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Quasilinear Parabolic Equation and Its Applications

to Fourth Order Equations with Rough Initial Data

By Tomoro Asai

Abstract. The main part of this paper is devoted to establish-
ing existence and uniqueness results for a class of abstract quasilinear
parabolic equations by using the theory of continuous maximal reg-
ularity. The abstract results are then applied to some fourth order
quasilinear parabolic equations (such as the surface diffusion flow and
the Willmore flow) with rough initial data.

1. Introduction

In this paper we study the abstract quasilinear parabolic equation of the

form {
u̇ + A(u)u = f(u),

u(0) = x
(1.1)

on a Banach space E0, where −A(·) is the infinitesimal generator of the

strongly continuous analytic semigroup on E0 with dense domain E1. The

main purpose of this paper is to establish the existence and uniqueness of a

local solution of the equation (1.1) and to apply this result to solve fourth

order equations with rough initial data. Typical examples of fourth order

equations include evolution of hypersurfaces {Γt} in Rn, such as the surface

diffusion flow,

V = −∆ΓH,(1.2)

and, more generally, the anisotropic surface diffusion flow

V = −∆ΓHµ.(1.3)

Here V denotes the normal velocity of the evolving hypersurface Γt and ∆Γ

denotes the Laplace-Beltrami operator on Γ = Γt. The mean curvature is

denoted by H while Hµ is an anisotropic mean curvature of Γ.
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We also consider the Willmore flow (cf. [6])

V = −∆ΓH − 1

2
H3 + HR.(1.4)

Here R denotes the scalar curvature. If n = 3, R = 2K where K is the

Gaussian curvature. Another example is a parabolic approximation of the

evolution equation for the height of a crystal growth

∂u

∂t
= −B∇ ·

{
Λ · ∇

[
∇ ·
( ∇u

|∇u|

)
+

g3

g1
∇ · (|∇u|∇u)

]}
,(1.5)

for nonnegative B > 0. Here ∇ denotes the gradient, ∇ = (∂/∂x, ∂/∂y),

and Λ is a 2 × 2 matrix.

Let hs denote the little Hölder spaces of order s > 0, that is, the closure

of BUC∞ in BUCs, the latter space being the Banach space of all bounded

and uniformly Hölder continuous functions of order s. The aim of the second

half of this paper is to apply our abstract result to solve the above fourth

order equations with h1+β-initial data (0 < β < 1), which is less regular

than those treated in the literature.

Now we state the precise settings of the problem (1.1). We say that a

mapping f : X → Y between two metric spaces X,Y is locally Lipschitz

continuous, and we use the notation f ∈ C1−(X,Y ), if every point x ∈ X

has a neighborhood W such that f |W is Lipschitz continuous. Let Eα be

the continuous interpolation space (cf. [14, Chapter 1]) between E0 and E1

with parameter α (0 < α < 1) and BEα(y, r) an open ball centered at y

with radius r > 0 on Eα. A pair (A, f) denotes a mapping from U into

H(E1, E0)×E0. Here U is a nonempty subset of E0 and H(E1, E0) denotes

the set of bounded linear operators B such that −B is the infinitesimal

generator of a strongly continuous analytic semigroup on E0. The definitions

of BUC1−α, BUC1
1−α and Mα shall be given in Section 2. We state the main

result of this paper.

Theorem 1.1. Let α ∈ (0, 1) be fixed and let Eα = (E0, E1)
0
α,∞ be a

continuous interpolation space. Assume that Uα ⊂ Eα is open.

For the operator A assume that

A ∈ C1−(Uα,Mα(E1, E0)).(1.6)
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For the nonlinear term f assume that for M > 0 there exist CM > 0, θ ∈
[α, 1) and p ∈ (0, 1) which satisfy q := p + (θ − α)/(1 − α) < 1 such that

‖f(z1) − f(z2)‖E0 ≤ CM

(
‖z1‖pE1

+ ‖z2‖pE1
+ 1
)
‖z1 − z2‖Eθ

,(1.7)

for z1, z2 ∈ E1 ∩ BEα(x0,M).

Then for every x0 ∈ Vα, there exist positive constants τ = τ(x0), ε =

ε(x0) and c = c(x0) such that (1.1) has a unique solution

u(·, x) ∈ BUC1
1−α([0, τ ], E0) ∩BUC1−α([0, τ ], E1)

for any initial value x ∈ BEα(x0, ε). Moreover,

‖u(·, x) − u(·, y)‖C([0,τ ],Eα) ≤ c‖x− y‖(θ−α)/(1−α)
Eα

, x, y ∈ BEα(x0, ε).

Here BEα(x0, ε) is the closed ball in Eα centered at x0 with radius ε > 0.

Theorem 1.1 is motivated by Clément and Simonett [7]. The assumption

on the operator A(·) in (1.6) is the same as that of [7, Theorem 3.1]. The

new ingredient of Theorem 1.1, however, is the assumption on the nonlinear

term f(·), which reflects the structure of the lower order terms of the fourth

order equations considered in this paper. Theorem 1.1 is based on maximal

regularity results of Da Prato-Grisvard [8] and Angenent [3]. Maximal reg-

ularity results of [8] and [3] are useful for showing the smoothing property of

the equation. In [7] the assumption on the nonlinear term f(·) is so restric-

tive that [7, Theorem 3.1] cannot be applied to prove the unique existence

of a local solution of a fourth order equation with less regular initial data.

In this paper, however, by imposing a new estimate (1.7) for the nonlinear

term f(·), we can deal with fourth order equations with h1+β-initial data.

In our previous paper [4], we applied the analytic semigroup theory of

Buttu [5] to solve the fourth order equations with h1+β-initial data. How-

ever, the assumption on the nonlinear term was more complicated than our

new assumption (1.7). Thanks to maximal regularity results of [8] and [3],

the assumption on the nonlinear term are more general and simpler. There

is also a significant difference between the assumptions on the nonlinear

term f(·) of this paper and that of [4]. The parameter q, introduced in

Theorem 1.1, is less than one. This q denotes the sum of necessary powers
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of E1-norm of the right hand side of (1.7) if Eθ-norm is estimated by the in-

terpolation inequality with Eα and E1. On the other hand, in our previous

paper [4] the sum of necessary powers of E1(= D(A))-norm for the nonlin-

ear term is one when interpolating E0(= X) and E1 = D(A) in [4]. Hence

we are forced to take E1 to be a little Hölder space larger than h4+β when

applying the result to the fourth order quasilinear parabolic equations.

We now state a local existence result for the fourth order quasilinear

parabolic equations with rough initial data, which is the goal of the second

half of this paper.

Theorem 1.2. Let the initial hypersurface Γ0 be given as the graph of

a function u0 ∈ h1+β(Rn−1) with β ∈ (0, 1), i.e., Γ0 = {xn = u0(x
′);x′ =

(x1, x2, . . . , xn−1) ∈ Rn−1}. Then for γ ∈ (0, β) there exist positive con-

stants T = T (u0) > 0 and ε = ε(u0) > 0 such that the problem (1.k) with

k = 2, 4 has a unique classical solution

u(·, w) ∈ BUC1−α([0, T ], h4+γ) ∩BUC1
1−α([0, T ], hγ),

for any initial value w ∈ Bh1+β(Rn−1)(u0, ε). Here α = (1 + β − γ)/4.

Remark 1.3. The structure of problems (1.3) and (1.5) is the same as

the structure of problems (1.2) and (1.4), and therefore we can state similar

theorems for problems (1.3) and (1.5).

Several local and global existence results for the surface diffusion flow

and the Willmore flow were obtained by Escher and Simonett [9], [16].

They dealt with the surface diffusion flow and the Willmore flow of multi-

dimensional closed hypersurfaces. Their regularity assumption on the initial

hypersurface was h2+β. In this paper, we deal with the surface diffusion flow

and the Willmore flow of multi-dimensional hypersurfaces represented by a

graph. The assumption on the initial data in Theorem 1.2 is h1+β, that is,

the curvature of the initial hypersurface is not necessarily continuous.

Recently there have been several papers which deal with fourth order

equations with rough initial data. Escher and Mucha [10] proved the unique

solvability for the the surface diffusion flow with rough initial data by using

the theory of harmonic analysis. The class of the initial data considered

there is a Besov space B
5/2−4/p
p,2 and they impose the condition p > (2n+8)/3

on the parameter p, where n is the space dimension. In other words, the field



Quasilinear Fourth Order Parabolic Equation 511

of normal vectors to the initial hypersurface is Hölder continuous in space

and time, hence the space B
5/2−4/p
p,2 is a subset of C1+α. However, the Besov

space B
5/2−4/p
p,2 of [10] is not comparable with the class h1+β considered in

this paper. In [12], Koch and Lamm prove the existence of solutions of the

graphical Willmore and mean curvature flows with Lipschitz initial data.

Their method relies on a technique introduced by Koch and Tataru [13]. The

class of the initial data in [12] is larger than the class of h1+β in this paper.

However they impose the smallness assumption on the Lipschitz norm of the

initial data. Since they show the existence and uniqueness of a solution by

a fixed-point argument on the function space Xδ
T which is introduced in [12]

they need to choose the Lipschitz norm of the initial data to be sufficently

small. So our result is not included in their result. The purpose of this paper

is to establish an abstract theorem—Theorem 1.1. This abstract theorem

is flexible enough to be applied to various fourth order problems. However,

the space where the time continuity on the solution u(·, w) holds is slightly

smaller than the space of the initial data u0 since we arrange parameters

β and γ as 0 < γ < β < 1. Our abstract theorem is new because of the

new assumption (1.7) on the lower order term. Moreover, to the extend of

our knowledge, the application to fourth order parabolic problems with less

regular initial data has not appeared in the literature.

Let us give an outline of the main proofs. For the proof of Theorem 1.1,

we follow the idea of the proof of [7, Theorem 3.1] by Clément and Simonett.

The assumption (1.7) is different from the assumption of [7, Theorem 3.1],

and therefore, we more carefully estimate the nonlinear term f(·). We prove

Theorem 1.2 by applying the abstract result of Theorem 1.1.

The content of this paper is as follows. In Section 2, we introduce

some notation and state maximal regularity results of the linear theory,

which shall be used in Section 3 to prove Theorem 1.1. In the final section,

Section 4, we finally prove the local existence and uniqueness of fourth

order equations with h1+β-initial data via the unique local existence result

of Theorem 1.1.

2. Maximal Regularity

First, we recall interpolation spaces and the notion of maximal regular-

ity. Throughout this paper, we use the notation of [7]. Let E0, E1 be two

Banach spaces such that E1 is continuously embedded in E0. Let H(E1, E0)



512 Tomoro Asai

be the space of all bounded linear operators B ∈ L(E1, E0) which have the

additional property that −B, considered as an unbounded operator in E0,

generates a strongly continuous analytic semigroup on E0. For T > 0 set

J = [0, T ], J̇ := J \ {0}. Let 0 < α < 1 be fixed. Let

BUC1−α(J,E) :=
{
u ∈ C(J̇ , E); [t �→ t1−αu] ∈ BUC(J̇ , E),

lim
t→0+

t1−α‖u(t)‖E = 0

}
,

BUC1
1−α(J,E) := {u ∈ C1(J̇ , E);u, u̇ ∈ BUC1−α(J,E)},

where E is a (real or complex) Banach space. Then we set

E1(J) = BUC1
1−α(J,E0) ∩BUC1−α(J,E1),

E0(J) = BUC1−α(J,E0),

where the norms of E1(J) and E0(J) are defined by

‖u‖E1(J) = sup
t∈J̇

t1−α(‖u′(t)‖E0 + ‖u(t)‖E1),

‖u‖E0(J) = sup
t∈J̇

t1−α‖u(t)‖E0 .

The vector spaces E1(J) and E0(J) are Banach spaces with respect to the

above norms. In the following we will use the notation

Eα = (E0, E1)
0
α,∞

for the continuous interpolation spaces. See also [7, Section 2], [14, Chap-

ter 1].

Let us recall the notion of maximal regularity. The class Mα(E1, E0) is

defined for B ∈ H(E1, E0) as

B ∈ Mα(E1, E0) ⇐⇒
(

d

dt
+ B, γ

)
∈ Isom(E1(J),E0(J) × Eα),

where γ : E0(J) → Eα; v �→ γv = v(0). The norm of Mα(E1, E0) is

equivalent to the norm of L(E1, E0).

If B ∈ Mα(E1, E0), then (E0(J),E1(J)) is called a pair of maximal

regularity for B.
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3. Abstract Quasilinear Parabolic Equations

In this section we study the existence of solutions to the quasilinear

parabolic equation of the form{
u̇ + A(u)u = f(u),

u(0) = x.
(3.1)

For this purpose we shall first recall the notion of a solution. We assume

that

(A, f) : U → H(E1, E0) × E0,

where U is a nonempty subset of E0. Let x ∈ U be given and let J ⊂ R+ :=

[0,∞) be an interval which contains 0. By a solution of (3.1) on J we mean

a function

u ∈ C1(J̇ , E0) ∩ C(J̇ , E1) ∩ C(J, U)

which satisfies {
u̇(t) + A(u(t))u(t) = f(u(t)), t ∈ J̇ ,

u(0) = x,
(3.2)

where J̇ = J \ {0}. We shall prove our main unique local existence result

of the problem (3.1), that is, Theorem 1.1 in Section 1.

Proof of Theorem 1.1. The proof is parallel to the proof of [7,

Theorem 3.1] except in how it handles the nonlinear term f(·). We set

E0(J) := BUC1−α(J,E0),

E1(J) := BUC1
1−α(J,E0) ∩BUC1−α(J,E1).

We rewrite the problem (3.1) into{
u̇ + Au = B(u) + f(u),

u(0) = x,
(3.3)

where A := A(x0) and B(z) := A(x0) −A(z) for z ∈ Uα. We conclude that

B ∈ C1−(Uα,L(E1, E0)) and that B(x0) = 0. We may assume that Eα is

equipped with the (equivalent) norm

‖ · ‖Eα := sup
s>0

s1−α‖(ω + A)e−s(ω+A) · ‖E0
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where ω is a fixed number such that type(−(ω + A)) < 0. Let T > 0 be

fixed and let J := [0, T ]. It follows from [7, Lemma 2.2] that there exists a

constant M1 ≥ 1 such that

‖u‖C(Jτ ,Eα) ≤ M1‖u‖E1(Jτ ),

u ∈ E1(Jτ ), u(0) = 0, Jτ = [0, τ ] ⊂ J.
(3.4)

Moreover, we obtain

‖e−tAz‖E1(Jτ ) ≤ c(ω)eωT sup
s>0

s1−α‖(ω + A)e−s(ω+A)z‖E0 ≤ M2‖z‖Eα(3.5)

for z ∈ Eα and Jτ ⊂ J . Let ‖KA‖ := ‖KA‖L(E0(J),E1(J)), where the operator

KA is defined by

(KAf)(t) :=

∫ t

0
e−(t−τ)Af(τ) dτ,

for f ∈ E1(J). See also [7, Section 2]. Then from our assumptions (1.6)

and (1.7) there exist positive constants ρ0, b, Cρ0 and L ≥ 1 such that

BEα(x0, 2ρ0) ⊂ Uα and such that

‖B(z)‖L(E1,E0) ≤
1

4‖KA‖M1
, z ∈ BEα(x0, ρ0),(3.6)

‖B(z1) −B(z2)‖L(E1,E0) ≤ L‖z1 − z2‖Eα ,(3.7)

‖f(z1) − f(z2)‖E0 ≤ Cρ0(‖z1‖pE1
+ ‖z2‖pE1

+ 1)‖z1 − z2‖Eθ
,(3.8)

where z1, z2 ∈ BEα(x0, ρ0). Let ε0 := min(ρ0, (4‖KA‖M1L)−1). Then we

find a number T1 ∈ J such that

‖e−tAx0 − x0‖Eα ≤ ε0/2, t ∈ J1 := [0, T1],

‖e−tAx0‖E1(J1) ≤ ε0/2.
(3.9)

The first inequality in (3.9) follows from the strong continuity of the semi-

group e−tA on Eα, whereas the second one is a consequence of [7, Re-

mark 2.1]. Let τ ≤ T1 be given and set Jτ = [0, τ ]. For x ∈ BEα(x0, ε) with

2M2ε ≤ ε0 we set

Wx(Jτ ) := {v ∈ E1(Jτ ); v(0) = x, ‖v − x0‖C(Jτ ,Eα) ≤ ε0} ∩ BE1(Jτ )(0, ε0)

and we equip this set with the topology of E1(Jτ ). It follows from [7,

Lemma 2.2] that Wx(Jτ ) is a closed subset of E1(Jτ ) and thus is a complete
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metric space. The estimates (3.5) and (3.9) yield [t �→ e−tAx] ∈ Wx(Jτ ).

This shows that Wx(Jτ ) is nonempty. Let v ∈ Wx(Jτ ) be given. We invoke

the interpolation inequality,

‖v‖Eθ
≤ c‖v‖(1−θ)/(1−α)

Eα
‖v‖(θ−α)/(1−α)

E1
for v ∈ E1,

and we estimate the constant Cρ0‖v‖
(1−θ)/(1−α)
Eα

by a constant (from above)

depending only on ρ0 (which is still denoted by Cρ0) since the norm ‖v‖Eα

can be estimated from above by ρ0 > 0. Then we obtain from (3.6)–(3.8)

t1−α‖B(v(t))v(t) + f(v(t))‖E0(3.10)

≤ ‖B(v(t))‖L(E1,E0)t
1−α‖v(t)‖E1 + t1−α‖f(v(t))‖E0

≤ 1

4‖KA‖M1
‖v‖E1(Jτ ) + Cρ0t

1−α(‖v(t)‖pE1
+ 1)‖v(t)‖Eθ

≤ ε0

4‖KA‖M1

+ Cρ0t
1−α(‖v(t)‖pE1

+ 1)‖v(t)‖(1−θ)/(1−α)
Eα

‖v(t)‖(θ−α)/(1−α)
E1

≤ ε0

4‖KA‖M1
+ Cρ0

[
(t1−α‖v(t)‖E1)

p+(θ−α)/(1−α)

×t(1−α)(1−p− θ−α
1−α) + (t1−α‖v(t)‖E1)

(θ−α)/(1−α) × t(1−α)( 1−θ
1−α

)
]

≤ ε0

4‖KA‖M1
+ Cρ0

[
‖v‖q

E1(Jτ )τ
(1−α)(1−q)

+‖v‖(θ−α)/(1−α)
E1(Jτ ) τ (1−α)( 1−θ

1−α
)
]

≤ ε0

4‖KA‖M1
+ Cρ0

[
εq0τ

(1−α)(1−q) + ε
(θ−α)/(1−α)
0 τ1−θ

]
.

The estimate (3.10) shows that B(v)v + f(v) ∈ E0(Jτ ) for any v ∈
Wx(Jτ ). Thus, the mapping

Gx : Wx(Jτ ) → E1(Jτ ), Gx(v) := e−tAx + KA(B(v)v + f(v))

is well-defined for any x ∈ BEα(x0, ε).

(i) It follows from (3.4), (3.9), (3.10) and from the strong continuity of
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the semigroup e−tA on Eα that

‖Gx(v) − x0‖C(Jτ ,Eα)(3.11)

≤ ‖e−tA(x− x0)‖C(Jτ ,Eα)

+ ‖e−tAx0 − x0‖C(Jτ ,Eα) + ‖KA(B(v)v + f(v))‖C(Jτ ,Eα)

≤ c‖x− x0‖Eα +
ε0

2

+ M1‖KA‖
[

ε0

4‖KA‖M1

+ Cρ0

(
εq0τ

(1−α)(1−q) + ε
(θ−α)/(1−α)
0 τ1−θ

)]
≤ ε0,

provided that ‖x−x0‖Eα ≤ ε for a sufficiently small number ε and provided

that τ is small enough. We can always arrange τ smaller since the relevant

constants and ‖KA‖L(E0(Jτ ),E1(Jτ )) are independent of Jτ ⊂ J . Additionally,

we also obtain

‖Gx(v)‖E1(Jτ )(3.12)

≤ ‖e−tA(x− x0)‖E1(Jτ ) + ‖e−tAx0‖E1(Jτ )

+ ‖KA(B(v)v + f(v))‖E1(Jτ )

≤ M2(x− x0)‖Eα +
ε0

2

+ ‖KA‖
[

ε0

4‖KA‖M1
+ Cρ0

(
εq0τ

(1−α)(1−q) + ε
(θ−α)/(1−α)
0 τ1−θ

)]
≤ ε0

if ε and τ are small enough. Lastly, observe that Gx(v)(0) = x. We have

shown that Gx(Wx(Jτ )) ⊂ Wx(Jτ ) for all x ∈ BEα(x0, ε), provided that ε

and τ are sufficiently small.

(ii) Let x1, x2 ∈ BEα(x0, ε) be given and pick v1 ∈ Wx1(Jτ ) and v2 ∈
Wx2(Jτ ). It follows from (3.5) that

‖e−tA(x1 − x2)‖E1(Jτ ) ≤ M2‖x1 − x2‖Eα .(3.13)

Moreover, we obtain from (3.4) that

‖(v1 − v2) − e−tA(x1 − x2)‖C(Jτ ,Eα)(3.14)

≤ M1‖(v1 − v2) − e−tA(x1 − x2)‖E1(Jτ ).
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This estimate together with (3.13) immediately yields

‖v1 − v2‖C(Jτ ,Eα) ≤ M1‖v1 − v2‖E1(Jτ ) + M2(1 + M1)‖x1 − x2‖Eα ,(3.15)

Next, observe that

‖B(v1)(v1 − v2)‖E0(Jτ ) ≤
1

4‖KA‖M1
‖v1 − v2‖E1(Jτ ),(3.16)

‖(B(v1) −B(v2))v2‖E0(Jτ ) ≤ L‖v1 − v2‖C(Jτ ,Eα)‖v2‖E1(Jτ )(3.17)

≤ ε0L‖v1 − v2‖C(Jτ ,Eα).

To obtain the estimate for ‖f(v1) − f(v2)‖E0(Jτ ), we observe that

t1−α‖f(v1(t)) − f(v2(t))‖E0(3.18)

≤ Cρ0t
1−α
(
‖v1(t)‖pE1

+ ‖v2(t)‖pE1
+ 1
)

× ‖v1(t) − v2(t)‖(1−θ)/(1−α)
Eα

‖v1(t) − v2(t)‖(θ−α)/(1−α)
E1

≤ Cρ0

[
t(1−α)(1−q) (t1−α‖v1(t)‖E1

)p
+t(1−α)(1−q) (t1−α‖v2(t)‖E1

)p
+ t(1−α)( 1−θ

1−α
)
]

×
(
M1‖v1 − v2‖E1(Jτ ) + (M1M2 + M2)‖x1 − x2‖Eα

)(1−θ)/(1−α)

×
(
t1−α‖v1(t) − v2(t)‖E1

)(θ−α)/(1−α)

≤ Cρ0

(
‖v1‖pE1(Jτ )τ

(1−α)(1−q) + ‖v2‖pE1(Jτ )τ
(1−α)(1−q) + τ1−θ

)
×
(
M1‖v1 − v2‖E1(Jτ ) + (M1M2 + M2)‖x1 − x2‖Eα

)(1−θ)/(1−α)

× ‖v1 − v2‖(θ−α)/(1−α)
E1(Jτ )

≤ Cρ0

(
2εp0τ

(1−α)(1−q) + τ1−θ
) (

M
(1−θ)/(1−α)
1 ‖v1 − v2‖(1−θ)/(1−α)

E1(Jτ )

+ (M1M2 + M2)
(1−θ)/(1−α)‖x1 − x2‖(1−θ)/(1−α)

Eα

)
× ‖v1 − v2‖(θ−α)/(1−α)

E1(Jτ ) .

In order to derive the last inequality in (3.18), we use

(a + b)r ≤ ar + br,
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for a fixed r ∈ (0, 1], and any positive numbers a > 0, b > 0.

It follows from the definition of ε0 and from (3.13)–(3.18) that there

exists a constant c2 > 0 such that

‖Gx1(v1) −Gx2(v2)‖E1(Jτ )(3.19)

≤ c2‖x1 − x2‖(θ−α)/(1−α)
Eα

+

[
1

2
‖v1 − v2‖E1(Jτ )

+ ‖KA‖M1Cρ0M
(1−θ)/(1−α)
1

×
(
2εp0τ

(1−α)(1−q) + τ1−θ
)
‖v1 − v2‖E1(Jτ )

]
≤ c2‖x1 − x2‖(θ−α)/(1−α)

Eα
+

3

4
‖v1 − v2‖E1(Jτ ),

provided that τ is chosen small enough.

(iii) As a particular case we obtain from (3.19) that

‖Gx(v1) −Gx(v2)‖E1(Jτ ) ≤
3

4
‖v1 − v2‖E1(Jτ ),

x ∈ BEα(x0, ε), v1, v2 ∈ Wx(Jτ ).

(iv) It follows from (i)–(iii) and Banach’s fixed point theorem that the

mapping Gx has a unique fixed point

u(·, x) ∈ Wx(Jτ ) ⊂ BUC1
1−α(Jτ , E0) ∩BUC1−α(Jτ , E1)

for each x ∈ BEα(x0, ε). This u is the unique mild solution. By a standard

argument we observe that u ∈ BUC1
1−α(Jτ , E0), which is a solution.

(v) We infer from (3.19) that

‖u(·, x) − u(·, y)‖E1(Jτ ) ≤ 4c2‖x− y‖(θ−α)/(1−α)
Eα

, x, y ∈ BEα(x0, ε).

Thus the estimate

‖u(·, x) − u(·, y)‖C([0,τ ],Eα) ≤ c‖x− y‖(θ−α)/(1−α)
Eα

follows. �
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4. Applications to Fourth Order Equations with Rough Initial

Data

4.1. New criterion for local existence and uniqueness for fourth

order quasilinear parabolic PDEs

In this section, we solve various kinds of fourth order parabolic equations

with rough initial data. To be more precise, we shall derive the existence

and uniqueness for h1+β-initial data (0 < β < 1). With this assumption,

the curvature or the second derivative of initial data of the graph may not

be continuous. For this purpose we apply the abstract theorem which was

established in Section 3. Thus, we have to verify that the structures of the

principal parts and the lower order terms of several fourth order equations

indeed satisfy the assumptions of the abstract theorem. A direct application

of Theorem 1.1 for each equation is rather complicated. Thus we establish

a statement which bridges the gap between the abstract theory and its

application to PDE problems. The fourth order quasilinear equations which

we treat in this paper have a common structure of the principal parts and

lower order terms. We extract the essence of the structure and establish

a new criterion for local existence with rough initial data which is easy to

check. We now consider an equation of the form


∂u

∂t
+ �(∇u)u = �(∇u,∇2u,∇3u),

u(0) = u0,

(4.1)

where ∇ku denote the k-th order derivative for k = 1, 2, . . . in Rn. This is

a special quasilinear equation for u = u(x, t), x ∈ Rn but it includes inter-

esting problems. We impose several continuity conditions for the operator

�(·) and the lower order term �(·, ·, ·). Let � be a fourth order differential

operator whose coefficients depends on ∇u = (∂u/∂x1, ∂u/∂x2, . . . , ∂u/∂xl)

for u ∈ h1+β on hγ (0 < γ < β < 1). We denote the coefficients of � by aα,

i.e.,

�(∇u) =
∑
|α|=4

aα(∇u)Dα.
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Here for k = 1, 2, . . . , 0 < ν < 1, hk+ν(Rl,R) denotes the little Hölder space

and it is identified with

(4.2) hk+ν(Rl,R) :=

{
ϕ ∈ BUCk+ν(Rl,R);

lim
δ→0

max
|α|=k

sup
x �=y

|x−y|<δ

|Dαϕ(x) −Dαϕ(y)|
|x− y|ν = 0

}
,

where α denotes the multi index.

(A1) (Uniform ellipticity) For any Z > 0 there is a positive constant V = VZ
such that ∑

|α|=4

aα(ζ)ξα ≥ V|ξ|4,

for all ζ satisfying |ζ| ≤ Z.

(A2) (Regularity) All coefficients aα are of C1-class.

(F) �(·, ·, ·) is of C1-class. For M̃ > 0 there exists C
M̃

> 0 such that for

ζi ∈ Rl,ηi ∈ Rm, ξi ∈ Rn (i = 1, 2)

|�(ζ1,η1, ξ1) − �(ζ2,η2, ξ2)|(4.3)

≤ C
M̃

{
1 + (|η1|2 + |η2|2)|η1 − η2|

+ (|ξ1| + |ξ2|)|η1 − η2| + (|η1| + |η2|)|ξ1 − ξ2|
}
,

for |ζ1|, |ζ2| ≤ M̃ . Here | · | denotes the usual Euclidean norm, i.e., for

x = (x1, x2, . . . , xN ) ∈ RN , |x| is defined by |x| := (x2
1 + x2

2 + · · · +
x2
N )1/2.

Theorem 4.1. Assume (A1), (A2) and (F). Let 0 < γ < β < 1. Then

for u0 ∈ h1+β there exist τ = τ(u0) > 0 and ε = ε(u0) > 0 such that the

problem (4.1) has a unique solution

u(·, w) ∈ BUC1−α([0, τ ], h4+γ) ∩BUC1
1−α([0, τ ], hγ)

for any initial value w ∈ Bh1+β (u0, ε). Here α = (1 + β − γ)/4.

Proof. Take ν ∈ (0, γ) and set two Banach spaces (F0, F1) as

F0 := hν , F1 := h4+ν .



Quasilinear Fourth Order Parabolic Equation 521

Then, take the parameter θ = (γ−ν)/4 and set two Banach spaces (E0, E1)

as

E0 := (F0, F1)
0
θ,∞ = hγ , E1 := h4+γ .

We take α := (1+β−γ)/4 and observe by the reiteration Theorem (cf. [14])

that

Eα = (E0, E1)
0
α,∞ = h1+β.

The reiteration Theorem also asserts that

h2+γ = (Eα, E1)
0
ω1,∞, h3+γ = (Eα, E1)

0
ω2,∞,

where ω1 = (1 + γ − β)/(3 + γ − β), ω2 = (2 + γ − β)/(3 + γ − β).

By our assumption (A1), the generation theorem of analytic semigroup

on little Hölder space (cf. [14, Chapter 3]) asserts that for u ∈ h1+β, −�(∇u)

generates a strongly continuous analytic semigroup on F0. Then, by the

maximal regularity results of Da Prato-Grisvard [8] and Angenent [3],

�(∇u) ∈ Mα(E1, E0).

Now we study the mapping properties of [u �→ aα(∇u)]. From the assump-

tion (A2) and the fundamental theorem of calculus,

aα(∇u1)−aα(∇u2) =

l∑
j=1

(∫ 1

0
∂jaα(s∇u1 +(1−s)∇u2) ds

)
· (∂ju1−∂ju2),

where ∂j = ∂/∂xj . Thus we have

‖aα(∇u1) − aα(∇u2)‖hγ ≤
l∑
j=1

(∫ 1

0
‖∂jaα(s∇u1 + (1 − s)∇u2)‖ ds

)
(4.4)

× ‖∂ju1 − ∂ju2‖hγ
≤ c‖u1 − u2‖h1+γ ≤ c‖u1 − u2‖h1+β .

From (4.4) and the Banach algebra property of hγ , the Lipschitz continuity

of [u �→ �(∇u)] from h1+β to L(h4+γ , hγ) follows.

We conclude that

� ∈ C1−(Uα,Mα(E1, E0)).
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For u1, u2 ∈ BEα(u0,M), define M̃ > 0 as

‖ui‖Eα ≤ ‖ui − u0‖Eα + ‖u0‖Eα ≤ M + ‖u0‖Eα := M̃.

The assumption (F) implies that �(∇u,∇2u,∇3u) for u ∈ h4+γ is in E0

since �(·, ·, ·) is a composite of a smooth function and a little Hölder function

(see the characterization of hk+ν in (4.2) just before (A1)). Thus we observe

that

(4.5) ‖�(∇u1,∇2u1,∇3u1) − �(∇u2,∇2u2,∇3u2)‖E0

≤ C
M̃

{
1 +
(
‖∇2u1‖2

hγ + ‖∇2u2‖2
hγ
)
‖∇2u1 −∇2u2‖hγ

+
(
‖∇3u1‖hγ + ‖∇3u2‖hγ

)
‖∇2u1 −∇2u2‖hγ

+
(
‖∇2u1‖hγ + ‖∇2u2‖hγ

)
‖∇3u1 −∇3u2‖hγ

}
.

We shall estimate each term of the right hand side of (4.5). Observe that(
‖∇2u1‖2

hγ + ‖∇2u2‖2
hγ
)
‖∇2u1 −∇2u2‖hγ(4.6)

≤ (‖u1‖2
h2+γ + ‖u2‖2

h2+γ )‖u1 − u2‖h2+γ ,

and apply the interpolation inequality in order to estimate ‖u1‖h2+γ and

‖u2‖h2+γ . That is,

‖ui‖h2+γ ≤ c‖ui‖1−ω1
Eα

‖ui‖ω1
E1

≤ cM̃1−ω1‖ui‖ω1
E1

, (i = 1, 2).(4.7)

Applying (4.7) to (4.6) we have

(‖∇2u1‖2
hγ + ‖∇2u2‖2

hγ )‖∇2u1 −∇2u2‖hγ(4.8)

≤ C
M̃

(‖u1‖ω1
E1

+ ‖u2‖ω1
E1

)‖u1 − u2‖h2+γ .

A similar argument enables us to conclude that

(‖∇3u1‖hγ + ‖∇3u2‖hγ )‖∇2u1 −∇2u2‖hγ(4.9)

≤ C
M̃

(‖u1‖ω2
E1

+ ‖u2‖ω2
E1

)‖u1 − u2‖h2+γ .

(‖∇2u1‖hγ + ‖∇2u2‖hγ )‖∇3u1 −∇3u2‖hγ(4.10)

≤ C
M̃

(‖u1‖ω1
E1

+ ‖u2‖ω1
E1

)‖u1 − u2‖h3+γ .
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We also have to check the sum of powers of E1-norm in (4.8)–(4.10).

Note that

h2+γ = (E0, E1)
0
θ1,∞, h3+γ = (E0, E1)

0
θ2,∞,

where θ1 = 1/2, θ2 = 3/4.

In (4.8),

ω1 +
θ1 − α

1 − α
=

1 + γ − β

3 + γ − β
+

4{1/2 − (1 + β − γ)/4}
3 + γ − β

(4.11)

=
2(1 + γ − β)

3 + γ − β
< 1.

In (4.9)

ω2 +
θ1 − α

1 − α
=

2 + γ − β

3 + γ − β
+

4{1/2 − (1 + β − γ)/4}
3 + γ − β

(4.12)

=
3 + 2(γ − β)

3 + γ − β
< 1.

In (4.10)

ω1 +
θ2 − α

1 − α
=

1 + γ − β

3 + γ − β
+

4{3/4 − (1 + β − γ)/4}
3 + γ − β

(4.13)

=
3 + 2(γ − β)

3 + γ − β
< 1.

By (4.11)–(4.13) the sum of powers of E1-norm for the lower order term is

less than one. Thus, the estimate for the lower order term �(·, ·, ·) satisfies

the assumption of Theorem 1.1. We are now in a position to apply The-

orem 1.1 to show the existence and uniqueness of a local-in-time solution

of (4.1) with h1+β-initial data. �

4.2. The surface diffusion flow, the Willmore flow and the aniso-

tropic surface diffusion flow

In this subsection we consider the existence and uniqueness of a family

{Γ(t); t > 0} of smooth hypersurfaces solving the surface diffusion flow{
V = −∆ΓH,

Γ(0) = Γ0,
(4.14)
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the anisotropic surface diffusion flow{
V = −∆ΓHµ,

Γ(0) = Γ0,
(4.15)

and the Willmore flow{
V = −∆ΓH − 1

2
H3 + HR,

Γ(0) = Γ0.
(4.16)

Here V is normal velocity of Γ(t), while H and R denote the mean curva-

ture and the scalar curvature of Γ(t), respectively, and ∆Γ is the Laplace-

Beltrami operator on Γ(t). For a smooth function f and a smooth vector

field X on Γ, ∇Γ and divΓ are defined by

∇Γf = ∇f − 〈n,∇f〉n,

divΓ X = Trace((I − n⊗ n)JX).

Here n denotes the unit normal vector on Γ(t), 〈·, ·〉 denotes the standard

inner product on RN , while JX stands for the Jacobian of X. The Laplace-

Beltrami operator ∆Γ on Γ is defined by

∆Γ = divΓ ∇Γ.

Here Hµ denotes an anisotropic mean curvature of Γ(t), that is, for a given

surface energy density µ0, the one-homogeneous extension µ of µ0 is given

by

µ(p) := µ0(p/|p|)|p|, p ∈ RN .

Define the Cahn-Hoffman vector ν by ν = ∇µ. Then Hµ is defined as

Hµ = −divΓ ν(n).

In this subsection we consider the case when the hypersurface Γ(t) is

represented as the graph of a smooth function u(x, t), i.e., Γ(t) = {xn =

u(x′, t);x′ = (x1, x2, . . . , xn−1) ∈ Rn−1}. We take the unit outer normal

vector n as

n =

(
− ∇u

(1 + |∇u|2)1/2 ,
1

(1 + |∇u|2)1/2
)
,
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where ∇u = (∂u/∂x1, ∂u/∂x2, . . . , ∂u/∂xn−1) = (∂1u, ∂2u, . . . , ∂n−1u).

Then, from [11, Chapter 1], we have

V =
∂tu

(1 + |∇u|2)1/2 ,(4.17)

H = div

( ∇u

(1 + |∇u|2)1/2
)

=

(
δij −

∂iu∂ju

1 + |∇u|2
)

∂i∂ju

(1 + |∇u|2)1/2 .(4.18)

The Laplace-Beltrami operator ∆Γ is of the form

(4.19) ∆Γ =

(
δkl −

∂ku∂lu

1 + |∇u|2
)

∂2

∂xk∂xl

+
1

(1 + |∇u|2)1/2
∂

∂xk

{
(1 + |∇u|2)1/2

(
δkl −

∂ku∂lu

1 + |∇u|2
)}

∂

∂xl
.

Here the summation runs from 1 to (n−1) for all indices. We now apply the

result of Theorem 4.1 to show the unique local solvability of equations (4.14)

and (4.16).

Theorem 4.2. Let the initial hypersurface Γ0 be given as the graph of

a function u0 ∈ h1+β(Rn−1) with β ∈ (0, 1), i.e., Γ0 = {xn = u0(x
′);x′ =

(x1, x2, . . . , xn−1) ∈ Rn−1}. Then for γ ∈ (0, β) there exist positive con-

stants T = T (u0) > 0 and ε = ε(u0) > 0 such that the problem (4.k) with

k = 14, 16 has a unique classical solution

u(·, w) ∈ BUC1−α([0, T ], h4+γ) ∩BUC1
1−α([0, T ], hγ),

for any initial value w ∈ Bh1+β(Rn−1)(u0, ε). Here α = (1 + β − γ)/4.

Remark 4.3. The structure of the problem (4.15) is the same as the

structure of problems (4.14) and (4.16), and therefore we can state similar

theorem for problem (4.15). In order ν = ∇µ to be a continuous function,

we must assume µ is of C2-class away from the origin.

Proof of Theorem 4.2. First we study the surface diffusion flow
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(4.14). By (4.17)–(4.19) the surface diffusion flow is

(4.20)
∂u

∂t
= −(1 + |∇u|2)1/2

{(
δkl −

∂ku∂lu

1 + |∇u|2
)
∂k∂l

×
[(

δij −
∂iu∂ju

1 + |∇u|2
)

∂i∂ju

(1 + |∇u|2)1/2
]

− 1

(1 + |∇u|2)1/2∂k
[
(1 + |∇u|2)1/2

(
δkl −

∂ku∂lu

1 + |∇u|2
)]

× ∂l

[(
δij −

∂iu∂ju

1 + |∇u|2
)

∂i∂ju

(1 + |∇u|2)1/2
]}

.

We have to verify that the principal parts and the lower order terms of (4.20)

satisfy the assumptions (A1), (A2) and (F). The principal symbol of the

right-hand side of (4.20) is given by

(4.21)
1

(1 + |ζ|2)2
[
(δkl(1 + |ζ|2) − ζkζl)(δij(1 + |ζ|2) − ζiζj)

]
pkplpipj

=
1

(1 + |ζ|2)2
[
(1 + |ζ|2)|p|2 − (ζ · p)2

]2
,

where we denote ζ = (ζ1, ζ2, . . . , ζn−1) for variable for the first order deriva-

tive ∇u = (∂1u, ∂2u, . . . , ∂n−1u) and p = (p1, p2, . . . , pn−1) ∈ Rn−1 \ {0}.
Cauchy’s inequality then yields uniform ellipticity: there exists a constant

V > 0 such that

(4.21) ≥ V|p|4,

for all p = (p1, p2, . . . , pn−1) ∈ Rn−1 \ {0}. Thus for a fixed ζ, the principal

part �(ζ) is an elliptic operator and of C1-class with respect to ζ so that

(A2) is fulfilled. (See [1, Section 7], [2, Section 3] for various definitions of

uniformly elliptic operator). It is easy to see that this estimate for (4.21) is

locally uniform for ζ so that �(ζ) fulfills (A1).

The lower order terms of (4.20) are of the form

�1(ζ,η, ξ) = −ζlζkζjηijξikl
(1 + |ζ|2)2 ,(4.22)

�̃1(ζ,η, ξ) = −ζkζlηilηjkηij
(1 + |ζ|2)2 .(4.23)
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Here we denote η = {ηij} and ξ = {ξijk} by the second order derivative

and the third order derivative respectively. For example, ηij denotes ∂i∂ju

and ξijk denotes ∂i∂j∂ku. Note that the sum of powers of the polynomials

η and ξ of (4.22) and (4.23). In (4.22), the sum of powers of η is 1 and

that of ξ is also 1, while in (4.23) the sum of powers of ζ is 3. Thus, we can

conclude that �1(ζ,η, ξ) and �̃1(ζ,η, ξ) satisfy the assumption (F).

We now apply Theorem 4.1 to obtain the unique local classical solu-

tion of the surface diffusion flow with h1+β-initial data. For the Willmore

flow (4.16) and the anisotropic surface diffusion flow (4.15), the structure

of the principal part and the lower order terms is the same as the structure

of the surface diffusion flow (4.14). For this reason, we leave the details to

the reader. �

4.3. The evolution equations for the height of a crystal

In this subsection we study the evolution equations for the height of a

crystal which is derived in [15] as a limit of microscopic models


∂u

∂t
= −B∇ ·

{
Λ · ∇

[
∇ ·
( ∇u

|∇u|

)
+

g3

g1
∇ · (|∇u|∇u)

]}
,

u(0) = u0.

(4.24)

Here

∇ =

(
∂x
∂y

)
,

Λ =


1

1 + q|∇u|
(∂xu)2

|∇u|2 +
(∂yu)2

|∇u|2 − q|∇u|
1 + q|∇u|

(∂xu)(∂yu)

|∇u|2

− q|∇u|
1 + q|∇u|

(∂xu)(∂yu)

|∇u|2
1

1 + q|∇u|
(∂yu)2

|∇u|2 +
(∂xu)2

|∇u|2

 .

The quantities B, q, g1 and g3 are given positive constants. We will try to

solve the initial value problem for (4.24). Unfortunately, the equation (4.24)

is degenerate (not parabolic) and singular at ∇u = 0. Our aim in this

subsection is to construct a unique classical solution for regularized and

relaxed problems which are parabolic. We introduce |∇h|ε := (ε2+|∇h|2)1/2



528 Tomoro Asai

for (small) ε > 0 and relax and regularize the original equation (4.24) to get
∂u

∂t
= −B∇ ·

{
Λε · ∇

[
∇ ·
( ∇u

|∇u|ε

)
+

g3

g1
∇ · (|∇u|ε∇u)

]}
,

u(0) = u0,

(4.25)

where

Λε =


1

1 + q|∇u|ε
(∂xu)2

|∇u|2ε
+

(∂yu)2

|∇u|2ε
− q|∇u|ε

1 + q|∇u|ε
(∂xu)(∂yu)

|∇u|2ε
− q|∇u|ε

1 + q|∇u|ε
(∂xu)(∂yu)

|∇u|2ε
1

1 + q|∇u|ε
(∂yu)2

|∇u|2ε
+

(∂xu)2

|∇u|2ε

 .

Theorem 4.4. Assume ε > 0. For β ∈ (0, 1) let u0 ∈ h1+β(R2).

Then for each γ ∈ (0, β) there exist positive constants T = T (u0) > 0 and

ε = ε(u0) > 0 such that the problem of (4.25) admits a unique classical

solution

u(·, w) ∈ BUC1−α([0, T ], h4+γ) ∩BUC1
1−α([0, T ], hγ),

for any initial value w ∈ Bh1+β(R2)(u0, ε). Here α = (1 + β − γ)/4.

Proof. The proof is the same as the proof of Theorem 4.1. From now

on we denote aεij(∇u) by the (i, j)-th component of the matrix Λε. We also

observe that

∇ ·
( ∇u

|∇u|ε

)
=
∑
k,l

qεkl(∇u)
∂2

∂xk∂xl
u,

with

qεkl(∇u) =
1

|∇u|ε

(
δkl −

∂xku∂xlu

|∇u|2ε

)
.

Then the highest order term of ∇ · Λε · ∇[∇ · (∇u/|∇u|ε)] is calculated by

∑
i,j,k,l

aεijq
ε
kl

∂4

∂xi∂xj∂xk∂xl
u,(4.26)
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where the indices run from 1 to 2. Thus the principal symbol is

∑
i,j,k,l

aεij(ζ)qεkl(ζ)pipjpkpl =

∑
i,j

aεij(ζ)pipj

∑
k,l

qεkl(ζ)pkpl

 ,(4.27)

for p = (p1, p2) ∈ R2 \ {0}, ζ = (ζ1, ζ2), |ζ| ≤ M . We now calculate

∑
k,l

qεk,l(ζ)pkpl =
1

|ζ|ε

(
|p|2 − ζkζlpkpl

|ζ|2ε

)
(4.28)

=
1

|ζ|3ε
(|p|2|ζ|2ε − (p · ζ)2)

≥ ε2

|ζ|3ε
|p|2,

∑
i,j

aεij(ζ)pipj =
(
p1 p2

)
Λε

(
p1

p2

)
(4.29)

=

(
1

1 + q|ζ|ε
ζ2
1

|ζ|2ε
+

ζ2
2

|ζ|2ε

)
p2
1

+ 2

(
− q|ζ|ε

1 + q|ζ|ε
ζ1ζ2
|ζ|2ε

)
p1p2

+

(
1

1 + q|ζ|ε
ζ2
2

|ζ|2ε
+

ζ2
1

|ζ|2ε

)
p2
2

=
1

1 + q|ζ|ε
1

|ζ|2ε

[
(ζ2

1 + (1 + q|ζ|ε)ζ2
2 )p2

1

− 2q|ζ|εζ1ζ2p1p2 + (ζ2
2 + (1 + q|ζ|ε)ζ2

1 )p2
2

]
.

In order to show that the bilinear form (4.29) is positive definite, we shall

calculate the determinant of the coefficient matrix of the bilinear form. The

determinant is(
1

1 + q|ζ|ε
1

|ζ|2ε

)2 [
ζ2
1ζ

2
2 + (1 + q|ζ|ε)ζ4

1 + (1 + q|ζ|ε)ζ4
2(4.30)

+ (1 + q|ζ|ε)2ζ2
1ζ

2
2 − q2|ζ|2εζ2

1ζ
2
2

]
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=

(
1

1 + q|ζ|ε
1

|ζ|2ε

)2 [
ζ2
1ζ

2
2 + (1 + q|ζ|ε)ζ4

1

+ (1 + q|ζ|ε)ζ4
2 + (1 + 2q|ζ|ε)ζ2

1ζ
2
2

]
=

(
1

1 + q|ζ|ε
1

|ζ|2ε

)2 [
(1 + q|ζ|ε)|ζ|4

]
=

1

1 + q|ζ|ε
1

|ζ|4ε
|ζ|4 > 0.

The trace of the coefficient matrix is obviously positive. Now we can con-

clude that there exists V = VM > 0 such that∑
i,j

aεij(ζ)pipj ≥ V|p|2,(4.31)

for all |ζ| ≤ M . From (4.27), (4.28) and (4.31), we finally obtain the

ellipticity of the principal part so that the principal part of the equation

fulfills (A1) and (A2).

The typical terms of the lower order terms of (4.25) are

�1(ζ,η, ξ) = −Bq
ζ4
1ζ2η11ξ112

(1 + q|ζ|ε)2|ζ|6ε
,(4.32)

�̃1(ζ,η, ξ) =
2B

1 + q|ζ|ε
· ζ

2
1ζ

2
2η11η

2
12

|ζ|7ε
,(4.33)

where we denote η = (η11, η12, η21, η22) and ξ = (ξ111, ξ112, . . . , ξ222) by the

second order and the third order derivatives respectively. For example η11

denotes hxx and ξ112 denotes hxxy. Note that the sum of powers of the

polynomials η and ξ of (4.32) and (4.33). The sum of powers of η in (4.32)

is 1 and that of ξ in (4.32) is also 1. On the other hand, the sum of powers

of η in (4.33) is 3. Thus, we can conclude that �1(ζ,η, ξ) and �̃1(ζ,η, ξ)

satisfy the assumption (F). The other terms can be handled in a similar

way. We are now in a position to apply Theorem 4.1 to obtain the unique

local classical solution of (4.25) with h1+β-initial data. �
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