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A Remark on Malliavin Calculus :

Uniform Estimates and Localization
By Shigeo KUSUOKA*

Abstract. The author [1] showed precise estimates for the reg-
ularity on heat operators associated with degenerate elliptic opera-
tors. In the present paper, he shows that these estimates can be uni-
formized and localized similarly to the heat operators associated with
Hormander type degenerate elliptic operators.

1. Introduction

Let Wy = {w € C([0,00); RY); w(0) = 0}, F be the Borel algebra over
Wy and p be the standard Wiener measure on (W, F). Let B : [0,00) X
Wo — R, i=1,...,d, be given by B'(t,w) = w'(t), (t,w) € [0,00) x Wp.
Then {(B'(t),...,B%t));t € [0,00)} is a d-dimensional Brownian motion
under p. Let BY(t) =t,t € [0,00). Let Fi, t = s = 0, be the sub-o-algebra
generated by {B(r) — Bi(s);r € [s,t], i = 1,...,d}. Then {F¢},> is the
Brownian filtration. Also, let H be the Cameron-Martin subspace_ relative
to the Wiener space (Wy, p), i.e.

H = {w e Wy, w(t) is absolutely continuous in ¢,

Z/ (t)]2dt < oo}

and its inner product (-, %) is given by

d ~
© dwk dik
0)g = —(t)——(t)dt v e H.
=) [ OG0 wa
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534 Shigeo KUSUOKA

Let A be a set. We denote by UACI;’O(RN;RM), N,M = 1, the set of
families of smooth functions {f\}rea from RY to RM such that

aOé
sup  |=—/f(z)| < 0
AeA,zeRN Oz

for any multi-index a € ijv 0

Let {VA}aea € UACRP(RY;RY), i = 0,1,...,d. We regard VM's as
vector fields on RY. Let X*(t,z), t € [0,00), 2 € RN, A € A, be the
solution to the Stratonovich stochastic integral equation

d t
(1) Xta)=at 3 [ VA0 0 dB ().
i=0 /0

Then there is a unique strong solution to this equation. Moreover we may
assume that X*(¢,z) is continuous in ¢ and smooth in x, and that X*(¢,-) :
RY — RN, ¢t €[0,00), is a diffeomorphism with probability one.

Let A = Ay = {vp,v1,...,v4}, be an alphabet, a set of letters, and
A* be the set of words consisting of A including the empty word which is
denoted by 1. For u = u'---uf € A*, v/ € A, j =1,... .k, k = 0, we
denote by n;(u), i =0,... ,d, the cardinal of {j € {1,... ,k};u’ = v;}. Let
lu| = no(u) + ...+ ng(u), alength of u, and || u || = |u| + no(u) for u € A*.
Let R(A) be the R-algebra of noncommutative polynomials on A, R((A))
be the R-algebra of noncommutative formal series on A, £(A) be the free
Lie algebra over R on the set A, and £((A)) be the R-Lie algebra of free
Lie series on the set A.

Let r : A*\ {1} — L£(A) denote the right normed bracketing operator
inductively given by

’r‘(’Ui):UZ', i:O,l,...,d,

and
r(viu) = [vi, r(u)], i=0,1,...,d, ue A"\ {1}.

For any w; = ), c 4« a10u, € R((A)) and wy = >, . 4« aguu, € R(A),
we define a kind of an inner product (wq,ws) by

(wi,wy) = Z a1u,a2, € R.
ucA*
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We can regard vector fields V;)‘, 1 =20,1,...,d, A € A, as first differen-
tial operators over RY. Let DO(RY) denote the set of smooth differential

operators over RV. Then DO(RY) is a noncommutative algebra over R.
Let ®* : R(A) — DO(RY), A € A, be a homomorphism given by

(I))\(l) = Identity, (I))\(Uil e 'Uin) = ‘/zi\ e V;ia
forany n =2 1, i1,...,i, =0,1,... ,d, A € A. Then we see that
() = V@), i=0,1,...,d, we A\ {1},

Let A7, ={u € A% || u|=m}, m 20, and let R(A)n, = >_,c4: Ru,
and R(A)<,, = >/ R(A)r, m = 0. Let L(A), = L(A) NR(A)p,, and
L(A)<y, = LIA)NR(A)<,p, m = 1. Let A = {u € A*; u # 1,v}, and
AZ,, = {ue A S m}, m 2 1.

Now we introduce a condition (UpFG) on the family of vector field {V;*,
i=0,1,...,d, A € A}, as follows.

(UAFG) There are an integer £y and {¢) ,}ren € UNCERYM;R), u €
Agéoﬂ’ u' € A”é*go, satisfying the following equation.

PMr(w)= Y wauw@(r)), uweAL, .,

/ * %
u EAgeo

Now let us define a semigroup of linear operators {P}}; > on Cg°(RY)
by
(P )(z) = BMf(XA(t,2))], [ e CRRY).

We prove the following in this paper.

THEOREM 1. Assume (UpAFG) holds. Then for any n,m = 0 with
n+m =21 and uy, ..., uprm € A*, there exists a C > 0 such that

Sup 197 (r(ur) -+ 7 (un)) PO (r (1) -~ 7 (tngm) ) | Lo (R

< Ct_(HulH+m+||un+m”)/2"fHLP(RN-dx)

for any p € [1,00] and f € C(RN).
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Now let V) € C°(RN;RN), A € A, i = 0,...,d, and let X*(t,2),
t €10,00), z € R, be a solution to the following SDE

d t ~ A
(2) XMt z) =z + Z/ VAN XA (s,z)) 0 dB'(s).
i=0 /0

Let us define a semigroup of linear operators {15{\}@0 on Ci°(RY) by
(P f)(@) = BMf(XA(t2))),  fe CGE(RY).
Then we have the following localization result.

THEOREM 2. Let z9 € RN and ¢y > 0. Assume that {Vi/\}AeAa 1=
0,1,...,d, belongs to UAC'bOO(RN; RYN) and satisfies (UpFG). Assume more-
over that

VA (z) = V), x € B(xo;2e0), A€ A, i=0,1,... .d.

(2

Then for any ¢ € C§°(B(zo;€0)) and uy, ... ,u, € A, n 2 1, there ezists
a C >0 such that

sup (@M (r(ur) - (un)) (9P ) ()]
deA,zeRN

< o~ Uhall+-HllualD/2 gup | £(2))
N zeRN

and

sup (BN (r(w1) - - r(un)) (o)) ()]
AeA,zeRN

< ot~ Uhall+-HlualD/2 gup | £(2))

N zeRN
for any f € CEO(RN;R). Here B(xg,e9) denotes the open ey-neighborhood
of .

We use Malliavin calculus to prove above theorems, and use the notation
in Shigekawa [5] for Malliavin calculus. We regard (Wo, F, i, {F{}i>0) as a
filtered probability space, and use the following notation. S denotes the set
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of continuous {F{}; > ¢-semimartingales. S : Sx A* — S and S:8xA* - S
are defined inductively by

S(Z:1)(t) = Z(t), t20, S(Z:;1)¢t)=2(), t=20, Z€S,

and
S(Z:uvs)(t) = /0 S(Z,u)(s) o dBi(s),
$(Z; viu) /SZu()odBZ() £>0,

forany Z €S, i=0,1,... ,d, ue A*.
Also, we denote S(1,u)(t) and S(1,u), u € A*, by B(t;u) and B(t;u)
respectvely.

2. Semimartingale on R((A))

We say that X : [0,00) x Wy — R((A)) is an R((A))-valued contin-
uous semimartingale, if there are continuous semimartingales X,,, u € A*,
such that X () = >_,c 4« Xu(t)u. For R({(A))-valued continuous semimartin-
gale X (t),Y(t), we can define R((A))-valued continuous semimartingales

fo s)odY(s) and fo odX (s)Y (s) by
/X ) 0 dYiy(s))uw

/X )odY (s
/OodX() /Y ) o dXou(s))uw

=3 Xulbu,  Y(t)= ) Yu(uw

uEA* weA*

u,wEA*

u wEA*

where

Then we have
X@)Y () = /X )odY (s /odX() (s).

Since R is regarded a vector subspace in R{{A)), we can define fg X(s)o
dBi(s), i =0,1,...,d, naturally.
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Now let us consider the following SDE on R((A))

d et
(3) X(t) =1 +Z/ X(s)vi 0 dBi(s),  t20.
i=0 70
One can easily solve this SDE and obtains
(4) X(t) =Y B(tuu.
u€A*

We also have the following (c.f. [2]).
PROPOSITION 3. log X(t) € L((A)), t = 0, with probability one.

Note that
dX(t)) ==X X)X (M) == uX(t) 0dB(t)

and so

d  rt
X(t)"t=1- v X (s) ' o dB(s).
()t =1 ;/0 KX ()7 0 dBi(s)

3. Uniform Estimates

We assume the condition (U,FG) for (VA i =0,1,...,d, A € A}
throughout this paper. The argument in this section is essentially the same
as in Sections 2 and 3 in [1], or [2], and so we state results sometimes without
proofs.

PROPOSITION 4. There are {¢) }ren € UNCP(RY), u € A*, v/ €
A?ZO such that

Pr(w)= Y hu® W), uweA™

’ * ok
u EAEZQ
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Proor. It is obivious that our assetion is valid for u € A;*ZO 4o Sup-
pose that our assertion is valid for any u € AZ" , m 2 £y + 2. Then we have
for any i =0,1,... ,d and u € A% -

<m’
N(r(vu)) = [V @Mr(w)] = D VP enw® ()]
u’eAg*zo
= 3 PR W)+ Y O @ W)
u'GAg}O w u//GAz*ZO

So we see that our assertion is valid for any u € A%

<1 Thus by induction

we have our assertion. [

For any C™ vector field W on RY, we see that

d

d(XA (1) W)(2) = Y (XN VA, W) () 0 dBY(2),

=0

where X*(t), is a push-forward operator with respect to the diffeomorphism
XMt ) : RY — RN, So we have

(X (), @ (r(w))(2)

for any u € A*\ {1}.
Let m = 30y. Let {3 (-,u,u)}aca € UsCP(RY,R), i = 0,1,... ,d,
u,u’ € AY | be given by

1, if ||viu|| £ m and v = vu,
M) = Ghul@), it lloul] > m and []] < fo,
0, otherwise.

Here @ﬁ,u,’s are as in Proposition 4. Then we have
d(XA(t), @A (r(w)) ()
d
Z XAt ) ) (XA () B (r () () 0 dB (1)

I
o
H/\*
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*%
for any v € AZ .

Let aM™(t, z;u,u'), u,u’ € A%, be the solution to the following SDE

da/\’m(t, x;u,u')

DI W
=0 u

x); u,u”)a”\’m(t,x; u",u’)dBi(t)
"eAln
14
+§Z Z (V;‘AC,;\’m)(X)\(t,IIZ‘);u”,u) Am(t T o u)dt
=1 //EA**

A @

i=1 upubeAL”

XM (XAt

t7$)7 U,’Lbl)

. A, . /
L) up, uz)a ™ (t, xy ug, u')dt,
m . no_ /
0, z;u,u’) = (u,u’).
Such a solution exists uniquely, and moreover
A,m
a K

we may assume that
(t, z;u,u’) is smooth in x with probability one. Then we have

Ial
sup  E*[ sup \

Mt 2y u,u')|P] < oo
AeA,zeRN t€[0,7) 8:r ’

€[l,00), T>0
for any multi-index a.. One can easily see that

(5)

da)"m(t, x;u,u')

d
Z )\m X)\(

=0 u

H/\*

z);u,u)aM™ (t, zu” ') o dB(t).
Then the uniqueness of SDE implies

(X)) = Y a

Mt s u,u')@A(r(u'))(m’), u € A;*m
u' €AL*

=m

Similarly we see that there exists a unique solution b»™(t,z;u,u’)



Uniform FEstimates and Localization 541
u,u’ € AY  to the SDE
(6) M xu, U

d t
) -3 Y [;@*m(&xnhu”)@?m(XAwgw;dﬂuﬁ)odB%ﬂ.

1=0 u”eA’gm

Then we see that

Z a/\’m(t,x,u,u”)b)"m(t,x,u",u') = (u,u’), u,u’ € S
“//GAE*m o
Mr(w)(x) = Y Wt zud ) (XN (W) (x), ue AT,
uleAg*m n
and
Hled N
sup  EM[ sup |=—=b""(t,z;u,u’)|P] < oo, p€[l,o0), T>0

AeAzeRN  tefo.1]) 0T
for any multi-index «a. Let
d
R} ={vou;u € A% ||u|]| =m — 1} U U{Uiu;u € A% ||ul| = m}.

1=0

Then we have the following.

PROPOSITION 5. For any m 2 3/,

a™™ (t, @, u,u')

= Z (uyu, u')B(t, uy)

wear,,

+ Z Z S(‘Pulu,uz(X)\('vSU))a)\’m('ax?u%u/)aul)(t)

ul EA* U1 uER], us GA; »

for any t € [0,00), x € RN, and u,u’ € AT
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PROOF. The assertion is obvious from the definition, if ||u|| = m. Note
that

a™™(t, @ u,u')

d
= (u,u’) + Z Z S(cj"m(XA(~,x);u, ul)a’\’m(-,x;ul,u'),vi)(t).

i=0 u €A
Therefore, if ||u|| = m — 1, we have

a™™(t, x;u,u')

d
= (u,u) + Z S((viu, u'ya™™ (-, 5 viu, '), v;) (t)
i=1
> SPun (X))@ (i, 0, o) (1)
U1€A£*ZO
d
- <U, ’LL/> + Z<’U1‘U, U/>B(t, Ui)
i=1

U

d
+ Z Z Z S<S(90Ujviu,u1 (X)\('v x))a)\’m('v Ty UL, ul)7 Uj)v v;)(t)

i=1 j=0 w1 €AY,

+ Z S((pvou,m (XA(W x))a)\’m(ﬁ €, U1, Ul)a UO)(t)-

k%
(751 EAg 2

So we have our assertion. Similarly by induction in m — ||u|| we have our
assertion. [

Then by Equation (4), we have the following.

COROLLARY 6. For any m 2 3/,

a>"m(t, x;u,u')

= (X(t)u, ')
+ Z Z S(‘;Oulu,uz(X)\('vx))a)\7m('ax;u%u/)aul)(t)

ul €EA*:utuER}, ’LLQGA; »
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for any t € [0,00), z € RN, and u,u’ € A’é*m. In particular,

a>\7m<t> Z; vy, U) = <X(t)vla u)

+ Z Z S(@ﬁlvi,ug(X)\('vx))<X(')u2aUi>vu1)(t)

w1 EA* U1V ERF, ug EA; %

P IED DD DD D

u1 EA*:u1uER}, ugeAg ‘% uz€A*:uzusER, u4€A’é ‘%
A A A A A
S(@ulviﬂm (X ('7 w))S(@u3u27u4 (X ('7 x))a ,m(_7 T, Uyq, ’LL), U3), ul)(t)'
Here X(t) is a solution to SDE (3).

PROPOSITION 7. Let m = 3¥.
(1) For any u € AT, ueA* i=0,1,...,d withvu' € AT if [lo|| >
lo, then
It 2, u, v ) = SO (- u, ') ) F (u, v,
and if [|viu|| £ Lo, then

P x u, vin) = SOz u,u!);0) (8) + (u, vin)

d
+Z Z S(b)"m(',{E,u,Ujul)goi‘jul’viu/(X)‘(',{I}));’Uj)(t)

7=0uy GA;* ,Uj U1 eRx,

m

for any t € [0,00), z € RN, and X € A.
(2) For any u,uy € A*g*m’ up € A* with ||lug|| 2 lo, ||u|] = |Juz|] and
|[ugugl| = m,

b/\’m(t, T, U, U UL) = g(b)"m(-, T, U, U); UL ).

PROOF. Since we have
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we have the assertion (1) from the definition of c;"m.

The assertion (2) is an easy consequence of the first part of the assertion
(1). O

Let E be a separable real Hilbert space and r € R. Let us denote
by W™ (E) (52 0pe(1,00) WP(E). Let Kp(E) denote the set of fami-
lies {fa}aea of functionals fy : (0,1] x RY — W~ (E) satisfying the
following two conditions.

(1) fa(t, x) is smooth in = and %fA(t, ) is continuous in (¢,x) € (0, 1]x RN

for any multi-index a.
(0%

(2) sup I %f)\(t, ) |lwsp ()< 0o, for any multi-index a,s € R
AEAte(0,1],zeRN
and p € (1,00).
We denote KCp(R) by K.
By checking carefully the estimates discussed in Chapter 6 in Shigekawa
5], we see that {a™™(t, z;u, ') }aea and {BM (¢, z;u,u’) Y ren belong to Kx
for any u,u’ € AL .
Then by Corollary 6, we have the following.

PROPOSITION 8. For any u,u’ € AL . {t=m/2 (M (t, 2y u,u)) —

X (t)u, u')) }rea belong to Ky. In particula_r, {t= W= [lul)VO)/2gAm (¢ g

{
u, ') }ren belong to Ky.

Similarly by Proposition 7 we have the following.

PROPOSITION 9. For any u,u’ € AL | {t= U= [ulDVO) /2pAm (¢ g
u, ') }ren belong to Ky.

Now let kMM (t,z;u) € H, A € A, (t,x) € [0,00) x RN, u € AT, be
given by N

tA-
k)\7m(t7x;u) = (/ a/\7m(37x;Uiau)ds)iZI,...,d-
0

Then we have the following.

PRrRopPOSITION 10. For any u € A%, {t=ll/2Am (¢ 2 u) Y aen Delong
to ICA(H).
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Let MA™(t, x5 u,u’), (t,x) € [0,00) x RN, u,u’ € AZ, ., be given by
(7) MA’m(t, zyu, ) = t*(IIUIIJrIIU’\\)/Z(kkm(t’ i), k)"m(t,x; W)y

d_ ot
_ ’
= ¢~ (Rll+llw'l)/2 g / aM™ (s, 25 v, w)a™M™ (s, 205, u')ds.
— Jo
i=1

Also, let M (t;u,u'), (t,x) € [0,00) x RN, u,u/ € A% be given by

d o
(8) M(m>(t;u,u'):t—(”u'HWWZ/ (R (s, u) (X (v, ).
i=1 0

We can prove the following from Propositions 8 and 9 by the exactly
same method as in [1] Section 4 .

ProposiTION 11. (1) For any p € (1,0),

sup Eu[det(MAﬁn(t;x;ua u,));,}:/GAZ* ] < 0.
AEAtE(0,1], RN T

(2) For any p € (1,00),

sup E“[det(M(m)(t;u,u/));fb,eA** ] < o0.
te(0,1] ’ =m
(3) {t=V2(MAM™ (0,10 )— MO (0, 0/)) Yaen belong to K for any u,u/ €

k%
AT,

Let (Mkvm(t,x;u,u’))%u/eAz*m be the inverse matrix of (MMM (t,x;
U, u))uweaz  and (M(m)(t;u,u’))u,uze,qgm be the inverse matrix of
(M(m) (ta xr;u, ul))u,u’EA** .

<m

Then we have the following.

COROLLARY 12.  {MM " (t, z;u,u')}aen and { M (t;u,u')}ren belong
to Kpn for any u,u/ € A¥Y . Moreover, {t=V2(MA™ (4, @ u,u!) —

N0 (t,0)) Y aea belong to Kx for any u,u' € A,



546 Shigeo KUSUOKA
Note that
tA-
XN DX b 2) = ( / (X ()2 V) (@)ds)ir.... a
0

= Y Bt mu) @ r(u) ()

ueAg‘m
for (t,x) € [0,00) x RY (c.£.[3]). Let f € C°(RY). Since we have
DU (XNG ) = 72 (X0 df) (), X0 DX b, ),
we see that

(D(f(XA(t,2))), K™ (¢, w5 w)) 1
= ) (X)df) (), @ (r())) ot W2 A AM (1 0, 0.
weaz,

So we have

9 PN () (F(XE (@) = 7 (X)) (@), @M (r(u))r,
= Y AP, o)D) R ) g
u’eAg*m

and

(10) V2 (@ (7 (u)) £) (X2, 7))
=S WPz, up)t (el 2 g )

unus €AY

Xt7”u2”/2(D(f(X)\(tv l’)), k)\7m(ta x5 UZ))H
Therefore we have the following.

THEOREM 13. Let f € C°(RY). Then we have the following.
(1) For any u € AZ , p € (1,00) and r >0,

sup 1172 (@ (1 (u) ) (X (8, ) (@) | [wrw < o0
te(0,1], e, zeRN
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(2) For any F' € W™ and u € AY, , we have
t202 (1 (u)) (B [Ff(XA(E,)](x) = E*[(RY (¢, 25 u)F) f(XA(H, )]
and
BR[FHI2(@ (r(u)) £) (X (2, 2))] = BX(R (1, 0) F) f(X (7).
Here

Ry (t, z;u)F
= Z D (MM (¢, 2 u, )t N2 A (¢ /) F)
weAT,
and
Rt z;u)F

= Y DA, gyt D2 )

ul,ug €AY

szl ZpAm e ug) F).

One can easily prove the following.

ProposITION 14. If  {F\(t,x)}xen  belongs to K,  then
{Ré(t,x;u)(FA(t,a:))}AeA and {R{‘(t,x;u)(FA(t,x))}AeA belong to K.

Then by Theorem 13 and Proposition 14, we have the following.

PROPOSITION 15. For any n,m = 0 with n +m = 1 and uq,...,
Uptm € A™, there exists a Cy > 0 such that

Sup 19X (r(ur) - - (un)) PA O (r(uns1) - - 7 (tncem)) fl| oo (R )
< Cotf(Hul||+"'+||un+m||)/2||f||LOO(RN.dI)
for any f € C2(RY).

Now let us define {g)}aen, € UNCP(RN;R), k= 0,1...,d, {V}brer
€ UAC*(RY;RN), k=0,1,... ,d, and {¢*}ren € UaC°(RY;R) by

N
0 .
A 72: Aj _
gk(x)_ 181’]% (x) k_07177d7
J:
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d
Tw) = Vi) + 3 gV @),
=1
Vk/\(m) = Vi)\(w)v k= s 7d7
d
i) = —ab(@) + 5 S + (VP ()g}))
j=1

Then we see that {Vi)‘;i =0,1,...,d,\ € A} satisfies the condition (UyFG).
Let X*t,2), t =2 0, x € RN, A\ € A, be the solution to the following
stochastic differenntial equation

d t
XMt x) =z + Z/ VAX (s, ) o dB(s).
1=0 0

Let Pt)‘, t =2 0, be a linear operator in C,?O(RN) given by
(P)(x) = EIKA(t ) f(XANE2)],  f e CFRY),
where

t
Kt z) = eXp(/ o(XNs,2))ds),  weRN, ¢>0.
0

Note that { K (¢, )} rea belongs to K. So again by Theorem 13, Propo-
sition 14 and definition for Vk)‘, we have the following.

PROPOSITION 16. For any n,m = 0 with n +m =2 1 and uq,...,
Untm € A™ there exists a C1 > 0 such that

Sup 192 (r(u) - - 7(un)) B2 (r(tn1) - - 7 (W) ) | oo (Y )
< Oyt Ul tllontmID/2) £ oo v, gy
for any f € C°(RY).
Observe that
| (Pr@hed = [ @@ L@ 2o
RN RN

for any f1, fa € Cg°(RN).
Now Theorem 1 is an easy consequence of this fact and Propositions 15
and 16.
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4. Localization

First, we remind the following result (c.f. Stroock-Varadhan [6] Theorem
2.1.3).

PROPOSITION 17. Let E be a mormed space. Let T,B >0 3 € (0,1),
and p € (2/3,00). Suppose that a continuous function ¢ : [0,T] — E satis-

fies
/T /T(Wy(t) — ¢>(5)HE)pdet < B.
o Jo [t = sl?

Then we have

8G(4B)'/P

3—2/p It — s|P72/P, t,s €0,T7.

o(t) — o(s)lle =

Now let zp € RN, g9 > 0. f/i)‘ :RY — RV, and Vf‘ : RV — RV,
Ae A, i=0,...,d, be as in Theorem 2. Also, let X*(¢,z) and X*(t,z) be
solutions to Equation (1) and (2) respectively. We may assume that z¢ = 0,
and g9 < 1/2.

By checking the computation in Shigekawa [5] Section 6, we see that for
any n = 1, k 2 0 and multi-index o € Z]ZVO, there is a C' > 0 such that

k 0°
sup Eu[HD ?

o«
) X)\(t7l‘)_Dk—aX)\(Svx)“?’—?%k@(RN)@kH] é C‘t_s‘n
AeA,zeRN

ox

for all ¢, s € [0,1].
Let YN(T) : Wy — [0,00), T € (0, 1] given by

?A(T):/OT/OTdtds

v / e \Xk(t, x) — XA(S,$)|2(N+2) + |VIX)‘(7§, ) — VQEX)‘(S,:E)|2(N+2)
|z <2 [t — s|N+2

YMT) is F& measurable. Also, we see that for any & = 0 and p € (1, 00)
there is a C > 0 such that

sup|[V(D)llwes < CT%, T e (0,1].
AEA
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Thus we see that

(11) sup TV NT)|lwrs < 00
AEA,TE(0,1]

for any r > 0 and p € (1, 00).

Let us take a p € C§°(R;R) such that 0 S p £ 1, p(2) =1, 2| £ 1, and
p(z) =0, |z] > 2.

Then we have the following.

PROPOSITION 18. (1) There is a Cy > 0 such that

EM[p(T~YN(T)), sup | XMt x) — x| = CoT3 =0
z€B(0,2),t€[0,T]

forany A€ A, T € (0,1].
(2) For anyr>1

sup T TEM[1— p(T7YMNT))] < .
AEA,TE(0,1]

(3) Foranyn=1pé€ (1,00) and r > 1,

sup  T7(Y BM[|[D*(p(T YN D)) ] P) < o0
AEA,TE(0,1]

PROOF. Let Ex be a normed space such that Ey = C>°(B(0,2); RY)
as a set and the norm || ||g, of Ex is given by

1l = ( / (F @) PV 4 V1) PV+2)an) VENH) - p e By
B(0,2)

Then by Sobolev’s iequality, there is a constant Cyy > 0 such that

sup |f(z)| = OnlIfllex,  f € EN.
z€B(0,2)

Note that

/ / dt dS |X)\ ) ( )||EN )2(N+2)

[t — s|1/2
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So, applying Proposition 17 for p = 2(N + 2), B =T, and § = 1/2, we see
that if YA(T') < 27T, then

sup | XA(t, ) — XP(s,2)| < On[IXA () — X (s, )l By

z€B(0,2)
40N (8T)1/P _
< A gAY, t,s,€ 0,7,
< g, s 0.7)
which implies
sup XAt z) — | < wT(NH)/(?NM)
2€B(0,2),t€[0,T] N

Since (N +1)/(2N +4) = 1/3, we have the assetion (1).
Note that

EM[L— p(T™YNT)] £ p(T™YNT) 2 1) ST E*[(T*YA(T))'].

This and Equation (11) imply the assertion (2).
Since we have

D(p(T'YNT))) =T~ p/(T~'YNT))) DY N(T),
we see that

EM[|[D(p(T~ YD) I]17
=T (Suplp( T YNT) > HYPT2[YNT) [y

- z€R

So we have the assetion (3) for n = 1.
Similarly, we have the assertion (3) for n = 2 also. O

PROPOSITION 19. Suppose that U; € W7, j = 1,... ,m, and as-
sume that |Uj| £1 p—a.s. j=1,... ,m. Then for anyn 21

m

ID™(TT Ullzen € 0™ (3 IID*U; | gen)”

j=1 k=1 j=1
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PrROOF. Note that

m

1" (T U)o

J=1

" !
2 X DD NI A

=1151< <tz Emly,. gy 2101+ L=n

—

k
¢ ¢
x( UiDID™ Ui [ gees - - [[D* Ui || o

n m m
n!
S X oD Uillgen) - o IID Uil gren)

k=141,.. £ 21,01+ L=n

=2 X gl Uillen )

k=101, lp 2 1,01+Lx=n i=1
m
bt (O D Uil o).
i=1
Here we use the fact
xﬁl e $ik < max{zy,... ,xk}eﬁ'"ﬁ’“, T1,...,25 = 0.
This implies our assertion. [
Let O : Wy — Wy, T = 0, be given by
Or(w)(t) = w(T +t) —w(T), w € Wo.

Then po 0;1 = p.
Let T,, = >3, 8% =8 /7, n 2 0, and let Z,,, € W™, n >
m 2 1, by

Zr)z\,m = H p(Sk?(S_k;eTk-ﬂw))-
k=m

Note that p(8FY (8*; O, w)) is ]-"%fﬂ—measurable and so Z)
measurable.

1S an+l'

, M

PROPOSITION 20. (1) Let Cy > 0 be as in Proposition 18. and mq be
n integer such that Co2~ "0t < 1. Then for any n > m = my,

EH[Z) ., sup | XA, 23 0r,w) — x| > Co2~™ ] = 0.
" 2€B(0,1),t€[0, Ty —T]
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(2) For any r >0 and p € (1,00) we see that

sp (|2l < oo.
AEAn>m =1

PrROOF. Note that
XMt + 8,307, ,w) = X(t, X (s, ;07 ,, w); O, 4 50).
Thereofore we have

sup \XA(t,m;Han) —
2€B(0,1),t€[0, T —Th]

A

sup | X, 23 0p,w) — 7
x€B(0,1),t€[0,Tr+1—Th]

+ sup |X)‘(t,X)‘(Tm+1 — Ty, 3 07,w); 07, W)
z€B(0,1),t€[0,8~™]

*X)\(Tm+l - Tna €T ean”
and so if n > m = myg
{ sup \X)‘(taIFQ Or,w) — x| > 002_m+1}
x€B(0,1),t€[0, T —Th]
c{ sup |X)‘(t,33§9an) — x| > 002_(m+1)+1}
z€B(0,1),t€[0,Tim41—Tn]
U{ sup |X>\(t,l'; eTm+1w) - x| > COZ_m}'
x€B(0,2),t€]0,8—™]

Therefore we see that

EMZ) i, sup | X (¢, ;5 07, w) — x| > Co27 "]

n,m
z€B(0,1),t€[0, T —Tn]

n
< Z E“[Zfl"m, sup |X)‘(t,:r:;0Tk+1w) — x| > Co27* =0.
j— x€B(0,2),t€]0,87k]

This and Propositon 18 (1) imply the assertion (1).
By Proposition 18 (3) we see that

[e.9]

> sup EX[||Dp(8*Y (87 O,y w))|[fren] < 00
=1 MEA
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for any £ 2 1 and p € (1,00). Since 0 < p < 1, we see by Propositions 19

that
¢

sup  EM|[DFZ) ] < o0
=1 MEAN>M 21

for any £ > 1 and p € (1, 00). Since \Zém] < 1, we have the assertion (2). O

Let Z), = limp—o0 Z)y,, for A € A and m 2 1.
Then we have the following.

PROPOSITION 21. (1) Let Cy > 0 be as in Proposition 18 and my be
an integer such that Co2~™0+!1 < 1/2. Then for any m = mo,

EMZ), sup | XAt ) — 2| > Co2~™ ] = 0.
z€B(0,1),t€[0,Tm]

(2) Z), € W=~ for any A € A and m = 1, and moreover we see that for
any r >0 and p € (1,00)

sup || Z) ||lwrw < 0.
AEAMm 21

Let Z) € W~ n>m > 1, be given by
n,m

Zy () = [ p(8"Y (87%: 01, —,w)),
k=m

and let Zﬁl =limy oo Z),, m > 1.

n,m»
Then we have the following similarly to Proposition 21.

PROPOSITION 22. (1) Let Cy > 0 be as in Proposition 18 and my be
an integer such that Co2~™+! < 1/2. Then for any m = my,

EMZ) sup XAt x) — x| > Co27™ ] = 0.
$EB(O,1),tE[0,Tm]

(2) Z) € W= for any A € A and m > 1, and moreover we see that for
any r >0 and p € (1,00)

sup || Z) ||wre < 0.
AeAm=1
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Let X (t,z) bethe solution to Equation (2). Then we can take good
version such that X*(-,*) : [0,00) x R¥ — R¥ is continuous and X*(¢,-) :
RY — RY is a homeomorphism for any ¢ > 0 with probability one. We
take such a version. Also, we remind that
v

(2

Mz)=VMz), xe B(0,2), i=0,1,....d
Then we have the following.

PROPOSITION 23. Let Cy > 0 be as in Proposition 18 and mqg be an
integer such that Co2~ ™0+ < gq/2. Then we have the following.
(1) For any m = my,

E*[Z,, sup | X2 (t,2) — XA(t,2)] > 0] =0,
2€B(0,320/2),t€[0,Tr]

and

EH[Z), sup | XA(t,z) — XMt,x)| > 0] = 0.
2€B(0,320/2),t€[0,Tom]

(2) For any m = my,

EH[Z) inf XMt y)| < o] = 0.
2o yERN\B(O,ISI.slo/Q),te[O,Tm]| (t,9)] < el

In particular, for any f € Co(B(0,¢0)),

EMZp (XM )] = BMZp f(XANt ), te[0, Tl y € RY.

PROOF. The assertion (1) is an immediate consequence of the unique-
ness of the solution to Equation (2) and Propositions 21 and 22. Then we
see that

EMZ inf XMt x)| < eo] = 0.
Zm 2€0B(0,320/2),t€[0,Tin] X2 (¢ )] o]
and
EMZ), sup [XN(E0)] > 20/2] = 0.
te[0,Tm)

Here 0B(0,3¢0/2) is the bounadary of B(0,3g(/2).
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Since X*(t,-) : RN — RNt € [0, T},], is homeomorphism with probabil-
ity one, we see that for y—a.s.w € {Z) > 0}, B(0,¢0) C X*(t, B(0,30/2),
w), and so

X Mt, RN\ B(0,3¢0/2),w) N B(0,e9) =0,  te[0,T}]
So we see that
EMZpy, XMt,y) € B(0,e0)] = E*[Zy, X (t.y) € B(0,20)] =0

for all t € [0,7},] and y € RN \ B(0,350/2). Therefore we have our asse-
tion. [J

Now let us prove Theorem 2.
Let Cy > 0 be as in Proposition 18 and mg be an integer such that
Co2 ™o+l < g4/2 < 1/2. Let

gi(w; £, A) = B*[(1 = p(8" V(8 F 1V w)) f(XN(t = T, 2)),
zeRY, k>mg

for any f € Cp°(RY).
Then we see that

(12)  lgr(e; £, 0)] £ BH(1 = p(8 ' VAB™*D:w))?] M sup |f(x)].
zeRN

By Proposition 18 (2) we see that that

(13) k>sou§ ASIWEH[(I _ p(8k—1f/)\(8—(k—1);w))g]l/g < 00
20, A€

for any v > 0. This implies Z) — 1 as m — oo y — a.s. and so
1=2)+ Z ZX(1 = p(8F 1y~ 0 w))) i — a.s. m 2 1.
k=m+1

For each t € (0,1], let m = m(t) be a minimum integer m such that
m = mg and T,,, < t. Then we see that T,,, = Ty, A (t/8). Note that for any
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¢ € C5°(B(0,¢0))
(9P f)(z) = ()E“[f(XA(t,m))]
() B[ Zo f(XA(t, 2))]

£ G B2 — o T E ;0,0 SR (1 ).
k=m-+1

( VB! Zp(Po, ) (XML, )]

+ Z ) E*[Z3 gi (XM (Ths ); £ M)
k=m+1
Then by Theorem 13 and Proposition 21 we see that for any uy, uo, ... ,u, €

A** there is a constant C' > 0 independent of A € A or t € (0, 1] such that

sup |(@*(r(u1) ... 7(un)) 0P f) ()]

zeRN

<Ct [lurug...unl|/2 sup ’f |+ Z CT [lutuz...unl|/2 sup |gk($ f, )’
zeRN k=m+1 zeRN

Then Equations (12) and (13) imply the first part of Theorem 2.
Since

Z Gt T, W HpSkY}\ 8 k. gt T, W ))

k=m

we have
1= Z50-1,w) + > 2241 (6r-1,,,w) (1 — p(8 Y87 6,_p,w)).
k=m

So we see from Propositions 22 and 23 that for f € C§°(B(0, <))

(P f)(x) = E*[f (XA, 2))]
= E*[Z)(0r—1, w) [ (XA (t,2))]

+ Y B2 (O w)(1 = p(8°Y (87", mw)) f(X (¢, 2))]

k=m

= BB Zp F (XN Ty )]y (113 0]
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b3 B Y0, )
k=m

XE#[Z]?+1f(XA(Tk+1a y))”y:X’A(t—TkH,x))]'
So by Proposition 23 we have for any f € C§°(B(0,¢p))

sup |(B}f) ()|
zeRN
< sup |EM[Z0 (XN (T 2))]
zeRN

+ ) EML=pY (@) sup B2 f (XN Dsr, 2))]l-

k=m $€RN

So we have the last part of Theorem 2 by Theorem 13 and a similar argu-
ment.
This completes the proof of Theorem 2.

References

[1]  Kusuoka, S., Malliavin Calculus Revisited, J. Math. Sci. Univ. Tokyo 10
(2003), 261-277.

[2]  Kusuoka, S., Approximation of expectation of diffusion processes based on
Lie algebra and Malliavin calculus, in Advances in Mathematical Economics
vol. 6, ed. S. Kusuoka and M. Maruyama, pp. 6983, Springer, 2004.

(3] Kusuoka, S. and D. W. Stroock, Applications of Malliavin Calculus II, J.
Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985), 1-76.

[4]  Kusuoka, S. and D. W. Stroock, Applications of Malliavin Calculus III, J.
Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 391-442.

(5] Shigekawa, I., “Stochastic Analysis”, Translation of Mathematical Mono-
graphs vol. 224, AMS 2000.

[6]  Stroock, D. W. and S. R. S. Varadhan, “Multidimensional Diffusion Pro-
cesses”, Springer 1997, Berlin.

(Received December 5, 2011)
(Revised August 24, 2012)

Graduate School of Mathematical Sciences
The University of Tokyo

Komaba 3-8-1, Meguro-ku

Tokyo 153-8914, Japan



