J. Math. Sci. Univ. Tokyo
15 (2008), 257—289.

An SO(3)-Version of 2-Torsion Instanton Invariants

By Hirofumi SASAHIRA™

Abstract. We construct an invariant for non-spin 4-manifolds
by using 2-torsion cohomology classes of moduli spaces of instantons
on SO(3)-bundles. The invariant is an SO(3)-version of Fintushel-
Stern’s 2-torsion instanton invariant. We show that this SO(3)-torsion
invariant is non-trivial for 2CP2#CP?, while it is known that any
known invariant of 2CP?#CP? coming from the Seiberg-Witten theory
is trivial since 2CP2#CP? has a positive scalar curvature metric.

1. Introduction

The purpose of this paper is to construct an SO(3)-version of Fintushel-
Stern’s torsion invariants [FS]. R. Fintushel and R. Stern constructed a
variant of Donaldson invariants for spin 4-manifolds by using 2-torsion co-
homology classes of the moduli spaces of instantons on SU (2)-bundles. They
used cohomology classes of degree one and two. S. K. Donaldson gave an-
other construction by using a class of degree 3 [D4]. As is well known, the
usual Donaldson invariant is trivial for the connected sum of 4-manifolds
with b+ positive ([D3]). On the other hand, Fintushel and Stern showed
that their torsion invariant is not necessarily trivial for the connected sum
of the form Y#52 x S? in general.

In this paper, we define an invariant of 4-manifolds using 2-torsion co-
homology classes of SO(3)-moduli spaces and show that our invariant is not
necessarily trivial for Y#5? x S? as in the case of Fintushel-Stern’s invari-
ant. We basically follow the argument in [FS] and modify it to extend the
definition to non-spin 4-manifolds.

The outline of the construction is as follows. Let X be a closed, oriented,
simply connected, non-spin Riemannian 4-manifold and P be an SO(3)-
bundle over X satisfying

wo(P) = wo(X) € H*(X;Zs), pi1(P)=0(X) mod 8.

*Partially supported by the 21th century COE program at Graduate School of Math-
ematical Sciences, the University of Tokyo.
2000 Mathematics Subject Classification. 5TR5T.

257



258 Hirofumi SASAHIRA

Here o(X) is the signature of X. Let B} be the space of gauge equivalence
classes of irreducible connections on P. In [AMR], S. Akbulut, T. Mrowka
and Y. Ruan showed that H'(B};Zs) is isomorphic to Zs. We denote the
generator by uj. On the other hand, for homology class [¥] € Ha(X;Z)
with self-intersection number even, we have an integral cohomology class
w([X]) € H*(Bp;Z). Suppose that the dimension of the moduli space Mp
of instantons on P is 2d 4 1 for some non-negative integer d. In general Mp
is not compact. However for homology classes [¥1],...,[Xq] € Ha(X;Z)
with self-intersection numbers even, we can define the pairing

ax ([Z1], -+ [Za]) = (wr U p([Z1]) U - - - U p([Ea)), [MP]) € Zg

in an appropriate sense. We show that this number depends only on the

homology classes [¥;] and gives a differential-topological invariant of X.
We will show a gluing formula of torsion invariants for Y #52 x 2, which

is an SO(3)-version of Theorem 1.1 in [FS|. By using this gluing formula

and D. Kotschick’s calculation in [K1, K2], we prove that ¢ is non-

2P 4TP?
trivial. This example exhibits two interesting aspects explained below.

The first aspect is related to vanishing theorem. We have a descrip-
tion of X = 2CP?#CP? as the connected sum of ¥; = CP? and Y5 =
CP?4#CP?. Since the second Stiefel-Whitney class wa(P) is equal to wa(X),
both of wa(P)|y, and wa(P)ly, are non-trivial. In such a situation, the usual
Donaldson invariants are trivial by the dimension-count argument ([MM]).
Hence the non-triviality of q;@m 4TP> implies that the dimension-count ar-
gument can not be applied directly to proving such a vanishing theorem
in our case. If each homology class [¥;] is in Hy(Y1;7Z) or Hy(Ye;Z), then
we can show that our invariant vanishes. However we can not reduce the
argument to this case because of the condition that [3;] - [£;] must be even
to define our invariant.

The next aspect is related to the Seiberg-Witten theory. In [Wi], E.
Witten introduced invariants, called the Seiberg-Witten invariants, of 4-
manifolds using monopole equations. He conjectured that the invariants
are equivalent to the Donaldson invariants and explicitly wrote a formula
which should give a relation between the Donaldson invariants and the
Seiberg-Witten invariants. In [PT], V. Pidstrigach and A. Tyurin proposed
a program to give a rigorous mathematical proof of the formula by using
non-abelian monopoles. The theory of non-abelian monopoles has been de-
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veloped by P. Feehan and T. Leness ([FL1, FL2, FL3]). Feehan and Leness
recently announced that they completed the proof of Witten’s formula for
4-manifolds of simple type with by = 0 and b" > 1 in [FL4].

u1
2CP2 #CP2
the Donaldson invariants and Seiberg-Witten invariants. If a 4-manifold has

The non-triviality of ¢ is quite a contrast to the equivalence of
a positive scalar curvature metric and satisfies b*(X) > 1, then the moduli
space of solutions of the monopole equations with respect to the metric is
empty for some perturbation. Hence any known invariant of 2CP?#CP?
coming from the monopole equations (the Seiberg-Witten invariant and a
refinement due to S. Bauer and M. Furuta [BF]) is trivial since 2CP?#CP?
has a positive scalar curvature metric.

The paper is organized as follows. In Section 2, we construct cohomology
classes p([X]) and u1, and define a torsion invariant. In Section 3, we prove
a gluing formula for the connected sum of the form Y #52% x S2. In Section
4, we prove that q;‘(}cm 4P is non-trivial by using the gluing formula. We
also discuss the reason why the usual vanishing theorem does not hold for
our torsion invariant.

Acknowledgment. The author would like to thank my advisor Mikio Fu-
ruta for his suggestions and warm encouragement. The author also thanks
Yukio Kametani and Nobuhiro Nakamura for useful conversations.

2. Torsion Invariants

2.1. Notations
Let X be a closed, oriented, simply connected 4-manifold, g a Rieman-
nian metric on X and P an SO(3)-bundle over X. Put

1
k=—gn(P)eQ, w=u(P)e H*(X;Zs).
Let A} be the space of irreducible connections on P and Gp be the gauge
group of P. We write By or B, y for the quotient space Ap /Gp. We

denote by Mp or M, x the moduli space of instantons on P.
Let A be an instanton on P. We have a sequence

d dh
Qg{(gp) =5 Q%((GP) - Q}(GP)-
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The condition that A is an instanton implies that dj; ods = 0. Hence the
above sequence define a complex. We denote the cohomology groups by
HY, HY, H?.

Let P be a U(2)-lift of P and E be the rank 2 complex vector bundle
associated with P. Fix a connection age; on det E. We write Ag for the
space of connections on E which induce the connection aqer on det E, and
write A7, for the space of irreducible connections in Ag. Let G be the group
of bundle automorphisms on E with determinant 1. We also introduce a
subgroup Q% of G. Fix a point z¢ in X. The subgroup QOE is defined by

Gy = {9 € Galg(wo) = 1}.
We denote the quotient spaces by
By =A%/Gp Bp=Ap/Gy, By=Ay/GY.
Since we are assuming that X is simply connected, the natural map By —
B is bijective.
To construct cohomology classes u; and p([X]), we need the universal
bundle E over X x Bg. The universal bundle is defined by

E::EXQ%AE%XXBVE.

For a closed, oriented surface ¥ embedded in X, let v(X) be a small tubular
neighborhood of ¥. We define spaces of gauge equivalence classes of con-
nections on v(X). Let A,(x) be the space of connections on E‘]V(Z) which
induce the connection aget|,(s) on det Ef,(x. Let G, (x) be the group of au-
tomorphisms of F| v(x) With determinant 1. We assume that the base point
xo is in v(X). Define QB(E) by

gg(z) = {9 € Gu(»)lg(w0) = 1}.
We denote the quotient spaces by

b = Abey /9, Bus) = Aus) /sy Bis) = Alsy/ 9oy

Restricting connections, we have a map

Fus) : By — Bus)-

We have the universal bundle EV(E) over v(X) x gy(g) defined by

Ey(s) = (Blum) Xgo , Avim) — v(5) X B,(s).
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2.2. Cohomology classes of By

Suppose ¥ is a closed, oriented surface embedded in X such that (wa(P),
[X]) =0 mod 2. In this subsection, we define a 2-dimensional integral co-
homology class p([X]) € H?*(Bp;Z). Basically we follow a standard con-
struction in [DK, K1J.

We first define the cohomology class fiz([2]) € H2(Bj; Z) to be the slant

product co(E)/[X].

LEMMA 2.1. Let 3 : g’é — B} be the projection. Then the induced
homomorphism

3% HX(BL; Z) — H*(By; Z)

is injective. Moreover for a homology class [X] € Ha(X;Z) with (we(P),
[X]) =0 mod 2, the cohomology class fip([X]) lies in the image of 5*.

PROOF. Since H1(§O(3); Z) = 0, the spectral sequence associated with
the fibration SO(3) — By — B induces an exact sequence

(1) 0 — H2(By:;Z) - HX (B Z) — H*(SO(3);2),

which implies the injectivity of 5*.
Let 1 be a complex line bundle over SO(3) defined by

n:i= SU(2) X{+1} C— 50(3).

Here the action of {£1} on C is the multiplication. Then it is easy to obtain
the identification

Elsxso@) = (Els) X413 SU(2) = (Bls) Ry — T x SO(3),

and we have

c2(Elsxso@)/[Z] = (rie2(Els) + niei(Els) Unser(n)) /(2]

= {c1(E),[X]) e1(n)
€ H?(SO(3);Z) = Zs,

where

L X SO3) — X, m:X xS0(3)— SO(3)
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are the projections. If (wa(P),[X]) is zero, the pairing (c1(E), [X]) is even,

and hence the restriction of ca(E)/[X] to SO(3) is trivial. From the exact
sequence (1), fiz([X]) is in the image of 5*. O

By Lemma 2.1, there is a unique element of H?*(B%;Z) such that the
image by % is fig([¥]). Through the natural identification between B}
and B, we have a 2-dimensional cohomology class of B. We denote it by

pe((X]).

LEMMA 2.2. Let X be a closed, oriented, simply connected 4-manifold
and P be an SO(3)-bundle over X. Suppose that [¥] is a 2-dimensional
homology class in X with (w2(P),[X]) = 0 mod 2. Then the cohomology
class pp([X]) € H*(Bp; Z) is independent of the choice of E.

This lemma will be shown in §2.4 as a corollary of Lemma 2.15. Under
the assumption in Lemma 2.2, we define u([X]) € H?(B%;Z) as follows.

DEFINITION 2.3. For a homology class [X] € Hs(X,Z) with (ws(P),
[¥]) =0 mod 2, the cohomology class u([X]) € H*(Bp;Z) is defined to be

pe([X]).
REMARK 2.4. Let
P:=P xg, Ap — X x Bp

be the universal bundle of P. Then the usual definition of y-map is given
by

pQ: Ho(X;Z) — HZ(B};;@)
(2] — —in(P)/[2].

In general, pQ([X]) does not have an integral lift. Under our assumptions,
it is easy to see that u([X]) is an integral lift of pg([X]).

Next we define a torsion cohomology class u1 € H'(Bp;Z2). We write
o(X) for the signature of X. Akbulut, Mrowka and Ruan showed the fol-
lowing in [AMR].
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ProprosITION 2.5 ([AMR]). Let X be a closed, oriented, simply con-
nected 4-manifold and P be an SO(3)-bundle over X. Then we have

T (Bp) = { Zf if wa(P) = w2(X), p1(P) =0(X) mod 8

otherwise.

REMARK 2.6. Suppose P is an SO(3)-bundle over X with wa(P) equal
to wy(X) and let P be a U(2)-lift of P. Then p;(P) is equal to o(X)

modulo 8 if and only if c2(P) is equal to 0 modulo 2. This equivalence is a
consequence of the formulas

p1(P) = —4ea(P) + e1(P)?,  we(X)?=0(X) mod 8.

When we(P) = we(X) and p1(P) = o(X) mod8, we have
HY(B%;Zs) = Zs from Proposition 2.5.

DEFINITION 2.7. Let X be a closed, oriented, simply connected 4-
manifold and P be an SO(3)-bundle over X satisfying wa(P) = wa(X),
p1(P) = 0(X) mod 8. We write uy for the generator of H'(Bp;Zs) = Zs.

2.3. Construction of ¢y

Let X be a closed, oriented, simply connected 4-manifold. Suppose
bT(X) = 2a for a positive integer a. Let P be an SO(3)-bundle over X.
Assume that P satisfies the condition

(2) wo(P) = wo(X) € H*(X;Zs), pi(P)=0(X) mod 8.
The virtual dimension of Mp is given by
dim Mp = —2p1(P) — 3(1 + b7 (X)) = 8k — 3(1 + 2a).
If we put d = —p1(P) — 3a — 2 = 4k — 3a — 2, then we have
dim Mp = 2d + 1.
From the condition (2), we have

d=—-0(X)—3a—2 mod 8.
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Suppose that d > 0 and take 2-dimensional homology classes [£1], ..., [34]
of X satisfying

(w2(P),[%i]) =0 mod2 (i=1,...,d).

The assumption (w2(P),[3;]) = 0 mod 2 is equivalent to [¥;] - [¥;] = 0
mod 2 since wy(P) is equal to wy(X). We want to define the pairing
(up Up([Z1])) U---Up([X4]), Mp) € Zy. The moduli space Mp is not com-
pact in general and the pairing is not well-defined in the usual sense. To
define the pairing, we need submanifolds Vx, dual to p([%;]) which behave
nicely near the ends of Mp. We briefly explain how the submanifolds are
constructed. See [D3, DK] for the details.

We use the following three things. The first is that when b™(X) and
k= —%pl(P) are positive Mp lies in B} and has a natural smooth structure
for generic metrics on X. The second is that the restrictions of irreducible
instantons to open subsets are also irreducible. The third is that the coho-
mology class u([X]) comes from B} s,)- More precise statement of the third
is as follows.

Let [¥] € H2(X;Z) be a homology class with [¥]-[¥] =0 mod 2. Since
the following diagram is commutative

idE Xfl,(z) ~

E|u(2)><B;j = (Elu(s)) xgo Ap Eys) = (Elys)) Xgo . Av(z)

J J

v(X) x By — v(2) x By
dy () XTy(3)
we obtain
3 Ap(B) = ca(B)/[S] = ) (c2(Byx))/[2]) € H (B Z).

We apply Lemma 2.1 to the restriction of P on v(X), instead of P it-
self. Then we see that there exists a unique 2-dimensional cohomology
class p,(s) 5([X]) of B} s, such that the pull-back by the natural projection

B;(E) — Bﬁ(z) is equal to ca(E,(xy)/[%]-
We define Vs as follows.

DEFINITION 2.8. Take a homology class [X] € Ho(X;Z) with [X] - [X]
even. We write Ly for a complex line bundle over Bi(z) 5 with first Chern
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class p,(x) g([X]) € HQ(B;j(E)’E;Z). Fix a section sy, of Ly,. We denote the

zero locus of sy by Vs C By, Suppose that b™(X) and k = —1p1(P) are
positive. For a generic metric g, we define

MpnVs ::{ [A] € Mp ‘ [A’u(Z)] eVy }

We will show that the pairing (ui, Mp N Vy, N---NVy,) is well-defined
under some condition.

REMARK 2.9. We give some remarks on the line bundle Ly. We refer
to [D3, DK] for details.

e As is well-known, we are also able to construct the line bundle Ly, by
using a family of twisted Dirac operators on 3.

e Assume that (we(P),[¥]) is equal to 0 modulo 2. Then P|, ) is
topologically trivial. Let B;(E) L= Bi(z) U {[Oyx)]}. Here ©,(x)
is the trivial connection on v(X). It is known that Ly extends to
BZ‘(E) 4 Hence we can assume that the section sy is non-zero near
[©,(x;)]- In the case when ws(P) is zero, we need this property to define
invariants. On the other hand, when we treat an SO(3)-bundle P with
wy(P) non-trivial, we do not need this property for the definition of
invariants. However we will need this property in Lemma 3.7 to prove
some property of our invariant .

We prepare some lemmas. The following is well-known.

LemMA 2.10 ([D3, DK]). Let X be a closed, oriented, simply con-
nected 4-manifold with bt (X) positive and P be a SO(3)-bundle with k =
—2p1(P) > 0. Take homology classes [$1), ..., [Sa] € Ha(X;Z) with self-
intersection numbers even. For generic sections sy, the intersections

el

are transverse.
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From now on, we require that 3; are generic in the following sense.

(4)

Y mY; (4,7 distinct)
LinY;NE,=0 (4,74 k distinct).

LEMMA 2.11. Let X be a closed, oriented, simply connected, non-spin
4-manifold with b*(X) positive. Let P be an SO(3)-bundle over X with
wa(P) equal to wa(X). Suppose that the dimension of Mp is 2d' + r for a
non-negative integer d' and 1 < r < 3. Take d’" homology classes [¥1],. ..,
Xa] € HZ(X; Z) with

Moreover we assume that the surfaces ¥; satisfy the condition (4). Then
for generic sections sy, the intersection

MpﬁVglﬂ---ﬂVEd,
is a compact r-dimensional manifold.

PROOF. Put k= —1p(P), w = wa(P). For [A] € Mp, we have

by the Chern-Weil theory. Here dp, is the volume form with respect to
g. First we show k > 0. If not, K = 0 and A is flat. Since X is simply
connected, A is trivial. This contradicts the assumption that wy(P) is non-
trivial. Hence we have k > 0. From Lemma 2.10, MpNVg, N---N ng, is
a smooth r-dimensional manifold for generic sections sy, .

Next we prove that Mp Vs, N---NVy , is compact. Let {[A™]},en be
a sequence in MpNVy, N---NVs oy Uhlenbeck’s weak compactness theorem
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implies that there is a subsequence {[A()]},, which is weakly convergent
to

([Ascls 21,y 21) € My, x X Xt

We also have k—1 > 0 in the same way as above. Let m be the number of the
tubular neighborhoods v(X;) which contain z,, for some « with 1 < o <.
Then without loss of generality, we may suppose that

[As] € Mi_wxNVs,N---N Vzd,_m

if we change the order of the surfaces. If we take the tubular neighborhoods
v(3;) to be sufficiently small, we have

v(E) Nv(E;)Nuv(Eg) =0 (4,7, k distinct)

from (4). Hence we have m < 21. Since k—[ > 0, the intersection My_; ;, x N
Ve, N---N Vs, is transverse by Lemma 2.10. From this transversality,
we obtain

0 <dimMy_juxNVs, N---N Vz;d,_
= dithw’X — 8l — Q(d/ — m)
=r—8l+2m
<r—4].

m

Since we suppose 1 < r < 3, we have [ = 0 and
[Aoo] € Mpn Vs, ﬂ“-ﬁVZd,.
Hence MpNVy, N---NVy, is compact. O

Let X be as in Lemma 2.11 and P be an SO(3)-bundle over X satisfying
(2). Suppose that dim Mp is 2d + 1 for a non-negative integer d and take
homology classes [X1],...,[2q] € H2(X;Z) with self-intersection numbers
even. From Lemma 2.11, we have the pairing

<u1,MpﬂVz]lﬂ-”ﬂV2d> € Zs.
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PrROPOSITION 2.12. Let X be a closed, oriented, simply connected,
non-spin 4-manifold with b*(X) = 2a for a positive integer a and P be
an SO(3)-bundle over X satisfying (2). Assume that the dimension of Mp
is 2d + 1 for a non-negative integer d. Then the pairing

<u1,MpﬂV21 ﬁ"-ﬁV2d> € 2o
is independent of the choices of Riemannian metric g, U(2)-lift P of P,

sections sy, of Ly, and surfaces ¥; representing the homology classes [3;].
Moreover the pairing is multi-linear with respect to [$4],...,[X4].

We prove the above proposition in §2.4. By using this proposition, we
can easily show that the following invariant ¢%' is well defined.

DEFINITION 2.13. Let X be as in Proposition 2.12. Let A/,(X) be the
subspace of @2H?(X;Z) generated by

{[Z1]®-- @24 | [Xi] € Ho(X;2Z),[%:] - [ =0 mod 2 },

and we put

d
where d runs over non-negative integers with d = —o(X) — 3a —2 mod 8.
We define ¢! by
gy A'(X) — Zo
(B Bdl) — g x (Bl [Ba])

= <u1,MpﬂV§jlﬂ--~ﬂVEd>.

Here P is an SO(3)-bundle over X with we(P) = w2(X) and pi(P) =
—d — 3a — 2.

2.4. Well-definedness of ¢4}

In this subsection, we prove Proposition 2.12. First we show the inde-
pendence of ¢! from Riemannian metric g and sections sy, in a standard
way. Take two metrics g, ¢’ on X and sections sy, S,Ei of Ly,. Choose a
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path {g:}sc(0,1) between g and ¢', and a path {ss, ¢ };co1] between sx, and
s’zi. Then put

M= T Mp(g:) x {t},

te[0,1]
MnNVs, = { ([A]7t) €M | Szi,t([A‘u(Ei)]) =0 }

Using a similar argument in the proof of Lemma 2.11, we can show the
following lemma;:

LEMMA 2.14. Let X and P be as in Proposition 2.12. Then for generic
paths {gi}rejo,1) and {ss;t}ejo], the intersection

MNVs, N---NVs,
is a compact 2-dimensional manifold whose boundary is

(Mp(g)NVg, N---NVs,) H(MP(Q/) NVg, N---NVy ).

This lemma implies
<U1,Mp(g) NVg, N---N V2d> = <U1,Mp(g/) N Vél n---N Véd> € Zo,

and the pairing (u;, Mp NVy, N---NVy,) is independent of the choices of
g and sy,.

Next we see the independence of ¢y' from the choice of U(2)-lift P of
P . Take two U(2)-lifts P and P’ of P. The associated vector bundle E’
with P’ is topologically isomorphic to £ ® L for some complex line bundle
L over X. Fix connections aqet, az, on det E, L and an isomorphism

go:E'iE@)L.

We have a connection a/j,, on det E’ induced by aqet, ar, and . We consider
connections on E ® L and E’ which are compatible with aget + 2ar, and a&et
respectively. By tensoring a L‘V(E)v we have maps

ta: -Ay(z),E — -AV(Z),E®L7 tp Bz(z),E — B;(E),E@)L’

tf)’ : BV(Z),E i EV(E),E(X)L'
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Moreover the pull-back by ¢ induces identifications

(Ge8 th(z) EQL — Bz(z),E/v ¢B : Bu(E),E@L — BZI(Z),E_'/

LEMMA 2.15.  Suppose Ly, [',2 are complex line bundles over B;f ), B
BZ(E),E’ corresponding to the cohomology classes /LV(Z)E([E]) €

H2(B;(E)E;Z), sy, i ([E]) € H?(B* (s )E,,Z). Then we have

(Y- o tp)"Lyy = Ly

ProoF. 1t is sufficient to show that (15 0tz)*(c (IEI’/(E))/[E]) is equal
to CQ(IEV(Z))/[E] since H?(B* s,

Let 7y : v(X2) X BV(E)E — v(X) be the projection. We have the following
commutative diagram:

(). B )—>H2(B*( )5 Z) is injective.

E,x) ® 7 (Lly(s) IEL(Z)

(E® Ll,x)) xgo

e Ix(p* o ta)
_— 5

A, B

v(S),E

idy(z) ><(1/)B (o] tB)

Hence we have

(idy(x) X (g 0t5))" By = Eys) ® 75 (Lux))
and we obtain
(15 0 tg)" (c2(Eps)/[2))
= C2(I~Ey(2) @ 1 (Llys)))/ 2]
(5) = {c(E (z) +7rlcl(L|,, )Ucl(IE (E))+7T161 Llys) }/
= Cz(Eu(z)) |+ {miei(Llys)) Uer(BEysy) /2]
EHQ(gE; 7).
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By the Kiinneth formula, we can write

c1(E y(z) c1(Eyx), 2)+01(E )5 B
H*(v ( )XB .5 2) = H*(v(5); Z) & H? (B, 3 Z)

since gy(z)’g is simply connected ([AB]). The action of G° V(). 01 A?El, s

is trivial, since the determinants of elements of QB are equal to 1 by

%),E
definition. Hence A INEZ,(Z) is the pull-back 7] (AQE\,,(E)). This implies that

the B, v(x)-part o (E v(x))g of c1(E u(z)) = (AQEV(E)) is 0 and we have
{WTCI(L\V(E)) Ucl(Ey(Z))}/ {7T101 L|u )Ucl }/
—OEH (B (=) )

From the equation (5), we obtain

6)  (Wgotp) (caEls))/[E]) = c2(Bux))/[5] € H(Byz); Z). O

PROOF OF LEMMA 2.2. Lemma 2.2 follows from (6) and the following
commutative diagram:

BV(Z)vE d)BotB By(z),E/
TV(E)T TTV(Z‘)
By - By &
! | °
By = By &
By r

PROOF OF INDEPENDENCE OF ¢y FROM P. Take homology classes
[¥i] € Ha(X;Z) with [£;]-[2;] =0 mod 2 for i =1,...,d and choose U(2)-
lifts P and P’ of P. Then we obtain line bundles Ly, and CE over B* (). B
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and BZ(Ei),E/‘

Vs, V5. By Lemma 2.15, (5« o tp«)* Ly, is isomorphic to Ly,. We fix an
isomorphism and regard the section S/Ei of E’Ei as a sections of Ly, through

We denote the zero locus of sections sy, sy, of Ly, Ly, by

the identifications

3 k3

Q;Z)B* O tB* . B:j(zz),E i BZ(Ei),E_'/’ (’L/JB* OtB*)*EIE = £Z"

We take paths {szht}te[gﬂ between sy, and 5/21_. In the same way as Lemma
2.14, we have a bordism between MpNVs, N---NVy, and MpﬂVE’1 n-- -ﬂVZ’d.
Hence we obtain

<U1,MPQVZIQ-~'QVEd> :<U1,MpﬂVélﬁ"'ﬂVéd> € Zy. O

Lastly we show that ¢%' is independent of the choice of surfaces 3;
representing the homology classes [¥;] and that ¢%' is multi-linear with
respect to [21],...,[Xq4]. It follows from the following lemma directly.

LEMMA 2.16. Let X and P be as in Proposition 2.12. Take homol-
ogy classes [21],...,[2q4] € Hao(X;Z) with self-intersection numbers even.
Moreover assume that

] =[S+ [S)] € Ba(X3Z),  [S4]-[SA =[S0 (5] =0 mod 2.
Then we have

<u1,MpﬂV21ﬂV22ﬂ'”ﬁVEd>
:<u1,MpﬂVE/1ﬂV22ﬁ~'-ﬂV2d>

+<u1,MpﬂVE/1/ﬂVZ2ﬂ--'ﬂng> € Zs.

PROOF. By definition, we have

g (1) = e2(E)/[21] = 2(E)/[Sh] + e2(E)/[21]
= ip([Z1]) + ip((£1)) € H(Bg: 2).
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The homomorphism §* : H?(B%; Z) — HQ(g*E; Z) is injective and fiz([21]),
L (24, fg([E]]) lie in the image 8* from Lemma 2.1. Hence we have

p([=1]) = u((Z1) + u([=1)) € H*(Bp; Z2).
Since Mp N Vs, N---N Vg, is compact from Lemma 2.11, we have

<u1,MpﬂV21ﬂ-”ﬂVEd>
= <U1 UM([El]),MP NVe,N---N V2d>
= (ur U (u([Z1]) + w(Z1)). Mp N Vs, NN V,)
= Qi Ul Mp 1 Vi, 011 Vi,
+ <U1 U:U’([lel])vMP N VEQ n---N V2d>

= <u1,MpﬂVE/1ﬂVg2ﬂ"-ﬂVEd>
+<u1,MpﬂVE/1/ﬂV22ﬂ~--ﬂV§;d>. O

3. A Connected Sum Formula for Y#5? x 52

3.1. Statement of the result

As is well known Donaldson invariants vanish for the connected sum
X1#X, provided bt (X;) > 0 for i = 1,2 ([D3]). In [FS], however, Fintushel
and Stern defined some torsion invariants by using instantons on SU(2)-
bundles and they showed that their SU(2)-torsion invariants are non-trivial
for the connected sum of the form Y#52 x S2. In this section, we show a
similar non-vanishing theorem for our SO(3)-torsion invariants.

Let Y be a closed, oriented, simply connected, non-spin 4-manifold with
bT(Y) =2a—1 for a > 1. Let Q be an SO(3)-bundle with w2(Q) equal to
wo(Y) and p1(Q) equal to o(Y') + 4 modulo 8. Suppose that the dimension
of Mg is 2d for a non-negative integer d. When we fix an orientation on the
space HJ (Y) of self-dual harmonic 2-forms on Y and an lift ¢ € H 2(v;7)
of wa(Q) € H%(Y;Zs), we have the Donaldson invariant

Q1 wy : @Hy(Y;Z) — Q

where
1
k—1= —Zpl(Q) €Q, w=uwy(Q) € H*(Y;Zs).
When [¥;] - [¥;] are even for i = 1,...,d, then 414,y ([X1],...,[Xq4]) is in

Z.
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We consider an SO(3)-bundle P over X = Y#52 x S? satisfying

we(P) = wa(X), pi1(P)=p1(Q)—4,

so that P satisfies (2). The dimension of Mp is given by 2d + 5.
We define surfaces 3, ¥/ embedded in S? x S? by

Y =5%x{pt}, ¥ ={pt} xS*cS?xS%
Then we have
E]- X=X [X]7=0 mod 2.

Now qZ}w’Y#Ssz([Eﬂ, oo [24],[2],[2']) is defined for homology classes
[X;] of Y with self-intersection numbers even. The following is an SO(3)-
version of Theorem 1.1 in [FS].

THEOREM 3.1. In the above situation, we have

0y sz (1] [Sal 51 2] = georoy (B2, -+ [Sa))  mod 2.

The proof is given in the following three subsections.

3.2. Notations and general facts

For the proof of Theorem 3.1, we will investigate the intersection Mp N
Ve, N---NVs, N Vs N Vs when the neck of Y#8? x S? is very long. For the
preparation, we define some notations and recall some facts about instantons
over the connected sum of 4-manifolds.

Let Y7 and Y5 be a closed, oriented 4-manifold. The connected sum
X = Y1#Y5 is constructed in the following way. Fix Riemannian metrics ¢;
and go on Y7 and Y, which are flat in small neighb?rhoods of fixed points
y1 € Y1 and ys € Ys. For N > 1 and A > 0 with N2 < 1, we put

Q=Q,(\N) ={y € ViIN Az < d(y,y;) < NAz} (i=1,2).
Let

o : (TY1)y, o (TY2)y,-
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be an orientation-reversing linear isometry. For each positive real number
A > 0, we define

I (TY1)y \{0} — (TY2),,\{0}
. )

This map f) induces a diffeomorphism between €2y and 5. The connected
sum X of Y] and Y5 is identified with

X(A) = (Y\By, (N IA2)) | J(¥2\By, (N 71A2))
I

where By, (N _1)\%) is the open ball centered on y; with radius N ~1)2. The
metrics g7 and go define a conformal structure on X since g; is flat in a small
neighborhood of y;. We fix a metric gy on X which represents the conformal
structure. Moreover we assume that gy is equal to g; on Y;\B((N + 1))\%).

DEFINITION 3.2. Fix areal number ¢ with ¢ > 4. Let [A™)] € Mp(gy, )
be instantons over X = Y1#Y5 for a sequence A, — 0. Let z1,...,%
/

be points in Y1\{y1}, #],...,2), be points in Y5\{y2} and A; be connec-
tions over Y;. Then we say that [A(™)] is weakly convergent to ([A1], [As];
21022000, 20)) when [A(™)] is L9-convergent to ([A1],[A,]) over com-
pact subsets in (Y1 U Y2)\{y1,y2,21,--,21,21,..., 20} and |Fm|? is con-

vergent as measure to

l m
|FA1’2 + ‘FA2|2 + 8 (Z 6z, + Z@:{,)
v=1 v=1

over compact subsets in (Y1\{y1}) U (Y2\{y2}). Here ¢, is the delta function
supported on z.

We use the following well-known theorem.

THEOREM 3.3 ([D3, DK]). Let P be an SO(3)-bundle over X =
Yi#Yy. Set k= —p1(P)/4, w = wa(P), wi = wly;. Let [AM] € My x (An)
be instantons over X for A, — 0. Then there is a subsequence {[A™ )]},

which is weakly convergent to ([A1], [A2]; 21, .., 21,21, -+, 2),) for some

[Al] € Mk1,w1,Y1 (gl)’ [AQ] € Mk2aw27Y2(92)’
Z1,...,2 € Y1\{y1}, lea se . 7Z;n € Y2\{y2}
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with

k1>0, ko>0, ki+ko+l+m<Ek.

Next we review gluing of instantons. The theory of gluing of instantons
is standard. To fix notations, we recall the theory briefly.

Let A; be instantons over Y;. We denote the SO(3)-bundles carrying
A; by P;. We can construct instantons on X = Y1#Y5 close to A; on each
factor. Outline of the construction is as follows. (See [DK] Chapter 7 for
details.)

Let b be a small positive number with b > 4N A3, By using suitable cut-
off functions and trivializations of P; on neighborhoods of y;, we obtain a
connections A} which are flat over the annuli 2; and equal to A; outside the
balls centered at y; with radius b. Take an SO(3)-isomorphism p between
(P1)y, and (Py)y,. We can spread this isomorphism by using flat structures
of A, and obtain an isomorphism g, between Pi|q, and P|q, covering fy.
We define an SO(3)-bundle P, over X and a connection A'(p) = Aj#,45
on P, by gluing P;, A; through g,. Then in large region outside the neck of
X, A'(p) satisfies the instanton equation, and F, () is very small near the
neck. To obtain a genuine instanton we have to perturb A’(p). We consider
the equation

(7) Fr =0

(p)+a
for a € Q% (g p,)- To solve this equation, we take linear maps

o Hi — Qi’;j(gpi)

such that djgi ®o; are surjective and for each h; € Hii the supports of o;(h;)
are in the complement of the ball centered at y; with radius b. Then put

oc:=01+09: Hil P H%Q — Q}(gPp)~

We can construct a right inverse of dJAf, () TO starting from right inverses of

djgi + 0; . Decompose the right inverse as P & 7, where

P:Q%(gp,) — Q'(ep,), 7:Q%(gp,) — HA, © Hj,.
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Instead of (7), we first consider the equation

F-‘r

A’(p)+a +U(h) =0

for (a,h) € Q% (gp,) x (Hf_‘1 ® Hfb). We find a solution of this equation in
the form a = P&, h = w€. In this case, we see that the equation is equivalent
to the equation

E+ (PEAPET =—Fj,

by a short calculation. Using the contraction mapping principle, we can
show that there is a unique small solution &, € Q*(gp,) for the equation.
We get a genuine instanton if and only if 7§, = 0. Therefore there is a map

U : Gly, ,, — H3, x H3,

such that the solutions of ¥ = 0 represent instantons over X. Here Gl 4,
is the space of SO(3)-equivariant isomorphisms between (Py),, and (P)y,.
We fix an element pg € Gy, 4, to identify Gl,, ,, with SO(3).

We can include the deformations of [4;] to this construction. For small
neighborhoods Uy, of 0 in H}‘i, we have a map

U :T:=Ua, x Ua, x SO(3) — H3, x H3,

such that elements of ¥~1(0) correspond to instantons.

Let I'4, be the isotropy group of A; in the gauge group and put I' =
a4, x I'g,. We assume that Uy, is I'4,-invariant. Then there are natural
actions of I' on 7" and on Hil X H%Q. We can show that W is I'-equivariant
and instantons corresponding to elements of ¥~1(0) are gauge equivalent to
each other if and only if they are in the same I'-orbit. Hence we can regard
U~1(0)/T as a subspace of Mp.

An important feature is that instantons over X = Y;#Y> which is close
to A; over Y; are given in the above description. More precise statement is
the following:

Let Y;” be the complement of balls centered at y; with radius Az /2. Take
instantons A; over Y; and a positive number v > 0. Then put

(8) Ux(v) :={ [A] € Bx | dg([Alyy], [Ailyy]) <v, i=1,2 }.
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Here q is the fixed real number with ¢ > 4 and d, is the distance induced by
L%-norm over Y. If v > 0 is small, then there is a positive number A(v) > 0
such that for A < A\(v) we can take a neighborhood T of {0} x {0} x SO(3) in
H} xH}, x50(3) such that Mp(gx)NUx(v) is homeomorphic to ¥~1(0)/T.
Summing up these:

THEOREM 3.4. Let Ay, Ay be instantons on Y1,Ys. Then there is a
I' = T4, x I'a,-invariant neighborhood T of SO(3) x {0} x {0} in SO(3) x
H}h X H}‘Q and I'-equivariant map

VT — H3 x H3,

such that W=1(0)/T is homeomorphic to an open set N in Mp. Moreover
for a small positive number v > 0, there is a A(v) > 0 and T such that if
A < A(v) then N = Mp(gx) NUx(v).

In particular, when Y5 is S* and Aj is the fundamental instanton J with
instanton number one, we have:

COROLLARY 3.5. Let Ay be an instanton over Y1 and Ao be the funda-
mental instanton J over S*. For a small positive number v > 0, there is a
positive number A\g > 0 and a neighborhood U, of 0 in H}ll, a neighborhood
Up of 0 in S* = R* U {oo} and T' = T 4, -equivariant map

U :Ua, x Uy x (0, ) x SO(3) — HF,
such that $=1(0)/T is naturally homeomorphic to Mp N Uy, (V).

REMARK 3.6. We can generalize the statements of Theorem 3.4 and
Corollary 3.5 to the case of gluing 3 or more instantons.

3.3. Shrinking the neck
In the situation of Theorem 3.1, we investigate

Mp(g)\)ﬂszlﬂ~'-ﬂV2dﬂV20VE/

as A tends to 0. We use the notations in §3.2.
Let Y1 be a closed, oriented, simply connected, non-spin 4-manifold with
bt (Y1) = 2a — 1 with a > 1 and we write Y5 for S2 x S%2. Let P be an



2-Torsion Instanton Invariants 279

SO(3)-bundle over X = Y #Y> satisfying (2). Assume that the virtual
dimension of Mp is 2d + 5 for a non-negative integer d. Take homology
classes [21],...,[Xq] € H2(Y1;Z) with [X;] - [2;] = 0 mod 2. Set ¥ =
5% x {pt}, ¥ = {pt} x S? C Y,. Take instantons

[A™] € Mp(g,) N Ve, M-+ N Vs, N Ve N Vy

for a sequence \, — 0. By Theorem 3.3, a subsequence of {[A™]}, is

weakly convergent to some
([A1], [A2); 21, -+, 205 215 - -, 20)s

m

where

[A1] € M, wy;(91), [A2] € Mk, y,(92),
21,2 € YIN\{m}, 24,0520, € Yo\ {ya}.

LEmMMA 3.7.  In the above situation, we have

ki=k—1,1=0, [Al] € Mk_17w7y1(g1) N Vgl NN ng,
m=1, 2 cvE)nuE), [A]=[Oy

Here Oy, s the trivial connection on Ys.
PRrROOF. From Theorem 3.3, we have
(9) ki +ke+1+m<k.

Let p be the number of v(X;) which contain some point z, and g be the num-
ber of v(X), v(X') which contain some point z/,. Then by the transversality
condition (4), we have

(10) 0<p<2l, 0<g<2m.
Without loss of generality, we may assume
[Al] € Mgy wy, "Vs, N---N VEd,p

if we change the order of surfaces. Since wa(P)|y; is non-trivial, we can show
k1 > 0 in the same way as the proof of Lemma 2.11. For generic sections,
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the intersection My, v, N Vs, N---N ngip is transverse by Lemma 2.10.
Hence we have

(11) 2(d —p) < dim My, 4.y, -

We would like to show ko = 0. Suppose that ks is positive. Then we also
obtain

(12) 2(2 — q) < dim My, y,.

By index theorem, there is the formula
(13) dim Mk17w7y1 + dim Mk27y2 + 3 = dim Mk1+k2,’w,X'
From (9), (11), (12) and (13), we have

2(d —p) +2(2 —q) + 3 < dim My, 41y 0,x
< dim My, . x — 8(l+m) = 2d + 5 — 8(l + m).

This inequality and (10) imply
8(l4+m)+2<2p+2q <4(l+m).

We have a contradiction. Hence kg is 0 which implies that [As] is the class
of trivial flat connection [Oy,].
Since kg is 0, the virtual dimension of Myy, is —6. From (13), we have

(14) dim My, wy; — 3 = dim My, 4 x.
By (9), (10),(11) and (14), we have

2(d — 21) —3< 2(d —p) —3< dirﬂjwkl’w’y1 -3
= dikal,w,X < dithw’X — 8(l + m)

Therefore we obtain
41 + 8m < 8.

In particular, we have m < 1. We show m = 1. Suppose m = 0, then we
have [Oy,]| € V5, [Oy,] € V5. To obtain a contradiction, we need to choose
Vx and Vs in a specific way. As mentioned in Remark 2.9, we can choose
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V5 and Vi do not include [Oy,]. If we choose such Vs and Vs, we have a
contradiction. We obtain [ =0, m =1 and 2] € v(X) Nv(X’). Hence

[Al] € ]\4]“710’)/1 N Vzl NN VEd'

Lastly we show k; = k — 1. From (9), we have k; < k — 1. On the other
hand, from (11) we have

2d < dim Mkl,w,Yl = dim Mk—l,w,Yl - 8(k —-1- kl) =2d — 8(k —1- kl).

This implies k1 > k — 1. Therefore k; is equal to £ — 1. We complete the
proof. [

Let w, be the unique intersection point of ¥ and ¥’'. Fix a small neigh-
borhood Uy, of wy with v(X) Nv(X') C U,y. We suppose that the metric
go on Y3 is flat on Uw(') for simplicity.

Take

[A(n)] S Mp(g)\n) NVe, N---NVyg, N Ve N Vsy

for \, — 0 and assume that {[A(™]},cn weakly converges to ([A1], [Oy,]; 2})
for some [A1] € My_1,5y, NVs, N---NVy,, 21 € v(E)Nr(X'). We can define
the local center of mass ¢, € U,y and scale N> 0 of [A™)] around 2} when
n is sufficiently large. If n is large enough, then we obtain

/U |F e [*dpg, > 4

U)O

since |Fym|? converges to 8#2621 on Uwé. We define the center of mass ¢,
to be the center of the smallest ball in U,, where the integral of |F) 2 is
equal to 472 and the scale X/, to be the radius of the ball. The center of
mass and scale is determined uniquely ([D1]). The center ¢, converges to
1 and the scale X, converges to 0.

Let m : R* — S* = R*U{oc} be the stereographic map and dy : R* — R*
be the map dy(y) = A~ ty. Put x, := mody: . Then x, induces a conformal
isomorphism between X and the connected sum

X#8% = (X\Be, (NTIX,)) Up, (SN\Boo(N7IX))
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since the metric go is flat on Uw(r). Here fy, is defined in the following
way: Using the geodesic coordinate near ¢, and the stereographic map, we
identify (TX)., with (T'S*)p. Let o’ be the natural, orientation reversing
isometry between (T'S%)g and (T'S*)s, then fy is given by

Py o (TX)e M0} — (T5%)\{0}
¢ — o9

We can regard A as an instanton on X#5* such that A is close to A1,
Oy, on Yi, Y5 and close to the standard instanton J on 54,

Fix a small positive number )¢ and a small neighborhood U[’ Ay Of [A1]
in Mg. Let Opq,) C Bp be a small open neighborhood of

{ [B, #yh/\,[) @)/2 #Zi,)\’,p’ J’] ’ B e U[/A1]7 A, N e (0, )\0),
p.p € S0O(3), z1 ev(Z)Nv(X) }.
Here B’,J’ are connections which are flat near y;,00 and equal to B,.J
outside b-balls. (The real number b is a small positive number fixed in
§3.2). The notation #Ziv A, means gluing of connections at 2z} using the
identification fy twisted by p’, and similarly for #,, 1,. The instanton
[A™)] is in O|4,) when n is large. We can define the local centers for elements
of Op4,) and we have amap p : O4,] — Uw6 which maps connections to their
centers. By Donaldson [D2] Proposition (3.18), we can take sections sy, sy
such that Op4,) N Vs, Opa,) N Var are equal to 10_1(U;i ny), p‘l(UZ’,i nx"h.

Hence we may suppose that the center ¢, of [A™)] is w}, for large n.
We denote S* by Y3 and denote Oy,, J by As, Az and put

Y =Yi\By, (An/2), Y, = Y2\(By, (An/2) U By (A7/2)),
Y3 = Y3\Boo(X,,/2).

For v > 0, put
Utajon, (V) = { [A] € Bxyga | dg([Alyy ], [Ailyy 1) <w, i =1,2,3 }.
We have proved the following:

LEMMA 3.8. Fiz a positive number v > 0. Take instantons [A™)] €
Mp(gx,)NVs, N---NVs, N Ve N Vs for a sequence A\, — 0. Then [AM)] is
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in Upga, (v) for some [A1] € Mg N Vs, N---N Vs, when n is sufficiently
large.

Fix [A1] € Mg N Vy, N---NVyx, and a small positive number v. By
Theorem 3.4, Corollary 3.5 and Remark 3.6, there is a small neighborhood
Uy, of 0 in H}h, a positive real number \g and a F@Y2 -equivariant map

VT =Us, x SO(3) x Uy x (0,X0) x SO(3) — HE,_

such that ¥—1 (0)/Tey, is homeomorphic to Mp(gx, )NU4,)a, (). Note that
Hfh =0 and dim Hflh = 2d (for generic metrics on Y7). Since the action of
Le,, = SO(3) on SO(3) x SO(3) is the diagonal action, U—1(0)/S0O(3) is
naturally identified with

UH0) N (Ua, x {1} x Uy x (0, X0) x SO(3)).

We write 1" for Ua, x {1} x Uy x (0, o) x SO(3). Since 7" parametrizes
connections on X, it makes sense to take the intersection 77N Vy, N -+ N
Vs, NVs N Vs, We can suppose

T NVg, NNV, N Ve N Vs = {0} x {1} x {wy} x (0,X9) x SO(3).

Hence Mp(gx,) N Vs, N---N Vs, N Ve N Vs N U4, (V) is homeomorphic
to

~10) N ({0} x {1} x {wp} x (0,20) x SO(3))
C H}, x SO(3) x Uyy x (0, X0) x SO(3).

Donaldson calculated the leading term of W in [D2] explicitly. By the explicit
expression of the leading term of ¥ and calculations similar to those in [D2]
V, we can show the following:

LEMMA 3.9. For generic metrics g1 and g2, points yi, y2 and w(, and
the metric gy, , the intersection

)N ({03 x {1} x {up} x (0, 20) x SO(3))
is homeomorphic to

{cAn} x v C (0, ) x SO(3)
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~Y

where 7y is a loop in SO(3) which represent the generator of w1 (SO(3)) = Zy
and ¢ > 0 is a constant number independent of n.

Define Niy4,) by

(15) Niayg = { [A1#7, Ova#wyern ] | P €7 T
Here #,, is an abbreviation for #,, 1, 1. We have obtained the following:

COROLLARY 3.10. LetY be a closed, oriented, simply connected, non-
spin 4-manifold with b*(Y) = 2a — 1 for a > 1 and P be an SO(3)-bundle
over X = Y#S? x S? which satisfies the condition (2). Suppose that the
virtual dimension of Mp is 2d + 5 for a non-negative integer d. Take d
homology classes [¥;] in Ha(Y'; Z) with self-intersection numbers even. Then
for a small X > 0, generic metrics g1 and ga, and generic points yi,y2 and
wy, the intersection

Mp(gx)NVg, N---NVy, N Ve NV

is homeomorphic to

I1 Niay)-

[Al]GMQﬁVEl I’Tmﬂng

3.4. End of the proof
From Corollary 3.10, we have

qZ}w,Y#SQXS2([El]’ s (2l [ [E/]) = Z <u1’ N[A1}> € L,
[Ad]

where [A{] runs in Mg N Vx, N--- N Vy,. Therefore it is sufficient to show
that the pairing <u1, N A1]> is non-trivial for the proof of Theorem 3.1. The
last step is carried out by making use of the following Proposition due to
Akbulut, Mrowka and Ruan.

ProposiTION 3.11 ([AMR]). Let X; be closed, oriented, simply con-
nected 4-manifolds for i = 1,2 and x; be points of X;. Take SO(3)-bundles
P; over X; with wa(P;) equal to wa(X;). Choose U(2)-lifts P; of P; and
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assume that the second Chern numbers of P; are odd. (In this case, Pi# P,
satisfies the condition (2). See Remark 2.6.) We fix trivializations of P;
on small neighborhoods Uy, of x;. For irreducible connections B; on P;
with trivial on Uy, with respect to fized trivializations, we have a family of
connections

G = { [Bi#oBs] | p € SOB) } (= SOB)) C By,

Then the restriction u1|g is non-trivial in H (G;Zg) = Zs.

In our case,

X, =Y#5%x 8% P, = Q#Pg2y g2, By = A|#0O g2, g2,
Xy =8% Py=Pg/{£1}, Bo=J.

Here @ is an SO(3)-bundle over Y with
(16) w2(Q) = wa(Y), pi(Q) =0(Y)+4 modS8,

Pga, g2 is the trivial SO(3)-bundle over S? x $? and Pgs is an SU(2)-bundle
with second Chern number equal to 1. By the formulas

p1(Q) = —4c2(Q) 4 1(Q)?, wa(Y)?=0(Y) mod 8
and (16), we have
c2(Q)=1 mod 2.

Hence the assumptions of Proposition 3.11 is satisfied. Since N4, is a loop
in G which represent the generator of m(G) = Za, we obtain:

COROLLARY 3.12. For each [A1] € Mg N Vs, N---NVy,, the pairing
<u1, N[A1}> is non-trivial in Zo.

This completes the proof of Theorem 3.1.
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4. Example

o o . Uy
4.1. Non-triviality of 9y Cp2 4P
We see that the SO(3)-torsion invariant for X = 2(CIP’2#@2 is non-

trivial.
To distinguish two CP?’s, we write X = CP?#CP3#CP2.

THEOREM 4.1. Let H; be the canonical generator of Ha(CP%Z) for
i=1,2 and E be the canonical generator of Ho(CP?;Z). Then we have

q&?#%#@m(—ﬂl +E,Hy—E)=1 mod 2.

PROOF. Let Q be an SO(3)-bundle on CP? with

wy(Q) = wa(CP?), p1(Q) = —3.

Then the dimension of Mg is 0. Kotschick showed that the Donaldson
invariant associated with @ is

q%,w,@P’z =-1

if we choose a suitable orientation on Mg ([K1, K2]). Note that there is no
wall since b~ (CP?) is 0. The signature of CP? is 1, hence we have

p1(Q) =0o(CP*) +4 mod 8

and ¢7' (CIP’Z#S2xSZ([E]’ [¥']) is defined. From Theorem 3.1, we have

4"

q?w’m#s2xsz([2], '])=1 mod 2.
On the other hand, CP?# 52 x S? is diffeomorphic to CP?#CP3#CF? ([Wal).
The induced isomorphism between the 2-dimensional homology groups is
given by

Ho(CP?#8? x S%Z) =  Hy(CP2#CPI4CP?; Z)
H — Hi+Hs— F
] — H,— E.
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The torsion cohomology class w is we(CP?#52% x S?), and the image of w
under the isomorphism is wq(2CP?4#CP?). We also denote this class by w.
The images of [X] and [¥'] under the isomorphism are —H; + F and Hy — E
respectively. Hence we obtain

¢ CP;#CJP%#CTP?(_Hl +E,Hy—E)=1 mod 2.0
47 )

4.2. A vanishing theorem

Let X be a closed, oriented, simply connected, non-spin 4-manifold with
b (X) = 2a for some a > 0. Moreover assume that X can be written as the
connected sum Y;#Y5 of non-spin 4-manifolds Y; with b*(Y;) > 1. In this
situation, we can show a vanishing theorem similar to the usual Donald-
son invariant. However we must require a certain condition for homology
classes in X. The condition is that each homology class lies in Hy(Y1;Z) or
Hy (Yo, Z).

Suppose that P is an SO(3)-bundle over X satisfying (2) and that
dim Mp is 2d + 1 for some non-negative integer d. Moreover suppose
that d = dy + do for some di > 0, do > 0. Take homology classes
(X1], .., [Bay] € Ho (Y13 Z), [X4], - -+, [2y,] € Ha(Y2; Z) with self-intersection
numbers even. Then by the standard dimension-count argument [MM], we
can show

MpﬂVglﬂ”-ﬂVEdl ﬂvzllﬂ-’-ﬂvzii =0
2
when the neck is sufficiently long. Hence we have:

THEOREM 4.2. Let Y1,Ys be closed, oriented, simply connected, non-
spin 4-manifolds with b*(Y;) > 0 and b* (Y1) = b"(Y2) mod 2. Then for
homology classes [%1],...,[Yq] € Ha(Y1;Z), [X1],...,[X,] € Ha(Y2;Z)
with self-intersection numbers even, we have

qiﬁi#YQ([El], s Bal B [E,]) =0 mod 2.

REMARK 4.3. We regard X = 2@[@2#@2 as the connected sum of
Y} = CP? and Ys = CP24CP". Then w is non-trivial on Y; for i = 1,2. By
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Theorem 3.1, gy’ 4Ys (—H,+E, Hy— F) is non-trivial in contrast to Theorem
4.2. If there were a formula like

Ui _ _ _
97y, (THL By — B) =
“qll ” W, Ul 5
G5 vy (T Ha = B 450 (B Hy — E)” mod 2,

then we would be able to apply Theorem 4.2 to showing the vanishing of

u1 « Ul 5
q%,w,Yl#Yg(iHl + E,Hy — E). However q%,w,Yl#Yg(iHl’Hz — E)” nor
«w U1 _ 9

q{,w,Yl 4, (E,Hy — E)” are not defined because

(=Hy)-(-H;)=E-E=1 mod 2.
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