36, which were first found by A. Ocneanu [19].

Our result does not rely on either conformal field theory or the classification

of modular invariant.

2. Correspondence between System of Connections and System

of Bimodules

Let K and L be two connected finite bipartite graphs. A bi-unitary

connection on four graphs is called a K-L bi-unitary connection if it has the

graph K as an upper horizontal graph and the graph L as a lower horizontal

graph as in Figure 1.

If we have a K-L connection, we can construct a subfactor N ⊂ M

by choosing a distinguished vertex ∗K of the upper graph K and applying
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string algebra construction to the connection. (See [9, Section 11].) This

construction seems to depend on the choice of the vertex ∗K . But it is

well-known that the subfactors constructed from this connection does not

depend on the choice of the vertex ∗K , that is, they become all isomorphic

because of the relative McDuff property [4].

Figure 1.

On the one hand as a paragroup of the subfactor N ⊂ M obtained from

the connection w as above, we obtain the system of 4-kinds of bimodules, i.e.

N -N , N -M , M -N , M -M bimodules, by taking irreducible decomposition

of alternating relative tensor products of NMM and its conjugate bimodule

MMN as usual. (See [9] for details.)

On the other hand we also get the system of 4-kinds of connections, i.e.

K-K, K-L, L-K, L-L bi-unitary connections, by taking irreducible decom-

position of alternating compositions of the connection w and its conjugate

L-K connection w̄.

Now the problem is the relation between the system of bimodules and

the system of connections obtained as above. We can easily see that those

two systems become the same paragroup for N ⊂ M if the subfactor N ⊂ M

has finite depth.

To see this it is enough to see the relation among a usual paragroup

based on bimodules, a system of generalized open string bimodules and a

system of bi-unitary connections. The details of these relations are found in

[1]. Note that when we consider a system of bi-unitary connections forms a

paragroup, we need the notion of intertwiners between two connections. For

this purpose, we need to fix distinguished vertices ∗K and ∗L of both even

and odd part of the graphs K and L, then we identify all the bi-unitary

connections of the system as the generalized open string bimodules con-

structed from those connections. Then we define the intertwiners between

two connections by those between the corresponding two generalized open
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string bimodules. Now from the argument in [1], the intertwiners between

two connections can naturally be identified with the intertwiners between

the correponding 4 kinds of bimodules, i.e. N -N , N -M , M -N , M -M bi-

modules arising from the usual paragroup. See Theorem 4 in [1] for more

details.

Hence we obtain the following theorem.

Theorem 2.1. If the subfactor N ⊂ M constructed from a K-L con-

nection KwL has finite depth, the system of 4-kinds of connections obtained

from KwL and the system of 4-kinds of bimodules obtained from the subfac-

tor N ⊂ M have the same fusion rules. Moreover these two systems defines

the same paragroup for N ⊂ M via the correspondence between connections

and generalized open string bimodules.

Remark 2.2. As we mentioned above, the subfactor constructed from

a connection KwL does not depend on the choice of the distinguished vertex

∗K . In the same way we need to fix two vertices ∗K and ∗L in order to

construct a generalized open string bimodule from a connection. But the

above theorem holds true for arbitrary choice of two distinguished vertices

∗K and ∗L of the graphs K and L respectively.

The above theorem provide us a purely combinatorial method to com-

pute fusion rules for the subfactor obtained from a connection KwL. Actu-

ally we can compute the fusion rules of a system of connections by looking

at the composition and decomposition of their vertical graphs.

3. The (Dual) Principal Graphs and Their Fusion Rules of the

Goodman-de la Harpe-Jones Subfactor

Let A be the Dynkin diagram An and K one of the ADE Dynkin dia-

grams with the same Coxeter number. The subfactors constructed from the

commuting square as in Figure 2 are called the Goodman-de la Harpe-Jones

subfactors (abbreviated as GHJ subfactors). Here the construction depends

only on the graph K and the vertex ∗K = x. (See [11] for details.) We

denote this subfactor GHJ(K, ∗K = x). We remark that the vertical graphs

G and G′ as in Figure 2 are easily obtained from the dimension of essential

paths on the graph K (Figures 21∼30). Here we note that the graphs G

and G′ may be disconnected.
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Figure 2.

We use the next two propositions to compute the fusion rule of the

Goodman-de la Harpe-Jones subfactors.

Proposition 3.1 ([12, Proposition 5.6]). Let A,K,G and G′ be the

four graphs connected as in Figure 3. Suppose there is a bi-unitary connec-

tion on the four graphs. Then the connecting vertical graphs G and G′ are

uniquely determined by the initial condition, i.e., the condition of edges con-

nected to the distinguished vertex of the graph A (see Figure 4). Moreover

such a connection is unique up to vertical gauge choice.

Figure 3.

Figure 4.
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Proposition 3.2 (Frobenius reciprocity) ([12, Proposition 3.21]).

Let K, L and M be three connected finite bipartite graphs with the same

Perron-Frobenius eigenvalue. Let KαL, LβM and KγM be three irreducible

bi-unitary connections which are K-L, L-M and K-M respectively. If γ

appears n times in the composite connection αβ, then α appears n times in

γβ̄ and β appears n times in ᾱγ.

3.1. The fusion rules of four kinds of connections arising from

GHJ subfactors

The system of connections arising from a GHJ subfactor consists of four

kinds of connections, i.e. A-A, A-K, K-A and K-K connections. So the

fusion rules consist of the following 8 kinds of multiplication table.

(1) A-A × A-A −→ A-A

(2) A-A × A-K −→ A-K

(2)′ K-A × A-A −→ K-A (2)′′ A-K × K-A −→ A-A

(3) A-K × K-K −→ A-K

(3)′ K-K × K-A −→ K-A (3)′′ K-A × A-K −→ K-K

(4) K-K × K-K −→ K-K

Among these multiplication tables, (2)′ and (3)′ are obtained by taking

conjugation of (2) and (3) respectively. The tables (2)′′ and (3)′′ are also

obtained from (2) and (3) respectively by Frobenius reciprocity. So it is

enough to determine four multiplication table (1), (2), (3) and (4).

3.1.1 The fusion rules of (1) A-A × A-A −→ A-A and (2) A-A ×
A-K −→ A-K and the principal graphs

We put the labels 0, 1, 2, · · · ,m − 1 of vertices of the Dynkin diagram

Am as in Figure 5. We denote the unique irreducible A-A connection with

the “initial edge” connected to the vertex n in the lower graph Am by AnA

(Figure 6). We also denote the unique irreducible A-K connection with

Figure 5. The label of vertices of the Dynkin diagram Am.
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Figure 6.

the “initial edge” connected to the vertex x in the lower graph K by AxK
(Figure 6).

Then the fusion rules of (1) A-A × A-A −→ A-A and (2) A-A × A-K

−→ A-K can be obtained by composition and decomposition of the (left)

vertical edges of the two connections AnA and AxK as in Figure 7. So we

have only to count the vertical edges of the connection AxK in order to

determine the fusion tables of (1) and (2).

Figure 7. The fusion rule of A-A × A-K −→ A-K.

Because we need the notion of essential paths on graphs in order to

describe these fusion rules, we review the definition here for readers conve-

nience. Please see [19, section 32.2, page 254–256] for more details and the

proof of the moderated Pascal rule.

Definition 3.3. A space of essential paths of a graph G with length n

is defined by EssPath(n)G = pn ·HPath(n)G. Here pn = 1−e1∨e2∨· · ·∨en−1

is the Wenzl projector and ek is the k-th Jones projection. We denote the
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space of essential paths of a graph G with length n, with starting point x

and end point y by EssPath
(n)
x,yG.

The dimensions of spaces of essential paths of length n is easily obtained

by using the following moderated Pascal rule.

dim EssPath(n+1)
a,x G =

∑

ξ∈Edge G,r(ξ)=x

dim EssPath
(n)
a,s(ξ)G

− dim EssPath(n−1)
a,x G

Now we continue the description of the fusion rules (1) and (2). Be-

cause the connection AxK comes from the inclusion of the string algebras

String∗A ⊂ StringxK, the number of vertical edges of this inclusion coin-

cides with the dimension of essential paths from the vertex x to y of K with

length n. (See Figures 21∼30 for the dimension of essential paths.) Hence

we get the fusion tables of (1) and (2) as follows.

AnA · AxK ∼=
⊕

y∈VertK

(dim EssPath(n)
x,yK) AyK

K x̄A · AnA
∼=

⊕

y∈VertK

(dim EssPath(n)
x,yK) K ȳA

AyK · K x̄A ∼=
⊕

n∈VertA

(dim EssPath(n)
x,yK) AnA

Since the principal graph is obtained from the fusion rule of A-A × A-

K −→ A-K, we can easily see that the principal graph of GHJ(K, ∗K =

x) coincides with the connected component of the vertical edges of the

connection AxK including the distinguished vertex ∗A. This principal graph

can be obtained easily by counting the dimension of essential path. It

follows from this fact that the even vertices of the the principal graph of

GHJ(K, ∗K = x) coincides with (possibly a subset of) the even vertices of

the Dynkin diagram Am.

3.1.2 The fusion rules of (3) A-K × K-K −→ A-K and the dual

principal graphs

We denote the unique irreducible A-K connection with the “initial edge”

connected to the vertex x in the lower graph K by AxK as before and an

irreducible K-K connection by KwiK (Figure 8). Here KwiK is one of the
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connections of all K-K connection system (Figures 31∼36). (See [12, section

5.3, pages 244–252] for details.) In this case the fusion rule of (3) A-K ×
K-K −→ A-K is also obtained by composition and decomposition of the

(left) vertical edges of the two connections AxK and KwiK as in Figure 9.

We can get the fusion table of (3) by counting the vertical edges of the

connection KwiK in the same way as subsection 3.1.1.

Figure 8.

Figure 9. The fusion rule of A-K × K-K −→ A-K.

This time the method of counting dimensions of essential paths does

not work in order to get the vertical edges of the connection KwiK . But we

can compute them by using Ocneanu’s classification of all irreducible K-K

connections and their fusion rules ([12, section 5.3, pages 244–252]).

For example, the vertical edges of all K-K connections are given in

Figures 37∼47 in the case of K = A3, A4, A5, A6, D4, D5, D6, E6, E7, E8.

Here in the case of E6, E7, E8, we give list of incidence matrices of vertical

graphs instead of graphs themselves because it is complicated to draw them
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all.

Now we get the fusion rule of A-K × K-K −→ A-K as follows.

AxK · KwiK
∼=

⊕

y∈VertK

n(wi)x,y AyK

KwiK · K x̄A ∼=
⊕

y∈VertK

n(wi)x,y K ȳA

K x̄A · AyK ∼=
⊕

wi∈KZK

n(wi)x,y KwiK

Here KZK represents the system of all K-K connections which is isomor-

phic to the fusion algebras of the center of K-K double triangle algebra ([12,

Theorem 4.1, Corollary 4.5]). And n(wi)x,y means the number of vertical

edges of the K-K connection KwiK connecting the vertices x and y.

Now we can get the dual principal graph from the fusion rule of (3) A-K

× K-K −→ A-K. It is the connected component of the fusion graph of (3)

which contains the connection AxK .

3.1.3 The fusion rules of (4) K-K × K-K −→ K-K

This is the fusion rule of the system of all K-K connections obtained by

Ocneanu (Figures 31∼36, [12, section 5.3, pages 244–252]). It is isomorphic

to the fusion algebras of the center of K-K double triangle algebra (KZK , ·)
with dot product (vertical product) “·”. We know that this fusion algebra

(KZK , ·) is generated by chiral left part and chiral right part which are

isomorphic to the fusion algebra of connections arising from corresponding

ADE subfactor and that the chiral left and right part are relatively com-

mutative [12, Theorem 5.16]. So we can compute the fusion rule of (KZK , ·)
from the above facts.

We remark that the commutativity of the chiral left and right part is

proved at the same time when we draw the diagrams of all K-K connections

(Figures 31∼36). The proof is based on coset decomposition, fusion rules

of chiral left (right) part and indices of irreducible connections. We refer

readers to [12, section 5.3, pages 244–252] for details.

The fusion tables of (KZK , ·), i.e. the system of all K-K connections

for K = E6, E7 and (a part of) E8 is given in Figures 48∼50. We note

that these fusion tables is expressed in product form. For example in the

table 49, we can read (3) · 4=(1)2(3)3(5), which means the fusion rule w(3) ·
w4=2w(1) + 3w(3) + w(5) holds.
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3.2. The fusion rules of even vertices of the (dual) principal

graphs of GHJ(K, ∗K = x)

Let N ⊂ M be the Goodman-de la Harpe-Jones subfactor GHJ(K, ∗K =

x). Here we will compute the fusion rules of even vertices of the (dual) prin-

cipal graphs of GHJ(K, ∗K = x), that is, the fusion rules of N -N bimodules

and M -M bimodules of the subfactor N ⊂ M .

The system of N -N bimodules are isomorphic to the system of A-A

connections generated by AxK and this is the same as AZ
even
A , i.e. the

fusion algebra of even part of AZA. So the fusion algebra of N -N bimodules

are isomorphic to the fusion algebra Aeven, i.e. the fusion algebra of even

vertices of the Jones’ type A subfactor. Hence it turns out that the fusion

algebra of N -N bimodules are always commutative for any GHJ subfactors.

The system of M -M bimodules are similarly isomorphic to the system

of K-K connections generated by AxK and this is the same as (a part of)

KZeven
K , i.e. the fusion algebra of even part of KZK . So we have only to

compute the fusion rule of KZeven
K .

Here the fusion rule of KZeven
K and the vertical edges of irreducible K-K

connections can be summarized as in the Table 1. As we mentioned above,

we can compute the fusion rule of KZeven
K in detail from the fusion graph of

all K-K connections as in Figures 31∼36 and 48∼50.

In the following table, ε represents the index 1 D2n-D2n connection

which corresponds to the flip of two tails of D2n. Because D2nZD2n has

coset decomposition D2n ∪D2n · ε and ε2 = id as shown in Figures 32, 41

and 43, we can easily compute the fusion rule for D2nZD2n .

Table 1. The fusion rule of KZeven
K and vertical edges of K-K connections.

Graph K fusion rule of KZeven
K vertical edges of K-K connections

An commutative EssPathAn (Figures 37∼40)
D2n non-commutative EssPathD2n + ε (Figures 41 and 43)

D2n+1 commutative EssPathD2n+1 (Figure 42)
E6 commutative Figure 44
E7 commutative Figure 45
E8 commutative Figures 46, 47
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4. The Structure of Goodman-de la Harpe-Jones Subfactors

4.1. Goodman-de la Harpe-Jones subfactors of type An

Let N ⊂ M be the Jones’ subfactor of type An and N ⊂ M ⊂ M1 ⊂
M2 ⊂ · · · ⊂ Mk ⊂ be the Jones tower. We label the vertices of the Dynkin

diagram An by a0, a1, · · · , an−1 as in Figure 10. Then the Goodman-de la

Harpe-Jones subfactor GHJ(An, ∗ = am) is isomorphic to pN ⊂ pMm−1p,

where p is a minimal projection in Proj(N ′ ∩Mm−1) corresponding to the

vertex am. Hence in this case the principal graph and the dual principal

graph coincide and fusion rule of even vertices of both graphs becomes Aeven
n .

Figure 10. The label of vertices of the Dynkin diagram An.

4.2. Goodman-de la Harpe-Jones subfactors of type D2n+1

We label the vertices of the Dynkin diagram D2n+1 by d0, d1, d2, · · · ,
d2n−2, d2n−1, d

′
2n−1 as in Figure 11.

The Goodman-de la Harpe-Jones subfactor GHJ(D2n+1, ∗K = d0) is

isomorphic to the unique index 2 subfactor N ⊂ N � Z2.

If the vertex ∗K �= d0, d2n−1, d
′
2n−1, GHJ(D2n+1, ∗K) has nontrivial in-

termediate subfactor as in Figure 12 because we have the decomposition of

connections AdkD = Ad0D · D[k]D for k = 1, 2, . . . , 2n − 2. Here D[k]D is

the D2n+1-D2n+1 connection corresponding to the vertex [k] as in Figures

33 and 42.

The (dual) principal graphs of GHJ(D2n+1, ∗K) are given in Figures

51∼73 for n = 2, 3, 4, 5.

The incidence matrices of the (dual) principal graphs of GHJ(Dodd, ∗K)

are also given in Figure 102.

4.3. Goodman-de la Harpe-Jones subfactors of type D2n

We label the vertices of the Dynkin diagram D2n by d0, d1, d2, · · · , d2n−3,

d2n−2, d
′
2n−2 as in Figure 13.
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Figure 11. The label of vertices of the Dynkin diagram D2n+1.

Figure 12.

The Goodman-de la Harpe-Jones subfactor GHJ(D2n, ∗K = d0),

GHJ(D4, ∗K = d2) and GHJ(D4, ∗K = d′2) are isomorphic to the unique

index 2 subfactor N ⊂ N � Z2.

If n > 2 and the vertex ∗K �= d0, GHJ(D2n, ∗K) has nontrivial inter-

mediate subfactor as in Figure 12 because we have the decomposition of

connections AdkD = Ad0D · D[k]D for k �= 0. Here D[k]D is the D2n-D2n

connection corresponding to the vertex [k] as in Figures 32 and 43.

The (dual) principal graphs of GHJ(D2n, ∗K) are given in Figures

74∼101 for n = 3, 4, 5, 6.

The incidence matrices of the (dual) principal graphs of GHJ(Deven, ∗K)

are also given in Figures 103 and 104.
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Figure 13. The label of vertices of the Dynkin diagram D2n.

Figure 14.

Example 4.1. From these computations for GHJ(Dn, ∗K) as above, the

(dual) principal graphs of GHJ(Dn, ∗ = triple point) can be obtained for

general n as in Figure 105.

4.4. Goodman-de la Harpe-Jones subfactors of type E6

We label the vertices of the Dynkin diagram E6 by e0, e1, e2, · · · , e5 as

in Figure 15.

The Goodman-de la Harpe-Jones subfactor GHJ(E6, ∗K = e0), has index

3+
√

3 and it has the same principal and dual principal graph. But the fusion

rules of the two graphs are different. This subfactor is known as the example
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which has the smallest index among such subfactors. The (dual) principal

graphs of GHJ(E6, ∗K) are given in Figures 106∼109.

If the vertex ∗K �= e0, e4, GHJ(E6, ∗K) has nontrivial intermediate sub-

factor as in Figure 16 because we have the decomposition of connections

AekE = Ae0E · E [wk]E for k = 1, 2, 3, 5. Here E [wk]E is the E6-E6 connec-

tion corresponding to the vertex [k] as in Figures 34 and 44.

Figure 15. The label of vertices of the Dynkin diagram E6.

Figure 16.

4.5. Goodman-de la Harpe-Jones subfactors of type E7

We label the vertices of the Dynkin diagram E7 by e0, e1, e2, · · · , e6 as

in Figure 17.

The Goodman-de la Harpe-Jones subfactor GHJ(E7, ∗K = e0), has index
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|A17|
|E7|

which is approximately 7.759. Here |A17| and |E7| represents the

“total mass” of the graph A17 and E7 respectively, i.e. the sum of squares

of normalized Perron-Frobenius eigenvalues over all the vertices of the graph.

The (dual) principal graphs of GHJ(E7, ∗K) are given in Figures 110∼116.

If the vertex ∗K �= e0, e4, e5, GHJ(E7, ∗K) has nontrivial intermediate

subfactor as in Figure 18 because we have the decomposition of connections

AekE = Ae0E · E [wk]E for k = 1, 2, 3 and Ae6E = Ae0E · E [w(5)]E . Here

E [wk]E is the E7-E7 connection corresponding to the vertex [k] (k = 1, 2, 3)

and (5) as in Figures 35 and 45.

Figure 17. The label of vertices of the Dynkin diagram E7.

Figure 18.
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4.6. Goodman-de la Harpe-Jones subfactors of type E8

We label the vertices of the Dynkin diagram E8 by e0, e1, e2, · · · , e7 as

in Figure 19.

The Goodman-de la Harpe-Jones subfactor GHJ(E8, ∗K = e0), has index
|A29|
|E8|

which is approximately 19.48. Here |A29| and |E8| represents the

“total mass” of the graph A29 and E8 respectively. The (dual) principal

graphs of GHJ(E8, ∗K) are given in Figures 117∼124.

If the vertex ∗K �= e0, GHJ(E7, ∗K) has nontrivial intermediate sub-

factor as in Figure 20 because we have the decomposition of connections

Figure 19. The label of vertices of the Dynkin diagram E8.

Figure 20.
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AekE = Ae0E · E [wk]E for k �= 0. Here E [wk]E is the E8-E8 connection

corresponding to the vertex [k] as in Figures 36, 46 and 47.

5. An Application to Subequivalence on Paragroups

Let K be one of the Dynkin diagrams D2n(n ≥ 3), E6, E8 and Al the

Dynkin diagram of type A with the same Perron-Frobenius eigenvalue as

K. We can choose the vertex ∗K so that the GHJ subfactor GHJ(K, ∗K)

does not have index 2. Let N ⊂ M be the GHJ subfactor GHJ(K, ∗K)

chosen as above, then the fusion algebra of N -N bimodules is isomorphic

to Aeven
l and the fusion algebra of M -M bimodules is isomorphic to KZeven

K .

Because KZeven
K contains Keven as its strict fusion subalgebra, the paragroup

of type K becomes a strictly subequivalent to that of type Al. Here we use

the terminology strictly subequivalent in the sense that a fusion algerba A
is subequivalent but not equivalent to B. And in such a case, we denote

A � B.

In the case of D4, we can choose the direct sum of 3 connections for

GHJ(D4, ∗K) (∗K = d0, d2, d
′
2) as a connection for subequivalence between

A5 and D4 paragroups.

Hence we get the following subequivalence of paragroups.

Theorem 5.1. The paragroups of Jones’ type A subfactors have the

following strictly subequivalent paragroups.

A4n−3 � D2n (n ≥ 2), A11 � E6, A29 � E8.

Figure 21. Essential paths on the Coxeter graph A4.
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Figure 22. Essential paths on the Coxeter graph A5.

Figure 23. Essential paths on the Coxeter graph D4.

Figure 24. Essential paths on the Coxeter graph D5.
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Figure 25. Essential paths on the Coxeter graph D6.
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Figure 26. Essential paths on the Coxeter graph E6.
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Figure 27. Essential paths on the Coxeter graph E7 (1).

Figure 28. Essential paths on the Coxeter graph E7 (2).
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Figure 29. Essential paths on the Coxeter graph E8 (1).
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Figure 30. Essential paths on the Coxeter graph E8 (2).
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Figure 31. Chiral symmetry for the Coxeter graph An.

Figure 32. Chiral symmetry for the Coxeter graph Deven.
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Figure 33. Chiral symmetry for the Coxeter graph Dodd.

Figure 34. Chiral symmetry for the Coxeter graph E6.
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Figure 35. Chiral symmetry for the Coxeter graph E7.

Figure 36. Chiral symmetry for the Coxeter graph E8.
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Figure 37. Vertical graphs for connections on the Coxeter graph A3.

Figure 38. Vertical graphs for connections on the Coxeter graph A4.

Figure 39. Vertical graphs for connections on the Coxeter graph A5.
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Figure 40. Vertical graphs for connections on the Coxeter graph A6.

Figure 41. Vertical graphs for connections on the Coxeter graph D4.
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Figure 42. Vertical graphs for connections on the Coxeter graph D5.

Figure 43. Vertical graphs for connections on the Coxeter graph D6.
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Figure 44. The incidence matrices of the vertical edges of E6-E6 connections.
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Figure 45. The incidence matrices of the vertical edges of E7-E7 connections.
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Figure 46. The incidence matrices of the vertical edges of E8-E8 even connections.
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Figure 47. The incidence matrices of the vertical edges of E8-E8 odd connections.
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Figure 48. The fusion table of E6-E6 connections.
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Figure 49. The fusion table of E7-E7 connections.
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Figure 50. A part of the fusion table of E8-E8 connections.
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Figure 51. The (dual) principal graph of GHJ(D5, ∗ = d1).

Figure 52. The (dual) principal graph of GHJ(D5, ∗ = d2).
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Figure 53. The (dual) principal graph of GHJ(D5, ∗ = d3).

Figure 54. The (dual) principal graph of GHJ(D7, ∗ = d1).
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Figure 55. The (dual) principal graph of GHJ(D7, ∗ = d2).

Figure 56. The (dual) principal graph of GHJ(D7, ∗ = d3).
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Figure 57. The (dual) principal graph of GHJ(D7, ∗ = d4).

Figure 58. The (dual) principal graph of GHJ(D7, ∗ = d5).
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Figure 59. The (dual) principal graph of GHJ(D9, ∗ = d1).

Figure 60. The (dual) principal graph of GHJ(D9, ∗ = d2).
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Figure 61. The (dual) principal graph of GHJ(D9, ∗ = d3).

Figure 62. The (dual) principal graph of GHJ(D9, ∗ = d4).
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Figure 63. The (dual) principal graph of GHJ(D9, ∗ = d5).

Figure 64. The (dual) principal graph of GHJ(D9, ∗ = d6).
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Figure 65. The (dual) principal graph of GHJ(D9, ∗ = d7).

Figure 66. The (dual) principal graph of GHJ(D11, ∗ = d1).
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Figure 67. The (dual) principal graph of GHJ(D11, ∗ = d2).

Figure 68. The (dual) principal graph of GHJ(D11, ∗ = d3).
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Figure 69. The (dual) principal graph of GHJ(D11, ∗ = d4).

Figure 70. The (dual) principal graph of GHJ(D11, ∗ = d5).
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Figure 71. The (dual) principal graph of GHJ(D11, ∗ = d6).

Figure 72. The (dual) principal graph of GHJ(D11, ∗ = d7).
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Figure 73. The (dual) principal graph of GHJ(D11, ∗ = d8).

Figure 74. The (dual) principal graph of GHJ(D6, ∗ = d1).
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Figure 75. The (dual) principal graph of GHJ(D6, ∗ = d2).

Figure 76. The (dual) principal graph of GHJ(D6, ∗ = d3).
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Figure 77. The (dual) principal graph of GHJ(D6, ∗ = d4).
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Figure 78. The (dual) principal graph of GHJ(D8, ∗ = d1).
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Figure 79. The (dual) principal graph of GHJ(D8, ∗ = d2).
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Figure 80. The (dual) principal graph of GHJ(D8, ∗ = d3).
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Figure 81. The (dual) principal graph of GHJ(D8, ∗ = d4).
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Figure 82. The (dual) principal graph of GHJ(D8, ∗ = d5).
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Figure 83. The (dual) principal graph of GHJ(D8, ∗ = d6).
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Figure 84. The (dual) principal graph of GHJ(D10, ∗ = d1).
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Figure 85. The (dual) principal graph of GHJ(D10, ∗ = d2).
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Figure 86. The (dual) principal graph of GHJ(D10, ∗ = d3).
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Figure 87. The (dual) principal graph of GHJ(D10, ∗ = d4).
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Figure 88. The (dual) principal graph of GHJ(D10, ∗ = d5).
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Figure 89. The (dual) principal graph of GHJ(D10, ∗ = d6).
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Figure 90. The (dual) principal graph of GHJ(D10, ∗ = d7).
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Figure 91. The (dual) principal graph of GHJ(D10, ∗ = d8).
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Figure 92. The (dual) principal graph of GHJ(D12, ∗ = d1).



Fusion Algebras of Bimodules Arising from GHJ Subfactors 475

Figure 93. The (dual) principal graph of GHJ(D12, ∗ = d2).
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Figure 94. The (dual) principal graph of GHJ(D12, ∗ = d3).



Fusion Algebras of Bimodules Arising from GHJ Subfactors 477

Figure 95. The (dual) principal graph of GHJ(D12, ∗ = d4).
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Figure 96. The (dual) principal graph of GHJ(D12, ∗ = d5).
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Figure 97. The (dual) principal graph of GHJ(D12, ∗ = d6).
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Figure 98. The (dual) principal graph of GHJ(D12, ∗ = d7).
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Figure 99. The (dual) principal graph of GHJ(D12, ∗ = d8).



482 Satoshi Goto

Figure 100. The (dual) principal graph of GHJ(D12, ∗ = d9).
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Figure 101. The (dual) principal graph of GHJ(D12, ∗ = d10).
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Figure 102. The incidence matrices of the (dual) principal graphs of GHJ(Dodd).
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Figure 103. The incidence matrices of the principal graphs of GHJ(Deven).
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Figure 104. The incidence matrices of the dual principal graphs of GHJ(Deven).
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Figure 105. The incidence matrices of the (dual) principal graphs of GHJ(D,
∗ = triple point).
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Figure 106. The (dual) principal graph of GHJ(E6, ∗ = e0).

Figure 107. The (dual) principal graph of GHJ(E6, ∗ = e1).
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Figure 108. The (dual) principal graph of GHJ(E6, ∗ = e2).

Figure 109. The (dual) principal graph of GHJ(E6, ∗ = e3).
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Figure 110. The (dual) principal graph of GHJ(E7, ∗ = e0).
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Figure 111. The (dual) principal graph of the GHJ subfactor corresponding to
(E7, ∗ = e1).



492 Satoshi Goto

Figure 112. The (dual) principal graph of the GHJ subfactor corresponding to
(E7, ∗ = e2).
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Figure 113. The (dual) principal graph of the GHJ subfactor corresponding to
(E7, ∗ = e3).
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Figure 114. The (dual) principal graph of the GHJ subfactor corresponding to
(E7, ∗ = e4).
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Figure 115. The (dual) principal graph of the GHJ subfactor corresponding to
(E7, ∗ = e5).
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Figure 116. The (dual) principal graph of the GHJ subfactor corresponding to
(E7, ∗ = e6).
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Figure 117. The (dual) principal graph of the GHJ subfactor corresponding to
(E8, ∗ = e0).
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Figure 118. The (dual) principal graph of the GHJ subfactor corresponding to
(E8, ∗ = e1).
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Figure 119. The (dual) principal graph of the GHJ subfactor corresponding to
(E8, ∗ = e2).
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Figure 120. The (dual) principal graph of the GHJ subfactor corresponding to
(E8, ∗ = e3).
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Figure 121. The (dual) principal graph of the GHJ subfactor corresponding to
(E8, ∗ = e4).
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Figure 122. The (dual) principal graph of the GHJ subfactor corresponding to
(E8, ∗ = e5).
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Figure 123. The (dual) principal graph of the GHJ subfactor corresponding to
(E8, ∗ = e6).
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Figure 124. The (dual) principal graph of the GHJ subfactor corresponding to
(E8, ∗ = e7).
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