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Stabilizing Effect of Diffusion and Dirichlet Boundary

Conditions

By Ondrej Budáč and Marek Fila

Abstract. It is known that diffusion together with Dirichlet
boundary conditions can inhibit the occurrence of blow-up. We ex-
amine the question how strong is this stabilizing effect for reaction-
diffusion equations in one space-dimension. We show that if all positive
solutions of an ODE blow up in finite time then for the correspond-
ing parabolic PDE (obtained by adding diffusion and the Dirichlet
boundary condition) there is either an unbounded sequence of station-
ary solutions or an unbounded time-dependent solution.

1. Introduction

Consider the problem


ut = uxx + f(u), |x| < L, t > 0,

u(±L, t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, |x| ≤ L,

(1)

where L > 0, u0 ∈ C([−L,L]) and f ∈ C1([0,∞)) satisfies

f(u) > 0 for u > 0,(2)

∫ ∞

1

du

f(u)
< ∞.(3)

Under these assumptions, the solution of the initial value problem{
Ut = f(U),

U(0) = U0

(4)
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blows up for every U0 > 0. However, it was shown in [2] that there is a

smooth function f satisfying (2), (3) such that the solution of (1) is global

and bounded for every bounded u0, see also [1] and Section 19.3 in [3].

In this paper, we are interested in the question how strong is the stabi-

lizing effect of the diffusion together with the Dirichlet boundary condition.

More precisely, we address the question whether or not there is a function f

satisfying (2), (3) such that the solution u of (1) is global for every bounded

u0 and there is a constant C > 0 which depends on L and f but not on u0

such that

lim
t→∞

‖u(·, t)‖C([−L,L]) ≤ C.

For the nonlinearities from the examples in [2] or [1] there exists an un-

bounded sequence of solutions of{
vxx + f(v) = 0, |x| < L, v ≥ 0,

v(±L) = 0,
(5)

which means that a constant C with the required property does not exist,

see the remark after Proposition 3.1.

If f(u) = ku, k > 0, then the solution of (4) grows exponentially for

every U0 > 0 but the solution of (1) decays to zero exponentially if L <

π/
√
k. We wonder if a similar change of behavior may occur for some

superlinear function f .

In [2], one can find an example of a pair of functions f, g such that some

solutions of the system

Ut = f(U, V ),

Vt = g(U, V ),

blow up in finite time while all solutions of the corresponding parabolic

system

ut = d1∆u + f(u, v), x ∈ Ω, t > 0,

vt = d2∆v + g(u, v), x ∈ Ω, t > 0,

d1, d2 > 0, with the Dirichlet boundary condition

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,
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are global and converge to zero as t → ∞.

We denote the set of all solutions of (5) by S. If f satisfies (2) then it

is very easy to see that S is ordered. This means that if v1, v2 ∈ S, v1 �≡ v2

then either v1(x) < v2(x) or v1(x) > v2(x) for |x| < L.

Our main result is the following:

Theorem 1.1. Let L > 0 be arbitrary. Assume that f ∈ C1([0,∞))

satisfies (2) and

lim sup
u→∞

F (u)

u2
= ∞, F (u) :=

∫ u

0
f(v) dv.(6)

Then one of the following holds:

(i) S = ∅ and for every u0 ∈ C([−L,L]), u0 ≥ 0, there is 0 < Tmax ≤ ∞
such that

lim
t↑Tmax

max
|x|≤L

u(x, t) = ∞;(7)

(ii) S �= ∅, S is bounded, and if v∗ ∈ S is the maximal stationary solution

then for every u0 ∈ C([−L,L]), u0 ≥ v∗, u0 �≡ v∗, there is 0 < Tmax ≤ ∞
such that (7) holds;

(iii) S �= ∅, and there is a sequence {vn} ⊂ S such that

lim
n→∞

vn(0) = ∞.

We show in Proposition 2.1 that (3) implies (6). It follows then from

Theorem 1.1 that the diffusion and the Dirichlet boundary condition are

not able to create a bounded set which would attract all solutions of (1)

even if the growth of f is weaker than in (3). In particular, if f satisfies (2),

(6) and is such that the solution u of (1) is global for every bounded initial

function u0 then the set S of all stationary solutions is unbounded (as in

the examples from [1], [2]).

As an example of a function f for which (i) occurs when L is large

enough, we can take f(u) = u log(u + a), a > 1 (then Tmax = ∞ for every

u0 ≥ 0) or f(u) = eu (then Tmax < ∞ for every u0).

The second case (ii) occurs for instance if f(u) = up, p > 1, and L > 0

is arbitrary. Then S = {0, v∗} and Tmax < ∞ for every u0 ≥ v∗, u0 �≡ v∗.
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Some sufficient conditions under which S = ∅, S �= ∅ is bounded or S is

unbounded will be given in Section 3.

Section 2 is devoted to the proof of the fact that (3) implies (6). We

study the set S in Section 3 and prove Theorem 1.1 in Section 4.

2. Growth of the Nonlinearity f

Proposition 2.1. Let f ∈ C([0,∞)) satisfy (2) and (3). Then

lim
u→∞

F (u)

u2
= ∞.

Proof. Suppose that

lim inf
u→∞

F (u)

u2
< ∞.

Then there are c > 0 and an increasing sequence {un}∞n=1 such that

lim
n→∞

un = ∞,
F (2un)

u2
n

≤ c.

Thus we have

u2
n =

(∫ 2un

un

ds

)2

≤
∫ 2un

un

f(s) ds

∫ 2un

un

ds

f(s)
≤ F (2un)

∫ 2un

un

ds

f(s)

≤ cu2
n

∫ 2un

un

ds

f(s)
,

hence ∫ 2un

un

ds

f(s)
≥ 1

c
,

which contradicts (3). �

3. Stationary Solutions

In this section we study the set S of solutions of (5). It is well known

that v is a nontrivial solution of (5) if and only if the equation

T (m) :=
1√
2

∫ m

0

ds√
F (m) − F (s)

= L(8)
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has a solution m > 0. Then

m = v(0) = max
|x|≤L

v(x), v(x) = v(−x),

and v is given by the formula

1√
2

∫ m

v(x)

ds√
F (m) − F (s)

= |x|.

Proposition 3.1. Let f ∈ C([0,∞)) satisfy (2). Then

lim inf
m→∞

T (m) = 0(9)

if and only if

lim sup
u→∞

F (u)

u2
= ∞.(10)

Proof. Assume that (10) holds. Choose a > 0, an integer n >

2F (a)/a2, and the smallest number un > a such that

F (un)

u2
n

= n.

Then take yn ∈ (a, un) such that

F (yn)

y2
n

=
n

2
and

n

2
≤ F (z)

z2
≤ n for z ∈ [yn, un].

Now we find an upper bound for T (un):

T (un) =
1√
2

∫ un

0

ds√
F (un) − F (s)

=
1√
2

(∫ yn

0

ds√
F (un) − F (s)

+

∫ un

yn

ds√
F (un) − F (s)

)

=:
1√
2
(I1 + I2),
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where

I2 ≤
∫ un

yn

ds√
nu2

n − ns2
≤ 1√

n

∫ un

0

ds√
u2
n − s2

=
π

2
√
n
,

and

I1 ≤
∫ yn

0

ds√
F (un) − F (yn)

=
yn√

nu2
n − ny2

n/2
≤ un√

nu2
n − nu2

n/2
=

√
2

n
.

It follows that

T (un) ≤ 1√
2

(
π

2
√
n

+

√
2

n

)
→ 0 as n → ∞.

Since un → ∞, we obtain (9).

Next we prove that (9) implies (10). Suppose (10) does not hold. Then

there is M > 0 such that F (m) < Mm2 for m > 1, and

T (m) =
1√
2

∫ m

0

ds√
F (m) − F (s)

≥ 1√
2

∫ m

0

ds√
F (m)

=
m√

2F (m)
.

Therefore,

T (m) >
1√
2M

for m > 1. �

Remark. From Propositions 2.1, 3.1 it follows that if f is as in [1] or

[2] then (9) holds. On the other hand, the construction of f in [1] or [2]

immediately yields that

lim sup
m→∞

T (m) = ∞.

This means that for every L > 0 there is a sequence {mn}∞n=1, mn → ∞, of

solutions of (8).

Next we continue our study of the behavior of T (m) as m → ∞.
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Proposition 3.2. Let f ∈ C([0,∞)) satisfy (2). Then

(i) lim
u→∞

f(u)

u
= ∞ implies that lim

m→∞
T (m) = 0,

(ii) lim inf
u→∞

f(u)

u
> 0 implies that lim sup

m→∞
T (m) < ∞,

(iii) lim inf
u→∞

F (u)

u2
= 0 implies that lim sup

m→∞
T (m) = ∞.

Proof. (i) For every n > 0 there is a > 0 such that

f(u) > nu for u > a.(11)

Choose m > 2a. We find an upper bound for T (m) as follows:

T (m) =
1√
2

∫ m

0

ds√
F (m) − F (s)

=
1√
2

(∫ a

0

ds√
F (m) − F (s)

+

∫ m

a

ds√
F (m) − F (s)

)

=:
1√
2
(I1 + I2).

To estimate I1 we use (11):

F (m) − F (s) > F (m) − F (a) =

∫ m

a
f(u) du >

n

2
(m2 − a2) >

3

2
na2.

Hence

I1 <

√
2

3n
.

From the mean value theorem and (11) we have for some y ∈ (s,m) that

F (m) − F (s) = f(y)(m− s) > ny(m− s) > ns(m− s), s > a.

Therefore

I2 <

∫ m

a

ds√
ns(m− s)

<
1√
n

∫ m

0

ds√
s(m− s)

=
π√
n
,
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and

T (m) <
1√
3n

+
π√
2n

.

To prove (ii) we proceed similarly. Under our assumption, there exist

c, a > 0 such that

f(u) > cu for u > a.

We can now repeat the proof of (i) with n replaced by c to obtain that

T (m) <
1√
3c

+
π√
2c

for m > 2a.

To show (iii) we choose a sequence {εn}, εn → 0, and {mn}, mn → ∞,

such that F (mn) < εnm
2
n. Then

T (mn) =
1√
2

∫ mn

0

ds√
F (mn) − F (s)

>
1√
2

∫ mn

0

ds√
F (mn)

>
1√
εn

. �

From Proposition 3.2 one can draw some conclusions about the solvabil-

ity of (8). For example, if f is as in Proposition 3.2 (iii) and satisfies (10)

then S is unbounded for every L > 0.

If f is as in Proposition 3.2 (i) then S = ∅ or S �= ∅ is bounded.

If f(0) = 0 and f ′(0) > 0 or f(0) > 0 (which guarantees that

limm→0 T (m) < ∞, see [4]) and f is as in Proposition 3.2 (ii) then S = ∅ if

L is large enough.

If f(0) = f ′(0) = 0 (which implies that limm→0 T (m) = ∞, see [4]) and

(10) holds then S �= ∅ for every L > 0.

4. Proof of Theorem 1.1

Proof. Assume that S �= ∅, S is bounded and v∗ �≡ 0. Let m∗ = v∗(0)

be the largest root of (8). Proposition 3.1 guarantees that (9) holds, thus

T (m∗ + ε) < L for ε > 0. Let wε denote the solution of the initial value

problem

wxx + f(w) = 0,

w(0) = m∗ + ε, wx(0) = 0.
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Then there is a unique xε ∈ (0, L) such that wε(xε) = v∗(xε). Set

ϕε(x) =

{
wε(x), |x| ≤ xε,

v∗(x), xε < |x| ≤ L.

For the solution uε of (1) with u0(x) = ϕε(x) we have that uεt (x, t) ≥ 0 for

(x, t) ∈ [−L,L] × (0, T ε
max) where T ε

max ≤ ∞ is the maximal existence time

of uε, see Section 52.6 in [3]. We can now easily see that uε cannot stay

bounded because then T ε
max = ∞ (cf. Section 16 in [3]) and uε(x, t) → ψε(x)

as t → ∞ where ψε ∈ S, ψε > v∗ in (−L,L), see Lemma 53.10 in [3].

If u0 is as in Theorem 1.1 (ii) then for every τ ∈ (0, Tmax) there is ε > 0

such that u(·, τ) ≥ ϕε in [−L,L] and it follows by comparison that u is

unbounded.

If f(0) = 0 and S = {0} then we modify the argument slightly. In this

case, there is no solution of (8) but we can repeat the proof with v∗ ≡ 0

and wε which is the solution of

wxx + f(w) = 0,

w(0) = ε, wx(0) = 0.

If S = ∅ then necessarily f(0) > 0 and the solution u of (1) with u0 ≡ 0

cannot stay bounded. �
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