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Abstract. We study the time decay estimate for Lp-norm (2 <
p ≤ ∞) of a solution to the time-dependent Hartree-Fock type equa-
tion with a long-range potential, which decays more slowly than the
Coulomb potential as |x| → ∞, for small initial data.

1. Introduction

We study time decay properties (precisely, dispersive estimates) of solu-

tions to the initial value problem of the time-dependent Hartree-Fock type

equation

i∂tu = −1

2
∆u + F (u)u, (t, x) ∈ R × R

n,(1.1)

u(0, x) = φ(x), x ∈ R
n.(1.2)

Here the space dimension n ≥ 3, i =
√
−1, u = (u1, . . . , uN ) is a C

N -valued

unknown function (N ≥ 2), φ is C
N -valued given initial data, ∂t = ∂/∂t, ∆

is the Laplace operator for the space variable x, F (u) = (Fjk(u))1≤j,k≤N is

an N ×N Hermitian matrix defined by

Fjk(u) = V ∗ (|u|2
CN δjk − uj ūk),

“∗” denotes the convolution for the space variable, | · |CN is the norm of C
N ,

δjk is Kronecker’s delta, the function V is a potential given by

V (x) = λ|x|−γ , (x ∈ R
n \ {0})
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λ is a non-zero real constant, and γ is a constant such that 0 < γ < 1.

(Thus V is a long-range potential decaying more slowly than the Coulomb

potential as |x| → ∞.) The system (1.1) appears in the quantum mechanics

as an approximation to a Fermionic N -body system. In this paper, we show

the existence of a solution u to the initial value problem (1.1)–(1.2) satisfying

the dispersive estimate, that is, ‖u(t)‖L∞ = O(|t|−n/2) as t → ±∞, for small

initial data φ. In the main result (Theorem 1.1 below), we will assume that

1 − 1/(m + 2) < γ < 1, where m is the integer defined by (1.7).

There are many works on the Cauchy problem and the large time be-

havior of solutions for the Hartree equation

i∂tu = −1

2
∆u + (V ∗ |u|2)u, (t, x) ∈ R × R

n,(1.3)

where u is a complex-valued unknown function, and there are some works

for the Hartree-Fock equation (1.1). For the Cauchy problem of the Hartree

equation (1.3), see, e.g., Cazenave [1], Ginibre-Velo [3] and Hayashi-Ozawa

[16]. We are interested in properties of solutions for large time. The poten-

tial V is called “short-range” when γ > 1, on the other hand, it is called

“long-range” when 0 < γ ≤ 1. When γ = 1, V is called the Coulomb po-

tential. In the short-range case, contribution of the potential is negligible

for large time. Roughly speaking, when 1 < γ < n, the solution to the

equations (1.1) and (1.3) approaches some solution to the free Schrödinger

equation

i∂tu = −1

2
∆u, (t, x) ∈ R × R

n,(1.4)

as t → ±∞. On the other hand, in the long-range case (0 < γ ≤ 1),

contribution of the potential is not negligible for large time, and hence

solutions do not approach any non-trivial free solutions as t → ±∞. Hence

to investigate the large time behavior of solutions to the equations (1.1) or

(1.3), the long-range case is more difficult than the short-range one. In this

paper, we concentrate on the long-range case. (For the large time behavior

of solutions to the Hartree equation (1.3) with a short-range potential, see,

e.g., Hayashi-Ozawa [15], Hayashi-Y. Tsutsumi [17] and Nawa-Ozawa [24],

and to the Hartree-Fock equation, see Wada [28].)

We recall several known results on the large time behavior of solutions

to the Hartree equation (1.3) with a long-range potential, namely, the case
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0 < γ ≤ 1. The existence of the modified wave operators (the final value

problem) for the equation (1.3) was studied by, e.g., Ginibre and Ozawa [2],

Ginibre and Velo [4, 5, 6] and Nakanishi [22, 23]. On the other hand, the

time decay and large time asymptotics of solutions to the equation (1.3)

for small initial data were studied, e.g., by Hayashi and Naumkin [11] and

Hayashi, Naumkin and Ozawa [14] when γ = 1, and by Hayashi, Kaikina

and Naumkin [10], Hayashi and Naumkin [12, 13] and Wada [29] when

γ < 1. To study properties of solutions to the equation (1.3) for large

time, the case 0 < γ < 1 is more difficult than the critical case γ = 1.

According to their results, for small initial data, the solution to the initial

value problem of the equation (1.3) with γ ≤ 1 decays like t−n(1/2−1/p) in

Lp as t → ∞, where 2 < p ≤ ∞. This decay rate is the same as the free

solution (see Remark 1.3 below). Furthermore there exists some function

u+, which is called a modified scattering state, such that the solution to (1.3)

approaches a modified free solution U(t)e−iS(t,−i∇)u+ as t → ∞, where

U(t) is the free evolution operator defined by (1.6) below, and S(t, ξ) =

(V ∗ |û+|2)(ξ)
∫ t
1 τ

−γ dτ . Here û+ is the Fourier transform of u+. The

modifier e−iS(t,−i∇) is represented explicitly. The nonlinearity (V ∗ |u|2)u
with γ = 1 as in the equation (1.3) also appears in the Maxwell-Schrödinger

system with the Coulomb gauge condition in three space dimensions (see,

e.g., [7, 8, 9, 20, 21, 25, 26]).

We return to the Hartree-Fock equation (1.1). To investigate the large

time behavior of solutions, the Hartree-Fock equation (1.1) is more compli-

cated than the the Hartree equation (1.3), because (1.1) is a system and

F (u) is not a diagonal matrix (though it is Hermite). According to author’s

knowledge, there is only one result (Wada [30]) on the large time behavior

of solutions to the equation (1.1) with a long-range potential. In the case

γ = 1 (the critical case), Wada [30] studied the existence of modified wave

operators to the equation (1.1) for small final states, and the time decay and

large time asymptotics of solutions to the initial value problem (1.1)–(1.2)

for small initial data. He proved that when γ = 1, there exists a global

solution u to the initial value problem (1.1)–(1.2) satisfying the time decay

estimate ‖u(t)‖Lp = O(t−n(1/2−1/p)) as t → ∞ for small initial data, where

2 < p ≤ 2n/(n − 2σ) and 1/2 < σ < n/2. Moreover he showed that there

exists a unique modified scattering sate u+ such that the solution u to the

equation (1.1) approaches the modified free dynamics U(t)A(t,−i∇)u+ as
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t → ∞, where U(t) is the free evolution operator defined by (1.6) below,

A = A(t, ξ) is an N ×N matrix satisfying the Cauchy problem{
i∂tA = t−1F (Aû+)A, t ≥ 1, ξ ∈ R

n,

A(1, ξ) = IN , ξ ∈ R
n,

(1.5)

and IN is the N ×N unit matrix. It is easy to see that the modifier A(t, ξ)

in [30] is a unitary matrix, but it can not be expressed explicitly. So the

modifier for the Hartree-Fock equation (1.1) is more complicated than that

of the Hartree equation (1.3).

According to author’s knowledge, in the case 0 < γ < 1, there is no

result on properties in large time of solutions to the Hartree-Fock equation

(1.1). (To investigate properties of solutions to the equation (1.1) for large

time, the case 0 < γ < 1 is more difficult than the critical one γ = 1.) In

the present paper, when γ < 1, we study the time decay of the solution u to

the initial value problem (1.1)–(1.2) in Lp (2 < p ≤ ∞) for small initial data

when the space dimension n ≥ 3. In the main result (Theorem 1.1 below),

we will assume 1 − 1/(m + 2) < γ < 1, where m is the integer defined by

(1.7) below.

Here we introduce several notations. For k, s ≥ 0, the weighted Sobolev

space based on L2 is defined as follows:

Hk,s ≡ {ψ ∈ L2(Rn; CN ) : ‖ψ‖Hk,s ≡ ‖(1 + |x|2)s/2(1 − ∆)k/2ψ‖L2 < ∞}.

For t ∈ R, we define U(t) by

U(t) ≡ eit∆/2 = F−1e−it|ξ|2/2F ,(1.6)

where F is the Fourier transform with respect to the space variable. U(t) is

the free evolution operator for the Schrödinger equation. (See Remark 1.3.)

For s ≥ 0, we define the operator |J |s by

|J |s = |J(t)|s ≡ U(t)|x|sU(−t), (t ∈ R).

The main result in this paper is the following theorem.

Theorem 1.1. Let the space dimension n ≥ 3, and let

m =

{
n+1

2 , when n is odd,
n
2 + 1, when n is even.

(1.7)
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Let 1 − 1/(m + 2) < γ < 1. Assume that φ ∈ H0,m and ‖φ‖H0,m is suf-

ficiently small. Then there exists a unique global solution u to the initial

value problem (1.1)–(1.2) satisfying

u ∈ C(R;L2), |J |mu ∈ C(R;L2),(1.8)

‖u(t)‖L2 = ‖φ‖L2 ,(1.9)

‖ |J |mu(t)‖L2 ≤ C‖φ‖H0,m(1 + |t|)m(1−γ),(1.10)

‖u(t)‖Lp ≤ C‖φ‖H0,m(1 + |t|)−n(1/2−1/p)(1.11)

for t ∈ R, where 2 ≤ p ≤ ∞.

Remark 1.1. Under the assumptions of Theorem 1.1 except the small-

ness condition on the initial data φ, the existence and uniqueness of the

global solution u to the initial value problem (1.1)–(1.2) satisfying (1.8),

and the equality (1.9) are well-known. (See Proposition 4.1 below.) The

main purpose of this paper is to prove the time decay (1.11) of the solution

u to that initial value problem for small initial data φ.

Remark 1.2. By the definition (1.7) of m, we see that m is the smallest

integer such that m > n/2. Note that the condition m > n/2 implies the

embedding Hm ↪→ L∞.

Remark 1.3. The solution to the Cauchy problem of the free

Schrödinger equation (1.4) with initial condition u(0, x) = ϕ(x) is given

by

u(t, ·) = U(t)ϕ.

By the definition of U(t), U(t) is unitary in L2. When 2 ≤ p ≤ ∞, the

following estimate is well-known:

‖U(t)ϕ‖Lp ≤ (2π|t|)−n(1/2−1/p)‖ϕ‖Lp′ , (t �= 0),(1.12)

where p′ is the Hölder conjugate exponent of p, i.e., 1/p+1/p′ = 1. Accord-

ing to the estimates (1.11) and (1.12), the time decay rate (as t → ∞) of

the solution to the equation (1.1) is the same as that of the free solution.

Remark 1.4. In this paper, large time asymptotics of the solution to

the initial value problem (1.1)–(1.2) is not obtained, and that problem is

still open. (See Section 5.)
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For convenience to readers, we briefly explain idea of the proof of Theo-

rem 1.1. The proof of the main theorem depends on the spirit of the proof

in Wada [29] on the long-range scattering for the Hartree equation (1.3).

Because of difficulties caused by the long range potential, it is difficult to

obtain desired estimate for u by using the equation (1.1) directly. To avoid

this difficulty, we introduce the function w by (4.3) and (4.7), and then w

satisfies the equation (4.8). By using the equation (4.8), we derive esti-

mates for w in Hm, which imply the desired estimate for the solution u and

Theorem 1.1.

This paper is organized as follows. In Section 2, we introduce several

notations which will be used below. In Section 3, we collect several lemmas

which will be used in the proof of Theorem 1.1. In Section 4, we prove

Theorem 1.1. In Section 5, we remark on the large time asymptotics of

solutions.

2. Notation

We introduce several notations used below.

Let ∂k = ∂/∂xk for k = 1, . . . , n, ∂α
x = ∂α1

1 · · · ∂αn
n for a multi-index

α = (α1, . . . , αn) ∈ Z
n
+, and let ω = (−∆)1/2 = F−1|ξ|F . For linear

operators P and Q, [P,Q] = PQ−QP is the commutator of them.

For C
N -valued functions, we use the following function spaces. | · |CN

and (·, ·)CN denote the norm and the scalar product in C
N , respectively.

For a C
N -valued measurable function ψ = (ψ1, . . . ψN ) on R

n and 1 ≤ p ≤
∞, ψ ∈ Lp means that ψj ∈ Lp for j = 1, . . . , N , which is equivalent to

|ψ|CN ∈ Lp. Its norm is defined by

‖ψ‖Lp ≡ ‖ |ψ(·)|CN ‖Lp .

For C
N -valued measurable functions ϕ = (ϕ1, . . . , ϕN ) and ψ = (ψ1, . . . ,

ψN ) on R
n, their L2 scalar product is defined by

〈ϕ,ψ〉L2 ≡
∫
Rn

(ϕ(x), ψ(x))CN dx =

N∑
j=1

〈ϕj , ψj〉L2

Let W k,p and Ẇ k,p be the k-th order Sobolev and the homogeneous Sobolev

spaces based on Lp, respectively. Namely, for k ≥ 0 and 1 ≤ p < ∞, we
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denote

W k,p ≡ {ψ ∈ Lp : ‖ψ‖Wk,p ≡ ‖(1 − ∆)k/2ψ‖Lp < ∞},
Ẇ k,p ≡ {ψ ∈ S ′ : ‖ψ‖Ẇk,p ≡ ‖ωkψ‖Lp < ∞}.

For a non-negative integer k, we define

W k,∞ ≡

ψ ∈ L∞ : ‖ψ‖Wk,∞ ≡
∑
|α|≤k

‖∂αψ‖L∞ < ∞

 ,

Ẇ k,∞ ≡

ψ ∈ S ′ : ‖ψ‖Ẇk,∞ ≡
∑
|α|=k

‖∂αψ‖L∞ < ∞

 .

For k ≥ 0, Hk and Ḣk denote W k,2 and Ẇ k,2, respectively. Then Hk =

Hk,0.

For matrix-valued functions, we introduce the following notations and

function spaces. We denote by MN the set of N ×N matrices with complex

elements. For A = (aj,k)1≤j,k≤N ∈ MN , |A|MN
denotes the operator norm

in C
N of A. Then there exist constants C1, C2 > 0 such that

C1

 N∑
j,k=1

|aj,k|2
1/2

≤ |A|MN
≤ C2

 N∑
j,k=1

|aj,k|2
1/2

.

For an MN -valued function A = A(x) = (aj,k(x)) on R
n (A : R

N → MN ),

we use the following notations. For 1 ≤ p ≤ ∞, A ∈ Lp means that aj,k ∈ Lp

for 1 ≤ j, k ≤ N , which is equivalent to |A|MN
∈ Lp. Its norm is defined by

‖A‖Lp ≡ ‖ |A(·)|MN
‖Lp .

A ∈ S ′ means that aj,k ∈ S ′ for 1 ≤ j, k ≤ N . For a Fourier multiplier

K, KA denotes the matrix whose (j, k) element is (Kaj,k)(x). For an MN -

valued function A = A(x), we introduce the Sobolev and homogeneous

Sobolev spaces as follows. For k ≥ 0 and 1 ≤ p < ∞, we denote

W k,p ≡ {A ∈ Lp : ‖A‖Wk,p ≡ ‖ |(1 − ∆)k/2A(·)|MN
‖Lp < ∞},

Ẇ k,p ≡ {A ∈ S ′ : ‖A‖Ẇk,p ≡ ‖ |ωkA(·)|MN
‖Lp < ∞}.
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For a non-negative integer k, we define

W k,∞ ≡

A ∈ L∞ : ‖A‖Wk,∞ ≡
∑
|α|≤k

‖ |∂αA(·)|MN
‖L∞ < ∞

 ,

Ẇ k,∞ ≡

A ∈ S ′ : ‖A‖Ẇk,∞ ≡
∑
|α|=k

‖ |∂αA(·)|MN
‖L∞ < ∞

 .

We also use the following notations for matrix-valued functions. For k ≥ 0,

Hk and Ḣk denote W k,2 and Ẇ k,2, respectively.

C denotes various constants, and they may differ from line to line, when

it does not cause any confusion.

3. Preliminaries

In this section, we collect several lemmas, which will be used for the

proof of Theorem 1.1.

Lemma 3.1. Let n ≥ 3, 0 < β < n, 2 < p < 2n/(n − β) < q and

1/p + 1/q = 1 − β/n. Then there exists a constant C > 0 such that

‖ | · |−β ∗ (ψ1ψ̄2)‖L∞ ≤ C(‖ψ1‖Lp‖ψ2‖Lp‖ψ1‖Lq‖ψ2‖Lq)1/2.

We can prove Lemma 3.1 exactly in the same way as in the proof of

Lemma 2.4 in Wada [27].

Lemma 3.2. Let 0 < β < n, and let p and q satisfy 1 < p, q < ∞ and

1 + 1/q = 1/p + β/n. Then there exists a constant C > 0 such that

‖ | · |−β ∗ ψ‖Lq = c‖ω−(n−β)ψ‖Lq ≤ C‖ψ‖Lp .

(Here c is some positive constant independent of ψ.)

Lemma 3.2 follows from the embedding Ẇ p,n−β(Rn) ↪→ Lq(Rn).

Next we introduce the Leibniz rule and the commutator estimate for

fractional derivatives. (See, e.g., Kato [18], Kato-Ponce [19] or Ginibre-Velo

[7, 9].)
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Lemma 3.3. Let s > 0, 1 < p, q1, q2 < ∞, 1 < r1, r2 ≤ ∞ and 1/p =

1/q1 + 1/r1 = 1/q2 + 1/r2. Then the following estimates hold:

‖ωs(ϕψ)‖Lp ≤ C(‖ωsϕ‖Lq1‖ψ‖Lr1 + ‖ωsψ‖Lq2‖ϕ‖Lr2 ),

‖ωs(ϕψ) − ϕωsψ‖Lp ≤ C(‖ωsϕ‖Lq1‖ψ‖Lr1 + ‖ωs−1ψ‖Lq2‖∇ϕ‖Lr2 ).

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Our proof of the theorem is

mainly based on the spirit of the proof in Wada [29] on the long-range

scattering for the Hartree equation (1.3).

On the initial value problem (1.1)–(1.2), the following proposition holds.

Proposition 4.1. Let n ≥ 3, 0 < γ < 2 and φ ∈ L2. Then there exists

a unique solution u to the initial value problem (1.1)–(1.2) in C(R;L2) ∩
L

8/γ
loc (R;L4n/(2n−γ)). Moreover the following hold.

• The solution u satisfies

‖u(t)‖L2 = ‖φ‖L2

for any t ∈ R.

• If φ ∈ H0,k for k ∈ N, then |J |ku ∈ C(R;L2). Furthermore, the

solution u ∈ C(R;L2) with |J |ku ∈ C(R;L2) is unique.

• There exists a δ > 0 such that if

‖φ‖H0,k ≤ δ(4.1)

for k ∈ N, then

sup
t∈[0,2]

(‖u(t)‖L2 + ‖ |J |ku(t)‖L2) ≤ C0‖φ‖H0,k .

We can prove Proposition 4.1 in the same say as in the case of the Hartree

equation (1.3) (see, e.g., Cazenave [1], Ginibre-Velo [3], Hayashi-Ozawa [16],

Wada [29, 30]). Hence in this paper, we omit the proof of Proposition 4.1.
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Remark 4.1. In Proposition 4.1, growth rate of ‖ |J |mu(t)‖L2 , decay

rate of ‖u(t)‖Lp for 2 < p ≤ ∞ and asymptotics of the solution u are not

obtained.

Throughout this section, let the space dimension n ≥ 3, m be the posi-

tive integer defined by (1.7) and φ ∈ H0,m. Let 0 < γ < 1.

For simplicity, we only consider the case that t is positive and large. So

we may consider the time interval [1,∞).

It is well-known that the free evolution operator U(t) = eit∆/2 is decom-

posed as

U(t) = M(t)D(t)FM(t), (t ∈ R \ {0}),(4.2)

where the operators M(t) and D(t) are defined by

(M(t)ψ)(x) = ei|x|
2/2tψ(x),

(D(t)ψ)(x) =
1

(it)n/2
ψ
(x
t

)
, (t ∈ R \ {0}).

The identity (4.2) is called the Dollard decomposition.

Let φ ∈ H0,m satisfy the condition (4.1) and u ∈ C(R;L2) with |J |mu ∈
C(R;L2) be the unique solution to the initial value problem (1.1)–(1.2)

obtained in Proposition 4.1 with k = m. For t ≥ 1 and x ∈ R
n, we put

v(t, x) = FM(t)U(−t)u(t) = (it)n/2e−it|x|2/2u(t, tx).(4.3)

In the second equality in (4.3), we have used the identity (4.2). Then the

equation (1.1) is equivalent to

i∂tv = − 1

2t2
∆v + t−γF (v)v,(4.4)

when t ≥ 1 and x ∈ R
n. To overcome the difficulty caused by the long-

range potential V , (as in the case of the Coulomb potential in Wada [30]),

we introduce the solution B of the following initial value problem of an

N ×N matrix-valued ordinary differential equation

i∂tB = t−γF (v)B, t ≥ 1, x ∈ R
n,(4.5)

B(1, x) = IN , x ∈ R
n,(4.6)
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where IN is the N ×N unit matrix.

Lemma 4.1. When t ≥ 1 and x ∈ R
n, the solution B(t, x) to the

Cauchy problem (4.5)–(4.6) is an N ×N unitary matrix.

Proof. Let z ∈ C
N . Since the matrix F (v) is Hermite, by the equation

(4.5), we see that

d

dt
|B(t, x)z|2

CN =2 Re(∂tB(t, x)z,B(t, x)z)CN

=2 Re(−it−γF (v(t, x))B(t, x)z,B(t, x)z)CN

=0.

Hence the above equality and the initial condition (4.6) yield

|B(t, x)z|CN = |B(1, x)z|CN = |z|CN .

Therefore B(t, x) is a unitary matrix when t ≥ 1 and x ∈ R
N . �

Let

w = B∗v.(4.7)

Then w satisfies the following equation:

i∂tw = − 1

2t2
∆w − 1

t2

n∑
k=1

B∗(∂kB)(∂kw) − 1

2t2
B∗(∆B)w(4.8)

for t ≥ 1 and x ∈ R
n.

To prove the estimates (1.10) and (1.11), it is sufficient to show that

‖w(t)‖Hm is bounded in t ∈ [1,∞). (See the estiamtes (4.31) and (4.32)

below.) We shall estimate the function w in Hm.

Let 0 < ρ ≤ 1 be fixed. We fix a constant T > 1 such that

sup
1≤t≤T

‖w(t)‖Hm ≤ ρ(4.9)

arbitrarily. (By Proposition 4.1, if ‖φ‖H0,m is sufficiently small, then we

can take a constant T > 1 satisfying the inequality (4.9). For example, it is

sufficient to take φ sufficiently small such that ‖φ‖H0,m ≤ min{δ, ρ
C0

}, where

δ and C0 are the constants appearing in Proposition 4.1.)
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First we consider ‖w(t)‖L2 . Since F (v) is an Hermitian matrix, the

equation (4.4) implies that

d

dt
‖w(t)‖2

L2 =
d

dt
‖v(t)‖2

L2(4.10)

= 2 Re〈∂tv(t), v(t)〉L2

= 2 Re

〈
i

2t2
∆v − it−γF (v)v, v(t)

〉
L2

= 0

for t ∈ [1, T ].

Next, we estimate ‖w(t)‖Ḣm = ‖ωmw(t)‖L2 . By the equation (4.8), we

have

1

2

d

dt
‖w(t)‖2

Ḣm(4.11)

= Re〈ωm∂tw(t), ωmw(t)〉L2

= Re

〈
i

2t2
∆ωmw(t) +

i

t2
ωm

n∑
k=1

B(t)∗(∂kB(t))∂kw(t)

+
i

2t2
ωm(B(t)∗(∆B(t))w(t)), ωmw(t)

〉
L2

= − 1

t2

n∑
k=1

Im〈B(t)∗(∂kB(t))ωm∂kw(t), ωmw(t)〉L2

− 1

t2

n∑
k=1

Im〈[ωm, B(t)∗∂kB(t)]∂kw(t), ωmw(t)〉L2

− 1

2t2
Im〈ωm(B(t)∗(∆B(t))w(t)), ωmw(t)〉L2 .

To overcome loss of derivative in the first term of the right hand side of

the equation (4.11), we calculate that term. Since B∗B = IN , B∗∂kB =

−(∂kB
∗)B for k = 1, . . . , n. So we see that

〈B∗(∂kB)ωm∂kw,ω
mw〉L2

= − 〈(∂kB∗)B∂kω
mw,ωmw〉L2

=〈ωmw, ∂k(B
∗(∂kB)ωmw)〉L2

=〈ωmw, (∂kB
∗)(∂kB)ωmw〉L2 + 〈ωmw,B∗(∂2

kB)ωmw〉L2
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+ 〈ωmw,B∗(∂kB)ωm∂kw〉L2

=〈(∂kB∗)(∂kB)ωmw,ωmw〉L2 + 〈(∂2
kB

∗)Bωmw,ωmw〉L2

+ 〈B∗(∂kB)ωm∂kw,ωmw〉L2 .

Hence

Im〈B∗(∂kB)ωm∂kw,ω
mw〉L2(4.12)

= − i

2
〈(∂kB∗)(∂kB)ωmw,ωmw〉L2 − i

2
〈(∂2

kB
∗)Bωmw,ωmw〉L2 .

By the equations (4.11) and (4.12), we obtain

1

2

d

dt
‖w(t)‖2

Ḣm(4.13)

=
i

2t2

n∑
k=1

〈(∂kB(t)∗)(∂kB(t))ωmw(t), ωmw(t)〉L2

+
i

2t2
〈(∆B(t)∗)B(t)ωmw(t), ωmw(t)〉L2

− 1

t2

n∑
k=1

Im〈[ωm, B(t)∗∂kB(t)]∂kw(t), ωmw(t)〉L2

− 1

2t2
Im〈ωm(B(t)∗(∆B(t))w(t)), ωmw(t)〉L2

≡ Q1(t) + Q2(t) + Q3(t) + Q4(t).

To estimate the right hand side of the equality (4.13), (that is, Q1, . . . ,

Q4), we have to estimate B(t) in appropriate spaces.

Lemma 4.2. Let l be an integer satisfying 0 ≤ l ≤ n−1, and let p and q

satisfy 2 < p < 2n/(n−γ−l) < q < 2n/(n−2) and 1/p+1/q = 1−(γ+l)/n.

Then there exists a constant C1 > 0 independent of T such that

‖F (v(t))‖Ẇ l,∞ ≤ C1‖v(t)‖Lp‖v(t)‖Lq = C1‖w(t)‖Lp‖w(t)‖Lq(4.14)

for t ∈ [1, T ]. Furthermore, there exists a constant C2 > 0 independent of

T such that

‖F (v(t))‖Ẇ l,∞ ≤ C2‖w(t)‖2
Hm ≤ C2ρ

2(4.15)
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for t ∈ [1, T ], where m is defined by (1.7).

Proof. Noting 0 < γ + l < 1+ l ≤ n, by Lemma 3.1 and the unitarity

of the matrix B, we have

‖F (v(t))‖Ẇ l,∞ ≤C
n∑

j,k=1

‖ | · |−γ−l ∗ (vj(t)vk(t))‖L∞

≤C
n∑

j,k=1

(‖vj(t)‖Lp‖vk(t)‖Lp‖vj(t)‖Lq‖vk(t)‖Lq)1/2

≤C1‖v(t)‖Lp‖v(t)‖Lq

=C1‖w(t)‖Lp‖w(t)‖Lq .

Therefore we obtain the estimate (4.14).

Next we show the estimate (4.15). Since 2 < p < 2n/(n − γ − l),

H(γ+l)/2 ↪→ Lp. In the estimate (4.14), for any ε > 0, we choose q (and p)

sufficiently close to 2n/(n − γ − l) such that H(γ+l)/2+ε ↪→ Lq holds. Note

that (γ + l)/2 < (1 + l)/2 ≤ n/2 < m, since 0 ≤ l ≤ n − 1 and 0 < γ < 1.

We take the above ε such that 0 < ε < m − (γ + l)/2. Then we have the

embedding Hm ↪→ Lp∩Lq, if p and q are sufficiently close to 2n/(n−γ− l).

The estimate (4.14) and the above embedding imply the estimate (4.15). �

Lemma 4.3. Let l be an integer satisfying 1 ≤ l ≤ n − 1. Then there

exists a constant C > 0 independent of T such that

‖B(t)‖L∞ = 1,(4.16)

‖B(t)‖Ẇ l,∞ ≤ Cρ2tl(1−γ)(4.17)

for t ∈ [1, T ].

Proof. Since the matrix B(t, x) is unitary for t ∈ [1, T ] and x ∈ R
n,

|B(t, x)|MN
= 1. Hence for any t ∈ [1, T ], we have ‖B(t)‖L∞ = 1. The

identity (4.16) is proved.

We prove the estimate (4.17) by the induction in l. Let z ∈ C
N and

α ∈ Z
n
+ be a multi-index satisfying |α| ≥ 1. Since the matrix F (v) is

Hermite, we have

d

dt
|∂α

xB(t, x)z|2
CN(4.18)
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= 2Re(∂α
x ∂tB(t, x)z, ∂α

xB(t, x)z)CN

= 2Re(−it−γ∂α
x (F (v(t, x))B(t, x))z, ∂α

xB(t, x)z)CN

= 2t−γ Im

∑
β≤α

(
α

β

)
(∂α−β

x F (v(t, x)))(∂β
xB(t, x))

 z,

∂α
xB(t, x)z


CN

= 2t−γ
∑

β≤α, β �=α

(
α

β

)
× Im

(
{(∂α−β

x F (v(t, x)))(∂β
xB(t, x))}z, ∂α

xB(t, x)z
)
CN

.

Note that if |α| ≥ 1, then ∂α
xB(1, x) = 0 for any x ∈ R

n by the initial

condition (4.6). Since |α| ≥ 1, the equality (4.18) implies

|∂α
xB(t, x)z|CN

≤ C
∑

β≤α, β �=α

∫ t

1
τ−γ |(∂α−β

x F (v(t, x))|MN
|∂β

xB(t, x)|MN
dτ |z|CN ,

and hence

|∂α
xB(t, x)|MN

(4.19)

≤ C
∑

β≤α, β �=α

∫ t

1
τ−γ |∂α−β

x F (v(τ, x))|MN
|∂β

xB(τ, x)|MN
dτ.

Therefore we have

‖∂α
xB(t)‖L∞(4.20)

≤ C
∑

β≤α, β �=α

∫ t

1
τ−γ‖∂α−β

x F (v(τ))‖L∞‖∂β
xB(τ)‖L∞ dτ.

First we show the estimate (4.17) for l = 1. By the estimate (4.20) with

|α| = 1 and (4.16), and Lemma 4.2, we have

‖B(t)‖Ẇ 1,∞ ≤ C

∫ t

1
τ−γ‖F (v(τ))‖Ẇ 1,∞‖B(τ)‖L∞ dτ
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≤ C

∫ t

1
τ−γρ2 dτ

≤ Cρ2t1−γ .

Thus the estimate (4.17) with l = 1 is proved.

Next assume that the inequality (4.17) holds for l = 1, . . . , k. (k is a

some integer satisfying 1 ≤ k ≤ n − 2.) We prove the inequality (4.17) for

l = k+1. Noting 2 ≤ k+1 ≤ n−1, by the estimate (4.20) with |α| = k+1,

Lemma 4.2 and the assumption of the induction, we have

‖B(t)‖Ẇk+1,∞ ≤ C

∫ t

1
τ−γ‖F (v(τ))‖Ẇ 1,∞∩Ẇk+1,∞‖B(τ)‖Wk,∞ dτ

≤ C

∫ t

1
τ−γρ2 × ρ2τk(1−γ) dτ

≤ Cρ2t(k+1)(1−γ).

Thus the estimate (4.17) with l = k+ 1 is proved. Therefore this completes

the proof of the estimate (4.17). �

Lemma 4.4. If 1 ≤ p ≤ ∞, then

‖v(t)‖Lp = ‖w(t)‖Lp

for t ∈ [1, T ]. Moreover, let l be an integer satisfying 1 ≤ l ≤ n − 1, then

there exists a constant C > 0 independent of T such that

‖v(t)‖Ḣl ≤ Cρ2‖w(t)‖Hltl(1−γ)

for t ∈ [1, T ].

Proof. Since B is a unitary matrix, we have ‖v(t)‖Lp = ‖w(t)‖Lp for

1 ≤ p ≤ ∞.

Next we show the second estimate. Since 1 ≤ l ≤ n− 1. by the Leibniz

rule and Lemma 4.3, we have

‖v(t)‖Ḣl =‖B(t)w(t)‖Ḣl

≤C
∑
|α|=l

‖∂α
x (B(t)w(t))‖L2

≤C‖B(t)‖W l,∞‖w(t)‖Hl

≤Cρ2tl(1−γ)‖w(t)‖Hl .
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Therefore the second inequality is shown. �

Lemma 4.5. Let l be an integer satisfying 1 ≤ l ≤ n, and let m be the

integer defined by (1.7). Then there exists a constant C > 0 independent of

T such that

‖F (v(t))‖Ẇ l,2n/γ ≤C‖w(t)‖Hl−1‖w(t)‖Ḣγ/2+1t
(l−1)(1−γ)

≤C‖w(t)‖Hl−1‖w(t)‖Hmt(l−1)(1−γ)

for t ∈ [1, T ].

Proof. Since 0 ≤ l−1 ≤ n−1 and γ/2+1 < 3/2 < m, by Lemmas 3.2,

3.3 and 4.4, we have

‖F (v(t))‖Ẇ l,2n/γ

≤ C

n∑
j,k=1

‖ω−(n−γ−1)ωl−1(vj(t)vk(t))‖L2n/γ

≤ C

n∑
j,k=1

‖ωl−1(vj(t)vk(t))‖L2n/(2n−γ−2)

≤ C
n∑

j,k=1

(‖ωl−1vj(t)‖L2‖vk(t)‖L2n/(n−γ−2)

+ ‖vj(t)‖L2n/(n−γ−2)‖ωl−1vk(t)‖L2)

≤ C‖ωl−1v(t)‖L2‖v(t)‖L2n/(n−γ−2)

= C‖v(t)‖Ḣl−1‖w(t)‖L2n/(n−γ−2)

≤ Ct(l−1)(1−γ)‖w(t)‖Hl−1‖w(t)‖Ḣγ/2+1

≤ C‖w(t)‖Hl−1‖w(t)‖Hmt(l−1)(1−γ).

This completes the proof of the lemma. �

Lemma 4.6. Let m be the integer defined by (1.7). There exists a con-

stant C > 0 independent of T such that

‖F (v(t))‖Ẇ 1,2n/(γ+2) ≤ C‖w(t)‖2
Ḣγ/4 ≤ C‖w(t)‖2

Hm
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for t ∈ [1, T ]. Furthermore, let l be an integer satisfying 2 ≤ l ≤ n + 1.

Then there exists a constant C > 0 independent of T such that

‖F (v(t))‖Ẇ l,2n/(γ+2) ≤C‖w(t)‖Hl−2‖w(t)‖Ḣγ/2+1t
(l−2)(1−γ)

≤C‖w(t)‖Hl−2‖w(t)‖Hmt(l−2)(1−γ)

for t ∈ [1, T ].

Proof. We prove the first estimate. By Lemma 3.2 and the fact γ/4 <

1/4 < m, we obtain

‖F (v(t))‖Ẇ 1,2n/(γ+2) ≤ C
n∑

j,k=1

‖ω−(n−γ−1)(vj(t)vk(t))‖L2n/(γ+2)

≤ C
n∑

j,k=1

‖vj(t)vk(t)‖L2n/(2n−γ)

≤ C‖v(t)‖2
L4n/(2n−γ)

= C‖w(t)‖2
L4n/(2n−γ)

≤ C‖w(t)‖2
Ḣγ/4

≤ C‖w(t)‖2
Hm .

Next we show the second estimate. Since 0 ≤ l−2 ≤ n−1 and γ/2+1 <

3/2 < m, by Lemmas 3.2, 3.3 and 4.4, we have

‖F (v(t))‖Ẇ l,2n/(γ+2)

≤ C
n∑

j,k=1

‖ω−(n−γ−2)ωl−2(vj(t)vk(t))‖L2n/(γ+2)

≤ C

n∑
j,k=1

‖ωl−2(vj(t)vk(t))‖L2n/(2n−γ−2)

≤ C

n∑
j,k=1

(‖ωl−2vj(t)‖L2‖vk(t)‖L2n/(n−γ−2)

+ ‖vj(t)‖L2n/(n−γ−2)‖ωl−2vk(t)‖L2)

≤ C‖ωl−2v(t)‖L2‖v(t)‖L2n/(n−γ−2)

= C‖v(t)‖Ḣl−2‖w(t)‖L2n/(n−γ−2)
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≤ Ct(l−2)(1−γ)‖w(t)‖Hl−2‖w(t)‖Ḣγ/2+1

≤ C‖w(t)‖Hl−2‖w(t)‖Hmt(l−2)(1−γ).

This completes the proof of the lemma. �

Lemma 4.7. Let m be the integer defined by (1.7). Then there exists a

constant C > 0 independent of T such that

‖B(t)‖Ẇm,2n/γ ≤ Cρ2tm(1−γ),(4.21)

‖B(t)‖Ẇm+1,2n/γ ≤ Cρ2t(m+1)(1−γ),(4.22)

‖B(t)‖Ẇm,2n/(γ+2) ≤ Cρ2tm(1−γ),(4.23)

‖B(t)‖Ẇm+1,2n/(γ+2) ≤ Cρ2t(m+1)(1−γ),(4.24)

‖B(t)‖Ẇm+2,2n/(γ+2) ≤ Cρ2t(m+2)(1−γ)(4.25)

for t ∈ [1, T ].

Proof. First we show the estimates (4.21) and (4.22). By the defini-

tion (1.7) of m, we see that 2 ≤ m ≤ n − 1 and that 3 ≤ m + 1 ≤ n. Let

l = m or m + 1, and let j be an integer satisfying 0 ≤ j ≤ l − 1. Then

1 ≤ l− j ≤ l ≤ m+ 1 ≤ n and 0 ≤ j ≤ l− 1 ≤ m ≤ n− 1, and hence we see

that l−j and j satisfy the assumptions of Lemmas 4.5 and 4.3, respectively.

By the estimate (4.19), the Hölder inequality, and Lemmas 4.3 and 4.5, we

have

‖B(t)‖Ẇ l,2n/γ ≤ C
l−1∑
j=0

∫ t

1
τ−γ‖F (v(τ))‖Ẇ l−j,2n/γ‖B(τ)‖Ẇ j,∞ dτ

≤ C
l−1∑
j=0

∫ t

1
τ−γρ2τ (l−j−1)(1−γ)τ j(1−γ) dτ

≤ Cρ2tl(1−γ).

Therefore the estimates (4.21) and (4.22) are proved.

Next we show the estimates (4.23) and (4.24). Since 1 ≤ l−j ≤ m+1 ≤ n

and 0 ≤ j ≤ l− 1 ≤ m ≤ n− 1 as above, we see that l− j and j satisfy the

assumptions of Lemmas 4.6 and 4.3, respectively. By the estimate (4.19),
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the Hölder inequality, and Lemmas 4.3 and 4.6, we have

‖B(t)‖Ẇ l,2n/(γ+2) ≤ C
l−1∑
j=0

∫ t

1
τ−γ‖F (v(τ))‖Ẇ l−j,2n/(γ+2)‖B(τ)‖Ẇ j,∞ dτ

= C

l−2∑
j=0

∫ t

1
τ−γ‖F (v(τ))‖Ẇ l−j,2n/(γ+2)‖B(τ)‖Ẇ j,∞ dτ

+C

∫ t

1
τ−γ‖F (v(τ))‖Ẇ 1,2n/(γ+2)‖B(τ)‖Ẇ l−1,∞ dτ

≤ C
l−2∑
j=0

∫ t

1
ρ2τ−γτ (l−j−2)(1−γ)τ j(1−γ) dτ

+Cρ2

∫ t

1
τ−γτ (l−1)(1−γ) dτ

≤ Cρ2tl(1−γ).

Hence the estimates (4.23) and (4.24) are shown.

Finally we prove the estimate (4.25). Let j be an integer satisfying

0 ≤ j ≤ m. Then 2 ≤ m + 2 − j ≤ m + 2 ≤ n + 1 and 0 ≤ j ≤ m ≤ n− 1,

and hence we see that l−j and j satisfy the assumptions of Lemmas 4.6 and

4.3, respectively. By the estimate (4.19), the Hölder inequality, Lemmas 4.2,

4.3 and 4.6, and the inequality (4.24), we have

‖B(t)‖Ẇm+2,2n/(γ+2)

≤ C

m∑
j=0

∫ t

1
τ−γ‖F (v(τ))‖Ẇm+2−j,2n/(γ+2)‖B(τ)‖Ẇ j,∞ dτ

+ C

∫ t

1
τ−γ‖F (v(τ))‖Ẇ 1,∞‖B(τ)‖Ẇm+1,2n/(γ+2) dτ

≤ C

m∑
j=0

∫ t

1
ρ2τ−γτ (m+2−j−2)(1−γ)τ j(1−γ) dτ

+ Cρ2

∫ t

1
τ−γτ (m+1)(1−γ) dτ

≤ Cρ2t(m+2)(1−γ).

Hence the estimate (4.25) is proved. �
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Lemma 4.8. Let m be the integer defined by (1.7), and let Q1, Q2, Q3

and Q4 be the functions defined in the equation (4.13). Then there exists a

constant C > 0 independent of T such that

|Q1(t)| ≤ Cρ2t−2γ‖w(t)‖2
Ḣm ,

|Q2(t)| ≤ Cρ2t−2γ‖w(t)‖2
Ḣm ,

|Q3(t)| ≤ Cρ2t(m+1)(1−γ)−2‖w(t)‖2
Hm ,

|Q4(t)| ≤ Cρ2t(m+2)(1−γ)−2‖w(t)‖2
Hm

for t ∈ [1, T ]

Proof. First we note that n/2 < m ≤ n− 1.

We begin with the functions Q1 and Q2. By Lemma 4.3, we have

|Q1(t)| =
1

2t2

∣∣∣∣∣
n∑

k=1

〈(∂kB(t)∗)(∂kB(t))ωmw(t), ωmw(t)〉L2

∣∣∣∣∣
≤ 1

2t2

n∑
k=1

‖∂kB(t)∗‖L∞‖∂kB(t)‖L∞‖ωmw(t)‖2
L2

≤Cρ2t−2γ‖w(t)‖2
Ḣm

and

|Q2(t)| =
1

2t2
|〈(∆B(t)∗)B(t)ωmw(t), ωmw(t)〉L2 |

≤ 1

2t2
‖∆B(t)∗‖L∞‖B(t)‖L∞‖ωmw(t)‖2

L2

≤Cρ2t−2γ‖w(t)‖2
Ḣm

for t ∈ [1, T ]. Therefore the first and second inequalities are proved.

Next we estimate Q3 and Q4. By Lemmas 3.3, 4.3 and 4.7, the Sobolev

embedding theorem and the fact γ/2 + 1 < 3/2 < m, we have

|Q3(t)|

=
1

t2

∣∣∣∣∣
n∑

k=1

Im〈[ωm, B(t)∗∂kB(t)]∂kw(t), ωmw(t)〉L2

∣∣∣∣∣
≤ t−2

n∑
k=1

‖[ωm, B(t)∗∂kB(t)]∂kw(t)‖L2‖ωmw(t)‖L2
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≤ Ct−2

[ n∑
k=1

{
‖ωm(B(t)∗∂kB(t))‖L2n/γ‖∂kw(t)‖L2n/(n−γ)

+

 n∑
j=1

‖∂j(B(t)∗∂kB(t))‖L∞

 ‖ωm−1∂kw(t)‖L2

}]
‖ωmw(t)‖L2

≤ Ct−2

[ n∑
k=1

(‖ωmB(t)∗‖L2n/γ‖∂kB(t)‖L∞

+‖B(t)∗‖L∞‖ωm∂kB(t)‖L2n/γ )‖w(t)‖Hγ/2+1

+(‖B(t)∗‖Ẇ 1,∞‖B(t)‖Ẇ 1,∞

+‖B(t)∗‖L∞‖B(t)‖Ẇ 2,∞)‖w(t)‖Ḣm

]
‖ωmw(t)‖L2

≤ Cρ2t−2(t(m+1)(1−γ)‖w(t)‖Hγ/2+1 + t2(1−γ)‖w(t)‖Ḣm)‖w(t)‖Ḣm

≤ Cρ2t(m+1)(1−γ)−2‖w(t)‖2
Hm .

and

|Q4(t)|

=
1

2t2
|Im〈ωm(B(t)∗(∆B(t))w(t)), ωmw(t)〉L2 |

≤ 1

2t2
|〈ωm(B(t)∗(∆B(t))w(t)), ωmw(t)〉L2 |

≤ 1

2t2
‖ωm(B(t)∗(∆B(t))w(t))‖L2‖ωmw(t)‖L2

≤ Ct−2(‖ωm(B(t)∗∆B(t))‖L2n/(γ+2)‖w(t)‖L2n/(n−γ−2)

+‖B(t)∗∆B(t)‖L∞‖ωmw(t)‖L2)‖ωmw(t)‖L2

≤ Ct−2{(‖ωmB(t)∗‖L2n/(γ+2)‖∆B(t)‖L∞

+‖B(t)∗‖L∞‖ωm+2B(t)‖L2n/(γ+2))‖w(t)‖L2n/(n−γ−2)

+‖B(t)∗‖L∞‖∆B(t)‖L∞‖ωmw(t)‖L2}‖ωmw(t)‖L2

≤ Cρ2t−2(t(m+2)(1−γ)‖w(t)‖Hγ/2+1 + t2(1−γ)‖w(t)‖Ḣm)‖w(t)‖Ḣm

≤ Cρ2t(m+2)(1−γ)−2‖w(t)‖2
Hm .

Hence the third and fourth inequalities are proved. �

By the equalities (4.10) and (4.13), and Lemma 4.8, we obtain the fol-

lowing proposition.
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Proposition 4.2. Let ρ ∈ (0, 1] and T > 1 be the constants fixed

above, φ ∈ H0,m, u ∈ C(R;L2) with |J |mu ∈ C(R;L2) be the unique solution

to the initial value problem (1.1)–(1.2) obtained in Proposition 4.1 with k =

m, and let w ∈ C([0, T ];Hm) be the function defined by (4.3) and (4.7),

where m be the integer defined by (1.7). Assume that the condition (4.9)

holds. Then there exists a constant C > 0 independent of T such that

d

dt
‖w(t)‖2

Hm ≤ Cρ2t(m+2)(1−γ)−2‖w(t)‖2
Hm

for t ∈ [1, T ].

Now we prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that the assumptions of Theo-

rem 1.1 are satisfied. In particular, assume that 1 − 1/(m + 2) < γ < 1,

where m is defined by (1.7).

Let φ ∈ H0,m, and it satisfy the condition (4.1), and u ∈ C(R;L2)

with |J |mu ∈ C(R;L2) be the unique solution to the initial value problem

(1.1)–(1.2) obtained in Proposition 4.1 with k = m. By Proposition 4.1, the

equality (1.9) holds.

We show the estimate (1.10). Let ρ ∈ (0, 1], and

T ∗ = sup

{
T : T > 1 and sup

t∈[1,T ]
‖w(t)‖Hm ≤ ρ

}
,

where w is the function defined by (4.3) and (4.7). It is sufficient to show

T ∗ = ∞. Let T ∈ [1, T ∗) be arbitrary. By Proposition 4.2 and the Gronwall

inequality, we have

‖w(t)‖Hm(4.26)

≤ ‖w(1)‖Hm exp

(
Cρ2

∫ t

1
τ (m+2)(1−γ)−2 dτ

)
≤ C ′‖U(−1)u(1)‖H0,m exp

(
Cρ2

∫ t

1
τ (m+2)(1−γ)−2 dτ

)
≤ C ′‖φ‖H0,m exp

(
Cρ2

∫ t

1
τ (m+2)(1−γ)−2 dτ

)
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for t ∈ [1, T ]. Note that (m+2)(1−γ)−2 < −1, since 1−1/(m+2) < γ < 1.

Hence, by the estimate (4.26), there exist positive constants C1, C2 and

C3 > 0 independent of T such that

‖w(t)‖Hm ≤ C1e
C2ρ2‖φ‖H0,m ≤ C3‖φ‖H0,m(4.27)

for t ∈ [1, T ]. Here we have noted that 0 < ρ ≤ 1. Now we choose the initial

data φ sufficiently small such that

C3‖φ‖H0,m ≤ ρ

2
.(4.28)

By the inequalities (4.27) and (4.28), we have

‖w(t)‖Hm ≤ ρ

2

for t ∈ [1, T ]. Hence for any T ∈ [1, T ∗),

sup
t∈[1,T ]

‖w(t)‖Hm ≤ ρ

2
.(4.29)

The estimate (4.29) implies T ∗ = ∞. (Indeed, if T ∗ < ∞, then the inequal-

ity (4.29) contradicts the definition of T ∗.) Therefore under the condition

(4.28), we see that w ∈ C([1,∞);Hm) and

‖w(t)‖Hm ≤ ρ

for t ≥ 1, and moreover by the estimate (4.27), we have

‖w(t)‖Hm ≤ C‖φ‖H0,m(4.30)

for any t ≥ 1. This implies that if ‖φ‖H0,m is sufficiently small (precisely

speaking, if the conditions (4.1) and (4.28) hold), then the unique solution

u to the initial value problem (1.1)–(1.2) satisfies the estimate (1.10). In

fact, by the definitions of v and w (see (4.3) and (4.7)), Lemma 4.4 and the

estimate (4.30), we see that for t ≥ 1,

‖ |J |mu(t)‖L2 = ‖ |J |mU(t)M−1F−1v(t)‖L2(4.31)

= ‖{U(t)|x|mU(−t)}U(t)M−1F−1v(t)‖L2

= ‖|x|mF−1v(t)‖L2
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= ‖v(t)‖Ḣm

≤ C‖w(t)‖Hmtm(1−γ)

≤ C‖φ‖H0,mtm(1−γ).

This implies the estimate (1.10).

Finally we prove the time decay estimate (1.11) as follows. Let 2 ≤ p ≤
∞. By the definitions of v and w (see (4.3) and (4.7)), the unitarity of the

matrix B, the estimate (4.27) and the embedding Hm ↪→ L2 ∩ L∞ (since

m > n/2), we have

‖u(t)‖Lp = t−n/2
∥∥∥v (t, ·

t

)∥∥∥
Lp

(4.32)

= t−n(1/2−1/p)‖v(t, ·)‖Lp

= t−n(1/2−1/p)‖w(t)‖Lp

≤ Ct−n(1/2−1/p)‖w(t)‖Hm

≤ C‖φ‖H0,mt−n(1/2−1/p)

for any t ≥ 1. Therefore the estimate (1.11) is proved. This completes the

proof of Theorem 1.1. �

5. Concluding Remark

Finally we remark about the asymptotics in large time of the solution

to the initial value problem (1.1)–(1.2) in the case 0 < γ < 1.

Suppose that the assumptions of Theorem 1.1 are satisfied. Let u be

the unique solution to that initial value problem obtained in Theorem 1.1,

and let v and w be the function defined by (4.3) and (4.7), respectively. To

investigate the large time behavior of the solution u, it is sufficient to obtain

asymptotics of the function v. To do so, first we investigate asymptotics of

the function w. By the equation (4.8), the estimate (4.30) and Lemma 4.3,

it is easy to see that for t ≥ 1,

‖∂tw(t)‖L2

≤ Ct−2

(
‖∆w(t)‖L2 +

n∑
k=1

‖∂kB(t)‖L∞‖∂kw(t)‖L2

+ ‖∆B(t)‖L∞‖w(t)‖L2

)
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≤ Ct−2γ .

Therefore for 1 ≤ t < t′,

‖w(t) − w(t′)‖L2 ≤
∫ t′

t
‖∂τw(τ)‖L2 dτ

≤ C

∫ t′

t
τ−2γ dτ

≤ Ct1−2γ ,

since −2γ < −2(1 − 1/(m + 2)) < −1. Noting that 1 − 2γ < 0, we see that

there exists a unique Φ+ ∈ L2 such that

‖w(t) − Φ+‖L2 ≤ Ct1−2γ

for t ≥ 1. In particular,

s-lim
t→∞

w(t) = Φ+ in L2.(5.1)

Since ‖w(t)‖Hm is bounded in t, the fact (5.1) implies w-limt→∞w(t) = Φ+

in Hm, and hence Φ+ ∈ Hm. Therefore we obtain the asymptotics Φ+ ∈ Hm

of the function w in L2. To get asymptotics of v from that of w, we have to

obtain asymptotics of the matrix B. Unfortunately, F (v) = F (Bw) �= F (w),

and hence it is not easy to obtain asymptotics of B by using Φ+ directly.

As mentioned in Section 1, the asymptotics in large time of the solu-

tion to the initial value problem of the Hartree equation (1.3) with γ < 1

was obtained by, e.g., Hayashi, Kaikina and Naumkin [10], Hayashi and

Naumkin [12, 13] and Wada [29]. For the Hartree equation (1.3), they used

w̃ = exp(i
∫ t
1 V ∗ |v(τ)|2 dτ)v instead of our w. Fortunately, for the Hartree

equation (1.3), exp(i
∫ t
1 V ∗ |v(τ)|2 dτ) = exp(i

∫ t
1 V ∗ |w̃(τ)|2 dτ). So it is

possible to investigate asymptotics of exp(i
∫ t
1 V ∗ |v(τ)|2 dτ) by using the

asymptotics of w̃ directly.

We return to the Hartree-Fock equation (1.1). As mentioned in Sec-

tion 1, in the case γ = 1, Wada [30] obtained the asymptotics in large time

of the solution to the initial value problem (1.1)–(1.2). In Lemma 4.5 in

[30], he overcame the above difficulty by constructing a MN -valued func-

tion Ã = Ã(t, ξ) such that

i∂tÃ = t−1F (ÃΦ̃+)Ã, t ≥ 1, ξ ∈ R
n(5.2)
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‖Ã(t) −B(t)‖L∞ = O(t−a), as t → ∞(5.3)

for suitable a > 0, by the contraction method, where Φ̃+ =

s-limt→∞B(t)∗FU(−t)u(t) in a suitable Sobolev space. He put u+ =

F−1Ã(1)Φ̃+ and A(t) = Ã(t)Ã(1)∗, and proved that asymptotics of u

is U(t)A(t,−i∇)u+. (The MN -valued function A = A(t, ξ) satisfies the

Cauchy problem (1.5), and it is a unitary matrix.) In the construction of

the function Ã satisfying (5.2)–(5.3), he essentially used the coefficient of

the right hand side of (5.2) is t−1. Precisely he essentially used the fact∫ ∞

t
τ−1τ−a dτ =

1

a
t−a(5.4)

for t ≥ 1.

In our case γ < 1, the equation corresponding to (5.2) is

i∂tÃ = t−γF (ÃΦ+)Ã, t ≥ 1, ξ ∈ R
n.(5.5)

Note that the coefficient of the right hand side of (5.5) is t−γ with γ < 1.

Since γ < 1, ∫ ∞

t
τ−γτ−a dτ �= Ct−a.

Therefore the idea of the proof in the case γ = 1 (Lemma 4.5 in Wada

[30]) is not available for our case γ < 1. Hence, in this paper, large time

asymptotics of the solution to the initial value problem (1.1)–(1.2) can not

be obtained, and that problem is still open.
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