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Note on the Chen-Lin Result with

the Li-Zhang Method

By Samy Skander Bahoura

Abstract. We give a new proof of the Chen-Lin result with the
method of moving sphere in a work of Li-Zhang.

Introduction and Results

We set ∆ = ∂11 + ∂22 the Laplace-Beltrami operator on R
2.

On an open set Ω of R
2 with a smooth boundary we consider the fol-

lowing problem:

(P )

{
−∆u = V (x)eu in Ω,

0 < a ≤ V (x) ≤ b < +∞.

The previous equation is called the Prescribed Scalar Curvature equation in
relation with conformal change of metrics. The function V is the prescribed
curvature.

Here, we try to find some a priori estimates for sequences of the previous
problem.

Equations of this type were studied by many authors, see [7, 8, 10, 12,
13, 17, 18, 21, 22, 25]. We can see in [8] different results for the solutions
of those type of equations with or without boundary conditions and, with
minimal conditions on V , for example we suppose V ≥ 0 and V ∈ Lp(Ω) or
V eu ∈ Lp(Ω) with p ∈ [1,+∞].

Among other results, we can see in [8] the following important theorem,

Theorem A (Brezis-Merle [8]). If (ui)i and (Vi)i are two sequences of
functions relatively to the problem (P ) with, 0 < a ≤ Vi ≤ b < +∞, then,
for all compact set K of Ω,

sup
K

ui ≤ c = c(a, b, m, K,Ω) if inf
Ω

ui ≥ m.
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A simple consequence of this theorem is that, if we assume ui = 0 on
∂Ω, then the sequence (ui)i is locally uniformly bounded. We can find in
[8] an interior estimate if we assume a = 0, but we need an assumption on
the integral of eui .

If we assume V with more regularity, we can have another type of es-
timates, sup + inf. It was proved by Shafrir in [22] that, if (ui)i, (Vi)i are
two sequences of functions solutions of the previous equation without as-
sumption on the boundary and 0 < a ≤ Vi ≤ b < +∞, then we have the
following interior estimate:

C
(a

b

)
sup
K

ui + inf
Ω

ui ≤ c = c(a, b, K,Ω).

We can see in [12] an explicit value of C
(a

b

)
=

√
a

b
. In [22] Shafrir has

used the Stokes formula and an isoperimetric inequality; see [6]. In [12] Chen
and Lin have used the blow-up analysis combined with some geometric type
inequality for the integral curvature.

Now, if we suppose (Vi)i uniformly Lipschitzian with A the Lipschitz
constant, then, C(a/b) = 1 and c = c(a, b, A, K,Ω); see Brezis-Li-Shafrir
[7]. This result was extended for Hölderian sequences (Vi)i by Chen-Lin;
see [12]. Also, we can see in [17] an extension of the Brezis-Li-Shafrir’s
result to compact Riemann surface without boundary. We can see in [18]
explicit form (8πm, m ∈ N

∗ exactly), for the numbers in front of the Dirac
masses, when the solutions blow-up. Here, the notion of isolated blow-up
point is used. Also, we can see in [13] and [25] refined estimates near the
isolated blow-up points and the bubbling behavior of the blow-up sequences.

On an open set Ω of R
2 we consider the following equation:


−∆ui = Vie

ui on Ω,

0 < a ≤ Vi(x) ≤ b < +∞, x ∈ Ω,

|Vi(x) − Vi(y)| ≤ A|x − y|s, 0 < s ≤ 1, x, y ∈ Ω.

Among other results, we have in [12] the following Harnack type inequality,

Theorem B (Chen-Lin [12]). For all compact K ⊂ Ω and all s ∈]0, 1]
there is a constant c = c(a, b, A, s, K,Ω) such that,

sup
K

ui + inf
Ω

ui ≤ c for all i.
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Here we try to prove the previous theorem by the moving-plane method
and Li-Zhang method; see [19]. The method of moving-plane was developed
by Gidas-Ni-Nirenberg; see [14]. We can see in [9] one of the applications
of this method and, in particular, the classification of the solutions of some
elliptic PDEs.

Note that in our proof we do not need a classification result for some
particular elliptic PDEs as showed in [7] and [12].

In a similar way we have in dimension n ≥ 3, with different methods,
some a priori estimates of the type sup× inf for equation of the type:

−∆u +
n − 2

4(n − 1)
Rg(x)u = V (x)u(n+2)/(n−2) on M,

where Rg is the scalar curvature of a riemannian manifold M , and V is a
function. The operator ∆ = ∇i(∇i) is the Laplace-Beltrami operator on
M .

When V ≡ 1 and M compact, the previous equation is the Yamabe
equation. T. Aubin and R. Scheon solved the Yamabe problem, see for
example [1]. Also, we can have an idea on the Yamabe Problem in [15]. If
V is not a constant function, the previous equation is called a prescribing
curvature equation, we have many existence results see also [1].

Now, if we look at the problem of a priori bound for the previous equa-
tion, we can see in [2], [4], [11], [16], some results concerning the sup× inf
type of inequalities when the manifold M is the sphere or more generality
a locally conformally flat manifold.

For general manifolds M of dimension n ≥ 3 we have some Harnack type
estimates; see for example [3, 5], [19] and [20], for equation of the type,

−∆u + h(x)u = V (x)u(n+2)/(n−2) on M.

Also, there are similar problems defined on complex manifolds for the Com-
plex Monge-Ampere equation; see [23, 24]. They consider, on compact
Kahler manifold (M, g), the following equation{

(ωg + ∂∂̄φ)n = ef−tφωn
g ,

ωg + ∂∂̄φ > 0 on M

And, they prove some estimates of type supM (φ−ψ)+m infM (φ−ψ) ≤ C(t)
or supM (φ − ψ) + m infM (φ − ψ) ≥ C(t) under the positivity of the first
Chern class of M.
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The function ψ is a C2 function such that

ωg + ∂∂̄ψ ≥ 0 and
∫

M
ef−tψωn

g = V olg(M),

New Proof of the Theorem B.
We argue by contradiction and we want to prove that

∃ R > 0, such that 4 log R + sup
BR(0)

u + inf
B2R(0)

u ≤ c = c(a, b, A),

Thus, by contardition we can assume

∃ (Ri)i, (ui)i Ri → 0, 4 log Ri + sup
BRi

(0)
ui + inf

B2Ri
(0)

ui → +∞.

Step 1. The blow-up analysis
For x0 ∈ Ω we want to prove the theorem locally around x0. We use

the previous assertion with x0 = 0. The classical blow-up analysis gives the
existence of the sequence (xi)i and a sequence of functions (vi)i satisfying
the following properties.

We set
sup

BRi(0)

ui = ui(x̄i),

si(x) = 2 log(Ri − |x − x̄i|) + ui(x), and

si(xi) = sup
BRi(x̄i)

si, σi =
1
2
(Ri − |xi − x̄i|).

Also, we set

vi(x) = ui[xi + xe−ui(xi)/2] − ui(xi), V̄i(x) = Vi[xi + xe−ui(xi)/2],

Then, with this classical selection process, we have

2 log Mi = ui(xi) ≥ ui(x̄i)

ui(x) ≤ C1ui(xi), ∀ x ∈ B(xi, σi),
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where C1 is a constant independant of i.
Also,

ui(xi) + min
∂B(xi,Ri)

ui + 4 log Ri ≥ ui(x̄i) + min
B(0,2Ri)

ui + 4 log Ri → +∞,

and
lim

i→+∞
Rie

ui(xi)/2 = lim
i→+∞

σie
ui(xi)/2 = +∞.

Finally, we have


∆vi + V̄ie
vi = 0 for |y| ≤ RiMi,

vi(0) = 0,

vi(y) ≤ C1 for |y| ≤ σiMi,

limi→+∞ min|y|=2RiMi
(vi(y) + 4 log |y|) = +∞.

Because of the classical elliptic estimates and the classical Harnack inequal-
ity, we can prove the uniform convergence on each compact of R

2

vi → v when v is a solution on R
2 of{

∆v + V (0)ev = 0 in R
2,

v(0) = 0, 0 < v ≤ C1.

with V (0) = limi→+∞ Vi(xi) and 0 < a ≤ V (0) ≤ b < +∞.

Step 2. The moving-plane method
Here we use the Kelvin transform and the Li-Zhang’s method.
For 0 < λ < λ1 we define

Σλ = B(0, RiMi) − B(0, λ).

First, we set

v̄λ
i = vλ

i − 4 log |x| + 4 log λ = vi

(
λ2x

|x|2
)

+ 4 log
λ

|x| ,

xλ =
λ2x

|x|2 and V̄ λ
i = V̄i

(
λ2x

|x|2
)

,

Mi = eui(xi)/2.
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We want to compare vi and v̄λ
i , we set

wλ = vi − v̄λ
i .

Then
−∆v̄λ

i = V̄ λ
i ev̄λ

i ,

−∆(vi − v̄λ
i ) = V̄i(evi − ev̄λ

i ) + (V̄i − V̄ λ
i )ev̄λ

i ,

We have the following estimate

|V̄i − V̄ λ
i | ≤ AM−s

i |x|s|1 − λ2

|x|2 |
s. �

The auxiliary function:
We take an auxiliary function hλ.
Because vi(xλ) ≤ C(λ1) < +∞, we have

hλ = C1M
−s
i λ2(log(λ/|x|)) + C2M

−s
i λ2+s[1 − (

λ

|x|)
2−s], |x| > λ,

with C1, C2 = C1, C2(s, λ1) > 0

hλ = M−s
i λ2(1 − λ/|x|)(C1

log(λ/|x|)
1 − λ/|x| + C ′

2),

with C ′
2 = C ′

2(s, λ1) > 0. We can choose C1 big enough to have hλ < 0.

Lemma 1. There is an λi,0 > 0 small enough, such that, for 0 < λ <

λi,0, we have
wλ + hλ > 0.

Proof of the Lemma 1.
We set

f(r, θ) = vi(rθ) + 2 log r,

then
∂f

∂r
(r, θ) =< ∇vi(rθ)|θ > +

2
r
,



Note on the Chen-Lin Result with the Li-Zhang Method 435

According to the blow-up analysis,

∃ r0 > 0, C > 0, |∇vi(rθ)|θ > | ≤ C, for 0 ≤ r < r0.

Then

∃ r0 > 0, C ′ > 0,
∂f

∂r
(r, θ) >

C ′

r
, 0 < r < r0.

Case 1. If 0 < λ < |y| < r0

wλ(y) + hλ(y) = vi(y) − vλ
i (y) + hλ(y) > C(log |y| − log |yλ|) + hλ(y),

by the definition of hλ, we have, for C, C0 > 0 and 0 < λ ≤ |y| < r0,

wλ(y) + hλ(y) > (|y| − λ)[C
log |y| − log |yλ|

|y| − λ
− λ1+sC0M

s
i ],

but

|y| − |yλ| > |y| − λ > 0, and |yλ| =
λ2

|y| ,

thus,

wλ(y) + hλ(y) > 0 if λ < λi
0, λ

i
0 (small), and 0 < λ < |y| < r0.

Case 2. If r0 ≤ |y| ≤ RiMi

vi ≥ min vi = C1
i , vλ

i (y) ≤ C1(λ1, r0), if r0 ≤ |y| ≤ RiMi.

Thus, in r0 ≤ |y| ≤ RiMi and λ ≤ λ1, we have,

wλ + hλ ≥ Ci − 4 log λ + 4 log r0 − C ′λ1
2+s

then, if λ → 0, − log λ → +∞, and

wλ + hλ > 0, if λ < λi
1, λ

i
1 (small), and r0 < |y| ≤ RiMi. �

As in Li-Zhang paper, see [19], by the maximum principle and the Hopf
boundary lemma, we have
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Lemma 2. Let λ̃i be a positive number such that

λ̃i = sup{λ < λ1, wλ + hλ > 0 in Σλ}.

Then
λ̃i = λ1.

Proof of the Lemma 2.
The blow-up analysis gives the following inequality for the boundary

condition.
For y = |y|θ = RiMiθ we have

wλi(|y| = RiMi) + hλi(|y| = RiMi) =

= ui(xi + Riθ) − ui(xi) − vi(RiMi) − 4 log λ + 4 log(RiMi) +

+ C(s, λ1)M−s
i λ2+s[1 − (

λ

RiMi
)2−s],

because
4 log Ri + ui(xi) + inf

B2Ri
(0)

ui → +∞,

which we can write

wλi(|y| = RiMi) + hλi(|y| = RiMi) ≥
≥ min

B2Ri
(0)

ui + ui(xi) + 4 log Ri − C(s, λ1) → +∞,

because, 0 < λ ≤ λ1.
Finally, we have

wλ̃i
(y) + hλ̃i

(y) > 0 ∀ |y| = RiMi,

Now, we have
∆wλ + ξViwλ = Eλ in Σλ,

where ξ stays between vi and vλ
i , and

Eλ = −(Vi − V λ
i )ev̄λ

i .

Thus to prove that

(∆ + ξVi)(wλ + hλ) ≤ 0 in Σλ,
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it sufficies to prove that

∆hλ + (ξVi)hλ + Eλ ≤ 0 in Σλ.

But we have
hλ < 0,

|Eλ| ≤ C1λ
4M−s

i |y|−4+s in Σλ,

and
∆hλ = −C1λ

4M−s
i |y|−4+s in Σλ.

We can use the maximum principle and the Hopf lemma to have

wλ̃i
+ hλ̃i

> 0, in Σλ,

and
∂

∂ν
(wλ̃i

+ hλ̃i
) > 0, in ∂B(0, λ̃i).

From above we conclude that λ̃i = λ1 and lemma 2 is proved. �

Conclusion
As in [19], we have

∀ λ1 > 0, v(y) ≥ vλ(y), ∀|y| ≥ λ, ∀ 0 < λ < λ1.

And the same argument may be used to have

∀ λ1 > 0, v(y) ≥ vλ,x(y), ∀ x, y |y − x| ≥ λ, ∀ 0 < λ < λ1,

where

vλ,x(y) = vi

(
x +

λ2(y − x)
|y − x|2

)
+ 4 log

λ

|y − x| .

This implies that v is a constant, and because v(0) = 0, v ≡ 0 contradicting
the fact that

−∆v = V (0)ev.
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