
J. Math. Sci. Univ. Tokyo
19 (2012), 559–586.

On the Sheaf of Laplace Hyperfunctions with

Holomorphic Parameters

By Naofumi Honda and Kohei Umeta

Abstract. We give a vanishing theorem of cohomology groups
on a pseudoconvex open subset for holomorphic functions with expo-
nential growth at infinity. As an application, we construct the sheaf
of Laplace hyperfunctions and that with holomorphic parameters, and
we also study several properties of these sheaves.

1. Introduction

The theory of Laplace hyperfunctions has been established by H. Ko-

matsu ([6] - [12]) as a framework of operational calculus. In the paper [6],

he introduced the space of Laplace hyperfunctions with support in [a, +∞]

(a ∈ R � {+∞}) and constructed the Laplace transformation of hyperfunc-

tions. Using this machinery, he had succeeded in giving a rigid interpreta-

tion for operational calculus without any growth condition.

It is highly desirable to localize the notion of Laplace hyperfunctions,

in other words, to obtain the sheaf whose sections with support in [a, ∞]

give the space of Laplace hyperfunctions introduced by H. Komatsu. In

this paper, we construct the sheaf of Laplace hyperfunctions and that with

holomorphic parameters by establishing the vanishing theorem of cohomol-

ogy groups on a pseudoconvex open subset for holomorphic functions with

exponential growth at infinity. The vanishing theorem established here not

only plays an important role in construction for the sheaf of Laplace hyper-

functions but also has its own interest, for which we briefly explain from

now.

Let D
2n be the radial compactification C

n � S2n−1 of C
n, and set X̂ :=

D
2n × C

m (n ≥ 1 and m ≥ 0), on which the sheaf Oexp
X of holomorphic
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functions of exponential type is defined. We refer the reader to Section

2. for the details on these notions. Let Ω := U × V be an open subset of

product type in X̂, and assume that U ∩C
n and V are pseudoconvex in C

n

and C
m respectively. Then, for the case of n = 1, the vanishing theorem

holds as is expected, that is, we have Hk(Ω, Oexp
X ) = 0 for k 
= 0. However,

if n is grater than one, the vanishing theorem does not hold anymore as

Example 3.17 shows. To overcome this difficulty, we introduce the new

notion that Ω is regular at ∞. Roughly speaking, the regularity condition

specifies behavior of the boundary ∂Ω that sufficiently many points in ∂Ω

are accumulated at ∞. And we can show, with the regularity condition for

Ω at ∞, the vanishing theorem in the higher dimensional case.

As an application of the vanishing theorem, we have the purely 1-

codimensionality of N with respect to the sheaf of holomorphic functions

of exponential type on D
2 × C

m, where N is the closure of N = R× C
m in

D
2×C

m. Hence we can construct the sheaf BOexp
N of Laplace hyperfunctions

with holomorphic parameters as the local cohomology group of the sheaf of

holomorphic functions of exponential type with support in N . We also show

that the sheaf BOexp
N is flabby with respect to the variable of R, and has a

unique continuation property with respect to holomorphic parameters.

The plan of the paper is as follows. In Section 2, the definition of Laplace

hyperfunctions with compact support and several fundamental theorems es-

tablished by H. Komatsu are reviewed. In Section 3, we show the vanishing

theorem on a pseudoconvex open subset for holomorphic functions of ex-

ponential type. We first define the sheaf Oexp
X of holomorphic functions of

exponential type on X̂. We also introduce the regularity condition at in-

finity for an open subset. Then we review L2-estimates for the ∂ operator

obtained by L. Hörmander [3] which is a main tool for the proof of the

vanishing theorem in subsection 3.1. The proof of the vanishing theorem is

given in subsection 3.2. The fundamental ideas and techniques were already

established in the papers T. Kawai [5] and S. Saburi [16] which treated sev-

eral vanishing theorems for holomorphic functions with infra-exponential

growth. Hence, by their methods, the problem can be reduced to that of a

construction of a family of suitable plurisubharmonic functions on Ω, and

here, we essentially use the condition that Ω is regular at infinity. In Section

4, we prove the pure-codimensionality of N with respect to the sheaf Oexp
X .

We define the sheaf BOexp
N of Laplace hyperfunctions with holomorphic pa-
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rameters and the sheaf Bexp
R

of Laplace hyperfunctions. In Section 5, we

study the vanishing theorem on an open subset in X̂ = D
2 × C

m which is

not necessarily regular at infinity. We also establish the theorems for the

flabbiness and the unique continuation property of BOexp
N .

At the end of the introduction, the authors would like to express their

sincere gratitude to Professor Hikosaburo Komatsu for the valuable lectures

and advises in Hokkaido University.

2. Laplace Hyperfunctions

We briefly recall the definition of Laplace hyperfunctions with support

in [a, ∞] (a ∈ R � {+∞}) and several fundamental theorems established

by H.Komatsu ([6] - [12]).

Definition 2.1 ([7]). We denote by D
2 the radial compactification

C � S1∞ of C. The topology of D
2 is defined in the following way. A

fundamental system of neighborhoods of ξ∞ ∈ S1∞ consists of all the sets

given by

{z ∈ C; z/|z| ∈ Γ, |z| > r} � {w∞;w ∈ Γ}(1)

for a neighborhood Γ of ξ in S1 and r > 0.

Let OC denote the sheaf of holomorphic functions on C.

Definition 2.2 ([6]). Let U be an open subset in D
2. The setOexp

C
(U)

of holomorphic functions of exponential type on U consists of a holomorphic

function F (z) on U ∩ C which satisfies, for any compact set K in U ,

|F (z)| ≤ CKe
HK |z|, (z ∈ K ∩ C)(2)

with some positive constants CK and HK . We denote byOexp
C

the associated

sheaf on D
2 of the presheaf {Oexp

C
(U)}U .

Note that, if U ∩ S1∞ = ∅, then the growth condition (2) is always

satisfied, and hence we have Oexp
C
|C = OC.

Definition 2.3 ([6]). Let −∞ < a ≤ ∞. The space Bexp
[a,∞] of Laplace

hyperfunctions with support in [a, ∞] is the quotient space

Oexp
C

(D2 \ [a, ∞])/Oexp
C

(D2).(3)
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The class f(x) = [F ] ∈ Bexp
[a,∞] of an F (z) ∈ Oexp

C
(D2 \ [a, ∞]) can be

considered as a boundary value of F (z), and we sometimes denote it by

f(x) = F (x+ i0)− F (x− i0).(4)

Theorem 2.4 ([10]). We have the natural isomorphism

Bexp
[a,∞]

∼= Oexp
C

(V \ [a, ∞])/Oexp
C

(V )(5)

for any open neighborhood V of [a, ∞] in D
2.

Remember that the space B[a,∞) of ordinary hyperfunctions with sup-

port in [a, ∞) is defined by

B[a,∞) := OC(C \ [a, ∞))/OC(C).(6)

Hence the restrictions Oexp
C

(D2 \ [a, ∞])→ OC(C\ [a, ∞)) and Oexp
C

(D2)→
OC(C) induce the canonical morphism ρ : Bexp

[a,∞] → B[a,∞), for which we

have the followings.

Theorem 2.5 ([6]). The morphism ρ : Bexp
[a,∞] → B[a,∞) is surjective.

Since every ordinary hyperfunction with support in [a, ∞) can be ex-

tended to a Laplace hyperfunction by the above theorem, we have

B[a,∞)
∼= Bexp

[a,∞]/B
exp
{∞}.(7)

Definition 2.6 ([6]). The Laplace transform f̂(λ) of a Laplace hyper-

function f(x) = [F ] ∈ Bexp
[a,∞] is defined by the integral

f̂(λ) :=

∫
C
e−λzF (z)dz,(8)

where the path C of the integration is composed of a ray from eiα∞(−π/2 <
α < 0) to a point c < a and a ray from c to eiβ∞(0 < β < π/2).
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It follows from Pólya’s theorem ([15]) that the Laplace transform with

origin at c ∈ C

m̂c(λ) =

∫ ∞

c
e−λzm(z)dz(9)

of an m(z) ∈ Oexp
C

(D2) is a holomorphic function outside a convex compact

set. Hence the Laplace transform f̂(λ) does not depend on a choice of F .

Theorem 2.7 ([6]). The Laplace transformation L is an isomorphism

of linear spaces

L : Bexp
[a,∞] −→ LBexp

[a,∞],(10)

where LBexp
[a,∞] is the space of all holomorphic functions f̂(λ) of exponential

type defined on a neighborhood Ω of the semi-circle {eiθ; |θ| < π/2} in D
2

which satisfies

lim
ρ→∞

log |f̂(ρeiθ)|
ρ

≤ −a cos θ, |θ| < π/2.(11)

For f̂(λ) ∈ LBexp
[a,∞], the inverse image L−1f̂ is given by

[
1

2π
√
−1

∫ ∞

Λ
eλz f̂(λ)dλ

]
∈ Bexp

[a,∞],(12)

where Λ is a fixed point in Ω∩C and the path of the integration is taken in

Ω ∩ C.

3. The Vanishing Theorem for Holomorphic Functions of Expo-

nential Type

The purpose of the section is to establish the vanishing theorem for

cohomology groups on a pseudoconvex open subset with coefficients in the

sheaf of holomorphic functions with exponential growth at infinity. We first

introduce several notions which are needed later.

Let n ∈ N and m be a non-negative integer. We first introduce the radial

compactification D
2n of C

n, on which the sheaf of holomorphic functions of

exponential type is defined. The set D
2n is the disjoint union of C

n and the
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real (2n− 1)-dimensional unit sphere S2n−1 ⊂ R
2n. Let D be a closed unit

ball in C
n which is considered as a real 2n-dimensional topological manifold

with the boundary S2n−1, and let ρ : D → D
2n be the bijection defined by

ρ(z) =




z

1− |z| ∈ C
n, (z ∈ D◦)

z ∈ S2n−1, (z ∈ ∂D)

.

Then D
2n is equipped with the topology so that ρ becomes a topological

isomorphism. Note that any closed subset in D
2n is compact.

Let X := C
n+m and X̂ be the partial radial compactification D

2n ×C
m

of C
n+m. We denote by X∞ the closed subset X̂ \ X in X̂, and we also

denote by p1 : X̂ = D
2n × C

m → D
2n (resp. p2 : X̂ = D

2n × C
m → C

m)

the canonical projection to the first (resp. second) space. A family of

fundamental neighborhoods of (z0, w0) ∈ X ⊂ X̂ consists of

Bε(z0, w0) := {(z, w) ∈ X; |z − z0| < ε, |w − w0| < ε}(13)

for ε > 0, and that of (z0, w0) ∈ X∞ consists of a product of an open cone

and an open ball

(14) Gr(Γ, w0) :=

({
z ∈ C

n; |z| > r,
z

|z| ∈ Γ

}
∪ Γ

)

×
{
w ∈ C

m; |w − w0| <
1

r

}
,

where r > 0 and Γ runs through open neighborhoods of z0 in S2n−1.

Let K be a subset in X̂. Then K is compact if and only if K is closed

and p2(K) is bounded in C
m. The following lemma is easily proved.

Lemma 3.1. For an open subset Ω ⊂ X̂, there exists an exhausting

family {Ωk}k∈N of Ω satisfying the conditions below.

(1) Ωk is an open subset of Ω, and the union of Ωk is equal to Ω.

(2) Ωk is a compact set and Ωk ⊂ Ωk+1 (k = 1, 2, . . . ).

(3) Each Ωk is a finite union of open subsets given by either (13) or (14).
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We denote by OX the sheaf of holomorphic functions on X.

Definition 3.2. Let Ω be an open subset in X̂. The set Oexp
X (Ω) of

holomorphic functions of exponential type on Ω consists of a holomorphic

function f(z, w) on Ω ∩X which satisfies, for any compact set K in Ω,

|f(z, w)| ≤ CKe
HK |z|, ((z, w) ∈ K ∩X)(15)

with some positive constants CK and HK . We denote byOexp
X the associated

sheaf on X̂ of the presheaf {Oexp
X (Ω)}Ω.

Let {Ωk}k be an exhausting family of Ω satisfying the conditions given

in Lemma 3.1. Then f ∈ Oexp
X (Ω) if and only if the estimate (15) holds with

K = Ωk (k = 1, 2, . . . ). In particular, if Ω ⊂ X, then each Ωk is bounded in

X and the estimate (15) is always satisfied, which impliesOexp
X (Ω) = OX(Ω).

Hence we have Oexp
X

∣∣
X

= OX .

Before stating the main result in our paper, we introduce some notations

which are needed for the main theorem. Let A be a subset in X̂. We

define the set clos1∞(A) ⊂ X∞ as follows. A point (z, w) ∈ X∞ belongs to

clos1∞(A) if and only if there exist points {(zk, wk)}k∈N in A∩X that satisfy

(zk, wk)→ (z, w) in X̂ and
|zk+1|
|zk|

→ 1 (k →∞).(16)

Set

N1
∞(A) := X∞ \ clos1∞(X \A).(17)

We give some properties of N1
∞(A).

Lemma 3.3.

(1) For subsets A1, A2, . . . , A� in X̂, we have

N1
∞(A1 ∩ · · · ∩A�) = N1

∞(A1) ∩ · · · ∩N1
∞(A�).

(2) If U is an open subset in X̂, then N1
∞(U) ⊃ U ∩X∞ holds.
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Definition 3.4. Let U be an open subset in X̂. We say that U is

regular at ∞ if N1
∞(U) = U ∩X∞ is satisfied.

Note that, by Lemma 3.3, a finite intersection of open subsets which are

regular at ∞ is again regular at ∞. We give a sufficient condition for which

an open subset becomes regular at ∞. Let A be a subset in X̂, and we set

NL
∞(A) :=

{
(ζ, w) ∈ X∞; (ζ, w) ∈ (R+ζ × {w}) ∩ A

}
⊂ X∞,(18)

where R+ζ is the real half line in C
n with direction ζ and the closure is

taken in X̂. For subsets A1, A2, . . . , A� in X̂, we have

NL
∞(A1 ∪ · · · ∪A�) = NL

∞(A1) ∪ · · · ∪NL
∞(A�).(19)

Lemma 3.5. Let U be an open subset in X̂. If NL
∞(U) = U∩X∞ holds,

then U is regular at ∞.

Proof. By noticing NL
∞(A) ⊃ N1

∞(A) for any subset A in X̂, we have

NL
∞(U) ⊃ N1

∞(U) ⊃ U ∩X∞.

The lemma follows from this. �

A finite union of open subsets which satisfy the condition given in the

above lemma is also regular at ∞ by (19). We give some examples of open

subsets which are regular at ∞.

Example 3.6.

(1) Let U be the open set Gr(Γ, 0)∪ Ũ where Ũ is a bounded open subset

in X and the cone Gr(Γ, 0) was defined by (14) with r > 0 and Γ

being an open subset in S2n−1. Then U is regular at ∞ as we have

NL
∞(U) = U ∩X∞. In particular, D

2 and D
2 \ [a,+∞] (a ∈ [−∞,∞))

are regular at ∞.

(2) For the set U := D
2 \ {1, 2, 3, 4, . . . ,+∞} we have N1

∞(U) = S1∞ \
{+∞}, and hence U is regular at ∞. However U := D

2 \ {1, 2, 4, 8,
16, . . . ,+∞} is not regular because of N1

∞(U) = S1∞. Note that we

have NL
∞(U) = S1∞ for the both cases.
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For a subset A in X, we denote by dist(p,A) the distance between a

point p and A, i.e.,

dist(p, A) := inf
q∈A

|p− q|.

For convenience, we set dist(p, A) = +∞ if A is empty. We also define, for

q = (z, w) ∈ X,

distD2n(q, A) := dist(q, A ∩ p−1
2 (p2(q))) = inf

(ζ, w)∈A
|z − ζ|.

Now we give the main theorem. Let Ω be an open subset in X̂, and set

ψ(p) := min

{
1

2
,

distD2n(p, X \ Ω)

1 + |z|

}
, (p = (z, w) ∈ X),

Ωε :=

{
p = (z, w) ∈ Ω ∩X; dist(p, X \ Ω) > ε, |w| < 1

ε

}
, (ε > 0).

(20)

Note that ψ(p) is lower semicontinuous (i.e., {p ∈ X; ψ(p) > c} is open

for c ∈ R) and continuous with respect to the variables z, however, it is

not necessarily continuous with respect to the variables w. Furthermore, if

p1((X \Ω)∩p−1
2 (w0)) (w0 ∈ C

m) is a bounded subset in C
n, then ψ(z, w0) is

identically equal to
1

2
for a sufficiently large z. Hence the values of ψ(z, w)

for a large z are independent of the shape of Ω in a bounded region.

Theorem 3.7. Assume the following conditions 1. and 2.

1. Ω ∩X is pseudoconvex in X and Ω is regular at ∞.

2. At a point in Ω ∩ X sufficiently close to z = ∞ the ψ(z, w) is con-

tinuous and uniformly continuous with respect to the variables w, that

is, for any ε > 0, there exist δε > 0 and Rε > 0 for which ψ(z, w) is

continuous on Ωε, Rε := Ωε ∩ {|z| > Rε} and it satisfies∣∣ψ(z, w)− ψ(z, w′)
∣∣ < ε, ((z, w), (z, w′) ∈ Ωε, Rε , |w−w′| < δε).

Then we have

Hk(Ω, Oexp
X ) = 0, (k 
= 0).(21)
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As a corollary, we have the following.

Corollary 3.8. Let U (resp. W ) be an open subset in D
2n (resp.

C
m). If U ∩ C

n and W are pseudoconvex in C
n and C

m respectively and if

U is regular at ∞ in D
2n, then we have (21) for Ω := U ×W .

The corollary immediately follows from the theorem as the condition

2. in the theorem is automatically satisfied for a product of open sets. We

now give an example.

Example 3.9. Assume n = m = 1, i.e., X = Cz×Cw and X̂ = D
2×Cw.

Let f : X → C be the holomorphic map defined by f(z, w) = zw. Set

Ω̃ := {ζ ∈ C; |ζ| < 1} ∪ {ζ ∈ C; | arg ζ| < 1} ⊂ C,

Ω :=
(
f−1(Ω̃)

)◦
⊂ X̂.

Here the closure and the interior are taken in X̂. To understand the shape of

Ω clearly, the intersection of Ω and the complex line {(z, w) ∈ X̂; w = w0}
for w0 ∈ Cw is described below.

p1(Ω ∩ p−1
2 (w0)) =




(
1

w0
Ω̃

)◦
⊂ D

2, (w0 
= 0),

C ⊂ D
2, (w0 = 0).

Then Ω satisfies all the conditions of the theorem, and hence, we have

Hk(Ω, Oexp
X ) = 0 (k 
= 0).

The subsequent subsections are devoted to the proof of Theorem 3.7.

3.1. L2-estimates for the ∂ operator

We briefly review the result obtained by L. Hörmander [3] which is a

main tool for the proof of Theorem 3.7.

Definition 3.10 ([3]). A function u defined in an open set Ω ⊂ C
n

with values in [−∞, +∞) is called plurisubharmonic if

(a) u is semicontinuous from above.
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(b) For arbitrary z and w ∈ C
n, the function τ �−→ u(z + τw) is subhar-

monic in the part of C where it is defined.

Let Ω be an open subset in C
n.

Definition 3.11 ([3]). We say that Ω is pseudoconvex if there exists

a continuous plurisubharmonic function u in Ω such that

Ωc = {z ∈ Ω; u(z) < c} ⊂⊂ Ω(22)

for every c ∈ R. Here Ωc ⊂⊂ Ω implies that Ωc is relatively compact in Ω.

Let ϕ be a continuous function on Ω. We denote by L2
ϕ(Ω) the set of

square integrable functions with respect to the measure e−ϕdλ where dλ is

the Lebesgue measure on R
2n = C

n. Let L2
loc(Ω) designate the set of locally

square integrable functions. Clearly every function in L2
loc(Ω) belongs to

L2
ϕ(Ω) for some ϕ. By L

2, (p, q)
ϕ (resp. L

2, (p, q)
loc ) we denote the set of (p, q)-

forms with coefficients in L2
ϕ(Ω) (resp. L2

loc(Ω)).

Theorem 3.12 (Theorem 4.4.2. [3]). Let Ω be a pseudoconvex open

set in C
n and ϕ any plurisubharmonic function in Ω. For every g ∈

L
2, (p, q+1)
ϕ (Ω) with ∂g = 0 there is a solution u ∈ L

2, (p, q)
loc (Ω) of the equation

∂u = g such that∫
Ω
|u|2e−ϕ(1 + |z|2)−2dλ ≤

∫
Ω
|g|2e−ϕdλ.(23)

3.2. The proof of Theorem 3.7

Before going into the proof for the main theorem, we need to prepare

several lemmas. Let Ω be an open subset in X̂. We denote by G(Ω) the set

of real valued continuous functions ϕ(z, w) on Ω ∩ X that satisfy, for any

compact set K in Ω,

ϕ(z, w) ≤ αK + βK |z|, ((z, w) ∈ K ∩X)(24)

with some positive constants αK and βK . The following easy lemma is

needed later.
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Lemma 3.13. Let Ω be an open subset in X̂ and {Ωλ}λ∈Λ a locally

finite open covering of Ω. For any family {ϕλ}λ∈Λ (ϕλ ∈ G(Ωλ)), there

exists ϕ ∈ G(Ω) satisfying

inf
{λ; (z,w)∈Ωλ}

ϕλ(z, w) ≤ ϕ(z, w), ((z, w) ∈ Ω ∩X).

Clearly G(Ω) is a directed set with respect to the partial order f ≤
g ⇐⇒ f(z, w) ≤ g(z, w) for (z, w) ∈ Ω ∩X.

Lemma 3.14. Let Ω be an open subset in X̂. Assume that Ω satisfies

the conditions 1. and 2. given in Theorem 3.7. Then the subset in G(Ω) that

consists of a plurisubharmonic function on Ω ∩X is cofinal in G(Ω).

Proof. We first take an increasing convex continuous function κ(t)

(t ≥ 0) that satisfies

2(j + 2)
(
1 +R 1

j+2

)
≤ κ(j), (j = 0, 1, 2, . . . ).

Here the constant Rε was determined in the condition 2. and we may assume

1 ≤ R1 ≤ R 1
2
≤ R 1

3
≤ . . . .

Set, for p = (z, w) ∈ Ω ∩X,

τ(p) := max

{
1

ψ(p)
, κ

(
max

{
1

dist(p, X \ Ω)
, |w|

})}
,(25)

where ψ(p) was given by (20). It follows from the condition 2. that ψ(p)

is continuous on the open subset T := ∪
j∈N

(
Ω 1

j
∩
{
|z| > R 1

j

})
. Since, for

p = (z, w) ∈
(
Ω 1

j+2
\ Ω 1

j

)
∩
{
|z| ≤ 2R 1

j+2

}
(j = 0, 1, 2, . . . ) where we set

Ω 1
0

:= ∅, we have the estimate

1 + |z|
distD2n(p, X \ Ω)

≤ 1 + |z|
dist(p, X \ Ω)

≤ (j + 2)
(
1 + 2R 1

j+2

)
≤ κ

(
max

{
1

dist(p, X \ Ω)
, |w|

})
,
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we obtain
1

ψ(p)
≤ κ

(
max

{
1

dist(p, X \ Ω)
, |w|

})
in some open neighborhood of (Ω∩X) \ T . Hence we conclude that τ(p) is

continuous on Ω ∩X.

We define, for j ∈ N,

Zj := {p ∈ Ω ∩X; τ(p) ≤ j} ⊂ X,

Kj := Zj ⊂ X̂,
(26)

where the closure is taken in X̂. Note that Kj is a compact set in X̂ as it is

closed and p2(Kj) is bounded, and that τ is plurisubharmonic on Ω∩X by

the facts that log(1+ |z|), − log dist(p, X \Ω) and − log distD2n(p, X \Ω) are

plurisubharmonic. The last fact is shown in the following way. Set ρk(p) :=

|z|+k|w| for p = (z, w) ∈ X, and define dk(p, A) := inf
q∈A

ρk(p−q) for a closed

subset A ⊂ X. Then {dk(p, A)}k∈N is an increasing sequence of functions

of p and we have lim
k→∞

dk(p, A) = distD2n(p, A). Hence {− log dk(p, X \
Ω)}k∈N is a decreasing sequence of plurisubharmonic functions on Ω ∩ X,

and − log distD2n(p, X \ Ω) becomes plurisubharmonic.

Lemma 3.15. The sets {Kj}j∈N satisfy the following conditions.

(1) Kj is a compact subset in Ω.

(2) Kj ⊂ Kj+1 and ∪j∈NK
◦
j = Ω.

Proof. As Kj is compact in X̂, the condition (1) in the lemma follows

if we show Kj ⊂ Ω. Clearly Kj ∩ X ⊂ Ω ∩ X holds. It suffices to prove

Kj ∩X∞ ⊂ Ω ∩X∞.

Let p∞ = (z∞, w∞) ∈ Kj ∩X∞. Then we can find points (zk, wk) ∈ Zj

(k = 1, 2, . . . ) with (zk, wk) → (z∞, w∞) (k → ∞) in X̂. If we could prove

p∞ ∈ N1
∞(Ω), then, as Ω is regular at∞, we have p∞ ∈ Ω∩X∞, from which

Kj ∩X∞ ⊂ Ω ∩X∞ follows.

Let us prove p∞ ∈ N1
∞(Ω). Suppose p∞ ∈ clos1∞(X\Ω). Then there exist

points {(ζk, νk)}k∈N in X \Ω satisfying (ζk, νk)→ p∞ in X̂ and
|ζk+1|
|ζk|

→ 1

(k →∞).
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We may assume |zk| ≥ |ζ1| (k = 1, 2, . . . ). Then there exists θ : N → N

which satisfies θ(k)→∞ (k →∞) and

|ζθ(k)| ≤ |zk| ≤ |ζθ(k)+1|, (k = 1, 2, . . . ).

As (ζk, νk)→ p∞ and (zk, wk)→ p∞ in X̂, we have

|wk − w∞| ≤ εk, |νk − w∞| ≤ εk,∣∣zk − |zk|z∞∣∣ ≤ εk|zk|,
∣∣ζk − |ζk|z∞∣∣ ≤ εk|ζk|

for εk > 0 with εk → 0 (k →∞). Hence we obtain

|zk − ζθ(k)| ≤ εk|zk|+ εθ(k)|ζθ(k)|+
∣∣|zk| − |ζθ(k)|

∣∣
≤

(
εk + εθ(k) +

∣∣∣∣1− |ζθ(k)|
|zk|

∣∣∣∣
)
|zk|.

By noticing
|ζθ(k)|
|ζθ(k)+1|

≤
|ζθ(k)|
|zk|

≤ 1 and
|ζk+1|
|ζk|

→ 1,

we have
|ζθ(k)|
|zk|

→ 1 (k →∞), from which we get

|zk − ζθ(k)|
|zk|

→ 0, (k →∞).(27)

On the other hand, by noticing wk − νθ(k) → 0 (k →∞) and (zk, wk) ∈ Zj ,
we have

(zk, νθ(k)) ∈
{
p = (z, w) ∈ Ω ∩X; κ

(
max

{
1

dist(p, X \ Ω)
, |w|

})
< j + 1

}
= Ω 1

κ−1(j+1)
,

for sufficiently large k. Then, applying the condition 2. in Theorem 3.7 to

the points (zk, wk) ∈ Zj and (zk, νθ(k)), we obtain (zk, νθ(k)) ∈ Zj+1 for

large k’s. Hence, for such a k, we have

|zk − ζθ(k)|
|zk|+ 1

≥ 1

j + 1
> 0,(28)
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by the definition of Zj+1 and the facts (zk, νθ(k)) ∈ Zj+1 and (ζθ(k), νθ(k)) ∈
X \Ω. This contradicts (27), and we have p∞ /∈ clos1∞(X \Ω), which implies

p∞ ∈ N1
∞(Ω).

Finally we show the condition (2) in the lemma. Let p = (z∞, w∞)

be a point in Ω ∩ X∞. Then p has an open neighborhood GR(Γ, w∞)

defined by (14) which is relatively compact in Ω. Such a GR(Γ, w∞) is con-

tained in some Kj because there exists another GR′(Γ′, w∞) which satisfies

GR(Γ, w∞) ⊂⊂ GR′(Γ′, w∞) ⊂ Ω with R′ < R and Γ ⊂⊂ Γ′ ⊂ S2n−1.

Therefore we conclude p ∈ K◦
j , which implies Ω ⊂ ∪jK

◦
j . Hence Ω = ∪jK

◦
j

follows from the fact Kj ⊂ Ω.

The proof has been completed. �

We continue the proof of Lemma 3.14. Let g ∈ G(Ω). Now we show

that there exists a plurisubharmonic function f ∈ G(Ω) with g ≤ f . As

g ∈ G(Ω) and Kj is compact in Ω, there exist positive constants {αj} and

{βj} satisfying

g(z, w) ≤ αj + βj |z| for (z, w) ∈ Kj ∩X, (j = 1, 2, . . . ).

We can take a continuous increasing function Φ(t) on {t ≥ 0} which is

convex and satisfies

log max{αj , βj} ≤ Φ(j − 1), (j = 1, 2, . . . ).

Then, for (z, w) ∈ (Kj \ Kj−1) ∩ X (j ≥ 1) where we set K0 = ∅ by

convention, we have

g(z, w) ≤ αj + βj |z| ≤ max{αj , βj}(1 + |z|)
= exp (log max{αj , βj}+ log(1 + |z|))
≤ exp (Φ(j − 1) + log(1 + |z|))
≤ exp (Φ(τ(z, w)) + log(1 + |z|)) = eΦ(τ(z,w))(1 + |z|).

(29)

Set f := eΦ(τ(z,w))(1 + |z|). This f satisfies all the required conditions. As

a matter of fact, as a compact set K in Ω is contained in some Kj and

Φ(τ(z, w)) is bounded by Φ(j) in Kj ∩X, f belongs to G(Ω). The estimate

(29) implies g(z, w) ≤ f(z, w) for (z, w) ∈ Ω∩X by ∪Kj \Kj−1 = Ω. Since

Φ(τ(z, w)) and log(1+|z|) are plurisubharmonic, f is also plurisubharmonic.

The proof has been completed. �
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Let Ω be an open subset in X̂. We denote by L2
G(Ω) the set of locally

square integrable functions f on Ω ∩X satisfying∫
Ω∩X

|f(z, w)|2e−ϕ(z,w)dλ < +∞(30)

for some ϕ ∈ G(Ω), and L
2,(p,q)
G (Ω) designates the set of (p, q)-forms on Ω∩X

with coefficients in L2
G(Ω). Set

L̃
2,(p,q)
G (Ω) :=

{
f ∈ L

2,(p,q)
G (Ω); ∂f ∈ L

2,(p,q+1)
G (Ω)

}
.

Since any open covering has a countable open subcovering that is lo-

cally finite, it follows from Lemma 3.13 that the presheaf
{
L2
G(Ω)

}
Ω

(resp.{
L

2,(p,q)
G (Ω)

}
Ω

and
{
L̃

2,(p,q)
G (Ω)

}
Ω
) forms a sheaf on X̂. We denote it by

L2
G (resp. L2,(p,q)

G and L̃2,(p,q)
G ). Note that these sheaves are soft.

Lemma 3.16. Let Ω be an open subset in X̂ and f ∈ OX(Ω∩X). Then

f ∈ Oexp
X (Ω) if and only if f ∈ L̃2

G(Ω).

Proof. We first show that f ∈ Oexp
X (Ω) implies f ∈ L̃2

G(Ω). Set

ϕ̃(z, w) := 2 log max{1, |f(z, w)|}, ((z, w) ∈ Ω ∩X).

Then we have ϕ̃ ∈ G(Ω) and |f(z, w)|2e−ϕ̃(z,w) ≤ 1 for (z, w) ∈ Ω ∩ X.

Therefore ϕ(z, w) := ϕ̃(z, w) + |z|+ |w| also belongs to G(Ω), for which the

estimate (30) holds.

Let us show converse implication. Let {Ωj}j∈N be an exhausting family

of Ω given in Lemma 3.1. Set Kj := Ωj ⊂ X̂. Then, for each j, there exist

r > 0 and j′ ≥ j which satisfy

(Kj ∩X) +Br(0, 0) ⊂ Kj′ ∩X.

Here Br(z, w) denotes the open ball in X with radius of r and center at

(z, w). As f is holomorphic, we get

|f(z0, w0)| ≤ κ

∫
Br(z0,w0)

|f(z, w)|2dλ

≤ κ sup
(z,w)∈Br(z0,w0)

eϕ(z,w)

∫
Ω∩X

|f(z, w)|2e−ϕ(z,w)dλ,
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where κ > 0 is a constant which depends only on r and n+m, and ϕ ∈ G(Ω)

is chosen as the estimate (30) is satisfied. Hence we have, for a positive

constant C,

|f(z0, w0)| ≤ C sup
(z,w)∈Br(z0,w0)

eϕ(z,w),

if Br(z0, w0) ⊂ Ω ∩ X is satisfied. Since Br(z0, w0) ⊂ Kj′ for (z0, w0) ∈
Kj∩X and ϕ(z, w) ≤ α+β|z| holds in Kj′∩X with some positive constants

α and β, we have

|f(z, w)| ≤ C ′eα|z|, (z, w) ∈ Kj ∩X.

This completes the proof. �

Now we give the proof of Theorem 3.7.

Proof. Let us consider the ∂ complex L as

0 → L̃2,(0,0)
G (Ω)

∂0→ L̃2,(0,1)
G (Ω)

∂1→ . . .
∂→ L̃2,(0,n+m)

G (Ω)→ 0.(31)

By Lemma 3.14, we may assume that ϕ ∈ G(Ω) which appears in the esti-

mate (30) is always plurisubharmonic. Hence we can apply Theorem 3.12

to L and obtain Hk(L) = 0 (k 
= 0). Moreover H0(L) = Ker ∂0 = Oexp
X (Ω)

follows from Lemma 3.16.

A point (z, w) ∈ X̂ has a family {Ωj}j∈N of fundamental neighborhoods

of product type, for which Ωj ∩X is pseudoconvex and Ωj is regular at ∞.

Therefore, by replacing Ω with Ωj in (31) and taking its inductive limit, we

know that the complex of sheaves

0 → L̃2,(0,0)
G

∂0→ L̃2,(0,1)
G

∂1→ . . .
∂→ L̃2,(0,n+m)

G → 0(32)

is a soft resolution of Oexp
X . Hence we have Hk(Ω, Oexp

X ) = Hk(L) and

Hk(Ω, Oexp
X ) = 0 (k 
= 0) follows. This completes the proof. �

In Section 4, we show that, if n = 1, the vanishing theorem still holds

for an open subset Ω = U ×W ⊂ D
2 × C

m of product type without the

regularity of U at ∞. However, if n is greater than one, one cannot expect

the vanishing theorem anymore without the regularity condition of Ω at ∞
as the following example shows.
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Example 3.17. Assume n = 2 and m = 0, i.e., X = C
2
(z1,z2) and X̂ =

D
4. Set

U :=
{

(z1, z2) ∈ X; | arg(z1)| <
π

4
, |z2| < |z1|

}
,

Ω :=
(
U
)◦ \ {p∞} ⊂ X̂,

where p∞ denotes the point (1, 0, 0, 0) in S3 ⊂ D
4. Note that Ω ∩ X = U

is pseudoconvex in X, while Ω is not regular at ∞. In this case, we have

H1(Ω, Oexp
X ) 
= 0 which is shown below, and the vanishing theorem does

not hold for Ω.

Let Y = C
1
z×C

1
w and Ŷ = D

2×C
1, and let us consider the holomorphic

map f : X \ {z1 = 0} → Y defined by f(z1, z2) =

(
z1,

z2
z1

)
. Set

Ũ :=
{

(z, w) ∈ Y ; | arg(z)| < π

4
, |w| < 1

}
,

Ω̃ :=
(
Ũ
)◦
\ ({q∞} × {0}) ⊂ Ŷ .

Here q∞ = (1, 0) ∈ S1 ⊂ D
2. Note that Ω̃ is an open subset of non-product

type in D
2 × C. As f gives a biholomorphic map between U and Ũ which

extends to a continuous isomorphism between Ω and Ω̃, we have

Hk(Ω, Oexp
X ) = Hk(Ω̃, Oexp

Y ), (k ∈ N).

Hence it suffices to prove H1(Ω̃, Oexp
Y ) 
= 0. Set

V :=

({
z ∈ C; | arg(z)| < π

4

})◦
⊂ D

2, W := {w ∈ C; |w| < 1} .

Noticing ((V \ {q∞})×W ) ∪ (V × (W \ {0})) = Ω̃, we have the long exact

sequence

(33) Oexp
Y ((V \ {q∞})×W )⊕Oexp

Y (V × (W \ {0}))
ι→ Oexp

Y ((V \ {q∞})× (W \ {0}))→ H1(Ω̃, Oexp
Y ).

Suppose H1(Ω̃, Oexp
Y ) = 0. Then ι becomes surjective. It is well known that

there exists a holomorphic function g(z) in Oexp
C

(V \ {q∞}) which does not

belong to Oexp
C

(V ) (for existence of such a holomorphic function, see [14]).
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Set h(z, w) :=
g(z)

w
. Then h(z, w) belongs to Oexp

Y ((V \{q∞})× (W \{0})).
As ι is surjective, there exist h1(z, w) ∈ Oexp

Y ((V \{q∞})×W ) and h2(z, w) ∈
Oexp

Y (V × (W \ {0})) satisfying h = h1 + h2. Clearly we have

2π
√
−1g(z) =

∫
C
h(z, w)dw =

∫
C
(h1(z, w) + h2(z, w))dw

=

∫
C
h2(z, w)dw,

where C is a small circle turning around the origin in W . Since∫
C
h2(z, w)dw belongs to Oexp

C
(V ), we get g(z) ∈ Oexp

C
(V ), which contra-

dicts the choice of g(z), i.e., g(z) /∈ Oexp
C

(V ). Therefore we have obtained

the conclusion H1(Ω, Oexp
X ) = H1(Ω̃, Oexp

Y ) 
= 0.

4. Laplace Hyperfunctions with Holomorphic Parameters

As an application of Theorem 3.7 established in the previous section, we

construct cohomologically the sheaf Bexp
R

of Laplace hyperfunctions and the

sheaf BOexp
N of Laplace hyperfunctions with holomorphic parameters.

Let N = R × C
m(m ≥ 0), and let N = R × C

m be the closure of N in

X̂ = D
2 × C

m. Then we have the following theorem.

Theorem 4.1. The closed set N is purely 1-codimensional with respect

to the sheaf Oexp
X ,i.e.,

�k
N

(Oexp
X ) = 0, (k 
= 1).(34)

Here �k
N

(Oexp
X ) is the k-th derived sheaf of Oexp

X with support in N .

Proof. Let p = (x, w) ∈ N . As N ⊂ C
m+1 is purely 1-codimensional

with respect to the sheaf OCm+1 of holomorphic functions on C
m+1, it is

sufficient to prove the theorem at p = (+∞, w) ∈ N . Note that we have

�k
N

(Oexp
X )p = lim−→

U×T
p
Hk

(R∩U)×T
(U × T, Oexp

X ),(35)
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where U × T runs through open neighborhoods of p in X̂. Let us consider
the long exact sequence

0 → H0
(R∩U)×T

(U × T, Oexp
X )→ H0(U × T, Oexp

X )→ H0((U \ R)× T, Oexp
X )

→ H1
(R∩U)×T

(U × T, Oexp
X )→ H1(U × T, Oexp

X )→ H1((U \ R)× T, Oexp
X )

→ H2
(R∩U)×T

(U × T, Oexp
X )→ H2(U × T, Oexp

X )→ H2((U \ R)× T, Oexp
X )

→ · · · .

(36)

As a domain in C is always pseudoconvex, it follows from Theorem 3.7 that,

if T is pseudoconvex, we get

Hk(U × T, Oexp
X ) = Hk((U \ R)× T, Oexp

X ) = 0 (k ≥ 1).(37)

Set Vε := {z ∈ C ; | arg z| < ε, |z| > 1/ε} and Uε := (Vε)
◦ ⊂ D

2 for
ε > 0. Then {Uε}ε>0 is a fundamental system of neighborhoods of x = +∞.
Let {Tε}ε>0 be a fundamental system of neighborhoods of w ∈ C

m. By
replacing U (resp. T ) in the long exact sequence (36) with Uε (resp. Tε)
and taking its inductive limit, we obtain

0 → �0
N

(Oexp
X )p → (Oexp

X )p → lim−→
ε↓0
Oexp

X ((Uε \ R)× Tε)→ �1
N

(Oexp
X )p → 0,

�k
N

(Oexp
X )p = 0 (k ≥ 2).

(38)

Clearly the morphism (Oexp
X )p → lim−→

ε↓0
Oexp

X ((Uε \ R) × Tε) is injective,

from which we also have �0
N

(Oexp
X ) = 0. This completes the proof. �

As a particular case, we have the following corollary.

Corollary 4.2. R is purely 1-codimensional with respect to the sheaf

Oexp
C

, that is,

�k
R
(Oexp

C
) = 0 (k 
= 1).(39)

Definition 4.3. The sheaf BOexp
N of Laplace hyperfunctions of one

variable with holomorphic parameters is defined by

BOexp
N := �1

N
(Oexp

X ) ⊗
ZN

ωN ,(40)
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where ZN denotes the constant sheaf on N having stalk Z and ωN denotes

the orientation sheaf �1
N

(ZX̂) on N .

The global sections of the sheaf BOexp
N can be written in terms of coho-

mology groups by Theorem 4.1. For an open set Ω ⊂ R and a pseudoconvex

open subset T ⊂ C
m, by taking a complex neighborhood V of Ω in D

2, we

have

BOexp
N (Ω× T ) = H1

Ω×T (V × T,Oexp
X ) =

Oexp
X ((V \ Ω)× T )

Oexp
X (V × T )

.(41)

Note that the above representation does not depend on a choice of the

complex neighborhood V .

Definition 4.4. We define the sheaf Bexp
R

of Laplace hyperfunctions of

one variable on R by

Bexp
R

:= �1
R
(Oexp

C
) ⊗
Z
R

ω
R
,(42)

where Z
R

denotes the constant sheaf on R having stalk Z and ω
R

denotes

the orientation sheaf �1
R
(ZX̂) on R.

The restriction of Bexp
R

to R is isomorphic to the sheaf BR of ordinary

hyperfunctions because of Oexp
C
|C = OC. By Corollary 4.2 we have

Γ[a,∞](R, Bexp
R

) =
Oexp
C

(D2 \ [a, ∞])

Oexp
C

(D2)
.(43)

Hence the set Bexp
[a,∞] defined by H. Komatsu coincides with Γ[a,∞](R, Bexp

R
)

in our framework.

5. Several Properties of BOexp
N

We study several properties for the sheaf BOexp
N constructed in the pre-

vious section. We first establish the vanishing theorem on an open subset

which is not necessarily regular at∞ in the case of n = 1, i.e., X̂ = D
2×C

m.

This is a key to show the flabbiness of BOexp
N .
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Proposition 5.1. Let F be a closed subset in S1 and W a pseudocon-

vex open subset in C
m. Then we have

Hk(U ×W, Oexp
X ) = 0, (k 
= 0),

where we set U := D
2 \ F .

Proof. If F = S1 or F = ∅, then the proposition clearly holds. There-

fore we assume F 
= S1 and F 
= ∅. Set, for m ∈ N,

Γ≥m :=

{
z ∈ C;

z

|z| ∈ F, |z| ≥ m

}
� F.

Since Um := D
2 \ Γ≥m is regular at ∞, by Theorem 3.7, we have

Hk(Um ×W, Oexp
X ) = 0, (k 
= 0).

Then, as U = ∪mUm, it follows from Proposition 1.4.2 [4] that

Hk(U ×W, Oexp
X ) = 0, (k ≥ 2).

Therefore it suffices to show H1(U ×W, Oexp
X ) = 0, which is equivalent to

saying that H2
F×W (D2 ×W, Oexp

X ) = 0 because of Hk(D2 ×W, Oexp
X ) = 0

(k 
= 0) and the long exact sequence

(44) → H1(D2 ×W, Oexp
X )→ H1(U ×W, Oexp

X )

→ H2
F×W (D2 ×W, Oexp

X )→ H2(D2 ×W, Oexp
X )→ .

Let us show H2
F×W (D2 ×W, Oexp

X ) = 0. Set

F1 :=

{
z ∈ C;

z

|z| ∈ F, |z| ∈ {2, 4, 6, . . . }
}
� F,

F2 :=

{
z ∈ C;

z

|z| ∈ F, |z| ∈ {1, 3, 5, . . . }
}
� F,

and set Ď2 := D
2 \ {0}. As Ď2 \ Fj (j = 1, 2) and Ď2 \ (F1 ∪ F2) are regular

at ∞, we have

Hk((Ď2 \ Fj)×W, Oexp
X ) = 0,

Hk((Ď2 \ (F1 ∪ F2))×W, Oexp
X ) = 0, (k 
= 0).

(45)



On the Sheaf of Laplace Hyperfunctions 581

This implies, in particular,

H2
(F1∪F2)×W (Ď2 ×W, Oexp

X ) = 0, H2
Fj×W (Ď2 ×W, Oexp

X ) = 0, (j = 1, 2),

by the long exact sequence of cohomology groups. Hence, by noticing F1 ∩
F2 = F , we have the long exact sequence

(46) → ⊕
j=1,2

H1
Fj×W (Ď2 ×W, Oexp

X )
ι→ H1

(F1∪F2)×W (Ď2 ×W, Oexp
X )

→ H2
F×W (Ď2 ×W, Oexp

X )→ 0.

If we could prove that the morphism ι is surjective, then we obtain

H2
F×W (D2 ×W, Oexp

X ) = H2
F×W (Ď2 ×W, Oexp

X ) = 0,

and the proposition follows. Hence we show the surjectivity of ι. Since we

have the exact sequences

Oexp
X ((Ď2 \ Fj)×W )→ H1

Fj×W (Ď2 ×W, Oexp
X )→ 0, (j = 1, 2),

Oexp
X ((Ď2 \ (F1 ∪ F2))×W )→ H1

(F1∪F2)×W (Ď2 ×W, Oexp
X )→ 0,

it suffices to show that the morphism

Oexp
X ((Ď2 \ F1)×W )⊕Oexp

X ((Ď2 \ F2)×W )
ι̃→ Oexp

X ((Ď2 \ (F1 ∪ F2))×W )

is surjective. This is done by the usual argument with the Runge approxi-

mation theorem as follows. Let G(z, w) ∈ Oexp
X ((Ď2 \ (F1 ∪ F2))×W ). We

define, for k ∈ N,

gk(z, w) :=
1

2π
√
−1

∫
Ck

G(ζ, w)

ζ − z
dζ

with Ck being two circles {ζ ∈ C; |ζ| = k±ε}. Here we take ε > 0 sufficiently

small so that the point z is located outside the set {ζ ∈ C; k−ε ≤ |ζ| ≤ k+ε},
and the orientation of the outer (resp. inner) circle is anti-clockwise (resp.

clockwise). Set

Γk =

{
z ∈ C;

z

|z| ∈ F, |z| = k

}
.

Then gk(z, w) is holomorphic on (P1 \ Γk) ×W and G(z, w) − gk(z, w) is

holomorphic near Γk ×W .
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Let {Lj}j∈N be an exhausting family of W for which each Lj is compact
and holomorphically convex in W . Set

Zj :=

{
z ∈ C; |z| < 1

j + 1

}
∪
{
z ∈ C; |z| > j − 1

2
, dist(z,Γ≥1) < j−1|z|

}

and Kj := (C \ Zj)× Lj (j ∈ N).

As (P1 \Z2)×L2 is compact and holomorphically convex in (P1 \ ({0}∪
Γ4))×W , it follows from the Runge approximation theorem that there exists

h2(z, w) ∈ O((P1 \ ({0} ∪ Γ4))×W ) satisfying

|g2(z, w)− h2(z, w)| < 1

22
, ((z, w) ∈ K2).

Then applying the argument above to g4(z, w) + h2(z, w) ∈ O((P1 \ ({0} ∪
Γ4))×W ), we can find h4(z, w) ∈ O((P1 \ ({0} ∪ Γ6))×W ) with

|(g4(z, w) + h2(z, w))− h4(z, w)| < 1

24
, ((z, w) ∈ K4).

Hence we obtain a family {h2k(z, w)}k∈N of holomorphic functions that sat-

isfy h2k(z, w) ∈ O((P1 \ ({0} ∪ Γ2k+2))×W ) and

|(g2k(z, w) + h2k−2(z, w))− h2k(z, w)| < 1

22k
, ((z, w) ∈ K2k)

for k ∈ N where we set h0 = 0. Define

G1(z, w) :=

∞∑
k=1

((g2k(z, w) + h2k−2(z, w))− h2k(z, w)).

Then we have G1(z, w) ∈ Oexp
X ((Ď2\F1)×W ) and G−G1 is holomorphic near

F1×W . Hence we have G = G1 +(G−G1) with G1 ∈ Oexp
X ((Ď2 \F1)×W )

and G−G1 ∈ Oexp
X ((Ď2 \ F2)×W ), from which we have obtained that the

morphism ι̃ is surjective. This completes the proof. �

As an immediate consequence of the proposition, we have the following

theorem.

Theorem 5.2. Let U be an open subset in D
2, and W a pseudoconvex

open subset in C
m. Then we have

Hk(U ×W, Oexp
X ) = 0, (k 
= 0).
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Proof. Set Y := C
1×W ⊂ X. Let us consider the long exact sequence

of cohomology groups

(47) → Hk((U ×W ) ∪ Y, Oexp
X )→ Hk(U ×W, Oexp

X )⊕Hk(Y, Oexp
X )

→ Hk((U ×W ) ∩ Y, Oexp
X )→ .

It follows from Proposition 5.1 that we have Hk((U ×W ) ∪ Y, Oexp
X ) = 0

(k 
= 0). By noticing Oexp
X |X = OX , we obtain

Hk((U ×W ) ∩ Y, Oexp
X ) = Hk((U ×W ) ∩ Y, OX) = 0, (k 
= 0).

Hence Hk(U × W, Oexp
X ) = 0 (k 
= 0) follows from the above long exact

sequence. �

Let N = R × C
m (m ≥ 0) and let N = R × C

m be the closure of N in

X̂ = D
2 × C

m. Now we establish the theorems for the flabbiness and the

unique continuation property of BOexp
N .

Theorem 5.3. Let Ω1 and Ω2 be open subsets in R with Ω1 ⊂ Ω2, and

W a pseudoconvex open subset in C
m. Then the restriction BOexp

N (Ω2 ×
W )→ BOexp

N (Ω1 ×W ) is surjective.

Proof. Set Ŷ := D
2 ×W ⊂ X̂. We may assume Ω2 = R, and hence,

it suffices to show, for a closed subset F ⊂ R,

H1
F×W (R×W, BOexp

N ) = H2
F×W (Ŷ , Oexp

X ) = 0.(48)

Since we have the long exact sequence

→ H1(Ŷ \ (F ×W ), Oexp
X )→ H2

F×W (Ŷ , Oexp
X )→ H2(Ŷ , Oexp

X )→,

(48) follows from Theorem 5.2. �

Corollary 5.4 ([6]). The sheaf Bexp
R

of Laplace hyperfunctions is

flabby.

The following theorem shows that the sheaf BOexp
N has a unique contin-

uation property with respect to holomorphic parameters.
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Theorem 5.5. Let W1 and W2 be non-empty connected open subsets

in C
m with W1 ⊂ W2 and Ω an open subset in R. Then the restriction

BOexp
N (Ω×W2) −→ BOexp

N (Ω×W1) is injective.

Proof. We may assume Ω = (a, ∞] in R, and W1 and W2 are pseudo-

convex. Let f ∈ BOexp
N (Ω×W2) represented by F (z, w) ∈ Oexp

X ((V \Ω)×W2)

for a complex neighborhood V of Ω. Suppose that f satisfies f |Ω×W1 = 0.

Then there exists a G(z, w) ∈ Oexp
X (V ×W1) with F = G on V ×W1. It

follows from the unique continuation property of the ordinary hyperfunc-

tion with holomorphic parameters that the support of f is contained in

[b, ∞] ×W2 with a < b ≤ ∞. Now we take an arbitrary point (z, w) ∈
((V \ [b, ∞]) ∩ C)×W2 and closed sectors K and L in V as Figure 1. Let

Z be a relatively compact open subset in W2 satisfying W1 ∩Z 
= ∅, and we

assume w ∈ Z. By Cauchy’s integral formula we have

F (z, w) =
eAz

2π
√
−1

∫
∂L

F (λ, w)e−Aλ

λ− z
dλ− eAz

2π
√
−1

∫
∂K

F (λ, w)e−Aλ

λ− z
dλ

(49)

for a sufficiently large A. Let Fj(z, w) (j = 0, 1) be the functions given by

the integrals on the right hand side of (49) corresponding to ∂L and ∂K in

that order. Note that, if the point w belongs to W1, F (λ, w) = G(λ, w)

holds. Then, as e−Aλ compensates the exponential growth of G(λ, w) at
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infinity, by deforming the contour ∂L, we have

(50) F0(z, w) =
eAz

2π
√
−1

∫ ∞+i0

b+i0

G(λ, w)e−Aλ

λ− z
dλ

− eAz

2π
√
−1

∫ ∞−i0

b−i0

G(λ, w)e−Aλ

λ− z
dλ = 0,

for w belonging to a relatively compact open subset in W1 ∩ Z. This gives

F0(z, w) ≡ 0 for w ∈W2 by the unique continuation property of a holomor-

phic function, and we obtain F (z, w) = −F1(z, w) which is a holomorphic

function of exponential type on a neighborhood of Ω×W2. Hence we have

[F ] ≡ 0 on Ω×W2. �
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