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The Cone Conjecture for Abelian Varieties

By Artie Prendergast-Smith

The purpose of this paper is to write down a complete proof of the

Morrison–Kawamata cone conjecture for abelian varieties. The conjecture

predicts, roughly speaking, that for a large class of varieties (including all

smooth varieties with numerically trivial canonical bundle) the automor-

phism group acts on the nef cone with rational polyhedral fundamental

domain. (See Section 1 for a precise statement.) The conjecture has been

proved in dimension 2 by Sterk–Looijenga, Namikawa, Kawamata, and To-

taro [Ste85, Nam85, Kaw97, Tot10], but in higher dimensions little is known

in general.

Abelian varieties provide one setting in which the conjecture is tractable,

because in this case the nef cone and the automorphism group can both

be viewed as living inside a larger object, namely the real endomorphism

algebra. In this paper we combine this fact with known results for arithmetic

group actions on convex cones to produce a proof of the conjecture for

abelian varieties.

Here is the main result.

Theorem 0.1. Let X be an abelian variety and A(X)
e

its effective nef

cone. Then there is a rational polyhedral fundamental domain for the action

of the automorphism group Aut(X) on A(X)
e
.

The conclusion of the theorem was already known in some cases. It was

proved for abelian surfaces by Kawamata [Kaw97], adapting the proof of

Sterk–Looijenga for K3 surfaces. In the same paper, Kawamata also proved

the conjecture for all self-products of an elliptic curve without complex

multiplication. Finally, Bauer [Bau98] showed that for an abelian variety,

the nef cone is rational polyhedral if and only if the variety is isogenous to

a product of mutually non-isogenous abelian varieties of Picard number 1,

which in particular implies the theorem for abelian varieties of this special

type.

2010 Mathematics Subject Classification. 14E30, 14K05.

243



244 Artie Prendergast-Smith

Thanks to Eugene Eisenstein, Lars Halvard Halle, and David Ploog for

their comments, and to Burt Totaro for suggesting the strategy of the proof.

1. The Cone Conjecture

We work throughout the paper over an arbitrary algebraically closed

field.

Morrison [Mor93] gave the original statement of the cone conjecture for

Calabi–Yau threefolds, motivated by considerations from mirror symmetry.

The statement was generalised by Kawamata [Kaw97] to families of varieties

with numerically trivial canonical bundle, and from there to so-called klt

Calabi–Yau pairs [Tot10]. As mentioned in the introduction, the conjecture

has been verified in dimension 2, but in general it remains wide open. See

[Tot10, Section 1] for history and a summary of the current status.

Here we state the conjecture in a rather simple form applicable to abelian

varieties. The symbol ≡ denotes numerical equivalence of divisors, and for

a projective variety N1(X) denotes the real vector space (Div(X)/ ≡) ⊗R

where Div(X) is the free abelian group spanned by Cartier divisors. The

cones A(X) and M(X) are the closed cones in N1(X) spanned by the classes

of nef or movable divisors. The cone Eff(X) is the cone spanned by the

classes of all effective divisors, and A(X)
e

and M(X)
e

denote the intersec-

tions A(X) ∩ Eff(X) and M(X) ∩ Eff(X). Finally, a pseudo-automorphism

of X is a birational map X ��� X which is an isomorphism outside a subset

of codimension 2. Note that a pseudo-automorphism maps a movable or

effective divisor to another movable or effective divisor, therefore preserves

the cone M(X)
e
.

Conjecture 1.1 (Morrison–Kawamata). Let X be a smooth projec-

tive variety with KX ≡ 0. Then:

(1) There exists a rational polyhedral cone Π which is a fundamental domain

for the action of Aut(X) on A(X)
e

in the sense that

(a) A(X)
e

= Aut(X) · Π,

(b) Int Π ∩ g∗(Int Π) = ∅ for g∗ �= id in GL(N1(X)).

(2) There exists a rational polyhedral cone Π′ which is a fundamental do-

main (in the sense above) for the action of the pseudo-automorphism group

PsAut(X) on M(X)
e
.
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Part (1) of the conjecture would imply in particular that any variety

with numerically trivial canonical bundle has finitely many contractions up

to automorphisms. This is because any contraction of a projective variety is

determined by a semi-ample line bundle, and two semi-ample line bundles

give the same contraction if they belong to the interior of the same face in

the nef effective cone.

For abelian varieties part (2) of the conjecture is implied by part (1),

because the effective nef cone A(X)
e

and effective movable cone M(X)
e

are the same. Indeed, on an abelian variety any effective divisor is semi-

ample by the ’theorem of the square’ [Mum70, §6, Corollary 4], so A(X)
e

=

M(X)
e

= Eff(X). As a consequence Theorem 0.1 implies the full cone

conjecture for abelian varieties.

The equality of cones in the last paragraph can be strengthened to give

the following result; a reference is [Bau98, Proposition 1.1].

Proposition 1.2. Let D be a Cartier divisor on an abelian variety X

and let [D] denote the class of D in N1(X). Then [D] ∈ Eff(X) if and only

if [D] ∈ A(X).

This implies that A(X)
e
is equal to the rational hull A(X)+ of the ample

cone A(X), defined as the convex hull of the rational points in the closure

A(X). This will be important later, because from the point of view of

reduction theory for arithmetic groups A(X)+ is a more natural object to

consider than A(X)
e
.

Finally it should be emphasised that for abelian varieties, it makes no

difference to the conjecture whether Aut denotes the group of automor-

phisms in the category V ar/k of varieties over the ground field k or in the

category GrV ar/k of group varieties over k. This is because any (V ar/k)-

automorphism of an abelian variety can be composed with a translation

automorphism to give a (GrV ar/k)-automorphism, and translations act

trivially on N1(X). For the rest of the paper we will use Aut to denote the

group of (GrV ar/k)-automorphisms.

Examples. The following examples illustrate how the nef effective cone

and automorphism group of an abelian variety can vary, compatibly with

the cone conjecture. We will consider two abelian surfaces of Picard number

2. By standard results on quadratic forms and the Hodge Index Theorem,
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for any such surface X we can choose a rational basis {v1, v2} for N1(X) in

which the intersection form has matrix diag(a,−b), with a and b positive.

When X is an abelian surface, Proposition 1.2 says that a Cartier divisor

D on X is ample if and only if D2 > 0 and D ·H > 0 for some fixed ample

divisor H. So if we choose a basis {v1, v2} for N1(X) as above, the ample

cone of X is described as

A(X) =
{
x1v1 + x2v2 ∈ N1(X) | ax2

1 − bx2
2 > 0, x1 > 0

}
.

The two extremal rays of A(X) are spanned by the vectors v1 ± (
√

a/b)v2,

so A(X)
e

= A(X)+ is a rational polyhedral cone if and only if a/b is a

square in Q.

Before giving our examples we mention the following useful fact. To

verify the cone conjecture for a variety X, it suffices to find a rational

polyhedral cone Π ⊂ A(X)
e

whose translates by Aut(X) cover the whole

nef effective cone; it is then relatively straightforward to produce a precise

fundamental domain. (This step will be explained at the end of Section 5,

but we mention it now to keep the exposition clear.)

For the first example we take X to be a product E1×E2 of non-isogenous

elliptic curves over C. Then Aut(X) = Aut(E1)×Aut(E2), and Aut(Ei) is

a cyclic group of order 2, 4, or 6. Therefore in this case Aut(X) is a finite

group acting on A(X)
e
. On the other hand, by taking suitable rational

linear combinations of the divisors E1 × {0} and {0} ×E2, the intersection

form on N1(X) can be transformed to have matrix diag(1,−1). By our

description of the extremal rays a few paragraphs ago, A(X)
e

is therefore a

rational polyhedral cone, so by the fact in the previous paragraph the cone

conjecture is true for X, taking Π = A(X)
e
.

For the second example we take X to be an abelian surface with real mul-

tiplication, by which we mean that the endomorphism algebra End0(X) :=

End(X) ⊗Q is isomorphic to the number field Q(
√
d) for some square-free

integer d > 0. (The simplest examples of such surfaces are Jacobians of cer-

tain genus 2 curves; explicit models can be found in [Wil00].) By Dirichlet’s

unit theorem, the automorphism group Aut(X) has rank equal to r1+r2−1,

where r1 is the number of embeddings Q(
√
d) ↪→ R and r2 is the number of

conjugate pairs of embeddings Q(
√
d) ↪→ C whose image is not contained in

R. One checks easily that r1 = 2 and r2 = 0, so Aut(X) has rank 1. What

about the cone A(X)
e
? In this case the matrix of the intersection form di-
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Fig. 1. Nef cone of an abelian surface with real multiplication.

agonalises to diag(a,−b) with a/b = d, so the boundary rays are irrational.

To find the required rational polyhedral fundamental domain, we proceed

as follows. Choose an arbitrary rational ray R ⊂ A(X)
e

and an element g

of infinite order in Aut(X). A little thought shows
{
gi(R) | i = 1, 2, 3 . . .

}
is a sequence of rational rays, which either converges to one extremal ray,

or decomposes into two subsequences, one converging to each extremal ray.

Composing g with a torsion element of Aut(X), we can assume that the first

case occurs. Then the cone Π spanned by the rays R and g(R) is a rational

polyhedral cone whose translates by Aut(X) cover the whole nef effective

cone (Figure 1). Again by the fact above, this proves the cone conjecture

for X.

2. Homogeneous Self-Dual Cones and Reduction Theory

In this section we give the results we need about reduction theory for

arithmetic group actions on homogeneous self-dual convex cones. It should

be mentioned that this theory has a rich history that we touch on here only
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briefly; see [AMRT] for historical discussion and references.

From now on V will always denote a finite-dimensional real vector space.

By a cone in V we always mean a convex cone C ⊂ V which is non-

degenerate (meaning that its closure C̄ contains no nonzero subspaces of

V ). The dual cone C∗ ⊂ V ∗ is defined to be the interior of the cone C∗

consisting of linear forms on V which are nonnegative on C.

Now suppose C is an open cone in a vector space V . We define the

automorphism group G(C) of C to be the subgroup of GL(V ) consisting

of linear transformations such that g(C) = C. The cone C is said to be

homogeneous if G(C) acts transitively on C. Suppose further that V carries

an inner product, giving an identification of V with V ∗. We say C is self-dual

if this identification takes C to its dual C∗. (This condition depends on the

choice of inner product, but the dependence will not matter in what follows.)

The basic theorem about the automorphism group of a homogeneous self-

dual cone is the following, due to Vinberg [Vin65].

Theorem 2.1 (Vinberg). Let C ⊂ V be a homogeneous self-dual con-

vex cone. Then the automorphism group G(C) is the group of real points of

a reductive algebraic group G(C).

It is an amazing fact that homogeneous self-dual convex cones can be

completely classified into a small number of cases. More precisely, define

the direct sum of cones C1 and C2 in vector spaces V1 and V2 to be the cone

C1 ⊕ C2 := {v1 + v2 ∈ V1 ⊕ V2|vi ∈ Ci} and call a cone indecomposable if

it is not the direct sum of two nontrivial cones. The classification theorem,

due to Koecher and Vinberg, is the following [Vin63, I, §1, Proposition 2],

[Vin65, p. 71].

Theorem 2.2 (Koecher–Vinberg). Any convex cone C can be written

as a direct sum ⊕iCi of indecomposable cones. The product
∏

G(Ci) is

a finite-index subgroup of G(C). The cones Ci are homogeneous and self-

dual if and only if C is. Any indecomposable homogeneous self-dual cone is

isomorphic to one of the following:

1. the cone Pr(R) of positive-definite matrices in the space Hr(R) of r×r

real symmetric matrices;

2. the cone Pr(C) of positive-definite matrices in the space Hr(C) of r×r

complex Hermitian matrices;
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3. the cone Pr(H) of positive-definite matrices in the space Hr(H) of

r × r quaternionic Hermitian matrices;

4. the spherical cone
{

(x0, . . . , xn) ∈ Rn+1 |x0 >
√

x2
1 + · · ·x2

n

}
;

5. the 27-dimensional cone of positive-definite 3×3 octonionic Hermitian

matrices.

The inner product for which the cone is self-dual is 〈x, y〉 = Tr(xy∗) in all

cases except 4, and the usual inner product on Rn+1 in case 4.

The proof uses the surprising correspondence between self-dual homoge-

neous convex cones and formally real Jordan algebras; see [AMRT, Chapter

II, §2] for details.

Vinberg [Vin65] computed the automorphism groups of all the cones in

the list of Theorem 2.2. Here we state the part of his result which will be

relevant to abelian varieties.

Theorem 2.3 (Vinberg). Let C be one of the cones Pr(k) in the previ-

ous theorem: that is, the cone of positive-definite matrices in the vector space

Hr(k) of r × r symmetric or Hermitian matrices over k, where k = R, C,

or H. Then the identity component G(C)0 of the automorphism group of C

consists of all R-linear transformations of Hr(k) of the form D �→ M∗DM

for some M ∈ GL(r, k).

Now we come to reduction theory. For a Q-algebraic group G, a sub-

group Γ ⊂ G(Q) is called an arithmetic subgroup of G if Γ and the group

G(Z) of integer points of G are commensurable (meaning their intersection

inside G(Q) has finite index in each). The basic problem of reduction theory

for convex cones is the following: given a convex cone C and an arithmetic

subgroup Γ of the automorphism group G(C), can we find a rational poly-

hedral fundamental domain for the action of Γ on C? The first results of

this kind go back to Hermite and Minkowski, who found rational polyhedral

fundamental domains for the adjoint action of SL(r,Z) on the cone Pr(R)

of positive-definite real symmetric matrices. That is, there is a finite set

of integral linear inequalities such that any quadratic form can be reduced

by an integral change of basis to a form whose coefficients satisfy those

inequalities. This explains the name ‘reduction theory’.
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The main result of the theory we will use is the following, due to Ash

[AMRT, Chapter II].

Theorem 2.4 (Ash). Let C be a self-dual homogeneous convex cone in

a real vector space V with Q-structure. Let G(C) be the automorphism group

of C and G(C) the associated reductive algebraic group (as in Theorem 2.1).

Assume G(C)0 is defined over Q. Then for any arithmetic subgroup Γ of

G(C)0, there exists a rational polyhedral cone Π ⊂ C+ such that (Γ·Π)∩C =

C.

Here as before C+ is the rational hull of C, meaning the convex hull of

the rational points in C.

Applied in the case of abelian varieties, this theorem will provide us

with a rational polyhedral cone whose translates by automorphisms cover

the ample cone. To prove the cone conjecture, we also need to say something

about the rational boundary faces of the nef cone.

By a face F of the closed cone C we mean a subcone of C relatively

open in its linear span, and maximal with that property. A face is rational

if its linear span is a rational subspace of the ambient space. We will see in

Section 5 that if C is the ample cone of an abelian variety, then C+ is the

union of the rational faces of C. To deal with the boundary faces, we need

the following consequence of Ash’s theorem.

Corollary 2.5. With the same assumptions as in Theorem 2.4, sup-

pose also that C isomorphic to a product of cones of type Pr(k) (that is,

cones of positive-definite Hermitian real, complex, or quaternionic matri-

ces). Then for each rational boundary face F of C and arithmetic sub-

group Γ ⊂ G(C)0 there exists a rational polyhedral cone ΠF ⊂ F+ such that

(Γ · ΠF ) ∩ F = F .

Proof of Corollary. Any face F of a the closure C of a homoge-

neous self-adjoint cone is again a homogeneous self-adjoint cone; the main

point of the proof is then to show that Γ ∩ StabF , the subgroup of Γ con-

sisting of elements which stabilise the face F , is an arithmetic subgroup of

the automorphism group of F .

In more detail, since C is a product of cones of the form Pr(k), any

boundary face F of C can be transformed by an automorphism g of C to
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a product of faces Psi(k) with
∑

si < r [HW87, Theorem 3.6]. (Here we

regard Ps(k) as a subcone of Pr(k) via a block embedding of s × s into

r × r matrices.) By Theorem 2.3 any automorphism of Ps(k) in the con-

nected component of the identity is given by conjugation by an element M

of GL(s, k). Therefore any automorphism of the face Ps1(k)× · · · ×Psn(k),

given by matrices Mi ∈ GL(si, k) say, extends to the automorphism of Pr(k)

given by conjugation by M1⊕· · ·⊕Mn⊕Id ∈ GL(r, k). Extending the auto-

morphism of F in this way, and composing suitably with the automorphisms

g and g−1, we conclude that any automorphism of any face F of C extends

to an automorphism of C, or equivalently of C. In other words, there is a

homomorphism G(F ) → G(C), clearly injective, with image G(C)∩ StabF

(here StabF denotes the group of linear transformations of the ambient

space preserving the face F ).

Now suppose that F is a rational boundary face of C. Then the group

StabF is defined over Q. By assumption the group G(C)0 is also defined

over Q, so H := G(C)0 ∩ StabF is a subgroup of G(F ) defined over Q.

The subgroup H must have G(F )0 as identity component; the group G(F )0

is therefore the identity component of an algebraic group defined over Q,

hence is itself defined over Q.

Next, the homomorphism G(F )0 → G(C)0 is an injective homomorphism

of Q-algebraic groups. It is then a standard fact (a reference is [Ser79]) that

for any arithmetic subgroup Γ ⊂ G(C)0, the intersection Γ ∩ G(F )0 is an

arithmetic subgroup of G(F )0.

Applying Theorem 2.4 with F in place of C and Γ ∩ G(F )0 in place of

Γ, we obtain a rational polyhedral cone ΠF ⊂ F+ with the property that((
Γ ∩ G(F )0

)
· ΠF

)
∩F = F . In particular, this implies that (Γ · ΠF )∩F =

F , as required. �

3. The Endomorphism Algebra of an Abelian Variety

In this section we describe the endomorphism algebra of an abelian va-

riety as a product of certain matrix algebras. In particular this gives a de-

scription of the automorphism group as an arithmetic group, connecting the

cone conjecture for abelian varieties to the reduction theory of the previous

section. For a full exposition of the structure theory of the endomorphism

algebra, read Chapter 4 of Mumford’s book [Mum70].

The first result we need is a form of the Poincaré complete reducibility
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theorem [Mum70, §19, Theorem 1, Corollary 1].

Theorem 3.1. Let X be an abelian variety. Then X is isogenous to

a product Xn1
1 × · · · × Xnk

k where the Xi are simple abelian varieties, not

isogeneous for i �= j. The isogeny type of the Xi and the natural numbers

ni are uniquely determined by X.

Here a simple abelian variety is one that has no proper abelian subvari-

eties. An isogeny X → Y of abelian varieties is a surjective homomorphism

with finite kernel, and X and Y are isogenous if there exists an isogeny

X → Y . In fact given an isogeny f : X → Y there exists an isogeny

g : Y → X such that gf = nX ∈ End(X) for some natural number n; in

particular, the relation ‘is isogenous to’ is indeed an equivalence relation.

For an abelian variety X we write End0(X) to denote the tensor product

End(X)⊗Q. Note that if X and Y are isogenous, then End0(X) ∼= End0(Y )

via pullback by the isogenies in either direction. Therefore as a corollary of

Theorem 3.1 we get the following [Mum70, §19, Corollary 2].

Corollary 3.2. Let X be an abelian variety. If X is simple, then

End0(X) is a division algebra over Q. For any abelian variety, if X is

isogenous to Xn1
1 × · · · × Xnk

k a product of mutually non-isogenous simple

abelian varieties, then

End0(X) = Mn1(D1) × · · · ×Mnk
(Dk)

where Di is the division algebra End0(Xi) and Mn(Di) is the ring of n× n

matrices over Di.

So reduction to the case of simple abelian varieties is straightforward. It

is a much deeper problem to determine the Q-division algebras which can

appear as End0(X) for X a simple abelian varieties. The key point is that

the endomorphism algebra has finite rank and is equipped with a positive

involution [Mum70, §19 Corollary 3, §21 Theorem 1]:

Proposition 3.3. Let X be a simple abelian variety. Then D =

End0(X) is a finite-rank Q-division algebra. Moreover D carries an involu-

tion x �→ x′ called the Rosati involution. This involution is positive-definite

in the sense that if x ∈ D is any nonzero element, then TrQ(xx′) > 0, where

TrQ is the reduced trace over Q of the division algebra D.
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Now there is a classification (due to Albert) of all finite-rank Q-division

algebras with a positive involution, and together with some extra geometric

restrictions this gives a complete list of possibilities for End0(X) when X is

a simple abelian variety. Chapter 4 of Mumford’s book gives an exposition

of the classification; here we only state a weak form of the result.

Theorem 3.4. Let X be a simple abelian variety and D = End0(X)

its endomorphism algebra. Then D ⊗Q R is isomorphic as an R-algebra

with involution to one of the following algebras:

• R × · · · × R, with x �→ x′ the trivial involution;

• H × · · · × H where H is the algebra of quaternions, and x′ = x, the

usual conjugate;

• M2(R)×· · ·×M2(R) where M2(R) is the algebra of 2×2 real matrices,

and x′ = xt, the transpose;

• M2(C) × · · · × M2(C), where M2(C) is the algebra of 2 × 2 complex

matrices, and x′ = x∗, the conjugate transpose.

Combining this result with Corollary 3.2 one can deduce the following

description of End0(X) ⊗ R for an arbitrary abelian variety X.

Corollary 3.5. Let X be an abelian variety. Then End0(X) ⊗ R is

isomorphic as an algebra with involution to a product∏
i

Mri(R) ×
∏
j

Msj (C) ×
∏
k

Mtk(H)

with involution given by conjugate transpose on each factor. The bilinear

pairing 〈x, y〉 = Tr(xy∗) defines an inner product on End0(X) ⊗ R.

Finally we must explain how the automorphism group Aut(X) sits inside

the algebra End0(X)⊗R. If X is an abelian variety, Aut(X) is the group of

units End(X)× in the endomorphism ring End(X). Furthermore End(X) is

a lattice in the vector space End0(X) ⊗R, therefore induces a Q-structure

on End0(X) ⊗ R, and this Q-structure determines End(X) as a subring

of the R-algebra End0(X) ⊗ R up to finite index. So from the previous

corollary we have the following:
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Corollary 3.6. Let X be an abelian variety. Then (End0(X) ⊗R)×

is an algebraic group defined over Q, and Aut(X) is an arithmetic subgroup.

4. The Néron–Severi Space of an Abelian Variety

In this section, we explain how the Néron–Severi space of an abelian

variety can be identified with a subspace of the space End0(X) ⊗ R. This

identification allows us to describe the action of the automorphism group

on the ample cone in terms of matrices.

First we define the Néron–Severi space of an abelian variety X to be the

finite-dimensional real vector space N1(X) := (Pic(X)/Pic0(X)) ⊗ R. Our

first task is to identify N1(X) with a subspace of End0X ⊗R. By linearity,

to make such an identification it suffices to identify a Cartier divisor with

an element of End0(X), which we do in the following way:

Pic(X)
φ �� Hom(X, X̂) ⊗ Q

ψ �� End0(X)

D
� �� φD

� �� φ−1
L φD

The notation of the diagram is as follows. The variety X̂ is the dual abelian

variety of X, which can be identified with Pic0(X). The homomorphism

φD : X → X̂ is defined by φD(x) = T ∗
x (D) ⊗D−1, where Tx is translation

by the point x ∈ X. Finally, L is any (fixed) ample line bundle on X;

ampleness implies that φL is an isogeny X → X̂, and therefore has an

inverse φ−1
L ∈ Hom(X̂,X) ⊗ Q. One checks that the kernel of φ is exactly

the subgroup Pic0(X) of numerically trivial line bundles on X, and that ψ is

an isomorphism. Therefore tensoring with R gives the claimed embedding

N1(X) ↪→ End0X ⊗R. (See [Mum70] for proofs of all the assertions here.)

Note that by construction this embedding is compatible with the natural

Q-structures on the source and target.

The automorphism group Aut(X) acts naturally on N1(X) via pull-

back of divisors: an automorphism f maps a divisor D to f∗D. Using the

diagram above, we can extend this to an action of Aut(X) on the whole al-

gebra End0(X) ⊗R. To compute the action we need the following formula

[Mum70, §15, proof of Theorem 1]:
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Lemma 4.1. Let f : X → Y be an isogeny of abelian varieties, with

dual isogeny f̂ : Ŷ → X̂. Let D be a line bundle on Y . Then φf∗D =

f̂ ◦ φD ◦ f .

Via the diagram we can then work out the extension to an action of

Aut(X) on End0(X) ⊗ R: one computes that f ∈ Aut(X) acts by the

formula

f · x = φ−1
L ◦ f̂ ◦ φL ◦ x ◦ f

for any x ∈ End0(X) ⊗ R. Moreover the same formula defines an action of

the whole group of units (End0(X)⊗R)× on End(X)0 ⊗R, and this action

fixes the subspace N1(X).

To complete the picture, we observe [Mum70, p.189] that the map x �→
φ−1
L ◦ x̂ ◦ φL is by definition exactly the Rosati involution on End0(X) ⊗R

mentioned in Proposition 3.3. (The involution therefore depends on the

choice of an ample line bundle on X, but the dependence does not matter

for our purposes.) For an element e ∈ End0(X)⊗R let us denote φ−1
L ◦ ê◦φL

by e′, so that the action of (End0(X) ⊗R)× on End(X)0 ⊗R is now given

by the formula x �→ f ′ ◦ x ◦ f . By Theorem 3.4 there is an isomorphism

of End(X)0 ⊗ R with a product of matrix algebras which takes the Rosati

involution e �→ e′ to the conjugate transpose involution x �→ x∗. Using this

isomorphism to translate the action above into matrix terms, we get the

following theorem.

Theorem 4.2. Let X be an abelian variety. Then the Q-algebraic

group (End0(X) ⊗ R)× acts on N1(X) by the formula F : D → F ∗DF ,

and this extends the action of Aut(X) on N1(X) by pullback of line bun-

dles.

At this point we have an explicit description in terms of matrices of the

action of the automorphism group on the Néron–Severi space. To apply

this to the cone conjecture, we need to identify the ample cone in the same

terms (i.e. as a cone in a space of matrices).

The first step is to identify the image of our embedding N1(X) ↪→
End0(X) ⊗ R, viewing the target as a product of matrix algebras as in

Corollary 3.5. Again the key here is the Rosati involution: as we have just

seen, in matrix terms this is simply conjugate-transposition x �→ x∗.
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Theorem 4.3. Let X be an abelian variety. Then N1(X) ⊂
End0(X) ⊗ R is exactly the fixed subspace of the Rosati involution. If

End0(X) ⊗ R is isomorphic to a product of matrix algebras

∏
i

Mri(R) ×
∏
j

Msj (C) ×
∏
k

Mtk(H)

then N1(X) is isomorphic to the subspace

⊕
i

Hri(R) ⊕
⊕
j

Hsj (C) ⊕
⊕
k

Hk(H)

where Hr denotes the space of r × r symmetric or Hermitian matrices.

Moroever, the ample cone A(X) is the direct sum of the positive-definite

cones Pr(k) in each of the direct summands Hr(k) of N1(X).

We use additive notation for N1(X) to emphasise the point that it need

not be a subalgebra of End0(X) ⊗ R: for divisors D1 and D2 fixed by the

Rosati involution, their product D1D2 ∈ End0(X) ⊗R need not be fixed,

as one can check using suitable matrices.

Theorem 4.3 shows in particular that the ample cone of an abelian va-

riety is a self-dual homogeneous cone, since it is a direct sum of cones on

the list of Theorem 2.2. Indeed since it is a sum of cones of the form Pr(k),

Theorem 2.3 tells us that G(A(X))0 acts transitively on A(X). Moreover

from Theorem 4.3 together with the description of the automorphism group

in Theorem 2.3 we can also deduce the following:

Corollary 4.4. Let X be an abelian variety. Then the homomor-

phism

(
End0(X) ⊗ R

)× → G(A(X))0

M �→ (D �→ M∗DM)

given by the action of (End0(X) ⊗ R)× on N1(X) is surjective.

Proof. Suppose for simplicity that N1(X) has a single direct sum-

mand, say N1(X) = Hr(R). By Theorem 2.3 the identity component

G(A(X))0 of the automorphism group of the ample cone is exactly the

group of linear transformations of N1(X) of the form D �→ M∗DM with
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M ∈ GL(r,R). Such a linear transformation is the image under the homo-

morphism of M ∈ GL(r,R) = (End0(X) ⊗ R)×, which proves surjectivity.

The proof in the case of more than one direct summand works in the same

way, since by Theorem 2.2 the identity component G(A(X))0 is the direct

product of the identity components of the automorphism groups of the di-

rect summand cones. �

5. Boundary Faces of the Nef Cone

In this section, we put together the results of the previous sections to

complete the proof of the cone conjecture. Using the results of Section

4, Theorem 2.4 will provide us with a rational polyhedral cone Π◦ whose

translates cover the interior of A(X)+. Corollary 2.5 will say something

about the rational boundary faces, but to complete the proof we need to

know in addition that the cone A(X)+ has only finitely many faces up to

the action of Aut(X). The key point is to identify these faces with abelian

subvarieties of X, and then apply a finiteness result of Lenstra–Oort–Zarhin.

Lemma 5.1. Let X be an abelian variety. Then there is an Aut(X)-

equivariant bijection between the set of faces of A(X)+ and the set of abelian

subvarieties of X.

Proof. We can identify the set of faces of A(X)+ with the set of con-

tractions of X, or more precisely the set of equivalence classes of contrac-

tions, where two morphisms are identified if they contract the same curves.

(In one direction, pulling back an ample line bundle via a contraction gives

a nef line bundle, and this line bundle belongs to the relative interior of a

unique face of A(X)+. In the other direction, given a face F of A(X)+,

choose a line bundle whose class lies in the relative interior of F ; as shown

in Section 1, such a line bundle is semi-ample, hence defines a contraction of

X.) To prove the lemma, we will give a bijection between the set of abelian

subvarieties of X and the set of contractions of X.

First suppose Z ⊂ X is an abelian subvariety. I claim there is a con-

traction morphism X → S whose fibres are exactly the translates of Z. To

see this, first note [Mum70, §19 Theorem 1] there is an abelian subvariety

Y ⊂ X such that the addition morphism + : Y × Z → X is an isogeny.

Moreover [Mum70, p.169], there is also an isogeny f : X → Y × Z such
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that + ◦ f : X → X is exactly nX , multiplication by n on X, for some

integer n. Now consider the projection π : Y ×Z → Y and the composition

π ◦ f : X → Y . Taking the Stein factorisation of this morphism we get a

commuting diagram

X
f−−−→ Y × Z�g �π

S
h−−−→ Y

where g has connected fibres and h is a finite morphism. I claim that the

fibres of the morphism g are exactly the translates of Z in X. To see this,

first note that by Nori’s “Remarks on Effective Divisors” [Mum70, p.88],

there is a unique abelian subvariety Z ′ ⊂ X such that the fibres of g are

exactly the translates of Z ′ in X. Next, note that the fibres of g must have

the same dimension as those of π, since f and h are both finite, so dimZ ′ =

dimZ. Moreover, the subset f−1 ({0} × Z) ⊂ X is contracted to a point by

π ◦ f , so by finiteness of h, the set g
(
(f−1 ({0} × Z)

)
must have dimension

zero. Therefore it suffices to show the inclusion Z ⊂ f−1 ({0} × Z), since

then g(Z) must have dimension zero, hence by connectedness must be a

point, therefore contained in the fibre Z ′, and by the equality of dimensions

above must in fact be all of Z ′.
The required inclusion can be written as f(Z) ⊂ {0} × Z. Recall that

we have a diagram

X
f−−−→ Y × Z

+−−−→ X

where + ◦ f = nX , multiplication by n on X. So +(f(Z)) = nX(Z) = Z,

that is to say f(Z) ⊂ +−1(Z). Now a point (y, z) ∈ Y × Z belongs to

+−1(Z) if and only if y ∈ Y ∩ Z: that is, +−1(Z) = (Y ∩ Z) × Z ⊂ Y × Z.

So f(Z) ⊂ (Y ∩ Z) × Z, a disjoint union of finitely many translates of

{0}×Z. By connectedness, we conclude that f(Z) ⊂ {0}×Z, the required

inclusion.

We have shown that given an abelian subvariety Z ⊂ X, there is a

contraction morphism g : X → S whose fibres are exactly the translates of

Z. Conversely, given a contraction g : X → S, the result of Nori mentioned

above says that there is an abelian subvariety Z ⊂ X such that the fibres

of g are exactly the translates of Z in X. So there is a bijection between
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the set of contraction morphisms on X and the set of abelian subvarieties

of X. Finally, if Aut(X) acts on the set of contractions by pre-composition,

the bijection is immediately seen to be Aut(X)-equivariant, completing the

proof. �

Corollary 5.2. The cone A(X)+ has finitely many faces modulo the

action of Aut(X).

Proof. By Lenstra–Oort–Zarhin [LOZ] the set of abelian subvarieties

of X is finite up to the action of Aut(X), so by Lemma 5.1 we get the

conclusion. �

Finally we need the following lemma:

Lemma 5.3. Any face of A(X)+ is a rational face of A(X).

Proof. Given a face F of A(X)+, choose a a line bundle L whose

class lies in the relative interior of F . This gives a contraction f : X → Y

with the property that f∗(A(Y )) is a face of A(X) contained in F . But

f∗(A(Y ) contains L, so in fact F = f∗(A(Y )) = A(X)∩f∗(N1(Y )) [Kaw97,

Definition 1.8]. Since N1(Y ) is a rational subspace of N1(X), this shows

that F is a rational face. �

We can now complete the proof of Theorem 0.1, putting together the

results of previous sections. The inclusion N1(X) ⊂ End0(X)⊗R described

in Section 4 is compatible with Q-structures, so by Corollary 4.4 the con-

nected component G(A(X))0 is a Q-algebraic subgroup of GL(N1(X)). By

Corollary 3.6 the automorphism group Aut(X) is an arithmetic subgroup

of (End0(X) ⊗ R)×, so the image Γ of Aut(X) in GL(N1(X)) is an arith-

metic subgroup of G(A(X))0. Therefore by Theorem 2.4 there is a rational

polyhedral cone Π◦ ⊂ A(X)+ such that (Γ · Π◦) ∩A(X) = A(X).

To deal with the boundary of A(X)+, recall that by Theorem 4.3 the

ample cone A(X) is a homogeneous self-adjoint cone which is a product of

cones of the form Pr(k). Therefore by Corollary 2.5 for every face F of

A(X)+ we can find a rational polyhedral cone ΠF ⊂ F with the property

that (Aut(X) · ΠF ) ∩ F = F . Now let {F1, · · · , Fn} be a complete set of

representatives for the (finitely many) Aut(X)-orbits of boundary faces of

A(X)+ and choose corresponding rational polyhedral cones ΠF1 , . . . ,ΠFn .
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Define Π to be the convex hull of Πo and all the cones ΠFi . Since there

are finitely many Fi, the cone Π is again rational polyhedral. Now each

cone ΠFi has the property that Fi ⊂ Aut(X) · ΠFi , so Aut(X) · Π covers

each of the faces Fi. But the Fi are a complete set of representatives for

the Aut(X)-orbits of boundary faces of A(X)+, so in fact Aut(X) ·Π covers

every boundary face of A(X)+. Also, we know that Aut(X) ·Π◦ covers the

interior of A(X)+, so we conclude that Aut(X) · Π = A(X)+.

Finally, given such a rational polyhedral cone Π, one can then produce a

precise fundamental domain as explained in [AMRT, p. 116]. In a little more

detail, the result there gives a rational polyhedral cone Πexact ⊂ A(X)+
whose translates by Aut(X) cover the cone A(X) (with disjoint interiors).

Now the interior of the rational polyhedral cone Π must be covered by

a finite collection of translates of Πexact, by the Siegel property, implying

that Π itself is covered by those finitely many translates (since it is rational

polyhedral). This shows that Aut(X) ·Πexact contains Aut(X) ·Π = A(X)+,

so Πexact is indeed a rational polyhedral fundamental domain for the action

of Aut(X) on A(X)+. �
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