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Quantization of Differential Systems with the Affine
Weyl Group Symmetries of Type C](\})

By Hajime NAGOYA

Abstract. We construct systems of nonlinear differential equa-
tions with affine Weyl group symmetries of type C’](\}), as compatibility
conditions of linear differential equations. These systems are Hamilto-
nian systems and those Hamiltonians are mutually commutative. We

also construct a quantization of these systems with affine Weyl group

symmetries of type Cj(\%).

1. Introduction

Classical integrable systems of finite dimension, such as the Painlevé
equations or their higher order analogues, can be viewed as compatibil-
ity conditions of linear differential equations (Lax form) ([21], [22], [31],
etc.). One of the systematic methods constructing Lax forms is by simi-
larity reduction [24] of (generalized) Drinfel’d-Sokolov hierarchies [17]. The
Drinfel’d-Sokolov hierarchies give soliton equations such as the Korteweg-
de Vries (KdV) equation [11]. These hierarchies are constructed in terms
of affine Lie algebras and their corresponding Lie groups by Gauss decom-
position. In the construction of those integrable hierarchies, Heisenberg
subalgebras of affine Lie algebras play a crucial role. It is well known that
there exists a relationship between soliton equations and the Painlevé equa-
tions, which is explained clearly by similarity reduction from generalized
Drinfel’d-Sokolov hierarchies.

Infinite-dimensional quantum integrable systems, such as quantum soli-
ton equations, are widely studied (for example, [40], [9], [10], [4]-]8], [12]).
Here, it is natural to quantize the Painlevé equations, their higher order
analogues and general differential systems through similarity reduction from
Drinfel’d-Sokolov hierarchies. This means, in particular, constructing mu-
tually commuting quantum Hamiltonians using the appropriate algebra,
whose symbols are the classical Hamiltonians, establishing group actions
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494 Hajime NAGOYA

compatible with Hamiltonians and obtaining solutions of the corresponding
Hamiltonian systems on representations of this algebra.

It has been known that the Painlevé equations Py, P, Prv Py and
Py admit the affine Weyl group actions of type Agl), Cél), Agl), Agl)
and Dil), respectively, as groups of Bécklund transformations [34]. A. P.
Veselov and A. B. Shabat studied the dressing chains that can be consid-
ered as higher order analogues of the fourth Painlevé equation Py and
the fifth Painlevé equation Py [39]. By using the dressing chains, V. E.
Adler introduced the symmetric form of Py [1]. M. Noumi and Y. Yamada
constructed a class of discrete dynamical systems associated with affine
Weyl group actions providing a general framework to describe the structure
of Bécklund transformations of differential systems of Painlevé type [30].
K. Hasegawa constructed quantization of the difference version of this ac-
tion [19]. The Painlevé equations can be represented as non-autonomous
Hamiltonian systems as well as their higher order analogues. Quantization
of the autonomous Hamiltonians of the fourth Painlevé equation and its
higher analogue was performed in [26]. Quantization of the fourth and fifth
Painlevé equations and their higher analogues was proposed in [27]. Similar
to the classical Painlevé equations, the quantum Painlevé equations also
possess affine Weyl group symmetries as Bécklund transformations of the
quantum Painlevé equations. Quantization of the affine Weyl group actions
on Poisson algebras of the Painlevé type differential systems in [32] was es-
tablished in [25]. Takano’s theory for the classical Painlevé equations [33] is
also applicable to the quantum Painlevé equations [38]. Note that we have
not obtained solutions of the quantum Painlevé equations yet.

About quantization of monodromy preserving deformation, the follow-
ing is known. The Schlesinger equation is the first example of a nonlinear
differential equation obtained as the compatibility condition for linear dif-
ferential equations. It describes the monodromy preserving deformation
of linear differential equations with regular singularities. In special case,
the Schlesinger equation becomes the sixth Painlevé equation [14]. The
Knizhnik-Zamolodchikov (KZ) equation is a set of constraints to be satis-
fied by the correlation functions in the conformal field theory and can be
regarded as quantization of the Schlesinger equation [36], [18]. However,
we have not yet derived the sixth quantum Painlevé equation from the KZ
equation. In the cases of Poincaré rank 1 at the infinity, a quantization is



Quantization of Differential Systems 495

constructed in [2], [13]. For any value of the Poincaré rank, confluent KZ
equations were constructed for slp, and quantum Painlevé equations QPy,
., QPy; are formally derived from these equations [20].

In a previous paper [28], we discussed the quantization of differential
systems by similarity reduction from the Drinfel’d-Sokolov hierarchies of
type Ai}_’l with respect to the principal gradation. For this purpose, the
Lax matrix is very important. Because the commuting quantum Hamilto-
nians were constructed using the trace of the power of the Lax matrix, in
addition to the classical Hamiltonians. We would like to extend the results
obtained in this study to other affine Lie algebras. In this paper, we quan-
tize Hamiltonian systems with affine Weyl group symmetries of type C (1),
which were obtained by similarity reduction from the Drinfel’d-Sokolov hier-
archies of type C](\}) with respect to the principal gradation. More precisely,
the Lax matrix M is the same one obtained by similarity reduction from
above condition and matrices B, in this paper are different from matrices
B; by similarity reduction in general. We have not yet know the connection
between them.

The third Painlevé equation has the affine Weyl group action of type

Cél). Although we deal with differential systems with the affine Weyl group

)

symmetriy of type Cél in this paper, Py is not included in them. The

easiest and most nontrivial case of type Cél) in this paper (the example
2.4) is a 2-parameter family of 2-coupled Py systems in [29], [37]. Also the
easiest and most nontrivial case of type Cil) in this paper is a 4-parameter
family of 2-coupled D§2)—systems in [37].

The structure of the rest of the paper is as follows. In the subsequent
section, we introduce classical differential systems with affine Weyl group
symmetries of type C’](\}). In Section 3, we quantize these classical differential
systems in the following manner. First, we define a derivation using the Lax
equation. Second, we present an action of the affine Weyl group of type C’](&)
compatible with the derivation using gauge transformations. Finally, we
show that the differential systems defined by the derivation are Hamiltonian
systems.
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2. Classical Case

In this section, we present differential systems with affine Weyl group
symmetries of type C' (1), by using symplectic algebra sp(2N, C). We use the
following matrix representation:

(2.1) sp(2N,C) = {X € gl(n,C)|XJ + JX* =0},
where n = 2N for N = 2,3,..., X! is the transpose of X and
N
(0 En B ‘ ‘
(2.2) J = ( By 0 ) Eyn = ;EZ,N+1Z.

2.1. Lax equation

We introduce a fundamental rational function field C,, (m < n) for
m € N over C. The generators of Cp,,, are €, fiir; (i =1,...,n,j =
1,...,m) and the defining relations of Cy, ,, are

(2.3) € =s(i,i)e1—, fij=500,5)f1imi1—j,  farines = fij
where s(i, j) is a function over Z/nZ x Z/nZ such that s(i, j) = s(j,7) and

s(i, ) = -1 1<i,j<N or N+1<i,j<n)
)T 11 (1<i<N, N+1<j<n)

Note that —s(i, k) = s(i,5)s(4, k).

DEFINITION 2.1. Let Cp, ]2, 271] be the polynomial ring and we define
a matrix element My, ,, in My, ,,(Crnnlz, 271]) by

(Mm,n)ii = € (Z = 1, . ,n),
(Mmn)ig = fij (0<3); (Mmpn)ij=2fijen (0> 7).

In what follows, we omit the index of M,, ,,, namely we write simply M
instead of M,,,,. We call M Lax operator.
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Example 2.2. We give an example of M for m = 3 and n = 4:

€1 fiz fiz fua
M= z2fos €2 fa3 foa
2f3s zfs €3 fu
2fis 2fie zfar €4

If we write only independent elements, then

€1 fiz  fi3 f1a

M- z2fos € fa3 fi3
2f3s zfzs —€2 —f12
Z2fas 2fzs —zfs —e

We define a Poisson bracket {,} on C,,, by

1
(2.6) {fijs fu} = 5(6j,kfi,j+lfk + 0j1-15(k, 1) fi jri—k
— Oifrjri—i — O1—kis(k, D) fimi 4 j—i—k),

where 0; 1 is defined by

[ 1 (j=k (modn))
@) 5= 0 G2k (med )

This Poisson bracket is induced from a certain subalgebra of the affine Lie
algebra of type C’](\}).

Let g = 5p(2N,C) ® Cpynl2, 271 and let g0, g<o be subalgebra of g
defined by

* ok
0 % - *
(2.8) g>0 = T
0 0 = o
+ 22 + ;
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0 0 0 .
* 0 -0 1
(2.9) g<0 = . . . +z
* * 0
+ 272 +

then it holds that g = g>0®g<o and M € g>o9. We denote the decomposition
of X e gby X =X, + X_ for X| € g>0 and X_ € g<o.

DEeFINITION 2.3. For s,k € N and that k is odd, we define a C-
derivation 0, by the Lax equation

(2.10) Ose(M) = [M, Bs ;] + k20 (Bs 1),

where By ), = (M*2=%),, k € C and 0, is the Cyn n-derivation which takes
z to 1.

It is needed that k is odd, because if k is even, then By and [M, B; i)
are not in g in general.

Ezample 2.4. We give an example of the system defined by 9, for
m=3n=4,s=2k=3.
The generators of C3 4 are

(2.11) €1, €2, f12, f23, f15, f13, [35, f14, f25, f36-

We denote f1 = fi2, faz = f2, fo = fas, g1 = f13, 92 = f35, fu =1, fos = 1,
f36 = 1 for convenience. The Lax operator is the following:

er fi g 1

z e f2 ¢
292z  —€ —f1
zfo 292 —z —e

From the Lax equation

(212) (9273(M) = [M, B273] + KJZ@Z(BQ,g)
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and
g -1 0 0
0 g -1 0

2.1 By 3 =

(2.13) 23 0 0 —go 1 ’
—2z 0 0 —g1

we write down Oa 3 as follows:

(2.14) D23(f1) = fig2 — g1 f1 + €2 — €1,
(2.15) 023(f2) = —fag92 — g2.f2 — 2€2,
(2.16) 92,3(fo) = fogr + g1fo + 261 — &,
(2.17) D23(91) = —fi + fo — 192 — 91,
(2.18) 02,3(92) = f1 — fo+ 9201 + g7 -

This system has a simple solution. Let f; and g; be functions of ¢, and ¢; and
x parameters in C, and let the derivation 02 3 be d/dt. Then, the following
is a solution of above system:

(2.19) fo=fi=fo=t, g1=92=0,
3 1
(220) €1 :—57 62:—57 k= —4.

2.2. Affine Weyl group symmetry

We construct affine Weyl group symmetry of type C](&
defined in the previous subsection.

We define matrices G; € g (i =0,1,...,N) as follows:

)

for the systems

{ Bit1i— Bny1-in—i
(2.21) Gi:exp<aZ aat o ) (i=1,..., N—1),

fii+1 2
ay ax
(2.22) Go=exp < 0 El,nz_1> , Gy =exp ( N EN+1,N> ,
fn,n-i—l fN,N+1
where o =2(¢; —€i11) (1 =1,... ,N —1) and of = —2¢1 + K, ay = 2en,
and Ej; ; is the matrix with 1 at the (7, j)-entry and 0 for other entries.
Using the matrices G;, we define an action of s; (i = 0,1,... ,N) on the

field Cyp,,p, by

(2.23) k20, + s;(M) = Gi(kd, + M)G; .
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These actions were obtained by M. Noumi and Y. Yamada [32] and s; acts
on fi; as follows:

aY
(2.24) 5i(frg) = exp ( 3 ad{}(fi,i—i—l)) (fra)
fiit1
aY
= fug + {fiirt, foat =
fiit1
1 af \?
+ {fi,i+17{fi,i+1afk,l}}§ ( : > +ee
fiit1
Moreover, we can regard o) (i = 0,1,...,N) as the simple coroots of the

affine root system of type C’](\}). Since the Lax equation (2.10) is written as
(2.25) [k20, + M, 051, + Bs i) =0,
we have

PROPOSITION 2.5. (1) The action of s; (i =0,1,...,N) define a rep-
resentation of the affine Weyl group W = (sg,s1,...,8n) of type CJ(\}),
namely they satisfy the following relations

(2.26) st=1, sis;=s58 |i—j|>2,
(2.27) SiSi+15i = Si+1SiSi+1 1= 1, e ,N — 2,
(2.28) 50815051 = $1505150, SN-1SNSN—1SN = SNSN—1SNSN—1-

(2) The derivation Osj, commutes with the action of the affine Weyl
group W = (sg, 81,... ,SN) of type C](VD.

2.3. Hamiltonian
For F € Cy,n[2], we denote by F; the 2¥’s coefficient of the polynomial
F'. We define Hamiltonians by the trace of some power of M:

9.99 [P U M
( : ) s,k = ko1 S,k € .

The following proposition proves that Hj j is the Hamiltonian of the system
defined by the derivation s .
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PROPOSITION 2.6. For positive numbers s, s and positive odd numbers
k, k', we have the following.

(2.30) (1) Osi(fij) = {Hspk fij} + (£20:(Bsk))ij
(2.31) (2) {Hsk,Hypr} =0.

We can prove this proposition by direct computation. To see examples,
non trivial Hamiltonians are finite and if x = 0, these systems are integrable
systems.

3. Quantum Case

In this section, we quantize the differential systems with affine Weyl
group symmetry of type C’](\}) defined in the previous section. We use a set
sp(2N, K), where K is a skew field. The set sp(2N, K) is not a Lie algebra
in general. However, for certain conditions, a quantization of the classical
system exists.

3.1. Lax equation
Let Cpyn (m < n, m € N) be a skew field over C with generators

(3.1) hoei, frivi (i=1,...,n,5=1,...,m),
and defining relations
(3.2) i =s(i,i)eri, fig =500 15 Farintg = fij
(3.3) [fz‘j,fkl} = g (6j,kfi,j+l—k + 5j,1—l3(k7l)fi,j+l—k
~ 813k jr1—i — 61 kis(k, l)f1—l,1+j—¢—k>

and ¢; and h are central elements. We denote the commutator by [, ], namely
[a, b] = ab—ba. The condition m < n is needed in the definition of the affine
Weyl group symmetry because of the fact that a matrix set sp(2N,Cy, ) is
not a Lie algebra.

DEFINITION 3.1.  Let Cp, [z, 271] be the polynomial ring and we define
a matrix element M in M, ,,(Cp.nl2, 27Y]) by

(3.4) Myi=e¢ (i=1,...,n),
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(3.5) (M)ij = fig (<4), (M)ij==z2fijin (i> 7).

We introduce elements e; ; = E; jy2° where j = ns+ j and 0 < j' <n

in My, (Con 2, Z_l]) Then, M = Z? 1€i€iq + ZZL 1 Z;n 1 fl ji+5 €ty

We define g, §>0 and g<o 1n the same _way as the classmal case. We also
denote the decomposition of Xeghy X = X+ + X_ for X+ € g>o0 and
X_ ¢ g<o-

ProrosiTiON 3.2.  For a positive number s and an odd number k such
that mk > ns > m(k — 1), we can define Clz,271]-derivation Osy on
Cinnlz, 271 by the Laz equation

(3.6) By x(M) = [M, By 1] + £20.(Bs),
where Es,k = (]\//jkz*S)Jr, k€ C.

REMARK 3.3. Note that if mk < ns, then Es,k = 0, and if mk = ns,
then it holds

(3.7) []/\4\, Es,k} = maz(ﬁsyk) =0.

To prove Proposition 3.2, we need the next lemma.

LEMMA 3.4. Let s be a positive number and k an odd positive number,
and i,j,p,q integers such that 1 < ¢ < n, 0 < 57 < mk —ns. Under the
assumption ns > m(k — 1), we have

(3.8) [(Es,k)mj , fp,q]
- g <6i+j’p (Es’k)i,i+j+q—p biii=as(p.0) (Es’k)i,i-i-j-i-q—p

—5i(l§s) — 01-piS(p, <§s> );
¢ K i P (P 4) { Bk 1—g,1+j—p

where (§5k> is determined by Es,k =y 1ka ns (A k) C €itge
j

iitj i+
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PRrROOF. It is convenient to introduce the following notation I; = i1 +
-« 414 for integers i1, ... ,4; to calculate the commutator.
By the definition,

(3.9) (Bs,k) L S fiirnFinivn o firn i
by I,=ns+j
In turn it is straightforward to calculate the commutator of <§sk> and
iyitg

fpﬂ from the commutation rules and we obtain (3.8). O

PRrROOF OF PROPOSITION 3.2. It is needed to check that matrices l§57k
and []\/4\ , E&k are elements in sp (n,Cmm[z,z_l]), and the following two

maps J; ; and 0 defined by
(3.10) LRV = [J\? Es,k} L LW (M) = k20, (Es,k)

are C[z, z~1]-derivations.

For the former, we compute (Es’k)l i follows.
—t=]1=1

(BSJC)I 1 .= E : fl—i—jal—i—j-‘rhfl—i—j+f1,1—i—j+f2
AT —nstj

o i =it I,
= > sliyitig_1)s(i+ip_1,1+ ig_1 + ig_2)
Iy=ns+j
oo S(i iy 4+ g, i+ 1)
X fiitig_1 Jicvin v itig_1+in_o *** Jitip_1+tio,it Iy
.. . k—1
= Z S(Z>Z +])(_1) fi,i+ik—1 fi+ik—17i+ik—1+ik—2
I =ns+j
o fidig g teebin,it Iy

= s(i,i + j) <§5k> . Hence, Bsy, is in

—i—j,1—1 ]

Since k is odd, <J§s,k>1
sp (n,Cmnlz,271]). For []\/4\, E&k}, the same computation proceeds and we

obtain that the element []\/4\, Es,k} is in sp (n, Crnlz, z_l]).



504 Hajime NAGOYA

For the latter, it is proved in Theorem 3.9 that the map 0., is C[z, 2]
derivation, although we can check that by direct computation. Also we
can check by direct computation using Lemma 3.4 that the map ('9;’,16 is
Clz, 2~ 1]-derivation. O

3.2. Affine Weyl group symmetry
As the classical case, we can define the affine Weyl group action of type
C](\}) on Cp, , for m < n compatible with the Lax equation, by matrices @Z
Let matrices @@ be defined by

o Fovti = E"+1_i’"_i> (i=1,...,N-1),

(311) Gi=exp | =
iyit1 2

~ aY - oV
(3.12) Go=exp | —2 Elvnz_l , Gy=exp| —X Enqin |
INNt1

where o = 2(e; —€i41) (i =1,... ,N —1) and of = —2¢1 + K, ay = 2en.
ProrosiTioN 3.5. Using the matrices @u we can define automor-
phisms s; (i =0,1,... ,N) on the skew field Cp, , by

—

(3.13) si(M) = GG} - ke0. (Gi) G

PROOF. From m < n, the right hand side of (3.13) is in sp(n,
Crmnlz, 2*1]). Hence s; is a map of the free algebra generated by h, €;, fi ;.
Through a long computation, we can check the map s; preserves the com-
mutation relations. Thus s; is an automorphism on the skew field C,, . U

As the classical case, we can regard o/ (i = 0,1,...,N) as the simple

coroots of the affine root system of type C](\}) . Note that from definition,
the action of s; on the generators f,; is written down in the following.

1 o) p 5 ; o
(3.14)  si(fka) =fg + 5 (m [fi,i-i—lafk,l] + {fz‘,z‘—&-l?fk,l} hfz',z’+1>

1 v ?
+ D) (hjgé,i'ﬂ) [fi,iﬂ, [fi,i—i—l;fk,l” .



Quantization of Differential Systems 505

Example 3.6. We give an example of the action for m = 3, n = 4,
s =2, k = 3. We use the same notation in Section 2. Then,

so(fo) = fo, so(f1) = fi+ % (af—ggz + gz%) 7

so(f2) = f2, so(g1) = g1 —

I

v V vV 2

ath) = o5 (For ) +1 () s =5,
si(f2) = fo+ = ! <f191+91 )4—1 <—)

( ) +1o< ( ) 1l
s = s =Qg9— ——
191 g1 2f 1192 g2 2f1’

Vv Vv
s2(fo) = fo, s2(f1) = f1 — % (a—zgl +91a—2) ;

fo fo
Vv
sa(f2) = f2,  so(g1) = g1, so(g92) = g2 + %

The (noncommutative) differential systems defined by 0, using Lax
equation have the affine Weyl group symmetry of type C’](\}).

THEOREM 3.7. (1) The action of s; (i = 0,1,...,N) define a repre-
sentation of the affine Weyl group W = (sg, s1,... ,Sn) of type C(l), namely
they satisfy the following relations

(3.15) st=1, sis; =858 |i—j|>2,
(3.16) SiSi+1Si = Si+1SiSi+1 1= 1, e ,N — 2,
(3.17) 50518051 = 51505150, SN-1SNSN-1SN = SNSN_1SNSN_1-

(2) The derivation Osj commutes with the action of the affine Weyl
group W = (sg, $1,... ,8N) of type C](\}).

PROOF. (1) We can check by direct computations that all fundamental
relations hold.
(2) Since Lax equation is written as

(3.18) k20, + M, 05, + Bys] =0,
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and from (3.13), we have

(3.19) k20, + 8; (]\/4\) = @Z (m:@z + ]\/Z) @;1’
it is sufficient to show

(3.20) Do+ 5i (Bon) = Gi (9ox + Boy) G

From the definition of By and (3.13), the left hand side of the above is
~ N\ k
Os.ic + 5i <Bs,k> =051 + <3i (M) 2_5>
+
PN N ~ Nk
o+ (76 - w0 (61) 67) )
+
PN
—0, 5+ <(GiMGi_1) 28> .
J’_

We used the condition m(k—1) < ns here. We compute the right hand side
of (3.20) as follows:

Gi (8 k+Bsk>G =0, k+Gask<G ) +GiBy G
o),
:as,k + Ai7i+1 s k <fz H—l)
X 2fji+1 (EH—I i+ 5( + 1 )En+1—i,n—i)

(1 b0 ) 4 QTG )
V

b5 (B (B,
~ i+1,3
2fiit
+5(i+11 n+1—i,n— z< ) . >
n—i,n—i

X (1 + 0502~ )

- (Ez'Jrl,i (Bs,k). ‘
i+1,04+1

+s(i+1,0)Eppi—in—i (§5k> . )
n+l—in+1—1i
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v
x (14 81027 ) 1
2fii+1

o

(B (B)
2fi,i+1 < b * 1,141

+ Eny1—in—i (Esk)

n—i,n—i+1

+2FE; 11, <§s,k>, - (60 + 5i,N)>
7,0+1

)

a; -1
X — (14 6i027")
Jii+1

SN
_ 87k+<(GiMGi 1) p >+ v

1 . . a;
t3 (Big1i+s(i+1,0)En1in—i) =—
it 1

X <88,k
— fiit1

<fi,z‘+1) + (Es,k)i . fi,i—i—l
(5
aY ~
—7’(1 +6i0+6iN) (Bs,k) - )
i,04+1
1

X — 14680271,
fiit+1 ( " )

)
i+1,04+1

We used Lemma 3.4 here. From the definition of 0y 1, we have
(3.21) Os. k (f”+1) = fiin (Es,k) = (ES,k), fiin
i+1,i+1 (X
+ (& — €it1,i41 + i nk) (E;,k), o
2,0+1
Therefore, we obtain the formula (3.20). O

3.3. Hamiltonian

In this section, we show that Hamiltonians of quantum differential sys-
tems defined in Section 3.1 are obtained from the trace of some power of
Lax operator.
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DEeFINITION 3.8. For s,k € N, we define Hamiltonian ﬁs’k by

. Tr(M\k+1)s
.22 Hy)j =——
(3 ) s,k k+ 1

THEOREM 3.9. For s,k € N such that ns > m(k — 1) and k is odd, it
holds

(3.23) % [ﬁs,kfn,ﬁ] - [1\7 B, k} ,

where I, is the identity matriz Y - | E; ;.

We prove this theorem by direct computation of the commutator in the
same way as the 14,(11_)1 case [28]. We need the following lemmas.
For1<i<jand1l<j<m-—1,let a;; and b;j in sp (n,Cp, n) be

1 A
(3.24) ai; = 3 Z (fifl,iJrjeifl,i + s(i, i +])flfifjfl,lfielfifjfl,lfifj) ;
1=1
1, .
(3.25) b = 3 (fi,i+j+l€i+j,i+j+l + s(i,7+ j)fl—i—j,l—i—',—lel—i,l—H—l> .

l

1

LEMMA 3.10. The commutator of]\/J\ and fi,iﬂ- (1<i<nl<j<
m — 1) is given by

1 —~ A
- [M7 fi,i—&—jln} = ajj — bjj.

(3.26) ;

PrROOF. We compute the left-hand side of (3.26) as follows:

m— j n

1 .
fp7p+la fi,i+j]ep7p+l

S

[M, f”ﬂ} =

>
1L
3
Il
=

3 -
4

M:

( Op+t,ifpptiri = Oitjpfiiti+

N | —

1

I
—
=

[
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+ 54,1+ J)01—i—jprifppriti
—s(i,4 + j)51—i,pf1—z'—j,1—i+l) Ep,p+l
=a;; — bU |

For1<i<j,1<j<m—-1,0<p<k—+1anda,bée€Z, we define the
following elements A7;(a,b), Bj;(a,b) and Cj(a,d) in Cpnp.

P . .
(3-27) A a b Z fl J+Jr fi+Ja717i+Ja fi+Jb*Jk+Ja,i+Jb*Jk+Ja+1
S (TS T A
: fi“‘Jb_Jk""Jk—lai+Jb_Jk+Jk+17
where the summation is taken over all ji,...,jx+1 € N such that Jy 1 =
ns+j, jp > j+1and Jyp1 — Jo =0 (mod n).
P . . .
(3.28) Bj;(a,b) Zfz iy fir gy it dor it dpg it Jyre 0 Jikda_1 it da
. fi+J,,—Jk+1+Ja,i+Jb—Jk+1+Ja+1
e fiJFJb*JkJrl+Jk,i+Jb*Jk+1+Jk+l7
where the summation is taken over all ji,...,jxr1 € N such that Jyy1 =
ns+j, jp > j+1and Jyp1 — J, =0 (mod n).
P _ [
(3.29) CP(a,b) =) (1) fiisn
T fi+Ja—2,i+Ja—1 fi+Ja—lyi+Ja+1 fi+Jq+1,i+Jq+2
o fi+Jk7i—|—Jk+17
where the summation is taken over all ji,...,jx+1 € N such that Jy4; =

ns+j,jp>j+landi+ J, =1— (i+ Juyp) (mod n).

LEMMA 3.11. Suppose 1 < ¢ <k, 1 <i<n,1<j<m-—1and
ns > m(k —1). We have
Ta-11 7| k-
2T (Mq = |aij, M| A q)

S
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qg—1
=S {AE k- )~ BSR4 2k - g+ 1))

f](k—q,k+1)+Bk 2 —q+2,k—q+1)
1

+Z{—A§j(t,t—q)+Bff2(t+2,t—q+1)}

t=q

q
+> {AL(k—t+1,qg—t+1)—Bj(k—t+3,g—t+2)}
—B-l-(k:—q+2 1) + A (k — 4.0

+ Z {-A} q)+ Bjj(t+1,q+1)}
tq+1

k—
+Z{C’f“ — g+ L)+ O k= g+t -0} + CE (k- g+ 1,9)

k-1

+ Ch h—q) = Y {CE - g+ Lk = ) + CE k- g~k + 1)
t=q
+Z{ —t+ 1)+ Clhi(qg—t+2,t = 1)} + Cl(q,—q) + C};(1,q)

- Z {CLlk—t+q+1,—k+t—1)+Cllq+1,k—t+1)},
t=q+1

and

S R —
q—1_ g k—q
2Tr<M h[M,bU}M )
q
=S {BL(k—t+3,k—q+2) ~AL(k+1—t,k—q+1)}
t=2
+1 1
AF (g —1,0) - Bl(¢+1,1)

k
+ Y {-Blt+1t—q+ 1)+ At —1,t—q)}
t=q+1

_|_
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~1
k—t k2t a
+ {—Aij (k—t,q—1-1)+ B;; (k+2—t,q—t)}—Bij(q+1,q)
t=1

L=

k—1
+ Al a1k + 1)+ Y {A g - 1) - B+ 2,0) )
t=q

q
=Y {Ch(k—q+2,t—1)+ Cli(k —q+t,—t+ 1)} + CL(1,k —q+1)
Ck-_q“(k—qul,—kJrq—l)

+ Z {CLt—q+1Lk—t+1)+CL(k—q+1,—k+t—1)}
tq—i—l

—Z{ckﬂ t)+cfj+1(q—t,t)}+ofj“(k, —k+q-1)
C.‘f.“( k—q+1)
+Z{C’““ —1,—k+ 1)+ CE gk —)}

Proor. We compute the left hand side of the first formula above as
follows. First of all, we have

(Mq = [Z i “,M] - Q>
Z
I=1 I+l

e fi+1k72_qulzi+lk71_qul’ fi+lk71_lq717i+lk_lq71:|
=1+ II + III,

S

ATy il—Tga+  Jici—igy it fimtivg fiitig

|—|

I= (fi—l—fq,m—z—fq,l“l o fiml Iy L gl —Ty 1+ 1
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. [fiflflq,lJrIt,l,iflflq,lJrlt7 fi+1,€_1—1q_1,i+1,€—1q_1}
il Iy Ll Ty Tyt Jil—ig il
Sicvivjfiivig fz'+1k_2—1q,1,z‘+1k_1_1q,1) )
m—j
= E E (fiflflq,l,iflflq,ﬁrh o ficiig it

=1 Ix+l=ns
: [fi—l,i+j7fi+[k,171q_1,i+lkflq_1} Jisivig fi+]k,271q_1,i+lk,1—[q_l) )
m—j k-1

I = E E E (fi—l—fq,m'—l—fq,ﬁh o ficimigoi—tfimtivi fiitig
=1 Ix+l=ns t=q
SRR LS PR SN PR
' |:fi+1t—l_1q—1,i+1t_1q—17 fi+1k71_1q—17i+1k_1q—1:| fi+ft—1q—17i+1t+1—1q—1
T fi+1k72*1q7177;+Ik71*1q71> .

We compute I. Using the commutation relations, we see that

(3.30) [fi—z—zq_1+It_2,z‘—l—1q_1+1t_1, fi+lk,1—lq,1,i+lk—lq,1:| #0

if and only if 44 + 7 < m, 1 < 44,4 and one of the next four conditions
(331) 1) L=-ix (modn),

(3.32) ii) L1 =0 (modn),

(3.33) i) i—l—Ip 1+ L=1—i+1+1,-1 (modn),

(3.34) iv) 1—i+ig+l+1p1=i—1—1; 1+ L1 (modn).
When I; = —ig,

m—j

qg—1
I= E E <f¢7171q,1,¢7171q,1+11 il Iy g i =Ty + 1y

I=1 Ij+i=ns t=1
: fz‘—l—fq,ﬁlt,l,i—l—fq,1+ft+ikfi—l—fq,l+It,i—l—fq,1+1t+1 e fi—l—z‘q,l,z‘—l
: ﬁ‘—l,i—&—jfi,i+iq e fi+lk_2—1q,1,i+lk_1_zq,1) )
Replacing
(il, R SO PR T ,iqfl, l —|—j,iq, e ,ik_l,ik)
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with

(jk:—t-i—la ce ’jkvjk:—q—i—lv ce ajk—t—lajk—tmjl’ cee 7jk—q7jk+1)7

we have

q—1
I= Z Z fi+Jk—q_Jk+Jk—t7i+Jk—q_Jk_Jk—t+1
Jpp1=ns+j t=1

T fi“’kaq*Jk+Jk727i+Jk7q*Jk7Jk71
v g e it D g D= T St it g it it g
Siirdy it T g it Tr— g

where Jy11 — Jg—¢ = 0 (mod n) and jp_y > j + 1. Since m(k — 1) < ns,
it holds that ji,...,jx+1 € N and all elements in the expression above are
mutually commutative. Hence, we obtain

qg—1
(3.35) I=> Ak —tk—q).
t=1
For the case ii) I;_1 =0 (mod n), we obtain
qg—1
(3.36) I=-) B (k—t+2,k—q+1)
t=1

in the same way of i). For the caseiil) i =l — I, 1+ =1 —i+1+ 1,
(mod n), we compute I as follows.

m—j qg—1
I = E E E <fz'—l—1q,1,z'—l—1q,1+11"'fi—l—lq,1+1t,2,i—z—fq,1+1t,1

=1 Ix+l=ns t=1

s(0 A+ Ty — Ig—1, + I — Iq—l)fiflffq—ﬁrft_l,i*lflq_lJrItJrik
: fi—l—zq,l+1t,¢—z—1q,1+1t+1 e fi—z—iq,l,i—z

ficvivg fiiti, fi+lk,271q,1,i+1,9,171q,1> :

Replacing

(7:17"' ait717it7it+17"' 7iq*177:q7"’ 77:k3—17/l:k‘7l+j)
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with

(jk—q—i-t—i—h CIEIE ajk—q+3ajk—q+27jk—q+t+2a .. 7jk:7j17 s 7jk—q7jk‘—q+17jk‘+1)a

we have

qg—1
[ R
1= Z Z(_l) (fi+kaq+tvi+Jk7q+t+1 "'fi+Jk7q+27i+Jk7q+3

Jp+1=ns+j t=1
: fi+Jk,q,i+Jk,q+2
) ﬁ+Jk—q+1+tvi+Jk—q+2+t T fi+Jkai+Jk+l
< fiiaa fq;+Jk,q,1,i+Jk,q> ,
where i + Jy_gye41 = 1 — (1 — Jg—g41) (mod n) and jr41 > j + 1. Since

m(k — 1) < ms, it holds that ji,...,jk+1 € N and all elements in the
expression above are mutually commutative. Hence, we obtain

(3.37) I= ZC’““ —q+1,1).

For the case iv), we obtain
(3.38) I= Z CE (k- q+t,—t)

in the same way iii). For the each case of II and III, the computation is
similar. [

LEMMA 3.12. Suppose 1 < ¢ <k, 1 <i<n,1<j<m-—1and
ns > m(k —1). We have

(3.39) Tr (J\?q—l [aij,ﬁ] J\Y’W) — T (J\?’f—q [1\7 bi]} J\?q—l) = 0.

S S

PrOOF. This lemma immediately follows from Lemma 3.11. [

PROOF OF THEOREM 3.9. We compute the left-hand side of (3.23) as
follows:

Tr(]\?k""l)s

1 11
= [ A, In,M} -
h[ k h kE+1

I, ]\/4\]
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m—1 n
~ 1 17—~ A —~
= Z Z T TT <Mq% [M, fi,iJrjIn} qu) €iitj-
j=1 i=1 ¢q=0 S

Applying Lemma 3.10, we have

% [fIkIn M

[

m—1

k
1 — e
> P (Mq (aij — bij) M* q)sei,iﬂ'

=0

I
NE

i=1

<.
Il
I
[}

1
-1

3

Il
(]
ol
—_

Tr ((k +1) (M\kaij — bij]\/f\k>

+1

1 =1

<.
Il

+ Z q (]\/qul [ai]‘, ]/\Z] ]/\Zqu — ]/\Zqu |:]\/4\, bij:| ]/\qul> €4 it
q=1 B

Using Lemma 3.12, we have

m—1 n

1

E Tr (]\/Zkaij — bij]/\ik)s €iitg-

ol M| =
j=1 i=1

From the definition of a;; and b;;,

Tr (Mkaij — biij> €i,it+j
s

3
d

N~

Tr {Mk (fi—l7i+jei—l,i + s(i, i + j)fl—i—j—l,1—i€1—i—j—l,1—i—j)

o
+j+lez+]z+3+l+5(Z i+ ) Fiij1irie1—i1 z+l)M } €i,i4j
S

Z (fz I—Ipiel—Ty_y " Jici—iri—tfi—ti4j

l\3|'—‘

|
i Mf QIM

I +l=ns
+ 5(1, i ) Flmic T it Doy Flim gt Tt F1mim 1
— fiirirt fitjrliriti+ I - fitj i Lo it I+ T,

—5(i,0 + J) fioimji—ipi fl—ipt i —ipi D fl—i+l+[k_1,1—i+l+lk> €iitj
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) G
=1 {( i,5+ns—I fl Sar

s (77%) s
( ]) i j1—ijtns— fl i—j—1,1—1

m—j

1
2

()
fl rh i+j+1i+l+ns

—5(i,4 +j)flfifj,1fi+l (Mk> €iiti

1—i+l,1—i+ns }

where (]\/Zk) is determined by Mk = Zij (]\7’“) € ;. From Proposition

.J .J
3.2, an element [(Mkz_s) , M*] is in sp(n,Cpm.nz, 271]). Hence,

m—j
Z s(i,yi + 7) <(]\A4k> o fioicjora—i
=1

1—i—j,1—i—j+ns—I
o —~
g (37)
f el 1—i+l,1—i+ns

- (|G )
T (M — b, 01Y) = ([(mz—s)_ MD

Therefore, we obtain

b [Fetn, 8] = | (37%2) 31| = 37, (B.4)] . O

and

tyi4]
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