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Note on the Chen-Lin Result with
the Li-Zhang Method

By Samy Skander BAHOURA

Abstract. We give a new proof of the Chen-Lin result with the
method of moving sphere in a work of Li-Zhang.

Introduction and Results

We set A = 011 + 029 the Laplace-Beltrami operator on R2.
On an open set 2 of R? with a smooth boundary we consider the fol-
lowing problem:

(P —Au =V(z)e" in Q,
0<a<V(zx)<b< +4oo.

The previous equation is called the Prescribed Scalar Curvature equation in
relation with conformal change of metrics. The function V is the prescribed
curvature.

Here, we try to find some a priori estimates for sequences of the previous
problem.

Equations of this type were studied by many authors, see [7, 8, 10, 12,
13, 17, 18, 21, 22, 25]. We can see in [8] different results for the solutions
of those type of equations with or without boundary conditions and, with
minimal conditions on V', for example we suppose V' > 0 and V € LP(Q) or
Vet e LP(Q) with p € [1, 400].

Among other results, we can see in [8] the following important theorem,

THEOREM A (Brezis-Merle [8]). If (u;); and (V;); are two sequences of
functions relatively to the problem (P) with, 0 < a < V; < b < 400, then,
for all compact set K of €,

supu; < c=ca,b,m, K,Q) if igfui > m.
K
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A simple consequence of this theorem is that, if we assume u; = 0 on
0%, then the sequence (u;); is locally uniformly bounded. We can find in
[8] an interior estimate if we assume a = 0, but we need an assumption on
the integral of e":.

If we assume V' with more regularity, we can have another type of es-
timates, sup +inf. It was proved by Shafrir in [22] that, if (u;);, (V;); are
two sequences of functions solutions of the previous equation without as-
sumption on the boundary and 0 < a < V; < b < 400, then we have the
following interior estimate:

C (E> supu; + infu; < ¢ = c(a,b, K, Q).
b/ g Q

b

used the Stokes formula and an isoperimetric inequality; see [6]. In [12] Chen
and Lin have used the blow-up analysis combined with some geometric type
inequality for the integral curvature.

Now, if we suppose (V;); uniformly Lipschitzian with A the Lipschitz
constant, then, C(a/b) = 1 and ¢ = ¢(a,b, A, K,Q); see Brezis-Li-Shafrir
[7]. This result was extended for Holderian sequences (V;); by Chen-Lin;
see [12]. Also, we can see in [17] an extension of the Brezis-Li-Shafrir’s
result to compact Riemann surface without boundary. We can see in [18]
explicit form (87m,m € N* exactly), for the numbers in front of the Dirac
masses, when the solutions blow-up. Here, the notion of isolated blow-up
point is used. Also, we can see in [13] and [25] refined estimates near the
isolated blow-up points and the bubbling behavior of the blow-up sequences.

On an open set  of R? we consider the following equation:

We can see in [12] an explicit value of C (2) = \/% . In [22] Shafrir has

—Au; = Vie¥ on
0<a<Vi(zr)<b< +oo, z€Q,
Vi(z) = Vi(y)| < Alz —y[*, 0<s<1, 2,y €L

Among other results, we have in [12] the following Harnack type inequality,
THEOREM B (Chen-Lin [12]). For all compact K C Q and all s €]0,1]
there is a constant ¢ = c(a,b, A, s, K,Q) such that,

sup u; + inf u; < ¢ for all .
K Q
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Here we try to prove the previous theorem by the moving-plane method
and Li-Zhang method; see [19]. The method of moving-plane was developed
by Gidas-Ni-Nirenberg; see [14]. We can see in [9] one of the applications
of this method and, in particular, the classification of the solutions of some
elliptic PDEs.

Note that in our proof we do not need a classification result for some
particular elliptic PDEs as showed in [7] and [12].

In a similar way we have in dimension n > 3, with different methods,
some a priori estimates of the type sup X inf for equation of the type:

—Au + %Rg(az)u = V(z)u+D/ =2 on M,
where R, is the scalar curvature of a riemannian manifold M, and V is a
function. The operator A = V#(V,) is the Laplace-Beltrami operator on
M.

When V = 1 and M compact, the previous equation is the Yamabe
equation. T. Aubin and R. Scheon solved the Yamabe problem, see for
example [1]. Also, we can have an idea on the Yamabe Problem in [15]. If
V' is not a constant function, the previous equation is called a prescribing
curvature equation, we have many existence results see also [1].

Now, if we look at the problem of a priori bound for the previous equa-
tion, we can see in [2], [4], [11], [16], some results concerning the sup X inf
type of inequalities when the manifold M is the sphere or more generality
a locally conformally flat manifold.

For general manifolds M of dimension n > 3 we have some Harnack type
estimates; see for example [3, 5], [19] and [20], for equation of the type,

—Au+ h(z)u = V(z)u™D/ =2 on M.

Also, there are similar problems defined on complex manifolds for the Com-
plex Monge-Ampere equation; see [23, 24]. They consider, on compact
Kahler manifold (M, g), the following equation

(wg + 00p)™ = ef*t‘i’wg,
wy + 00¢ > 0 on M
And, they prove some estimates of type sup,;(¢—1)+minfa(¢—1) < C(t)

or supy;(¢ — ¥) + minfpr(¢p — ) > C(t) under the positivity of the first
Chern class of M.
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The function 4 is a C? function such that

wg + 00y > 0 and /M ef*wwg = Voly(M),

NEw PROOF OF THE THEOREM B.
We argue by contradiction and we want to prove that

3 R >0, such that 4log R+ sup u+ inf u <e¢=c(a,b,A),
Br(0) Bar(0)

Thus, by contardition we can assume

3 (Ri)i, (ui)i R — 0, 4logR; + sup u; + inf wu; — +o0.
B, (0) B, (0)

Step 1. The blow-up analysis
For zg € Q we want to prove the theorem locally around zg. We use
the previous assertion with g = 0. The classical blow-up analysis gives the
existence of the sequence (z;); and a sequence of functions (v;); satisfying
the following properties.
We set
sup u; = u;(%;),
Br;0)

si(z) = 2log(R; — |z — z4[) + u(z), and
1

SZ(IEl) = Bsup Si, O3 = §(Rl — |:L'Z — fl|)
Ri(Z;)

Also, we set
vi(x) = wglw; + xe @2 — (), Vi(z) = Vil + zemw®)/2),
Then, with this classical selection process, we have
2log M; = u;(x;) > wi(Z;)

wi(x) < Crui(x;), V x € B(xi,04),
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where C is a constant independant of .

Also,
i\ T i .+ 4log R; > u;(7; i 1 4loe R
uil®s) + oBank) + 4log Ry 2 ui(@) + B0BR) +alog iy = oo,
and
lim Rie"@)/2 = lim oe"@0/2 = foo,
1—=+00 i—+00

Finally, we have

Av; + Vievi = 0 for |y| < R;M;,
’Ui(O) = 0,
vi(y) < Crfor |y| < oy M;,

lim;—, 400 minyy|—og, ar, (vi(y) + 4log [y[) = +oo.

Because of the classical elliptic estimates and the classical Harnack inequal-
ity, we can prove the uniform convergence on each compact of R?

v; — v when v is a solution on R? of

v(0) =0, 0 <v < Ch.
with V(0) = lim; 40 Vi(z;) and 0 < a < V(0) < b < +o0.

{Av +V(0)e¥ = 0 in R

Step 2. The moving-plane method
Here we use the Kelvin transform and the Li-Zhang’s method.
For 0 < A < A1 we define

S\ = B(0, R;M;) — B0, \).

First, we set
2

N A
T;Z.)‘ = Uz')\ —4log x| 4+ 4log A = v; (W) + 4log mv

2 2
x’\:/\—xandVi’\:V<M>,

EE NTE

M; = (=2,
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We want to compare v; and 171-)‘, we set

Wy =v; — U} .

Then
—A@f‘ = V-)‘ef’?,
Ay — ) = Vi(e — %) + (V; — VM)e™,
We have the following estimate

2

- A

Vi = V| < AM;®[af*|1 - W!s-
The auziliary function:
We take an auxiliary function hy.
Because v;(z}) < C(\1) < 400, we have

A
ha = CLM N2 (log(M/[2])) + CaM; *A**°[1 — (m)zfs], x| > A,
with 01,02 = 01,02(8,)\1) >0
log(A
i = M7= a0 2B o)

1= M|z
with C) = C%(s,\1) > 0. We can choose C; big enough to have hy < 0.

LEMMA 1. There is an Ao > 0 small enough, such that, for 0 < A <
A0, we have
wy + hy > 0.

PROOF OF THE LEMMA 1.
We set
f(r,0) = vi(rf) + 2logr,
then
of

2
E(r, 0) =< Vu;(r0)|0 > —i—;,
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According to the blow-up analysis,
drg>0, C>0, |[Vu(rd)|d > | <C, for 0 <r < ro.

Then

/
79 >0, C" >0, %(r,0)>g, 0<r<r.
or T

Case 1. IfO< A< |yl <ro
wx(y) + ha(y) = vily) — v} (y) + haly) > C(log |y — log [y*]) + ha(y),

by the definition of hy, we have, for C,Cy > 0 and 0 < X < |y| < ro,

log |y| — log |y
ly| — A

w(y) + haly) > (lyl = N)[C — AT Co M),

but
A NS
[yl =11 > ol =A> 0, and y’| = 7.
thus,

wy(y) + ha(y) > 0if A < X5, A) (small), and 0 < X < |y| < ro.

Case 2. Ifrg <|y| < R;M;

v; > minv; = Cil U{\(y) < C1(A1,1m0), if 7o < |y| < R; M;.
Thus, in rg < |y| < R;M; and A < A\, we have,

wy + hy > C; — 4log X + 4logrg — C' A\ 2F8
then, if A — 0, —log A\ — 400, and

wy + hy >0, if A< X\ (small), and ro < |y| < R;M;. O

As in Li-Zhang paper, see [19], by the maximum principle and the Hopf
boundary lemma, we have
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LEMMA 2. Let \; be a positive number such that
Ai = sup{\ < A1, wy—+hy >0 in Xy}

Then .
i = M.

PrROOF OF THE LEMMA 2.
The blow-up analysis gives the following inequality for the boundary
condition.
For y = |y|0 = R;M;0 we have
wyi(lyl = Rib) + hyi(ly| = Rib;) =
= ui(z; + Ri0) — ui(x;) — vi(R;M;) — 4log A + 4log(R; M;) +

A yzes)

Mfs 2+s 1—

because
4log R; + ui(x;) + inf wu; — +oo,

Bsr, (0

which we can write
wyi(ly| = RiM;) + hyi(ly| = RiM;) >
> min w; + ui(z;) +4log Ry — C(s, A1) — 400,
Bsng, (0)
because, 0 < A < Aq.
Finally, we have
ws (y) + s (y) >0 V |y = RiM;,

Now, we have

Awy + EVwy = Ey in Xy,
where £ stays between v; and v?, and
B\ = —(V; — Ve
Thus to prove that

(A -f—fVi)(w)\ + h>\) <0in X,
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it sufficies to prove that
Ahy+ (Vi)hy + E\ <0in 3.

But we have
hy <0,
|Ex| < COMM;°Jy| = in X,

and
Ahy = —C1\* M 5|y| =% in %,.

We can use the maximum principle and the Hopf lemma to have
wsy, + h;\i >0, in X,
and

a%(wii +hy) >0, in 9B(0, ;).

From above we conclude that A\; = A\; and lemma 2 is proved. [

Conclusion
As in [19], we have

Y AL >0, v(y) > o My), Yy > A VO< <AL
And the same argument may be used to have
VA1 >0, v(y) > v)"m(y), Vaz,yly—xz| > A VO< A<,
where

Ny — )

A
g — 22 ) +4log —.

M (y) = v; <x+ ly — x|

This implies that v is a constant, and because v(0) = 0, v = 0 contradicting
the fact that
—Av =V(0)e".
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