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Uniform Estimate for Distributions of the Sum
of i.i.d. Random Variables with Fat Tazl

By Hirotaka FUsHIYA and Shigeo KUSUOKA*

Abstract. The research on asymptotic behavior of distributions
of the sum of i.i.d random variables has a long history and a lot of
facts are known. The authors consider the case where the distribution
of a random variable has the second moment but has a fat tail, and
they show a new limit theorem for large deviations.

1. Introduction

Let (Q,F, P) be a probability space and X,,, n =1,2,..., be indepen-
dent identically distributed random variables with the same probability law
fb-

In the present paper we assume that
(A-1) E[X?] =1 and E[X;] = 0.

Let F: R — [0,1] and F : R — [0, 1] be given by

F(z) = p((—o0,z]) = P(X1 £ x) and
F(z) = p((z,0)) = P(X1 > 1), z € R.

We also assume the following.
(A-2) F(x) is a regularly varying function of index —« for some a > 2, as
T — 00, l.e., if we let

L(z) = 2%F(z), x =1,

then L(xz) > 0 for any « = 1, and for any a > 0

L(ax)
L(x)

— 1, T — 00.

*Research supported by the 21st century COE project, Graduate School of Mathe-
matical Sciences, The University of Tokyo.
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(A-3) |x|*T2F(z) -0, x— —oo.

Recently people in finance are interested in computing the quantile of
the distribution of >~} _; X}, for the purpose of measuring market risk.

There are many works on this topic. In particular, there are many re-
sults on large deviation results (e.g. Borovkov-Borovkov [1], also see books,
Borovkov-Borovkov [2] and Petrov [7]). However, there are not so many re-
sults on uniform estimates. Nagaev [5] and [6] proved the following theorem
(also see Linnik [4]), and this is the best result so far to our best knowledge.

THEOREM 1 (Nagaev). Assume (A-1)-(A-3). Then we have

P30 Xy, > sn'/?)
sup B on1/2
s€[1,00) @0(8) + nF(Sn )

—1]—0, n — oo.

Here ®p : R — R is given by

Dy () ex ——d, x € R.
of \/ﬁ/ p )dy

In this paper, we show two theorems. Combining them, we can improve
Nagaev’s result a little bit.

Let us explain our results. We assume the following assumption further-
more.
(A-4) The probability law pu is absolutely continuous and has a density
function p : R — [0,00) which is right continuous and has a finite total
variation.

To state our theorem (Theorem 2), we need some preparations.

Let K be an integer such that K — 1 < o £ K. Then K = 3. From
the assumptions (A-2) and (A-3), we see that the probability law p has
(K — 1)-th moment. So let g, k=1,... , K — 1, be given by

UkZ/kaM(dw)

Then we see that 171 = 0 and 7o = 1. Also, let us define &, : R — R,
k=1,2,..., by

‘I)l (.I) =
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and i
-1
k-1 d

Pp(z) = (—1) dak—1

‘I)l(l‘), k‘:2,3,....

THEOREM 2. Assume (A-1)-(A-4). Then there are 6 > 0 and C > 0
such that

sup ]P(Z Xj, > sn'/?) — G(n,s)| < Cn~(@72)/279 n=34....
s€[1,00) b—1

Here
G(n,s)
s K-1  _(k-2)/2 00
_ n 1/2 n k
—<I>0(5)—|—n/ F((s — 2)n/2)d; (a)dz — Tcpk(s)/ o u(dz)
—0o0 E—1 . 0
n” (K272 ' K - k/6 1/3
+T¢K(S)/ x /_,L(dl‘) + Z n- / Qk‘(n_ / y N2y - - ﬂ?k)(bk(s)
- k=3

3(K-1)
+ > (T, k1,0, 0)®(s),
k=K

and q’s are polynomials defined in the next section.

For the next theorem we assume the following also.
(A-5) There is an 2o > 0 such that F' is twice continuously differentiable on
(xo,00) and that

2

svgwlog[:’(x)ea, T — 00.

Then we have the following.

THEOREM 3. Assume the assumptions (A-1)- (A-5) and let 3 : N —
(0,00) be such that

B(n)
(logn)!/2

— 00, n — 00.
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Then we have

2 PO X > 1
sup 8—| (Zkzl £>5) (1+ oa s n +2 )n)’ — 0, n — oo.
s=nl/28(n) n TLF(S) 2s
Let
H(n, s)

s 2 —(k—2)/2 oo

= Dq(s) + n/ F((s — 2)n'?)®, (x)dx — Z niq)k(s) / 2* pu(dax)
oo — k! 0

fors 2 1,and n = 1.

Then we also show the following.

THEOREM 4. Assume (A-1)-(A-5). Then there exist a C > 0,5 > 0
and ng = 1 such that

sup P(Sic Xie > sn'/?) —1]<Cn™® n 2 ng.
s€[1,00) H(”? S) N 7 N

Note that by Theorem 3, we see that

P> Xk > (logn)nl/Q)

2o (G g n) + nF(logmyn ™)

—1) = ala+1) n — oo.
Therefore we see that H(n,s) is a better approximation for
P(Y 7 X > sn'/?) than ®g(s) + nF(sn'/?).
The authors thank the referee for useful comments.

2. Algebraic Preparation

In this section, we think of formal power series in z. First, we think of
the following formal power series in z.

— ki — (D' S ar ke o a
(1) log(1+zyz ):Z 7 (Zﬁz ) :Zq(ag,...,ag)ﬁ

k=2 (=1 k=2 (=2 ’
Then we see that c¢(ag, ... ,ap), £ = 2, are polynomials in ag, ... , az, and

co(t?ag, . .. ,tzag) = 75£0g(CL17 cee,ap)
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for any t,a1,...,ar € R. Moreover, we see that
ca(az) = az and c¢y(ag,...,ap—1,a¢) = ce(ag, ... ,ar—1,0) + ay,

We also think of the following formal power series in z.

022

83

, g

.- (y2)*
-3
exp(y ZC((CLQ, ) 7 )
(=3
© 1 X Y32t o0
k k
(2) = 1+ZH(ZC£(G2"" 7015)T> =1 +qu<y7a2>"' ,CLk)Z :
k=1 (=3 k=3
Then we see that qx(y,as,...,ar), k = 3, are polynomials in y, as, . ..
Note that

Qk(ya t2a2 cee atkak’) = tqu(ya az, ... 7ak)

and that
yk—?)
Qk(y7a27 cee aak) = qk(y7 ag, ... 7ak—1a0) + Tak, k=3
Also we have
3 o 32’ y4
exp(y° ZC[(G,Q, ce,ag) (yﬂ ) )
(=3
0 2. \¢
_ Yz
= exp((y?) SZCg(yQCLQ,... ,yzag)( €'> )
=3 )

o oo
B) =14+ @@’ v’a, ... . yFa) =14 yra v’ a, ... ar)2"

k=3 k=3

as a formal power series in z.
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3. Property of the Function L

PrRoPOSITION 5. We have

L(ax)

sup — 1, T — 00,
1/2<a<2 L(z)
and I
inf (az) — 1, T — 00.

1/2<a<2 L(x)

PROOF. Since the proof is similar, we prove the first equation only. If
not, there are € > 0, {a,}°°; and {z,}>°, such that 1/2 < a,, <2, z, = 1,
n=12,...,x, — 00, n — oo, and that

L(apxy)

——~ >1+4¢, n=12,....
L(zn)

Then taking a subsequence if necessary, we may assume that there is an
a € [1/2,2] such that a,, — a, n — oco. Then we see that for any m = 3
there is a n(m) = 1 such that

(0= ) L0~ o) = Fl(a— - Jra) Z Flanza)
= a, “L(apxy,), n 2 n(m).
So we have
— L -« im L(anxn) c m
B o e 23

Since m is arbitrary, this implies a contradiction. [

PROPOSITION 6. For any e € (0,1), there is an M 2 1 such that

PROOF. For any ¢ € (0, 1) there is an m = 1 such that

em

—1]=se x

v
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Let

Then we have

Cm(1—e)" <

So we have for any x,y = 1
(e tyx) " L(e"x) 2 (") T L(e" ) 2 (yx) T L(ya)

> (") L(c"2) 2 (eyz) L(e"a),

which implies

C—me—a(l _ E)n g L(yx) g Cmea(l + 2,:_)n—l.

Therefore we have

C—me—a<1 o E)ylog(l—e) § L(y.’lj) é Cmeaylog(l-i-e)’ T Z 1,y Z 1.

This implies our assertion. [

The following is known as Karamata’s theorem (c.f.[3] Appendix ), but
we give a proof.

PROPOSITION 7. (1) For any B < —1,

1 o 1
- B .- R
e 1L(t)/t 2’ L(z)dx 1 t — oo.

(2) For any > —1,

1 t 1
- 8 N s
tﬂHL(t)/l x” L(z)dx ) t — oo.
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(3) Let f :[1,00) — (0,00) be given by

t
f(t):/ (e £
1
Then f is slowly varying.

Proor. Note that for ¢t > 1

1 o0 3 A BL(tx) . B
7755*1L(t)/t T L(x)dm/1 T 70 de, if 8 < —1

and . . 0
1 L(t
e AL d:/ A=) e if B> —1
e J, < He = [ gy e
Then the assertions (1) and (2) follow from this equation and Proposition 5.
Let us prove (3). If limy_.o f(t) < oo, the assertion is obvious. So we
assume that lim;_,o f(t) = oco. Then for any a > 0 and ¢y > 1

t 3 to B t B L(aa:)
at) = r 'L(ax)dr = 2 ' L(azx)dx 2 V() ——Ldz.
f(at) /l/a (az) /l/a (az) +/t0 @5
So we have
.. Llazx) _ . flat) — f(at) L(ax)
A2 Ty =Ty STy S s Toy

Therefore by Proposition 6 and Lebesgue’s convergence theorem, we have
our assertion. [

4. Estimate for Moments and Characteristic Functions

Remind that K is an integer such that K — 1 < o £ K and
o0
nk:/ ¥ pu(dz), k=1,2,... , K —1.
—00

Then by the assumption (A4) we have 1 = 0 and 72 = 1. Note that

_ o0 g2 3
_ > _ > -
1-F(t) 21 /2 ICOES:
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for any t = 2. Let
le(t):/ xku(dx), t>0k=1,2,... K+1,
(—oo,t]
and
ik (t) :/ e u(dz), >0, k=0,1,2,... K —1.
(t,00)

Then we have

and

M (t) = k/too " 'F(z)de +t*F(t)  ¢t>0,k=0,1,2,... , K — 1.

Then by Propositions 6 and 7 we have the following.

PROPOSITION 8. For any € > 0, there is a C(¢) > 0 such that
L(t) = C(e)t7,

Ik (t)] < C(e)tothte,
()] < Cle)t e, k=0,1,2,... K — 1,

and
/ ’.CC’K_HM(dx‘) g C(&)t_a+K+1+€
(*Oo,t}

for any t = 1.
The following is well known.
PROPOSITION 9. (1) For any m 2 0, let 7e,, : R — C be given by
(it)"

Tem(t) = exp(it) — (1 + Z X )s teR.
k=1
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Then we have
|t’m+1

[rem(t)] = m+ 1)

(2) For anym 2 1, let r;, : {z € C; |2| = 1/2} — C be given by

teR.

(1)t
Tim(2) = log(l+ z) — Z I 2F z€C, |z] £1/2.
k=1
Then we have
Irm(2)] £ 202", zeC, || S1/2.

Let u(t), t > 0, be a probability measure on (R, B(R)) given by

p(t)(A) = (1= F(t)) " (AN (—o0,1]),

for any A € B(R).
Let o(;pu(t)), t > 0, be the characteristic function of the probability
measure u(t), i.e.,

P(E () = /R exp(izé)u(t)(dr), € E€R.

By the assumption (A3), we see that the density function p(z) — 0 as
|x| — 00. Also we see that the probability measure pu(t), t = 2, is absolutely
continuous and its density function is (1 — F(t))"!p(2)1(_sy(x), whose
total variation is dominated by twice of that of p.

Therefore we have the following.

ProprosITION 10. (1) For anyt =2 and { € R,

€& p(t)) = (1 — F(t)™! /R € p(a)1 oo g ()

= —(1- F(t))‘l/ e d(p(x)1(—oo g (7).

R
(2) There is a C > 0 such that

lp(&, u(t)| = C(A+ €)™ for anyt =2 and £ € R.
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Then we have the following.
PrOPOSITION 11. (1) There is a cog > 0 such that
(& u())| = (1 +colé’)™V/* for any t 2 2 and € € R.

(2) For any t = 2, £ € R, and integers n,m with n = m,

[p(n™126 ()" = (1 + 2fef) /4,

PrOOF. Let g(x) = p(z)1(_22)(7), z € R. Then we have

1,2
p= /Rg(x)dx 21— /R Zp(a:)dm > 3/4.

Note that
o (&, u(t)]?

F(t) 7 / / exp(i& (2 = y)) () (o0 () P(4) 1 (—o0, () dwdy

<(1-p //expm— )(2)g(y)dady =1 — f(£),

where

- / / (1 - cos(¢(x — y)))g(x)g(y)dady.
RJ/JR

So we see that

lim € 2£(¢) / / © — y)2g(2)g(y)dady > 0.

89

Also, it is easy to see that f(£) > 0, for all £ € R\ {0}, and so we see that

a(r):‘§1|n<f 1€72£(€) >0 for all r > 0.

Therefore we see that

(& ) < (1 —a(r)E)? £ A +alr)gP)™V =



90 Hirotaka FusHIYA and Shigeo KUSUOKA

Also by Proposition 10(2), we see that there is an ro > 0 such that

(&) S @+ )7V gz
So we have the assertion (1).
It is easy to chack that (1 +x/8)? > 1+ x for any 8 > 1 and = > 0.
Therefore if n = m, we have
(1+ coln ™2™ 2 14 e[,
m

This implies the assertion (2). O

5. Asymptotic Expansion of Characteristic Functions

Let ol
_ i K
+ (K)' nr (t)
k=1 ’
and
K—1
n é. = n- n 17]27"' 7nk)(Z§)k
k=3

+ Z n_k/6Qk(n_1/377727 -5 K1, 07 <. 70)(Z§)k
k=K
fort > 2,n > 1and € € R. Let § = ((a—2)A1)/(4(K+2)), &' = §/(4(K+2)),

and t, =nY/?79 n=1,2,3,.... Then t, > 2 for any n > 8.
In this section, we prove the following.

LEMMA 12. Let
Ruo(6) = exp(5€)p(n /26, u(tn))" — (1-+ bo(n,€) + mior (172, 1))
Raa(6) = exp(5€)p(n ™26, p(tn)" — 1

Ra2(6) = exp(€)p(n™ 726, (1) ~ 1
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Then there is a C > 0 such that
|Rp0(€)] £ Cn(@m2)/270/4¢|

and
Ry 1(€)] + |Rua ()| £ Cn=2K9¢]

for anyn =8 and & € R with |¢] < n?.

We make some preparations to prove this lemma. First we prove the
following.

ProrosSITION 13. Let

—_

K— .k
ot

wo(§) = A
=2

and
Ro(§,t) = p(& u(t)) — (1 +o(§) + ¢1(§,1)).

Then we have for any n > 8, and £ € R with |¢] < n?,

o2 p(t) — 1] < 23012y,

o1 (n™Y2¢,t,)| £ KO(8)n~o/2HEFDI¢]

and
|Ro(n~Y/2¢,1,)| < 3C(8)n=/27/4)¢].

Here C(0) is as in Proposition 8.

PROOF. We can easily see that

(€ u(t)) = /R exp(iz€)p(t) (dz)
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So we see that

Ro(6.t) = FO)(1— Fo) " [

(_Oo7t}

ro0(a€) () + /( e (2€)u(dz).

—00,t]

By Propositions 8 and 9 we have
1 (6.1 Z e R N T

and

|RO(£,t)| §0(5)|§|ta+6/R‘xm(t)(dx)+C(5)|€|K+1ta+K+1+5’

EeR, t=2.
Also, we have
o) =11 S 6] [ Ioluto)do) = (1~ F0) e < 2V
EeR, t=2.

Note that
(n’l/“‘sl)k(nl/z"s)’a*k” — /24 (a+1/2)6—k(6-6") 87
So we have our assertion. [J
ProrosiTioN 14. Let

-k F o\ K
Skt + S el me1,0, €€ R

K-1
k=

Pi(6) =Y

3

Also, for anyn =8, and £ € R with €| < n?, let

_ 1 _ _
Ri(n,€) =log(p(n™"26, u(tn)) — {=5 - + 41 (n™12€) + o1 (n™'%¢, ta)}.
Then there is a constant C > 0 such that

IRy (n, &)] £ Cn=o/27%/4¢|
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for any n 2 8, and £ € R with |£] < nd'.

PROOF. Let

DM s L
Ria() = > —(0o(€)" + 56 = n(©).

k=1
Note that
K-1 Zk
log(1+ > mmyy)
k=2

K-1 Zk fe’e) Zk
= Ck(772"" 777k)y+ch(n%“'anK*laO’“' ,O)E
k=2 k=K ’

as a formal power series of z. So we see that there is a constant C' > 0 such
that

(4) IR11(6)] < C|g[fH

for any £ € R with [£] < 1.
We can easily see that

Rl(naf)
=1log(1 + o(n 28 + 1 (n~2€, 1) + Ro(n~ /%€, 1))
g € (07 + (07 1))

= Ri1(n™2€) + ri i (o(n™2€, u(ty)) — 1) + Ro(n1/2¢, t,)

K
+ > (=1 po(n2) (o1 (72 1) + Ro(n™ V%€, 1))

K k-1 k ) i
+Z ( 1]2 Z <§> (Lo(n™Y20) 7 (o1 (n™ /%€, t,) + Ro(n™Y/2¢, 1))

Then we have our assertion from Equation (4) and Proposition 13.
PROPOSITION 15. Let

Ro(n, &) = exp(nipy (n™/2€)) — (1 + o (n, £)).
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Then there is a constant C > 0 such that
|Ry(n, &)| < Cn~ (2722714 ]
for anyn > 8, and € € R with |¢] < nd

PrRoOOF. Note that

K—-1 (y Z) [e's)
exp(y_ﬁ( E Ll (7727--- 7727--‘ s NK—-1,0, ...
k=3 k=K

y n2,--- 777k)zk+ Z kak(n27'-' 777K—1707"'
k=K

as a formal power series in z. This implies our assertion. [

||
wa

Now let us prove Lemma 12.
Note that for any n > 8, and ¢ € R with [¢] < n®

exp(5€)e(n ™26 p(t))"

= exp(n1(n” 2, 1) + mpy (n2E) + nRi(n, €)))
= (L+np1(n2¢, tn) + rea(ngr (n 2, 1,)))
X (14 10(n,€) + Ra(1, ) (1 + reo(nR(n, €))).

So we see that

R 0(n, €) = reo(nRi(n, &) exp(ngr (™€, 1) + mapr (n=1/3¢))

+Ra(n, &) exp(nyr (n~12€, 1))

,0)))

,0)))z"

e (np1(n™2E ) + vo(n, ) (npr (072, 1) + rea (npr(n™ €, 1))

Thus we have the first equation from Propositions 13, 14, 15.
Also, we have

Rp1(n,€) = exp(ngr(n=2¢,t,) + nipr (n2€) + nRy (n,€))) —

and

Rn2(n,€) = exp((n — 1)1 (n™"/2€,t) + (n — 1)y (n™/2¢)

Hn- DR 8) - £) -1

So, again from Propositions 13, 14, 15 we have the second equation.
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6. Proof of Theorem 2
First, we prove the following.

LEMMA 16. Let v be a probability measure on (R,B(R)) such that
= 2?v(dr) < oco. Also, assume that there is a constant C > 0 such that
the characteristic function p(-,v) : R — C satisfies

lp(&v)| S C(+|€)73, ¢eR.

Then for any x € R

2

e—ixf
v((2,00)) = (o) + 3= | S pl6.r) - exp(= 55 ).

PrRoOOF. From the assumption, v has a continuous density function g

and
1

Bo) = 5= [ e ple s

So we have

v((z,z +n))) = Po(x) — Po(x + n)
2

T+n )
[ e et ) - exp(-$ e

tor |

—ix§ _ o—i(w+n)¢ 2
— bofe) — Bofa 4 )+ 5 [ T () — expl- e

Since

[ et ) —esp(-5 e < oo
Rr [¢] ’ 2 ’

letting n — oo, we have the assertion. [

Note that

n

P(zn: X; > sn'/?) = Z I, (n,s),

k=1 m=0
where

I (n,s) = P(Z X > sn'/?, Z Lixy>t,) = M), m=20,1,... ,n.
k=1 k=1
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Then we have

n
Im(n,s) = (Z)P(ZXk >snt? Xy >ty i=1,...,m,
k=1

X;<ty, j=m+1,...,n),
form=0,1,... ,n.

ProprosiTiION 17. There is a C' > 0 such that
Z In(n,s) < Cn~(@=2)/2-9
m=2

for any s 21 and n = 8.

PROOF. We see that by Proposition 8

"~ " n(n— 1) (n—2) = _
I (n,s) = F(ty)™(1 = F(ty))"™ ™
2, > i 2)

n(n — 1)F(tn) < C((S)zn_(a_Q)/2_§,

This implies our assertion. [J

PropPOSITION 18. There is a C > 0 such that

K-1 _(k-2)/2

sup  |Io(n,s) — {(1 = nF(tn))@o(s) — Z () Pr(s)

s€[l,logn| k=1
(nl/Q)K—Q

K!
for any n = 8. Here

N ()i (s) + g, 5)}| < On~(@=2)/2-0/4

Zn TL a7727"' 7nk)q)k(8)

3(K—1)
+ Z n- (n 1/3,772,... JNE—1,0,...,0)Pk(s).
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PrOOF. Note that
To(n,s) = (1= F(ty))" u(tn)"((sn'/?, 00))

= Ipo(n,s) + Ip1(n,s) + Ip2(n, s),

where
Ioo(n, s) = p(tn)™((sn'/?, 00)),

Ioa(n, s) = —nF (b, )uts)™ (2, 00)),
Ia(n,s) = (1= F(t))" = 1+ nF(tn))a(ta)™ (sn'/?, 00)).

We remark that

2

Dy (z) L /OO (i€)F Y exp(—ifx — %)dg, k=1,2,....

T o oo
By Proposition 11 and Lemma 16, we have
1070(77,, S)
2

e—isf
= B0(5) + 5 [ S oln 26 t)" = expl =),

Let
R070(n, S) = 1070(77,, 8)

—is€ ,
_{@0<5)+%/Rei§ (o(n,€) + npr(n~1/2¢, ) )e ¢ /2de}

Then by Lemma 12 we have

|Roo(n, s)]

|Ry0(8)] &
< : S
_/léw, £ el e

2

i -1/2 n < _g_
" /5 o TR e (=

+/ (10(n, )] + nlpr (n2€, 1) )¢/ 2de
|¢[>n?’
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So by Proposition 11 and Lemma 12, we see that there is a Cy > 0 such
that

(5) |Ro0(n, s)| < Con~(@=2/2-9/4 n=8, s=1.

Also, we see that

1 —isg 1
o R eig nwl(nfmﬁ,tn) eXp(—§€2)d£
= 71/2 —1/2\K—2
Z (b)) i (5) + % B (o).
=1 !
and »
% R elf wO(naf) eXP(_%§2)df = g(n, 5)

Similarly by Lemma 12, we see that there is a C7 > 0 such that

(6) sup  |To,1(n, s) = nF(tn)®o(s)| < Cyn~ *72/270 =8,
s€[1,logn]

Note that |(1 —2)" — (1 — nz)| < n?2? for any = € [0,1], n = 1. So we have
[To2(n,s)| £ nF(t,)? < C(6)*n~(@=2/279,
This and Equations 5, 6 imply our assertion. [

ProprosITION 19. There is a C > 0 such that

sup ]Il(n,s)—{n/s F((s—z)n*?)®) (z)dz+nF (t,)Po(s)
s€[1,logn] —00

K —(k=2)/2 tn
) / 2k pu(dz)}| < Cn~(e-D/2-5/1,
k=1 ' 0

PrROOF. We see that

Ii(n,s) =n(1 - F(tn))nl/ P(X1+z > sn'? X1 > t,) p(tn) "V (dx)
R
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=n(l— F(t,))" / F((sn'? — 2) V t) p(tn)* "V (da)
=nJo(n, s) + nJi(n,s) + nJa(n,s),
where
(1) To(n,s) = / F((s — 2)n"/2 v £,)®1 () de,
Ji(n, s)

8) = / F((sn'? = 2) V t) (u(tn)* @D (dz) — n= 2@ (an/?)dz),
and
(9) Jo(n,s) = —(1 — (1 = F(t,))" HIi(n,s).
Note that

Jo(n, s) = Joo(n,s) + Jo1(n,s) + Joa2(n,s),
where

J()() n, S / 1/2)‘131( )d
ng n, S / 1/2)(1)1( )d
= —/ F(xn1/2)<131(3 — z)dz,
0
and ~
Joa(n,s) = F(ty) / 1 (2)dz = F(t)Bo(s —n~b).
s—n—9%
We see that
K =9
Jo1(n,s) / F(zn'?)2*Yde + Ry (n, s)
k:l 0

where

n _ K T
Rji(n,s) = _/0 F(an'/?)(®(s — z) — Z = 1)!@k(s))d3:.
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Then
|Ry1(n,s)]

-5 n—1/2

25 (an?) " L(zn'/?)dx +/ X dz).
0

n

< sup |<I>K+1(8—l‘)’(/

z€[0,n9] n—1/2

=

< sup [P ()| (C(6)n /22 / pHE=) gy 4= (K+D)/2)
zeR 0

(10) < sup |Pra1(x)[(C(6) + 1)nfa/2—6/2'
zeR

Also, we see that

Jo2(n,s)
- N (s
= F(tn)®o(s) + Y F(tn)—5—®x(s) + Rya(n, s),
k=1 k
where
K —8\k gk
- -5 (—n7%)" d"®q
Rja(n,s) = F(tn)(®o(s —n )_kZ—O o gk )
We see that
|Rj2(n, 8)| < F(ty)n™ B9 sup [y ()]
zeR
(11) < C(6) sup | D gy (@) |n =270/,
zeR

It is easy to see that

So we have
Jo,1(n,8) + Joa(n, s) = F(t,)Po(s)
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K —k/2 tn
n
12) - a(s) /O P u(dz) + Ry (n, s) + Rya(n, s)
k=1 ’

Also, we have
Ji(n,s) = Jii(n,s) + Ji2(n,s)

where
Jia(n,5) = F(tn) (u(tn)* "D (((s = n~0)n'/?, 00)) = Bo(s —n~?))

and
-5

Ji2(n,s) = /s—n doF((s — x)nl/Z)

— 00

1 —ix — n— §2
X o e pn™ 2 )" — exp(~ ) de
™ JR 2
By Proposition 11 and Lemma 16, we see that there is a C; > 0 such
that

() =D (w02, 00)) — o)

A

oo —ix€ 2
[ e s ) — (=)

L o a4 exp(— S
< [ e + e

1 £2
IR, S ))d
+/|f|<n5' ’£’| ’2(£)|8Xp( 92 )) 6

< COin K9 for any x € R and n = 8.

Therefore we have
|J11(n,8)| £ CLE(t,)n 2K < C(8)Cyn=/279.
Similarly by Lemma 16, we see that there is a Cs > 0 such that

2
[ et 2 ) exp(- )i

< Con K% for any z € R and n = 8.
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Then we have

‘JLQ(n, S)’ é CQTZQK(SC((;)/ (wnl/z)fori’(sdx é C2C(6)n,a/276

n—"9%

So we see that there is a C > 0 such that

(13) sup  |Ji(n,s)| < on~l@=2)/279
s€[1,logn|

Note that

(14) |J2(n,s)| < nQF(tn)2

So Equations (7) - (14) imply our assertion. [J

ProprosiTioN 20. Then there is a C > 0 such that

sup |P(Z X > sn'/?) — G(n,s)| < Cn~(@=2)/2-9/4 n=3,4,....
s€[1,logn) b—1

PrROOF. Note that

tn o0
mt)+ [ tutdn) = [ atude), k=120 K-
0 0

and

i (tn) — /0 ; o p(dx) = / i X pu(dz).

—0
So our assetion is an easy consequence of Propositions 17, 18, 19. [J

ProproOSITION 21. There is a C > 0 such that

sup  Ip(n,s) = Cn~(@=2)/2-0/4 n=34....
s€llog n,00)

PROOF. We have

Io(n.s) < p(ts) ™ ((sn'/?,00))
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2

67155
=00 + 5= | S )" = exp(= ).

e—is§ 2
— Bo(s) + - /R o2, ()" — exp(— S ))de.

2 1€ 2
—is€ 2
< B0 + 5= [ S (Wl + (076, 1) expl =)
1 e—is{ 52
+§ " TRn,O(f) exp(—;))dﬁ.

Since sup; > jog 5 |Pk(5)] is of O(n~M) for any M = 1, we have our assetion
similar to the proof of Proposition 18.

PRroPOSITION 22. There is a C > 0 such that

sup  |I1(n,s) — n/ F((s — 2)n*/?)® (z)da| £ Cn~(@=2/270/4,
)

s€(log n,c0 —00

PROOF. Remind that

[e.e]

Li(n,s) =n(l— F(t,))" / F((sn'? — 2) V t)p(tn) "V (da)

—00

=n(l - F(tn))n_l{/_oo F(((s = 2)n'/?) V ) 1 (z)d

—l-% F(((s—x)n1/2) Vity)

efixg 2
[ S e e ()" — exp(= ).

Then similarly to the proof of Propositions 19 and 21, we have our asser-
tion. [

Now Theorem 2 is a consequence of Propositions 20 and 22.
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7. Preliminary for Theorem 3
PROPOSITION 23. LetY be a random variable , and assume that
E[[Y|?] <00 and E[Y]=0.

Then for any s € R\ {0} and b >0

1
Blexp(sY 1y <)) S 1+ [s]*(1 + @) exp(|s|b) E[|Y]?].

PrRoOF. First, note that
|exp(z) — 1] = 1V exp(x),

and .
|exp(z) — 1] = | / evdy| < 2)(1V exp(z)), @€ R.
0

So we have
|exp(z) — (1 + )| = | /Ox(ey — Ddy| < (Jz| A l2[*)(1 V exp(z))
for any x € R. Therefore we see that
lexp(z) — (L+2)| < [z[*exp(|z]), 2 €R.
This implies that
[Elexp(sY1gy <py)] — (1 4+ ElsY 1y <py])l

< |s* exp(|s[b) E[|Y[?].

Since
E[sY 1y <]l = [sBIY, [Y] > 8] < [sb B[V 2,

we have our assertion. [
PROPOSITION 24. Let X be a random variable and assume that

E[|X|?] < 0o and E[X] = 0.
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Then for anyt >0 andn = 1

6

1
nlog E[eXp(:l:mT/QXlﬂXl ;tn1/2})] § t2

E[|IX]?].

PROOF. Let Y = (1/t)X, s = +n~ /2, b = n'/2, and apply Proposi-
tion 23. Since log(1 + z) < x, x 2 0, we have our assertion. [J

Now let X,,,n =1,2,..., be independent identically distributed random
variables. Throughout this section we assume that

E[|X1]?] < 0o and E[X;] = 0.

ProrosiTiON 25. For any s,t >0 and e >0

n
6 S
1/2 2
( ;Xk1{xk|gml/g}y > sn'/?) < 2exp( B[ X1]) exp(—).

PROOF. We see that

n
P& Xlx, <oy 2 sn'l?)
k=1

S +1 «
= GXP(—g)E[eXP(m Z Xk1{|Xk\ §tn1/2})]
k=1

s +1
§ exp(—z)E[exp(lelﬂXﬂ §tn1/2})]n‘

Then by Proposition 24 we have our assertion.
Let F: R — [0,1] and F : R — [0, 1] be given by

F(z) = P(X; S x), zeR

and
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Then we have the following.

PropoOsITION 26. (1) For anyt,s >0, andn = 2,

f)_

IZXkl{\kaml/zﬂ > sn'/?) < 2exp( E[1X1[*]) exp(—3

k=2

(2) For any s,t >0, e € (0,1) witht < (1 —¢)s,

n n
P(Z X > sn1/2) —nP(X; + ZXkl{‘XMgtnl/Q} > sn1/2,
k=1 k=2

n
D Xel(x, < mi/zy] S esn'f?)]
k=2

< 2n(n — 1)(F(~tn/?) + F(m"/?))? + 2exp( 5 B[ X)) exp(~ )

F2n(F(—tn'7?) + F(tn')) exp( 3 B1X ) exp(— )

PrROOF. Note that

n
P(’ZXklﬂXk‘gtnl/Q}‘ > Snl/Q)
k=2

|ZX;€1{‘X,€ <im_nyizy] > (n—1)1?),

where n n
g oN1/2 oo 172

VAN

So we have the assertion (1) from Proposition 25.
Let us denote

F(z) = P(|X1| > z) £ F(—z) + F(z), x> 0.

Note that

P(i X > sn'?) =" I,
k=1
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where
n n
1/2
In =P _ X >sn' > 1y spey=m),  m=0,1,...,n.
k=1 k=1

Then we have

n
n .
Iy = (m>P(k§_1Xk > sn'2 X > tn'/? i=1,... ,m,

‘Xj‘ étnl/za J=m+1,... 7n)a

form=0,1,... ,n. So we see that
n n 1 _9 ~ _
Z I, é n(n ) n F(t 1/2)m(1 F(tnl/Q))nfm
m(m —1) \m — 2
m=2 m=2
1) ~
(15) < ”2 ) F(tn1/2)?
Also, by Proposition 25, we have
S 6 2
(16) Io = 2exp(—7) exp(5 B[ X1[]).
Let

AL ={X1| > tn'?}, Ay ={|Xp| <t/ k=23,... ,n},

n
By = {Xl + ZXk1{|Xk\§tn1/2} > Snl/Q},
k=2

and

By ={| ZXkl{le\gtn1/2}| < Ssnl/z}.
k=2

Note that By N By C Ay, since t < (1 — ¢)s. So we see that
|P(Bl NA;N AQ) — P(Bl N B2)|

S P(BiNB5NAINAy)+ P(BiNByN AN AS)

(17) S P(A1)P(B3) + P(A1)P(A3S).
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Note that
n
§) < P(IXk| > tn'/?) = (n — 1) F(tn'/?).
k=2
Also, by the assertion (1) we have

P(BS) < 2exp( 5 Fll X)) expl(— 5.

Since I} = nP(B1 N A1 N Az), we have the assertion from Equations (15),
(16) and (17).
This completes the proof. [

8. Some Estimates

In this section, we assume that (A-1) and (A-5).
Let g : (x9,00) — R, H : [-1/2,1/2] x (229,00) — (0,00) and R :
[—1/2,1/2] x (2x9,00) — (0,00) be given by

and

a(a+1)y?

R(y;x) = H(y; z) — {1 — ay + 5

}7 ye [_1/271/2]7 {E>2LL’0,
We prove the following in this section.

PROPOSITION 27. There are functions a : (2z9,00) — R, ¢ : (2xp,
00) — [0,00) and a constant C > 0 such that a(z) — 0 and c(z) — 0, as
T — 00, and that

[R(y;2) — a(z)y| < Cle(@)y® + y°),  ye€[-1/2,1/2], = > 2.

First we prove the following.
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PRrROPOSITION 28. (1) For any x > xo,
d = > g(2)
— log(z®F(x)) = — —.
Tlog(a"Pla)) = - |

(2) For any y € [—1/2,1/2] and x > 2xo,

o Y *® g(xz
)=o) e [Cay [~ 850
0 1+y #
PrOOF. Note that
2

() =27 2 (log(a” F(x)))

and g(z) — 0 as x — oo. Then we see that

1) o FW) - s Fe) = [ Xa,
and so we see that p
co = yhjgo d—y(log(yap(y)))
exists. Note that
2x T
exol [ os Flay) = 52 1. .

So we see that ¢ = 0. Therefore letting y — oo in Equation (18) we have
the assertion (1).
By the assertion (1), we have

d > g(2) /°° g(zz)
log((1 +y)*H (y; x :—33/ dz = — dz.
gy 1081+ ) H (y; z)) sy 2 e 2

Since H(0;x) = 1, we have the assertion (2). O

PROPOSITION 29. Let a : (2x9,00) — R and ¢ : (2z9,00) — R be
given by

i(x) = d%“l ) H(y, 7)o,
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and
2

d
c(x) = su —((1+y)*H(y,x))|.
(x) ye[_l/g,1/2]|dy2(( y)*H(y, z))|

Then a(x) — 0 and ¢(x) — 0, as x — oo, and that

|H(y;z) — (1+y)"* —a(z)y(1+y) | £ 2%¢(x)y?,
y €[-1/2,1/2], = > 2xy.

Proor. By Proposition 11 We have

gy Hs) = ~( P H e [ 2

and so

Similarly, we have
2

j—y2<<1 ) H(y: 1))

R

I+y

o

dz)? = (1+y)2gla(l+y))}

Therefore we have

o) < 204 [ e st + )l v € 11721720

% exp(/loo ‘g(mj’ﬂdz)

/2 F

These imply that a(xz) — 0, é(z) — 0, as x — oco. Also we have

(1 +y)*H(y; z) — (1 +a(x))|

A

5($)y2, €T 2 2o, y € [71/21/2}
This implies our assetion. [

Now Proposition 27 is an easy corollary to Proposition 29.
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9. Proof of Thoerem 3.

In this section, we assume that X,,, n = 1,2,..., are i.i.d. random
variables, @ > 2 and (A-1) - (A-5) are satisfied. Let p = (a + 2)/2 and
B = (a+p)/2. Then we see that E[|X1[P] < co and there is a Cy > 1 such
that

F(—z)+ F(x) £ Coz P, z 21

PROPOSITION 30. Let b(z) = E[X1,|X1| £ 2] = —E[X1,|X1]| > «],
x > 0. Then we have the following.
(1) b(@)| £ BIXPP(F(=x) + F(a)'=17 < Coa 0w DI E[|x,[7]1/7,
x> 1.
(2) There is a constant Cy > 1 only dependent on p such that

Bl Y Xl qx, <oy P17 S Cond (B[ X [P)P + b()]) + nlb(x)]
k=1

< CLE[|X1P]YP(1 4 Co) (n'/? + na=Pe= /Py
foranymn=1,2,..., and x = 1.
PROOF. The assertion (1) is an easy consequence of Holder’s inequality.
So we prove the assertion (2). Since E[Xy1yx,|<s—b(x)] =0,k =1,2,...,

we see by Burkholder-Davis-Gundy’s theorem that there is a constant C; >
0 depending on p only such that

B[ Y (Xilqxy oy — b@)PIP S CLE[ Y (Xil(x, <0y — b)) P27
k=1 =1
Then by Hélder’s inequality, we have
" n
E[IY (Xilyx, <y —b@)IVP < CLERPP™HY 7 | Xi Ly, <0y —b(@)[P]7
k=1 Pt

= C1n'2E[| X1 1x, <oy —b(2) P]YP < Cin (B[ X1 1%, < oy P12+ |b(2)])

This implies our assertion. [
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Let a : (2x0,00) — R and ¢ : (229, 00) — [0, 00) be as in Proposition 27.
Also, let

Yu(t) =Y Xilyx, <mizy, 122, t>0.
k=1

Then we have the following.

PRrROPOSITION 31. Letr € ((a+2)/(2a),1). Then for any ¢ € (0,1/2)

1
T o0 SUp{ s E[| H (———= Yy (t), sn*/?),
sn1/2
ala+1
Ya(t)] < esn'/?] - (14 D)),

s > (logn)'/?, t = (logn)~ts1+/21 =0,

PROOF. Let s > (logn)'/2, t > (logn)~'s("*")/2 and n > 3. Then
tn/2 > 1. Note that

-2
rB(p—1)/p> 1+% o1
We see that
_L 1/2 < 121 M
ETH( Sn1/2Yn(t),8n )y [Ya(t)] Sesn'/?]— (14 o )
_ alen?) —a afa+ 1) 2
snl/2 E[Yn( )] W(E[Yn(t) ] _ n)
a(sn!/?) —a ala+1) 2 1/2\-1
—FE1 T iz im ) Wyn(t) (sn 27, ()] > €]
1 —
FEIR(= 7 Ya(t),sn /), (1) 71V, (1) < o],
Note that

S| E[Ya(8)]| = nslb(tn'/?)] < CoE[| X1 [P)/Ps(tn/2) == /P
< CoE[| X1 [P]VP (0% (log n)~1) A= D/pgl=(4)Bp=1)/2p

E[Yi(t)’]) = n = n(Bl(X11)x, < g/2)?] = b(tn'/)?) + E[Y,()]* — n
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= _nE[va ‘X1| > tnl/Q] —+ n(n — 1)b<tn1/2)2’
and
n P E(|Y,(0)F] £ CY(L+ Col Bl X P)(1 + ¢-Pw=/pinl/20-0=1)/p)ye,

So we see that

1
“|EYi()?) - n| £ BIXY, |X4| > tn/?)
n
+ Co(n — 1)n= P10/ (1og n)2Pe-N/P B[ X, |P]?/P,
s2(sn'2)TEE[Ya()IF, [(sn'/2) 7Y (0)] > €]
< PP PR TPREY, (0P, k=0,1,2,

and

PE[|R(~—5 Yu(t), sn' )] (sn1?) Yo (0)] £ €.
SN

< Co(le(sn/?) | BV (t)?] + e P> P PR E[|Y, (1) 7).
Combining them, we have our assertion. [J
Now we prove Theorem 3. Let 3: N — (0,00) be such that

B(n)
(logn)1 2

Assume that Theorem 3 is not valid. Then there is a sequence of positive
numbers {s/,}°° | such that s/, > n'/23(n), n=1,2,..., and

(0% P(Shoy X > 1)
nF(s),)

ala+ 1)vn
(s7,)?
Let s, = n~ Y25/, > B(n). Let us take an r € ((a 4 2)/(2a),1) and fix it.

Let t,, n =1,2,..., be a sequence of positive numbers given by

lim ,, o0

\ —(1+ )| > 0.

tn = (logn)~'/% 4 (logn) " ts{1+m)/2, n=2.

Then we have the following.

B(n)

19 tnSp = ———t—
(19) Sn = (log n)1/2

— 00, N — 00,
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(20) 2 2 (logm)2s0) A (logm)s( %), n 22,
(logn)t, ~ *(logn)t/? n ’ ’
and
(t,nt/?)? S (logn)=2sltmn
(22) (sp)iFr = LirpQenp O e

Therefore by Equation (22), we have

(F (=t n'/?) + F(t,n'/?))?
F(Sl )2r

n

— 0, n — oo.

Since 2r — 1 > 2/«, we have

o (F(=tan'/?) + F(tan'/?))”

Also, by Equations (19), (20) and (21) we see that for any m = 1

/m m 1s,
(ns,) exp(g - Ea)
m 1 s
(™ (1 g6 )2 exp(—(logm) L 1
1 sn
X (sp)™ exp(—%i—n) — 0, n — oo.
Note that

(n+ DP(Xps1 + Ya(tnt1) > sns1(n+ 12, |Va(tni1)| S esppa(n +1)1/?)
(n+ 1) F(sps1(n+1)1/2)

1 1/2 1/2
= E[H(—mYn(th),an(n+ DY), [Ya(tng1)]  espar(n+1)17).

From Proposition 31, we see that
) s (n 4 DY),
Snt1(n+1)1/2
Yo (tns1)| S esnta(n+ 1)1/2]
ala+1)(n+1)
spy1(n+1)

sy [E[H(

—(1+ ) —0
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as n — 00, by letting s = s,41(1 + 1/n)/?, t = t,,1. Then from this,
Proposition 26(2), Equations (19), (20), (21), (22) and (23), we have

(4 POTha Xe> ) - alat Do,
n T k(s A+ =e =0

as n — oo. This is a contradiction.
This proves Theorem 3.

10. Proof of Theorem 4

Let F), : [1,00) — [0,1], n = 1, be given by
Bi(s) = / F((s — 2)n"/2)®1 (z)da.

—00

Then we have the following.

PROPOSITION 32. Let 5: N — (0,00) be such that

B -
(log )12 0, n — 00.
Then
Ey(s) ala+1)n
2
sup 8\7 (1+—5—"—)—0, n—oo
sz fB(n) (n1/2 ) s?

Proor. By Proposition 27, we see that
F(s) ala+1)
| 1/2\ (1 + 2 )|
(snl/2) S

< / IR(y/s; sn1/?) — a(sn¥/2)(y/3)| @1 (1) dy
[—s/2,5/2]

2
+/ 4(1+(|a(sn1/2)|+a(a+1))(—2)<131( )dy.
[—s/2,s/2]¢

This and Proposition 27 imply our assetion. [
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It is well known (e.g. Williams [8]) that there is a Cp > 0 such that

(24) @5 (z)] £ Co(1 + )10y (z), 220, k=1,...,3K,

and
(25) Calq)l(w) § .Z‘(I)o(ﬂi') § C0<I>1(x), T 2 1.
Let X
Hy(n,s) = ®g(s) + nFy(s),
2 —(k—2)/2 00
n k
An,9) = Y- P (s) [ atutao)
k=1
and

A(n, s) = nE,(s) — A (n, s).

First we prove the following.

ProproOsSITION 33.

A _ F 1/2
I TS I ) B
s€[l,logn] Hy (nv 5)

PROOF. Let us take a v € (0, (o — 2)/(4e)) and fix it. Let s = 0 and
n = 3. Note that

4
Fn(s) = Zlk(n, s),
k=1
where s
Li(n,s) = / Bl —ont )@,
7s/8
L(n, s) = / F((s — 2)n!/2)®: () da,
Ly(n, s) = /7 /_: F((s — 2)n!/2)® () da,
and
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It is easy to see that

n(1/2=7)

Li(n, s) = n=1/2 /0 Fly)®s (s — n=2y)dy.
Let
R(n,s,y) = ®1(s —n~%y) — (B1(s) + n~2y®a(s))
Then for y € [0, sn'/277]

[R(n,s,9)] Sn~'y? sup | @3(2)]

zZE€[s—n"7,s]
< Con 1P (1 +5)2@1 (s —n77) = Con~ 'y (1+5)2@1(s) exp(sn ™ —n =2 /2)
< C2n 1y (1 4 s)3 exp(n™7s) Do (s).

So we see that

2 n—k/2 oo
() = 3 ") [ abutao)
Kl ;
k=1
nl/2—v
<GB+ P expn )| yPFw)dy) (o)
0
G+ ([ Pyl + G+ ([ uP)dy)es)
nl/2— nl/2—~
This implies that
2~ (k=2)/2 e
(26)  sup Bo(s) UnLi(ms) — 3 by (s) / o u(d)] — 0,
k!
s€[1,log n] k=1 0

Note that

B 75/8 . s — 2)nl/2
L(n, s) = F(snl/Q)/ (1- g)—aM@(x)dx
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It is easy to see that

7s/8 - s — 2)nl/2
wp | [Tyl )

———e——®(z)dz — 1| — 0,
s€[(logn)1/4logn] /—s s L(snl/?)

n—oo

Also we see that

n|D(n, )| < nF(sn'/2)8" / P L =) o e

s L(snl/?)
Therefore we have

sup ®o(s)"H(n|Ia(n, s)| + nF(sn'/?)) — 0, n— oo.
s€[1,(logn)/4]

Thus we have

(27) sup  Ho(n, s) "} nly(n,s) — nF(sn'/?)| — 0, n — oo.
s€(1,log n]

Note that v/3/2 < 7/8. Then we have
®1(75/8) < (1(s))*/*,

and so we have
nls(n, s) < nsF(n'/?=7)®,(7s/8)

7 nsl/AF (nl/2—
< (nF(n'?logn))"/ (s (s))** <nﬁ<n1/2(1ogn>>3/2'

Since

nst/AF(n!/2=7)
sup sup

° < o0,
n =3 s€(l,logn] (nF(n1/2 log n))1/2 OO

we see that there is a constant C' > 0 such that
nls(n,s) £ C(nF(sn'/?)20y(s)¥* < C(nF(sn'/?)V/*Hy(n, s),
n =3, s€[l,logn].
So we have

(28) sup  Ho(n,s) '|nl3(n,s)| -0,  n— oo.
s€[l,logn]
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Also we have
n|Iy(n, s))| £ nF(2sn'/?)d(s).

So this equation, Equations (26) (27) and (28) imply our assertion. [J
PROPOSITION 34. (1) There is a C' > 0 such that
®o(s) + |Ai(n, s)| £ Cn~2F(n'/2s), n=2 s2logn.
|A(n, s) — nF(n'/2s)|

sup — 0, 7 — 00.
s€[1,00) HO(”? S)

PROOF. The assertion (1) is obvious from Equations (24) and (25). To
prove the assertion (2), because of Proposition 33, it is sufficient to prove
|A(n, s) — nF(n'/%s)]

sup —0 n — 0Q.
s€[log n,00) HO(”? S) 7

However, by Theorem 3 and Propsosition 32, we see that

~

F(nl/2
sup ‘n (n'/*s)

————=—1] =0, n — oo.
s€(logn,00) nF(nl/Qs)

Therefore, combining this with the assertion (1), we have the assertion (2). O

Now let us prove Theorem 4.
By Proposition 34(2), we see that

H(n,s)

sup |—"=—1|—0, n — oo.
s€[1,00) H()(TL,S)

Therefore there is an ng such that
1
2
By Equation (24), we see that there is a C' > 0 such that

H(?’L,S) 2 HO(n) S)a n 3 no, S 3 1.

sup  |G(n,s) — H(n,s)| SCn V12, n=1
s€[1,n1/12]
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Then combining this with Theorem 2, we see that there are C' > 0 and
do € (0,1/12) such that

P30, X > nl/%s)
H(n, s)

sup | — 1] < Cn~%, n = ng.

s€[1,n%]

On the other hand, by Theorem 3 and Propsosition 32 we see that there is
a C' > 0 such that

wp | PSie X > nl/25)

< -1 Cn~2%, n = ng.
5€[n%0,00) nFn(s)

So we see by Proposition 34 that we see that there is a C' > 0 such that

Py, Xi > n'%s)

—26
sup | — 1| £ Cn=2%, n 2 ng.
8€[n%0,00) H(n7 S>
These imply Theorem 4.
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