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Abstract

We consider surface links in the 4-space which can be deformed to
simple branched coverings of a trivial torus knot, which we call torus-
covering-links. Torus-covering-links contain spun T 2-knots, turned
spun T 2-knots, symmetry-spun tori and torus T 2-knots. In this paper
we study the braid indices, the link groups, the unknotting numbers
etc. of torus-covering-links.

0 Introduction

Locally flatly embedded closed 2-manifolds in the 4-space R
4 are called sur-

face links. It is known that any oriented surface link can be deformed to the
closure of a simple surface braid, that is, a simple branched covering of the
2-sphere ([25]).

As surface knots of genus one which can be made from classical knots,
there are spun T 2-knots, turned spun T 2-knots, symmetry-spun tori and
torus T 2-knots. Consider R

4 as obtained by rotating R
3
+ around the bound-

ary R
2. Then a spun T 2-knot is obtained by rotating a classical knot ([4]), a

turned spun T 2-knot by turning it once while rotating ([4]), a symmetry-spun
torus by turning a classical knot with periodicity rationally while rotating
([36]), and a torus T 2-knot is a surface knot on the boundary of a neigh-
borhood of a solid torus in R

4 ([20]). Symmetry-spun tori include spun
T 2-knots, turned spun T 2-knots and torus T 2-knots. We call the link ver-
sion of a symmetry-spun torus, a spun T 2-knot, and a turned spun T 2-knot
a symmetry-spun T 2-link, a spun T 2-link and a turned spun T 2-link respec-
tively. We enumerate several properties of symmetry-spun T 2-links.

(0.1) If a symmetry-spun T 2-link is ribbon, then it is a spun T 2-link (cf.
[36]).
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(0.2) The turned spun T 2-link of a non-trivial classical link is not ribbon
(cf. [4], [35]).

(0.3) A symmetry-spun T 2-link is pseudo-ribbon and has the triple point
number zero.

(0.4) A symmetry-spun T 2-link has a classical link group (cf. [36]).

Now we consider surface links in the 4-sphere or the 4-space which can be
deformed to simple branched coverings of a trivial torus knot, which we will
define as torus-covering-links (see Definition 2.1). Until Proposition 2.7, we
consider torus-covering-links in S4, and from Theorem 2.8 throughout this
paper we consider torus-covering-links in R

4. By definition, a torus-covering-
link is described by a torus-covering-chart, which is a chart on the trivial
torus knot. Torus-covering-links include symmetry T 2-links (and spun T 2-
links, turned spun T 2-links, and torus T 2-links). A torus-covering-link has
no 2-knot component. Each component of a torus-covering-link is of genus
at least one.

There are several natural questions.
Is there a surface knot of genus one which is not a torus-covering-knot?
What are the properties of torus-covering-links and knots?
What difference from symmetry-spun T 2-links do torus-covering-links have?

For the first question we show that “There are surface knots of genus
one which are not torus-covering-knots” (Corollary 4.11).

In Section 2 we define torus-covering-links (Definition 2.1), the turned
torus-covering-links (Definition 2.4) and the normal forms of ribbon torus-
covering-knots of genus one (Theorem 2.8). Moreover we show that “There
is a torus-covering-knot with positive triple point number” (Theorem 2.11
(cf. (0.3)), which means there is a torus-covering-knot which is not pseudo-
ribbon.

In Section 3 we deform the torus-covering-link associated with a torus-
covering-chart of degree m to the closure of a simple surface braid, from
which we obtain its (surface link) chart description, which is of degree 2m,
and give an upper estimate of its braid index. In particular, we see that the
turned spun T 2-knot of the torus (2, p)-knot has the braid index four.

In Section 4 we consider torus-covering-links which are T 2-links, that
is, torus-covering-links whose each component is of genus one. Such torus-
covering-links are associated with torus-covering-charts without black ver-
tices. We study link groups of torus-covering-links associated with torus-
covering-charts without black vertices and show that “There are infinitely
many torus-covering-links with two components such that each component
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is of genus one and the link groups are not classical link groups” (Propo-
sition 4.5 and Theorem 4.6 (cf. (0.4) and (0.1))), which means that they
are not symmetry-spun T 2-links. Moreover, they are ribbon, which means
that there are infinitely many torus-covering-links which are ribbon but not
spun T 2-links. We show its knot version as well: “There are infinitely many
torus-covering-knots of genus one and whose knot groups are not classical
link groups” (Theorem 4.9), which means that they are not symmetry-spun
T 2-knots. Moreover, they are ribbon, which means that there are infinitely
many torus-covering-knots which are ribbon but not spun T 2-knots.

In Section 5 we study the unknotting numbers of torus-covering-links.
In particular, we give an alternative proof of the fact that the spun (or
the turned spun) T 2-knot of a classical (p, q)-torus knot has the unknotting
number one (Proposition 5.7 (cf. [26])).

The author would like to thank professors Takashi Tsuboi and Elmar
Vogt for suggesting this problem, and professor Akio Kawauchi for advising
this title.

1 Definitions and Preliminaries

Definition 1.1. A locally flatly embedded closed 2-manifold in S4 or R
4 is

called a surface link. A surface link with one component is called a surface
knot. A surface link whose each component is of genus zero (resp. one) is
called a 2-link (resp. T 2-link). In particular a surface knot of genus zero
(resp. one) is called a 2-knot (resp. T 2-knot).

An orientable surface link F is trivial (or unknotted) if there is an em-
bedded 3-manifold M with ∂M = F such that each component of M is a
handlebody.

An oriented surface link F is called pseudo-ribbon if there is a surface
link diagram of F whose singularity set consists of double points and ribbon
if F is obtained from a trivial 2-link F0 by 1-handle surgeries along a finite
number of mutually disjoint 1-handles attaching to F0. By definition, a
ribbon surface link is pseudo-ribbon.

Two surface links are equivalent if there is an ambient isotopy or an
orientation-preserving diffeomorphism of S4 or R

4 which deforms one to the
other.

Definition 1.2. A compact and oriented 2-manifold S embedded properly
and locally flatly in D2

1 × D2
2 is called a braided surface of degree m if S

satisfies the following conditions:

(i) pr2|S : S −→ D2
2 is a branched covering map of degree m,
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(ii) ∂S is a closed m-braid in D2
1 × ∂D2

2, where D2
1, D

2
2 are 2-disks, and

pr2 : D2
1 ×D2

2 → D2
2 is the projection to the second factor.

A braided surface S is called a surface braid if ∂S is the trivial closed
braid. Moreover, S is called simple if every singular index is two.

Two braided surfaces are equivalent if there is a fiber-preserving ambient
isotopy of D2

1 ×D2
2 rel D2

1 × ∂D2
2 which carries one to the other.

There is a theorem which corresponds to Alexander’s theorem for clas-
sical oriented links.

Theorem 1.3 (Kamada [25]). Any oriented surface link can be deformed
by an ambient isotopy of R

4 to the closure of a simple surface braid.

There is a chart which represents a simple surface braid.

Definition 1.4. Let m be a positive integer, and Γ be a graph on a 2-disk
D2

2. Then Γ is called a surface link chart of degree m if it satisfies the
following conditions:

(i) Γ ∩ ∂D2
2 = ∅.

(ii) Every edge is oriented and labeled , and the label is in {1, . . . ,m− 1}.
(iii) Every vertex has degree 1, 4, or 6.

(iv) At each vertex of degree 6, there are six edges adhering to which,
three consecutive arcs oriented inward and the other three outward,
and those six edges are labeled i and i+ 1 alternately for some i.

(v) At each vertex of degree 4, the diagonal edges have the same label and
are oriented coherently, and the labels i and j of the diagonals satisfy
|i− j| > 1.

i i i
j i

j
ij

i j

ij
| i − j | = 1 | i − j | > 1black vertex

white vertex

Fig. 1.1
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Vertices of degree 1 and 6 are called a black vertex and a white vertex.
A black vertex (resp. white vertex) of a chart corresponds to a branch

point (resp. triple point) of the simple surface braid associated with the
chart.

An edge without end points is called a loop. An edge whose end points
are black vertices is called a free edge, and a configuration consisting of a
free edge and a finite number of concentric simple loops such that the loops
are surrounding the free edge is called an oval nest.

An unknotted chart is a chart presented by a configuration consisting of
free edges. A trivial oriented surface link is presented by an unknotted chart
([25]).

A ribbon chart is a chart presented by a configuration consisting of oval
nests. A ribbon surface link is presented by a ribbon chart ([25]).

A chart with a boundary represents a simple braided surface.

Definition 1.5. Two charts inD2
2 of the same degree are C-move equivalent

if we can deform one to the other by a finite sequence of ambient isotopies
of D2

2 and chart moves (or C-moves).

Let Γ and Γ′ be two charts in D2
2 of the same degree. Then Γ′ is said to

be obtained from Γ ( or Γ is said to be obtained from Γ′) by a chart move
of type I, II or III, or by a CI-move, CII-move or CIII-move if there exists
a 2-disk E in D2

2 such that the loop ∂E is in general position with respect
to Γ and Γ′ and Γ ∩ (D2

2 − E) = Γ′ ∩ (D2
2 − E) and the following condition

holds:
(CI) There are no black vertices in Γ ∩ E nor Γ′ ∩ E. Any CI-move can be
presented by a finite sequence of CI-moves of types (1), (2),. . . , and (7) (cf.
[37]). Fig. 1.2 gives CI-moves of types (1), (2), . . . , and (7).

5



(1) (2)
i i

i

i

i

(3)

(4) (5)

(6)

i
j

i

i
j

i

i j j j j

j

j j

i i i

i i

i

k k

k k

ji i

j ji

|i − j | = 1

|i − j | > 1

|j − k | > 1

|k − i | > 1

|i − j | = 1
|j − k | > 1
|k − i | > 1

|i − j | > 1

(7)

|i − j | = 1

|j − k|= 1
|k − i | = 1

k
j

k
i
j

k

i
j

k

i
j

i

k
j

k
i

k
i

j

k

j

i

i
jj

j

jj
j

j
j j

i

ik

k

Fig. 1.2. CI-moves of types (1), (2), and (3)

(CII) Γ ∩ E and Γ′ ∩ E are as in Fig. 1.3, where |i− j| > 1.

i j
i j

Fig. 1.3. CII-moves

(CIII) Γ ∩ E and Γ′ ∩ E are as in Fig. 1.4, where |i− j| = 1.
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Fig. 1.4. CIII-moves

Theorem 1.6 ([25]). Two charts of the same degree are C-move equivalent
if and only if their associated simple braided surfaces are equivalent.

Throughout this paper, let us denote the oval nest with a free edge
with the label i and its surrounding loops with the labels i1, . . . , in and the
orientation ε1, . . . , εn from the free edge outward by O(i; i∗1i∗2 · · · i∗n), where
εj = ±1 and i∗j = ij (resp. ij) if εj = +1 (resp. −1). In particular, let us
denote the free edge O(i; ∅) by Fi. For 0 < i < j, let us denote i(i+ 1) · · · j
(resp. i(i+ 1) · · · j) by i↗ j (resp. i↗ j), and for 0 < j < i, let us denote
i(i − 1) · · · j (resp. i(i− 1) · · · j) by i ↘ j (resp. i ↘ j). Moreover, let us
denote a disjoint union of charts by ∪.

2

1

2
3

Fig. 1.5. An oval nest O(2; 3̄21)

Let us define the braid group relations between two sequences of integers
as follows:
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1. ∅ = i · i = i · i, for a positive integer i,

2. i · j = j · i, for positive integers i, j with |i− j| > 1,

3. i · j · i = j · i · j, for positive integers i, j with |i− j| = 1.

Then for positive integers i, j and two sequences of integers b and b′

which are braid group equivalent, the following holds:

(1.7.1) O(i; b) = O(i; b′),

(1.7.2) O(i, i) = O(i; ∅) = Fi (Fig. 1.6),

(1.7.3) O(i; j) = O(i; ∅) = Fi, where |i− j| > 1 (Fig. 1.7),

(1.7.4) O(i; j) = O(j; i), where |i− j| = 1 (Fig. 1.8),

(1.7.5) O(i; b · j) ∪ Fj = O(i; b) ∪ Fj ,

(1.7.6) O(i; j · b) ∪O(j; b) = O(i; b) ∪O(j; b).

i

i

i

i

Fig. 1.6

i

j j

j

i

ii

|i-j|>1

Fig. 1.7
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i

i

i

j

j

j

i

i

i

j

j

j

j

j
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Fig. 1.8

2 Torus-covering-links

In this section, we greatly rely on [36]. Until Proposition 2.7, we consider
torus-covering-links in S4, and from Theorem 2.8 throughout this paper we
consider torus-covering-links in R

4.

Definition 2.1. (Torus-covering-links) First, embed D2 ×S1 ×S1 into
S4 or R

4 naturally, or more precisely, consider as follows (cf. [36], [4] and
[29]). Let S1 ×S1 be a standardly embedded torus in S4 and let D2 × S1 ×
S1 be a tubular neighborhood of S1 × S1 in S4. We can assume that its
framing is canonical, that is, the homomorphism induced by the inclusion
map H1

({0} × S1 × S1; Z
) → H1({p}×S1×S1; Z) → H1(S4−S1×S1; Z)

where p ∈ ∂D2, is zero. Let l̄ = ∂D2×0×0, s̄ = 0×S1×0, and r̄ = 0×0×S1

be curves on ∂D2 × S1 × S1.
Let E4 = cl(S4 −D2 × S1 × S1). Let l, s and r be canonical curves on

∂E4, which are identified with l̄, s̄ and r̄ under the natural identification
map i = ∂D2 × S1 × S1 → ∂E4. Then l, r and s represent a basis of
H1(∂E4; Z).

Let f : ∂E4 → E4 be a diffeomorphism with f#( l s r ) = ( l s r )Af ,
where Af ∈ GL(3,Z) ∼= π0Diff(∂E4). Then f can be extended to a diffeo-
morphism f̃ : E4 → E4 if and only if Af ∈ H, where

H =

⎧⎨⎩
⎛⎝ ±1 0 0

∗ α γ
∗ β δ

⎞⎠ ∈ GL(3,Z); α+ β + γ + δ ≡ 0 (mod 2)

⎫⎬⎭ .
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Consider D2 × S1 × S1 to be embedded in S4 = E4 ∪i D
2 × S1 × S1

or R
4 = (E4 − {∗}) ∪i (D2 × S1 × S1) for some point ∗ in IntE4. Then

identify D2 × S1 × S1 with D2 × I3 × I4/ ∼, where (x, 0, v) ∼ (x, 1, v) and
(x, u, 0) ∼ (x, u, 1) for x ∈ D2, u ∈ I3 = [0, 1] and v ∈ I4 = [0, 1].

Let us consider a surface link S embedded in D2 × S1 × S1 such that
S ∩ (D2 × I3 × I4) is a simple braided surface. We will call such a surface
link a torus-covering-link.

A torus-covering-link S can be described by a chart on the trivial torus
knot, i.e. by a chart ΓT on D2

2 = I3×I4 with ΓT ∩(I3×{0}) = ΓT ∩(I3×{1})
and ΓT ∩ ({0} × I4) = ΓT ∩ ({1} × I4). Let us denote the classical braids
described by ΓT ∩ (I3 ×{0}) and ΓT ∩ ({0}× I4) by Γv

T and Γh
T respectively.

We will call ΓT a torus-covering-chart with boundary braids Γv
T and Γh

T .
Let b(ΓT ) be the number of black vertices in the torus-covering-chart ΓT .

Then let us consider the case b(ΓT ) = 0. In this case the torus-covering-link
associated with ΓT is determined by the boundary braids Γv

T and Γh
T . We

will call such a ΓT a torus-covering-chart without black vertices and with
boundary braids Γv

T and Γh
T .

Remark. In the case b(ΓT ) = 0, the boudary braids Γv
T and Γh

T are
commutative.

Γ Ta

bI 3
I 4

a a

braided surface associated with Γ T

Fig. 2.1. A torus-covering-link

By definition, torus-covering-links contain symmetry-spun tori (and spun
T 2-knots, turned spun T 2-knots and torus T 2-knots).

As we stated in Theorem 1.6, if there are two surface link charts of the
same degree, their associated surface links are equivalent if and only if their
charts are C-move equivalent. It follows that if two torus-covering-charts
are C-move equivalent, their associated torus-covering-links are equivalent.
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A torus-covering-link has no 2-knot component. In particular, if a torus-
covering-chart has no black vertices, then each component of the associated
torus-covering-link is of genus one.

Let ΓT be a torus-covering-chart of degree m and with the trivial bound-
ary braids. Let F be the surface link associated with ΓT by assuming ΓT

to be a surface link chart. Then the torus-covering-link associated with the
torus-covering-chart ΓT is obtained from F by applying m trivial 1-handle
surgeries.

Example 2.2. (2.2.1) Let ΓT be a torus-covering-chart without black ver-
tices and with boudary braids σ3

1 and e (the trivial braid), then the
torus-covering-knot ΓS associated with ΓT is the spun T 2-knot of a
right-handed trefoil.

(2.2.2) Let ΓT be a torus-covering-chart without black vertices and with
boudary braids σ3

1 and σ3
1 (or σ3

1 and σ−3
1 ), then the torus-covering-

knot ΓS associated with ΓT is the turned spun T 2-knot of a right-
handed trefoil.

(2.2.3) Let ΓT be a torus-covering-chart without black vertices and with
boudary braids β2 and β, then the torus-covering-knot ΓS associated
with ΓT is a symmetry-spun torus.

Proposition 2.3 (cf. [36]). Torus-covering-links in S4 obtained from a
torus-covering-chart ΓT by rotating it by nπ/2 (n ∈ Z) are equivalent.

proof. It suffices to show the case when rotating ΓT by π/2.
Let Γ′

T be the torus-covering-chart obtained by rotating ΓT by π/2, and
S and S′ be the torus-covering-link obtained by ΓT and Γ′

T respectively. Let
us use the notation in Definition2.1. We can assume the torus-covering-links
S and S′ to be in D2 × S1 × S1, where S1 = R/2πZ.

Then there is a diffeomorphism

f : (D2 × S1 × S1) −→ (D2 × S1 × S1)
f(x, t1, t2) = (x,−t2, t1).

The diffeomorphism f |∂D2×S1×S1 can be considered as an orientation-
preserving diffeomorphism from ∂E4 to E4. Then we have

Af =

⎛⎝ 1 0 0
0 0 −1
0 1 0

⎞⎠ ∈ H .

11



Hence there is an orientation-preserving diffeomorphism f̃ : E4 → E4.
Let S4 = E4 ∪i D

2 × S1 × S1. Then g : S4 → S4 such that g|E4 = f̃ and
g|D2×S1×S1 = f is an orientation-preserving diffeomorphism which deforms
S to S′, therefore S and S′ are equivalent.

Remark. Teragaito proved in [36] the same theorem in the symmetry-
spun version. Lemma 7 in [36] corresponds to the −π/2 rotation. We will
consider the turned torus-covering-links, which include the turned spun T 2-
links (cf. [36], [4]).

Definition 2.4. Let us use the notation in Definition 2.1. Let σ : ∂E4 →

∂E4 be a diffeomorphism of a matrix

⎛⎝ 1 0 0
0 1 1
0 0 1

⎞⎠. Then E4∪σiD
2×S1×S1

is diffeomorphic to S4.
Let ΓT be a torus-covering-chart and let S be the torus-covering-link

associated with ΓT in S4 = E4 ∪i D
2 × S1 × S1, Then we can consider the

torus-covering-link obtained from S by changing the identification map i to
σi, which we will call the turned torus-covering-link associated with (S,ΓT )
or S, and use the notation τ(S,ΓT ) or τ(S). Moreover, we will denote by
Γτ(T ) the torus-covering-chart associated with τ(S). That is, we define τ(S)
as follows:

(S, E4 ∪σi D
2 × S1 × S1 ∼= S4) = (τ(S), S4 = E4 ∪i D

2 × S1 × S1).

The turned torus-covering-link S must be in the form associated with
the torus-covering-chart ΓT , and for two equivalent torus-covering-links S
and S′ with their associated torus-covering-charts ΓT and Γ′

T , their turned
torus-covering-links τ(S,ΓT ) and τ(S′,Γ′

T ) may be different (Proposition
2.7).

Remark. For a spun T 2-knot S, τ(S) is the turned spun T 2-knot.

By this definition, we have the following theorems.

Theorem 2.5. Let S be the torus-covering-link associated with a torus-
covering-chart ΓT , and τ(S) be the turned torus-covering-link obtained from
S. Then the torus-covering-chart Γτ(T ) associated with τ(S) can be described
as in Fig. 2.2.
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a

a

a

ΓT Γτ(T)

a

b

ρ

ρ− 1

Fig. 2.2

proof. Let l̄, r̄, s̄ and l, r, s be as in Definition2.1. Remark that r̄
or s̄ is a meridian or a longitude on the trivial torus knot. Let ρ̄ be a path
on the trivial torus knot with ρ̄ = r̄ − s̄, and let ρ = r − s. Then for the
diffeomorphism f : ∂E4 → ∂E4 with f#( l s r ) = ( l s ρ ),

Af =

⎛⎝ 1 0 0
0 1 −1
0 1 0

⎞⎠ = σ−1.

By the definition,

(S, E4 ∪σi D
2 × S1 × S1 ∼= S4) = (τ(S), S4 = E4 ∪σ−1(σi) D

2 × S1 × S1) .

Hence, regarding the torus-covering-charts as graphs on the trivial torus
knot, Γτ(T ) is obtained from ΓT by cutting ΓT by ρ. Hence we obtain the
torus-covering-chart as in Fig. 2.2.

Proposition 2.6 (cf. [36], [4]). For any torus-covering-link S, τ2(S) =
S.

proof. Because

σ2 =

⎛⎝ 1 0 0
0 1 1
0 0 1

⎞⎠2

=

⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠ ∈ H,

there is an orientation-preserving diffeomorphism g : S4 → S4 with g(S) =
g(τ2(S)).

Proposition 2.7. The map τ and the π/2 rotation f are not compatible.
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proof. Consider a torus-covering-chart of degree 2 without black ver-
tices and with boundary braids e and σ3

1 . Its associated torus-covering-knot
S is the spun T 2-knot of a right-handed trefoil. Then τ ◦f(S) is represented
by a torus-covering-chart with boundary braids σ3

1 and e, which is equivalent
to the spun T 2-knot of the trefoil. On the other hand, f ◦τ(S) is represented
by a torus-covering-chart with σ3

1 and σ3
1 , which is the turned spun T 2-knot

of the trefoil. By (0.2), the spun T 2-knot and the turned spun T 2-knot of a
non-trivial knot are not equivalent. Hence, τ and f are not compatible.

From now on throughout this paper, we consider torus-covering-links in
R

4.
Let us consider when torus-covering-links are ribbon. Before stating

Theorem 2.8, we give several definitions about classical braids ([12]). Let
Bn be the braid group of degree n, Δ, Garside’s half twist, and Dn, an
n-punctured disk.

We say that an element b ∈ Bn is periodic if the element of Bn/〈Δ2〉
represented by b is of finite order.

We say an element b ∈ Bn is reducible if there exists a nonempty mul-
ticurve C in Dn (i.e. a system of disjoint simple closed curves in Dn, none
of them isotopic to the boundary or enclosing a single puncture) which is
stabilized by b, i.e. such that b(C) is isotopic to C. Note that b may permute
different components of the multicurve C.

The following definition is taken from [3] (see also [18]). To every re-
ducible braid b ∈ Bn one can associate a canonical invariant multicurve:
its canonical reduction system, which by definition is the collection of all
isotopy classes c of simple closed curves which have the following two prop-
erties: first, c must be stabilized by some power of b, and secondly any
simple closed curve which has non-zero geometric intersection number with
c must not be stabilized by any power of b.

Theorem 2.8. Let ΓT be a torus-covering-chart without black vertices and
with boundary braids a and b, and let S be the associated torus-covering-
link. Then if S is a torus-covering-knot (i.e. with one component) which is a
ribbon surface knot of genus one, ΓT satisfies one of the following conditions.
Let us use the phrase that the ribbon torus-covering-knot S of genus one is
in the normal form.

(1) The closed braid cl(a) is a classical knot and b = e (the trivial braid),
which means S is a spun T 2-knot of the classical knot cl(a).

(2) (i) The boundary braids a and b have the same canonical reduction
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sysetm, and each element of the canonical reduction system of a
and b consists of the same number of punctures of the disk D2.
Let us denote the corresponding tubular braid of a and b by R(a)
and R(b) respectively.

(ii) The tubular braid R(a) is the trivial braid of some degree. Let n
be the degree. Let R1(a), R2(a), . . . , Rn(a) be parts of the braid a
corresponding to each string of the trivial tubular braid R(a).

(iii) Then the closure of the corresponding tubular braid cl(R(b)) is a
knot.

(iv) For each Rj(a), its closure cl(Rj(a)) is a trivial knot and for one
Rj(a), the relation ab = ba determines the other Rj(a)’s.

(3) The turned version of (2).

proof. Let S be a torus-covering-knot which is a ribbon surface knot
of genus one. Then S can be written by a torus-covering-chart ΓT without
black vertices.

Let X := R
4 − S. Since S is ribbon, there is a smooth simple closed

curve α in ∂X which is null-homologous in X. Then there exists a smooth,
properly-embedded disk z in X with ∂z = α. We can cut ΓT along some
paths l and l′ and obtain a new torus-covering-chart Γ′

T with boundary
braids a and b such that the closed braid cl(a) is a split sum of the trivial
knot and a link. The trivial knot corresponds to the smooth simple closed
curve α. Let us denote by S′ the torus-covering-knot obtained from Γ′

T .
Then by Proposition 2.3 and Proposition 2.6, S is equivalent to either S′ or
τ(S′).

If the closed braid cl(a) is a trivial knot (one component), there is a solid
torus whose boundary is S i.e. S′ or τ(S′) (Paste a disk whose boundary
is cl(a) for every page R

3
+ × {θ}, where R

4 = R
3
+ × S1/ ∼). If a is the

trivial braid, S is a symmetry-spun torus, which is either a spun T 2-knot or
a turned spun T 2-knot Because a turned spun T 2-knot of a classical non-
trivial knot is not ribbon ((0.2)), S is a spun T 2-knot.

If the classical braid a is non-trivial and cl(a) has more than one com-
ponent, a is a reducible braid and non-periodic. By [18], since a and b are
commutative, the classical braid b preserves the canonical reduction system
of a, hence a and b have the same canonical reduction system.

Hence, if each element of the canonical reduction system of a and b
doesn’t consist of the same number of punctures of the disk D2, S has more
than one component, which is a contradiction.
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Let us consider the case when each element of the canonical reduction
system of a and b consists of the same number of punctures of the disk D2.
Let us denote the corresponding tubular braid of a and b by R(a) and R(b)
respectively. The tubular braid R(a) is the trivial braid of some degree.
Let n be the degree. Let R1(a), R2(a), . . . , Rn(a) be parts of the braid a
corresponding to each string of the trivial tubular braid R(a).

Since S consists of one component, R(b) must be a knot. We can see that
for each Rj(a), its closure cl(Rj(a)) is the trivial knot and for one Rj(a),
the relation ab = ba determines the other Rj(a)’s.

Example 2.9. Let ΓT be a torus-covering-chart with boundary braids σ1σ3

and Δ2, where Δ = σ1σ2σ3σ1σ2σ1, which is Garside’s Δ. Then ΓT is in the
normal form of (2). Its boundary braids and the associated tubular braids
are as in Fig. 2.3 (cf. Proposition 4.5, Theorems 4.6 and 4.9).

Fig. 2.3

Remark. Spun T 2-knots are ribbon, and torus-covering-knots in the
normal form (2) are also ribbon (Propositioon 2.10). However, whether
torus-covering-knots in the normal form (3) are ribbon or not is not known.
We conjecture that it is not ribbon.
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Proposition 2.10. Torus-covering-knots in the normal form (2) are rib-
bon.

proof. Let S be a torus-covering-knot in the normal form (2). We use
the notation in Theorem 2.8.

Let S be embedded in D2×S1×S1 = D2×I3×I4/ ∼, which is naturally
embedded in the four space R

4. The four-space R
4 can be considered as

R
3 × R = (R × R+ × S1)/ ∼ ×R, with (x1, 0, θ) ∼ (x1, 0, θ′) for x1 ∈ R,

θ, θ′ ∈ S1, and D2 × S1 × S1 = I1 × I2 × S1 × S1 is embedded in R
4 as

follows:

(I1 × S1) × S1 × I2 ⊂ ((R × R+) × S1)/ ∼ ×R,

with I1 × S1 ⊂ R × R+ and I2 ⊂ R. The projection p : I1 × S1 × S1 ×
I2 → I1 × S1 × S1 is a generic projection in the neighborhood of the trivial
torus knot associated with the torus covering chart ΓT , and the projection
π : R

4 = ((R × R+) × S1)/ ∼ ×R → R
3 with π(x1, t1, t2, x2) = (x1, t1, t2) is

a generic projection from R
4 to R

3. Hence π(S) is obtained from ΓT , that
is, by embedding p(S) into R

3 naturally.
Let us divide I4 into Ik(k = 1, 2, . . . , ν), where Ik = [tk−1, tk] for 0 =

t0 < t1 < · · · < tν = 1. Let R(b) ⊂ D2 × {0} × I4(= D2 × {1} × I4), the
corresponding tubular braid of b, be presented as follows:

R(b) = σε1
i1
· · ·σεν

iν

such that R(b) ∩D2 × {0} × Ik = σεk
ik

for each k. Let I ′k := (tk−1 + ε, tk − ε)
for a sufficiently small ε > 0.

First, we show that for each k, π(S ∩D2 × I3 × I ′k) can be deformed to
have only ribbon singularities except self intersections (i.e. intersections in
the same component) by an ambient isotopy of R

4 rel D2 × S1 × (S1 − Ik).
It suffices to show when R(b) is degree 3 and S ∩ (D2 × I3 × I ′k) = σ2.
The corresponding tubular braid of a, R(a), is the trivial braid. Let R̂j

(j = 1, 2, 3) be the closed braids in the form of cl
(
Rj(a)

)
. Each R̂j is

the trivial knot and we denote the trivial knot in the form of cl(e) by Oj

(j = 1, 2, 3), where e is the trivial braid of degree one. Let {h(j)
u } be an

ambient isotopy of B3 with h
(j)
1 (R̂j) = Oj , where B3 is a 3-ball which

contains D2 ×S1 = I1 × I2 × I3/ ∼ such that B3 = I ′1 × I ′2 × I ′3 with I1 ⊂ I ′1
and I2 ⊂ I ′2.

Before deformation, S ∩ (D2 × I3 × I ′k) = σ2 is as follows.
We are in the 3-ball B3 and proceed along time Ik = [tk−1, tk] ⊂ I4.

There is the closed braid R̂1 ∪ R̂2 ∪ R̂3 in the 3-ball B3 × {tk−1}, where ∪
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means a split sum. The component R̂1 is innermost and R̂3 is outermost.
Each component can be deformed to the other by an ambient isotopy of
its tubular neighborhood B′ × S1 in B3, where B′ is a 2-disk. As the time
proceeds, R̂2 and R̂3 change their places, and R̂2 (resp. R̂3) is deformed to
the form of R̂3 (resp. R̂2). The surface link diagram π(S) is obtained by
seeing the link diagram of R̂1∪ R̂2∪ R̂3 in π′(B3) = π′(I ′1×I ′2×I ′3) = I ′1×I ′3
proceeding along the time, where π′ is the projection.

We can deform S ∩ (D2 × I3 × I ′k) as follows. Let B3 := D2 × I2, where
D2 := I1 × I3. Let Bj,i, Bj,o (j = 1, 2, 3) be 3-balls such that B1,i ⊂ B1,o ⊂
B2,i ⊂ B2.o ⊂ B3,i ⊂ B3,o ⊂ B3 and Bj,i = Dj,i × I2, Bj,o = Dj,o × I2 with
D1,i ⊂ D1,o ⊂ D2,i ⊂ D2,o ⊂ D3,i ⊂ D3,o ⊂ D2. Let the closed braid R̂j

be in Bj,o − Bj,o. From tk−1 to tk−1 + ε′ the closed braid R̂1 ∪ R̂2 ∪ R̂3

is unchanged. Then we unknot the innermost component R̂1 to the trivial
knot O1 by the ambient isotopy {h(1)

u }. Move O1 into B3 − B2,o. Since
O1 is the trivial knot with no crossings, the singular point set consists only
of ribbon singularities. Unknot the innermost R̂2 to the trivial knot O2

by the ambient isotopy {h(2)
u }. Move O2 into B3 − B3,o, and take new 3-

balls B′
2,i = D′

2,i × I2 and B′
2,o = D′

2,o × I2 with D2,i ⊂ D′
2,o ⊂ D2 − D3,o

and O2 ⊂ B′
2,o − B′

2,i. Unknot the innermost R̂3 to the trivial knot O3 by

the ambient isotopy {h(3)
u }. Now π′(O1 ∪ O2 ∪ O3) are located parallelly.

Return O2 to R̂3 by {h(3)
1−u}. Move O1 ∪ O3 into B′

2,i, and take new 3-balls
B′

3,i = D′
3,i× I2 and B′

3,o = D′
3,o× I2 with D3,i ⊂ D′

3,o ⊂ D2−D3,o−O1 and

O3 ⊂ B′
3,o − B′

3,i. Return O3 to R̂2 by {h(2)
1−u}. Move O1 into B′

3,i. Return

O1 to R̂1 by {h(1)
1−u}.

In general, unknot the innermost closed braid and move it outside, and
repeat this step to have n unknots laid parallel to each other. Re-braid the
new outermost closed braid and move the other unknots inside it. Repeat
this process to have the new closed braids.

Next, we show that S can be deformed to have only ribbon singularities.
Take s1k < . . . < snk < s′ n

k < . . . < s′ 1
k such that tk−1 < s1k < s′ 1

k < tk and
in B3 × {t} for t ∈ [s′ 1

k + ε, s1k+1 − ε], the innermost component is in the
form of the closed braid R̂1, and for t ∈ [s1k, s

′ 1
k ] the innermost component is

in the form of the trivial closed braid of degree one O1 for sufficiently small
ε > 0. . In general, for t ∈ [s′ i

k + ε, si
k+1 − ε] the i-th component is in the

form of the i-th closed braid, and for t ∈ [si
k, s

′ i
k ] the i-th component is in

the form of the trivial closed braid of degree one.
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Unknot the innermost component of S in D2 × [s′ 1
k , s1k+1] to O1 ×

[s′ 1
k , s1k+1] by unknotting the closed braid R̂1 in [s′ 1

k , s1k+1] by an ambi-

ent isotopy of {h(1)
u }. There appear no new singular points. Then Unknot

the second innermost component of S in D2 × [s′ 2
k , s2k+1] by unknotting the

closed braid R̂2 in [s′ 2
k , s2k+1] by an ambient isotopy of {h(2)

u }. The new sin-
gular points are ribbon, for in D2× [s′ 2

k , s2k+1], there is only O1× [s′ 2
k , s2k+1].

Repeat this process and we have only ribbon singularities in D2×[s′ n
k , sn

k+1].
Repeat this step for every k, and we have new S whose surface link

diagram have only ribbon singularities.

The triple point number of a surface link F is the minimum number of
triple points of surface diagrams of F . Symmetry-spun T 2-links have the
triple point number zero (cf. (0.3)). However, there is a torus-covering-knot
whose triple point number is positive.

Theorem 2.11. Let ΓT be the torus-covering-chart of degree 4 without black
vertices and boundary braids σ1σ

3
2σ3 and (σ1σ2σ3)4. Then the torus-coverig-

knot S in R
4 obtaind from the torus-covering-chart ΓT has positive triple

point number, which means torus-covering-knots contain non-pseudo-ribbon
knots.

We use tri-coloring by the dihedral quandle of order three R3. We tri-
color the torus-covering-chart and show that Mochiziki’s 3-cocycle invariant
has not an integer value. Then it has at least four white vertices (cf. [34]).

We use the following facts.
(2.11.1) Let π : R

4 → R
3 be a generic projection. Then a surface diagram

of F is the image π(F ) with additional crossing information at the singularity
set. There are two intersecting sheets along each edge, one of which is higher
than the other with respect to π. They are called an over-sheet and an under
sheet along the edge, respectively. In order to indicate crossing information,
we break the under-sheet into two pieces missing the over sheet. This can be
extended around a triple point. The sheets are called a top sheet, a middle
sheet, and a bottom sheet from the higher one. Then the surface diagram is
presented by a disjoint union of compact surfaces which are called broken
sheets. For a surface diagram D, we denote by B(D) the set of broken sheets
of D.

(2.11.2) A set X with a binary operation ∗ : X × X → X is called a
quandle if it satisfies the following conditions:

1. a ∗ a = a, for every a in X.
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2. for any b, c ∈ X, there exists a unique c ∈ X such that a = c ∗ b.
3. (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c), for a, b, c ∈ X.

We denote by R3 the dihedral quandle of order 3, which is the set {0, 1, 2}
with the binary operation a∗b = 2b−a (mod 3). A tricoloring for a surface
diagram D is a map C : B(D) → R3 such that

C(H1) ∗ C(H2) = C(H ′
1)

along every edge of D, where H2 is the over-sheet and H1 (resp. H ′
1) is the

under-sheet such that the normal vector of H2 points from (resp. toward)
it. Then the color of the edge is the pair (C(H1), C(H2)). Remark that the
color of the edge which ends with a branch point is (a, a) for some a ∈ R3,
for a ∗ a = a.

(2.11.3) At a triple point of a surface diagram, there exist broken sheets
J1, J2, J3 ∈ B(D) uniquely (some of which possibly coincide) such that J3

is the top sheet and J2 is a middle sheet and J3 is a bottom sheet such
that the normal vector of J2 (resp. J3) points from J1 (resp. J2). As-
sume D is tricolored by C. Then the color of the triple point is the triplet
(C(J1), C(J2), C(J3)) ∈ R3 × R3 × R3. The sign of the triple point is pos-
itive (resp. negative) if the triplet of the normal vectors of J1, J2, J3 is
right-handed (resp. left-handed).

This corresponds to the following.
(2.11.4) (Proposition 4.43 (3) in [9]) The color of a white vertex repre-

senting σiσjσi → σjσiσj is (a, b, c), where a, b and c are the tricolors of the
starting points of the i′-th, (i′ +1)-th , and (i′ +2)-th strings of the classical
braid σiσjσi, where i′ = min{i, j}. The triple point (or white vertex) as
above is positive (resp. negative) if j > i (resp. i > j), that is, if there is
exactly one edge with the largest (resp. smallest) label oriented towards the
triple point.

(2.11.5) Mochizuki’s 3-cocycle is a map θ : R3×R3×R3 → Z3 = 〈 t | t3 =
1 〉 such that

θ(x, y, z) = t(x−y)(y−z)z(x+z) ∈ Z3.

(2.11.6) Let D be a surface diagram of an oriented surface link F whose
triple points are τ1, . . . , τs with the signs εi = ε(τi). For a tricoloring C for
D, let (ai, bi, ci) ∈ R3 ×R3 ×R3 be the color of τi (i = 1, . . . , s).

Let us define

Wθ(τi;C) := θ(ai, bi, ci)εi ∈ Z3
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for each triple point τi, and

Wθ(C) :=
s∏

i=1

Wθ(τi;C) ∈ Z3

for the tricoloring C. Since the set of broken sheets of D is finite, so is the
set of tricolorings for D. This Wθ(C) is called the Boltzman weight. Let
C1, . . . , Cn be the tricolorings for D. Let us define Φθ(D) as follows:

Φθ(D) :=
n∑

j=1

Wθ(Cj) ∈ Z〈t |t3 = 1〉.

Since Φθ(D) satisfies certain conditions, it does not depend on the choice
of a surface diagram D of F . This Φθ(D) is called a Mochizuki’s cocycle
invariant of F , and we use the notation Φθ(F ).

Remark. For the cocycle invariant, there is a general theory (cf.[30]).

proof of Theorem 2.11. Let S be the torus-covering-knot associated
with the torus-covering-chart ΓT . First, we show that we can compute
Mochizuki’s cocycle invariant by tricoloring ΓT . Let S be embedded in
D2 × S1 × S1 = I1 × I2 × S1 × S1, which is naturally embedded in R

4.
The four-space R

4 can be considered as R
3 × R = (R × R+ × S1)/ ∼ ×R,

with (x1, 0, θ) ∼ (x1, 0, θ′) for x1 ∈ R, θ, θ′ ∈ S1, and D2 × S1 × S1 =
I1 × I2 × S1 × S1 is embedded in R

4 as follows:

(I1 × S1) × S1 × I2 ⊂ ((R × R+) × S1)/ ∼ ×R,

with I1 × S1 ⊂ R × R+ and I2 ⊂ R. The projection p : I1 × S1 × S1 ×
I2 → I1 × S1 × S1 is a generic projection in the neighborhood of the trivial
torus knot associated with the torus covering chart ΓT and the projection
π : R

4 = ((R × R+) × S1)/ ∼ ×R → R
3 with π(x1, t1, t2, x2) = (x1, t1, t2) is

a generic projection from R
4 to R

3. Hence π(S) is obtained from ΓT , that
is, by embedding p(S) into R

3 naturally. Therefore it suffices to tricolor the
torus-covering-chart ΓT and show that the Mochizuki’s 3-cocycle invariant
does not have an integer value.

Part of the torus-covering-chart without black vertices and with bound-
ary braids σ−1

1 and (σ1σ2σ3)4 contain four white vertices. Denote these by
τ1
11, . . . , τ

1
14 from left to right (Fig. 2.4).
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1 2 3 1 1 12 2 23 3 3

1 2 3 1 1 12 2 23 3 3

1 1

τ 111

τ 112
τ 113 τ 114

Fig. 2.4

Tricolor the classical braid (σ1σ2σ3)4 which is on the upper horizontal
boundary of the chart as in Fig. 2.5.

a

a

c

c

b

a

b

a

a
c

c

c

c

c

cb

cc

c

a a

a

a

a

a

ab

c

C (τ 111 )

C (τ 112 ) C (τ 113 )

C (τ 114 )

Fig. 2.5

By (2.11.4), the color of each triple point is determined by reading the
colors along the dotted path in Fig. 2.5, and its sign is determined by
(2.11.4).

Similarly, we have white vertices τ2
ij (i = 2, 3, 4, j = 1, 2, 3, 4), and

τ3
51, . . . , τ

3
54. Fig. 2.6 shows the white vertices τ2

ij and their colors when
i = 2.
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1 2 3 1 1 1

1111

2 2 2

2222

3 3 3

3333

τ 2i 1

τ 2i 2

τ 2i 3
τ 2i 42 2
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a

c

c

b

a

b

a

a
c

c

c

c

c

cb

cc

c

a a

a

a

a

a

ab

c

C (τ 221 ) C (τ 222 )

C (τ 223 ) C (τ 224 )

Fig. 2.6

Remark that the color of σ3
2 whose start points and end points have the

same color of that of Fig. 2.7 is as follows.

c

a a

c

c

a a

a
c

c

b

b

Fig. 2.7

The matrix describing the sign and color of the white vertices are as follows,
where its (i, j)-element is describing τ∗ij , and {a, b, c} = {0, 1, 2}, {0}, {1} or
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{2}, which are all the possible tricolorings:⎛⎜⎜⎜⎜⎝
+(a, a, c) +(b, b, c) −(c, a, a) −(c, a, a)
−(a, a, c) +(c, b, c) +(c, a, a) −(b, a, c)
−(a, c, b) +(b, a, c) +(a, b, a) −(b, c, b)
−(a, b, a) +(a, c, c) +(b, c, a) −(b, b, a)
−(a, c, c) −(a, c, c) +(c, c, a) +(b, b, a)

⎞⎟⎟⎟⎟⎠ .

Let us compute the Boltzman weight Wθ(C):

Wθ(C) = θ(c, b, c) · θ(a, c, b)−1 · θ(b, c, b)−1 · θ(b, c, a)
= t(c−b)(b−c)c·2c t−(a−c)(c−b)b(a+b) t−(b−c)(c−b)b·2b t(b−c)(c−a)a(a+b)

= t2(b−c)3(b+c) t−(b+a)(b−a)(a−c)(c−b).

For each coloring, we have

Wθ(C) =

{
t2 {a, b, c} = {0, 1, 2}
1 {a, b, c} = {0}, {1}, {2}.

Hence we have Φθ(S) = 3 + 6t2 /∈ Z in Z[t]/〈t3 = 1〉.

A surface knot F is called (-)-amphicheiral if F = −F ∗. Similarly to
Theorem 2.11, by using −ΓT and −Γ∗

T ,we can see that for torus-covering-
knots −S and −S∗, Φθ(−S) = Φθ(−S∗) = 3 + 6t �= Φθ(S). Therfore we
have

Corollary 2.12. There is a torus-covering-knot which is not (-)-amphicheiral.

Remark. Spun T 2-knots and turned spun T 2-knots are (-)-amphicheiral.

3 Deforming torus-covering-links to coverings of
the 2-sphere

For a (classical) braid β, let ιlk(β) be the braid obtained from β by adding
k (resp. l) trivial strings before(resp.after) β, and
Πm

i = σm+1σm+2 · · ·σm+i , Π′m
i = σm−1σm−2 · · ·σm−i,

Δm = Πm
m−1Π

m
m−2 · · ·Πm

1 , Δ′
m = Π′m

m−1Π
′m
m−2 · · ·Π′m

1 ,
Θm = σm · Π′m

m−1 · Πm
m−1 · σm · Π′m

m−2 · Πm
m−2 · · ·σm · Π′m

1 · Πm
1 · σm.

Remark. Let Δ be Garside’s Δ for the braid group Bm. Then ι0m(Δ) =
Δm (cf. [11]).
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Theorem 3.1. Let ΓT be a torus-covering-chart of degree m with boudary
braids a and b. Then the torus-covering-link associated with ΓT can be de-
scribed by a surface link chart ΓS of degree 2m as in Fig. 3.1, where Hb is
a chart describing the simple braided surface as follows:

ιm0 (b) −→ ιm0 (b) · (Δ′
m)−1 · Δ−1

m · Δ′
m · Δm ˙−→ιm0 (b) · (Δ′

m)−1 · Δ−1
m · Θm

−→ (Δ′
m)−1 · Δ−1

m · ιm0 (b̄∗) · Θm −→ (Δ′
m)−1 · Δ−1

m · Θm · ι0m(b̄∗)
˙−→ (Δ′

m)−1 · Δ−1
m · Δ′

m · Δm · ι0m(b̄∗) −→ ι0m(b̄∗),

where −→ means an isotopy transformation and ˙−→ a hyperbolic transfor-
mation along bands corresponding to the m σm’s (Fig. 3.2), and −(Hb)∗

is the orientation-reversed mirror image of Hb, and b̄∗ is the braid obtained
from the classical braid b by taking its mirror image and reversing all the
crossings (Fig. 3.3).

Definition 3.2. Let us call Hb the 1-handle chart of ΓT , and its corre-
sponding braided surface the 1-handle braided surface of ΓT .

−ιm0 (b)

ιm0 (a)

ιm0 (b)

ιm0 (a)

ι 0m ( b̄*) ιm0 (b)ι 0m ( b̄*)Hb (Hb)*

Fig. 3.1. The surface link chart ΓS
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b̄* b̄* b̄*
b̄*

b

b̄*

b

12 m m+1 2m

b b

Fig. 3.2. The 1-handle braided surface of ΓT

mirror

b*b b*
_

Fig. 3.3. The classical braid b̄∗

Remark. The surface link chart ΓS is of degree 2m and well-defined,
for the edges representing ιm0 (a) have labels at most m − 1 and the edges
representing ι0m(b̄∗) have labels at least m+ 1. Note the 1-handle chart Hb

has 2m black vertices.

proof. (Step 1) Let us consider a trivial torus knot T 2 in R
4 as the

result of 1-handle surgeries of S1 ∪ S2 along h1 ∪ h2, where S1 (resp. S2)
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is a 2-sphere in R
4 with a positive (resp.negative) orientation such that S1

contains S2, and h1 (resp. h2) is a 1-handle attaching to the two spheres
trivially in a neighborhood of the north (resp. south) pole (Fig. 3.4).

Fig. 3.4

(Step 2) Deform the two 1-handles and the inner sphere h1 ∪ h2 ∪ S2

by an ambient isotopy of R
4 to make S2 have a positive orientation as in

Fig. 3.5, where the 1-handle h1 is as in Fig. 3.6, which has a double point
curve with a branch point for each end, and the other 1-handle h2 is the
orientation-reversed mirror image of h1.

Fig. 3.5

Fig. 3.6
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(Step 3) Slide the 1-handle h2 to the neighborhood of the north pole to
make both h1 and h2 be in the neighborhood of the north pole, and cut off
the two southern hemispheres to obtain the surface braid and the surface
link chart of degree 2 as in Fig. 3.7.

degree 21 1

Fig. 3.7

(Step 4) Now, consider the trivial torus knot T 2 as the torus-covering-
link associated with ΓT (of degree m) by drawing ΓT on T 2 (Fig. 3.8). Let
us denote the m 1-handles corresponding to h1 (resp. h2) by H1 (resp.
H2). Then H1 can be deformed to the 1-handle braided surface as in Fig.
3.2, and H2 to the orientation-reversed mirror image of H1, and the surface
braid will be as in Fig. 3.9. Hence we obtain the surface link chart ΓS of
degree 2m as in Fig. 3.1.

Γ T

a

b

Fig. 3.8
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b*

b a

Fig. 3.9

The braid index of an oriented surface link F is the minimum degree
of simple closed surface braids in R

4 which are equivalent to F . Kamada
showed in [23] that surface links whose braid index is at most three are
indeed ribbon, and Shima showed in [35] that the turned spun T 2-knot of
a non-trivial classical knot is not ribbon (c.f. (0.2)). Hence we obtain the
following corollary:

Corollary 3.3. Let S be the torus-covering-link associated with a torus-
covering-chart of degree m. Then the braid index of S is equal or less than
2m. In particular, the braid index of the turned spun T 2-knot of the torus
(2, p)-knot is four.

Remark. Hasegawa in [14] (10, Part3 “Chart description of twist-spun
surface-links”) showed that for the turned spun T 2-link of a closed m-braid,
its braid index is at most 3m.

Example 3.4. Let us consider the torus-covering-chart ΓT of Example 2.2.2
(Fig. 3.10).

1
1

1

1
1

1

degree 2

Fig. 3.10. The torus-covering-chart ΓT
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The torus-covering-chart ΓT describes the turned spun T 2-knot of the
right-handed trefoil. Its 1-handle chart is as in Fig. 3.11, and the surface
link chart ΓS obtained from ΓT is as in Fig. 3.12.
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Fig. 3.11. The 1-handle chart Hb, where b = σ−3
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Fig. 3.12. The surface link chart ΓS obtained from ΓT (degree 4)

4 Knot Groups and Link Groups

In this section we consider torus-covering-links which are T 2-links, that is,
torus-covering-links associated with torus-covering-charts without black ver-
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tices.

Lemma 4.1. Let ΓT be a torus-covering-chart of degree m without black
vertices, and with its boundary braids a and b. Let S be the torus-covering-
link associated with ΓT . Then the link group of S is obtained as follows:

π1(R4 − S) = 〈x1, . . . , xm |xj = Artin(a)(xj) = Artin(b)(xj), j ∈ {1, 2, . . . ,m}〉,

where Artin(a) : Fm → Fm (resp. Artin(b)) is Artin’s automorphism of the
free group Fm = 〈x1, . . . , xm〉 associated with the m-braid a (resp. b).

proof. Apply van Kampen’s theorem.

Before studying link groups of torus-covering-links, we enumerate two
well-known theorems about classical link groups.

Theorem 4.2 (Theorem 6.3.1 in [27]). A non-trivial abelian subgroup
of a classical link group is isomorphic to Z or Z

⊕
Z.

If a classical knot group has a non-trivial center, then it is a torus knot
([5]). There is a theorem concerning the center of a classical link group as
follows:

Theorem 4.3 (Burde and Murasigi’s Theorem ([6])). The statements
listed below are equivalent.

(1) The group of a classical link L has a non-trivial center.

(2) The link group is isomorphic to one of the groups of type (a), (b), or
(c).

(a) (Z ∗ · · · ∗ Z︸ ︷︷ ︸
m−1

) × Z

(b) ((Z ∗ · · · ∗ Z︸ ︷︷ ︸
m−2

) × Z) ∗� ((Z × Z) ∗Z Z)

(c) ((Z ∗ · · · ∗ Z︸ ︷︷ ︸
m−2

) × Z) ∗�
(
(Z × Z) ∗� (Z ∗Z Z)

)
,

where m is the number of components of L, Z is a free cyclic group,
and Z = 〈h〉 is a “special” free cyclic group which is the center of the
link group except the link group is that of a Hopfian link of type (a). In
case (b) the amalgamation concerning the last factor Z = 〈q〉 is given
by h = qα, where α > 1. In case (c) the last factor (Z ∗Z Z) is the group
of the torus knot of type (α, β).
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There are torus-covering-links whose link groups are Z ⊕ Z ⊕ Z and
Z ⊕ Z ⊕ Z ⊕ Z. We can see that they are not classical link groups by
Theorem 4.2.

Theorem 4.4. Let ΓT be the torus covering chart of degree 3 (resp. 4)
without black vertices, and with its boundary braids Δ2 and σ2

1σ
2
2 (resp.

σ2
1σ

2
2σ

2
3), where Δ2 = (σ1σ2)3 (resp. (σ1σ2σ3)4). Then the torus covering

link S associated with ΓT has the link group π1(R4 − S) = Z ⊕ Z ⊕ Z (resp.
Z ⊕ Z ⊕ Z ⊕ Z).

proof. Let us compute the link group G = π1(R4 − S) by Lemma 4.1.
(Degree 3 case) Let x1, x2, x3 be the generators. Then the relations

concerning the boundary braid σ2
1σ

2
2 are

x1x2 = x2x1, (4.1)
x2x3 = x3x2. (4.2)

The other relations concerning the other boundary braid Δ2 are

x1 = (x1x2x3)x1(x1x2x3)−1

x2 = (x1x2x3)x2(x1x2x3)−1

x3 = (x1x2x3)x3(x1x2x3)−1,

which are

x1x2x3 = x2x3x1, (4.3)
x2(x1x2x3) = (x1x2x3)x2, (4.4)

x3x1x2 = x1x2x3. (4.5)

By (4.3) and (4.1), we have

x1x3 = x3x1,

hence

G = 〈x1, x2, x3 |x1x2 = x2x1, x2x3 = x3x2, x3x1 = x1x3〉
= Z ⊕ Z ⊕ Z.

(Degree 4 case) Similarly, for generators x1, x2, x3, x4, we have the fol-
lowing relations:

xixi+1 = xi+1xi
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for i = 1, 2, 3 and

xi = (x1x2x3x4)xi(x1x2x3x4)−1

for i = 1, 2, 3, 4. By using the former three relations, the latter four relations
are deformed as follows:

x1x3x4 = x3x4x1, (4.6)
x2x3x4 = x3x4x2, (4.7)
x3x1x2 = x1x2x3, (4.8)
x4x1x2 = x1x2x4. (4.9)

By x2x3 = x3x2, (4.7) is deformed as follows:

x3x2x4 = x3x4x2,

x2x4 = x4x2.

Similarly, by x2x3 = x3x2 and (4.8), we have

x1x3 = x3x1,

and by x2x4 = x4x2 and (4.9), we have

x4x1 = x1x4.

Hence G = Z ⊕ Z ⊕ Z ⊕ Z.

Symmetry-spun T 2-links have classical link groups (cf. (0.4)). However,
there are torus-covering-links whose link groups are not classical link groups
(Proposition 4.5 and Theorem 4.6). Moreover, they are ribbon. This means
there are torus-covering-links which can be described by surface link charts
without white vertices (i.e. their triple point number is zero) but whose
associated torus-covering-charts always have white vertices.

Proposition 4.5. Let ΓT be the torus-covering-chart of degree 4 without
black vertices, and with boudary braids Δ2 and σ1σ3, where Δ = σ1σ2σ3σ1σ2σ1

(Garside’s Δ). Then the torus-covering-link S associated with ΓT is a T 2-
link of two components and moreover ribbon but not a spun T 2-link.

proof. By the definition of torus-covering-links, S is a surface link of
two components and each component is of genus one.

First, let us see that S is ribbon. By Theorem 2.3 and Propsition 2.10,
we can see that S is ribbon, but here we will apply Theorem 3.1. Note that
the torus-covering-chart Γ0

T with boundary braids Δ and σ1σ3 is as in Fig.
4.1, and the torus-covering-chart GammaT is as in Fig. 4.2.
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Fig. 4.1. The torus-covering-chart Γ0
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Fig. 4.2. The torus-covering-chart ΓT

By Theorem 3.1, the 1-handle chart Hb can be deformed to the one as in
Fig. 4.3. We use the notation of oval nests introduced in Section 1. By
Fig. 4.3, the surface link chart ΓS obtained from ΓT is as follows, where
b = (2132)2:

ΓS = F1 ∪ F3 ∪ F5 ∪ F7

∪F4 ∪O(4; 3256) ∪O(4; b) ∪O(4; 3256 · b).
Since ΓS is a ribbon chart, the torus-covering-link S is ribbon.
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Fig. 4.3. The 1-handle chart Hb

Next, we will see the torus-covering-link S cannot be deformed to a spun
T 2-link of some classical link. Let us compute the link group π1(R4 − S).
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By Lemma 4.1, π1(R4 −S) is generated by four generators x1, x2, x3, x4 and
the relations which come from (σ1σ2σ3)4 and from σ1σ3. The relations from
(σ1σ2σ3)4 are

x1 = (x1x2x3x4)x1(x1x2x3x4)−1,

x2 = (x1x2x3x4)x2(x1x2x3x4)−1,

x3 = (x1x2x3x4)x3(x1x2x3x4)−1,

x4 = (x1x2x3x4)x4(x1x2x3x4)−1.

The relations from σ1σ3 are

x1 = x2,

x3 = x4.

By denoting a := x1 = x2 and b := x3 = x4, we have

π1(R4 − S) = 〈a, b |ab2 = b2a, ba2 = a2b〉.

We show that π1(R4 − S) is not a classical link group using Theorem 4.2.
Let A be the subgroup of π1(R4 −S) generated by ab, a2 and b2, that is

A = 〈ab, a2, b2 |ab2a = b2a, ba2 = a2b〉.

Since the following holds, the subgroup A is abelian:

(ab)a2 = a3b = a2(ab),
(ab)b2 = ab3 = b2(ab),
a2b2 = ab2a = b2a2.

We can assume A has no torsion element, for a classical link group has no
torsion element (Theorem 4.2). Then ab, a2 and b2 are mutually indepen-
dent. If we have

(ab)n1(a2n2)(b2n3) = 1

for some integers n1, n2 and n3, then

(ab)2m(a−2m)(b−2m) = ((ab)2a−2b−2)m = 1
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for some m, because the relations do not change the numbers of a’s and b’s.
Since A has no torsion element,

(ab)2a−2b−2 = 1
abab = b2a2 = a2b2

ba = ab

aba−1b−1 = 1.

Let φ be a homomorphism from π1(R4−S) to the symmetry group of degree
three S3 defined by φ(a) = (12) and φ(b) = (23). Then we have

φ(aba−1b−1) = (12)(23)(12)(23) = (132) �= 1.

Hence, aba−1b−1 �= 1 in π1(R4 − S). This is a contradiction.
Therefore the abelian subgroup A is isomorphic to Z

⊕
Z

⊕
Z, which

contradicts Theorem 4.2.
Hence the torus-covering-link S is not a spun T 2-link.

Remark. Let Γ′
T be the torus-covering-chart of degree 4 without black

vertices, and with boundary braids (σ2σ1σ3σ2)2 and with σ1σ3. Then the
torus-covering-link S′ associated with Γ′

T is the same as S in Proposition
4.5.

We can generalize this Proposition 4.5 as follows.

Theorem 4.6. Let ΓT,n,ε,ε′ be the torus-covering-chart of degree 4 without
black vertices, and with the boundary braids Δ2n and σε

1σ
ε′
3 , where Δ =

σ1σ2σ3σ1σ2σ1(Garside’s Δ), n is a positive integer, and ε, ε′ ∈ {+1,−1}.
Then the torus-covering-link Sn,ε,ε′ associated with ΓT,n,ε,ε′ is ribbon but not
a spun T 2-link. Moreover, for a fixed n, the torus-covering-links are equiva-
lent, which we will denote by Sn. Then Sn and Sm are different for n �= m.

Remark. This torus-covering-link Sn has two components. Each com-
ponent of Sn is a trivial torus knot.

Before the proof, we give a theorem about canonical forms of an amal-
gamated product and a lemma concerning group isomorphisms.

Theorem 4.7 (Theorem 17.2.1 in [13]). In the amalgamated product of
groups Gi (i = 1, 2, . . . , n) with the amalgamated subgroup U , there is in
each class of equivalent words one, and only one, element in canonical form
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f = uz1z2 · · · zt. Here u ∈ U and the zj (j = 1, 2, . . . , t) are left coset
representatives xik of U in the Gi with xik �= 1, taken from an arbitrarily
prefixed selection of left coset representatives. For each j ∈ {1, 2, . . . , t−1},
zj and zj+1 belong to different Gi’s.

Lemma 4.8. Let G1 and G2 be groups. Suppose there is an isomorphism
f : G1 → G2. Then for normal subgroups N1 and N2 of G1 and G2 with the
isomorphism f |N1 : N1 → N2, there is an induced isomorphism f : G1/N1 →
G2/N2, where f(g1N1) = f(g1)N2. In particular, we can take such normal
subgroups as the center groups, and the commutator subgroups of G1 and
G2.

proof. The induced homomorphism f : G1/N1 → G2/N2 is well-
defined. For g, g′ ∈ G1, if g ∼ g′ ∈ G1/N1, then there is some n ∈ N1 such
that g′ = gx. Since f : G1 → G2 and f |N1 : N1 → N2 are homomorphisms,
f(g′) = f(g)f(x) and f(x) ∈ N2. Hence f(g) ∼ f(g′) ∈ G2/N2.

Let f ′ : G2/N2 → G1/N1 be a homomorphism with f ′(g2N2) = f−1(g2)N1.
This homomorphism f ′ is well-defined, for f : G1 → G2 and f |N1 : N1 → N2

are isomorphisms. Then f ′ ◦ f = idG1/N1
and f ◦ f ′ = idG2/N2

. Hence
f−1 = f ′ and f ′ is an isomorphism.

proof of Theorem 4.6. The proof that Sn,ε,ε′ is ribbon is the same as
in Proposition 4.5. We can see that for a fixed n, the torus-covering-links
can be described by the same ribbon chart.

To show that Sn is not a spun T 2-link, it suffices to show that the link
group Gn of Sn is not a classical link group. The link group Gn of Sn

is computed as follows. Let x1, . . . , x4 be the generators. The relations
concerning the boundary braid σ1σ3 are

x1 = x2,

x3 = x4.

The other relations concerning the other boundary braid Δ2n are

x1 = (x1x2x3x4)nx1(x1x2x3x4)−n,

x2 = (x1x2x3x4)nx2(x1x2x3x4)−n,

x3 = (x1x2x3x4)nx3(x1x2x3x4)−n,

x4 = (x1x2x3x4)nx4(x1x2x3x4)−n.

By denoting a := x1 = x2 and b := x3 = x4, we have

Gn = π1(R4 − S)
= 〈a, b |(a2b2)nb = b(a2b2)n, (a2b2)na = a(a2b2)n〉.
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Let us denote the center of Gn by Zn and Z ′
1 := 〈a2, b2 |a2b2 = b2a2〉 and

Z ′
n := 〈hn〉, where hn = (a2b2)n and n > 1. We show that Zn = Z ′

n for
n ≥ 1. It is easy to see Z ′

n is a subgroup of the center Zn. Since every
element of Z ′

n commutes with each element of Gn, Z ′
n is a normal subgroup

of Gn, and we can consider the quotient group Gn/Z
′
n. It suffices to show

that Gn/Z
′
n has a trivial center. For n = 1,

G1/Z
′
1 = 〈a, b |a2 = b2 = 1〉 = Z/2 ∗ Z/2,

which has a trivial center. For n > 1,

G′
n := Gn/Z

′
n

= 〈a, b |(a2b2)n = 1〉
= 〈a, b, x |x = a2b2, xn = 1〉
= 〈a〉 ∗U 〈b, x |xn = 1〉,

where U = 〈a2〉 = 〈xb−2〉 = Z and the amalgamation is given by a2 = xb−2.
Let H1 := 〈a〉 and H2 := 〈b, x |xn = 1〉. Note that H2 = 〈b, x |xn = 1〉 is a
free product of Z and Z/n.

Let h be a center element of G′
n. Since H1 = 〈a〉 = U ∪ Ua, let us take

{1, a} as the left coset representatives of U in H1. Choose some set of left
coset representatives of U in H2, and denote it by C. By Theorem 4.7, h
has a canonical form

h = u(a)c1ac2 · · · act(a),

where u ∈ U and c1, . . . , ct ∈ C − {1}.
Since ah = ha, we have

ua(a)c1ac2 · · · act(a) = u(a)c1ac2 · · · act(a)a,

hence

uac1ac2 · · · act = uc1ac2 · · · acta.

If t > 0, uac1ac2 · · · act and uc1ac2 · · · acta are both in canonical forms but
they differ. This contradicts the uniqueness of canonical forms. Hence we
have

h = u(a) = ak

for an integer k.
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Since hb = bh, we have akb = bak. If k = 2l + 1, we have

akb = (a2)lab = uab,

bak = ba2la = b(xb−2)la = ca,

where u = a2l ∈ U and c = b(xb−2)l. If k = 2l �= 0, we have

akb = (a2)lb = ub,

bak = ba2l = b(xb−2)l = c,

where u = a2l ∈ U and c = b(xb−2)l. Since l �= 0, we have

(xb−2)m1b �= (xb−2)m2c = (xb−2)m2b(xb−2)l

in X2 for every m1,m2 ∈ Z, which means Ub �= Uc in X2. Hence we can
choose b and c to be different left coset representatives of U in H2. Then the
canonical forms of akb and bak are uab and ca (if k = 2l+1), or ub and c (if
k = 2l), which differ. This contradicts the uniqueness of canonical forms.

Hence k = 0 and h = 1, i.e. G′
n = Gn/Z

′
n has a trivial center, which

means that Zn = 〈hn〉 = 〈(a2b2)n〉.
This Zn = 〈hn〉, the center group of Gn, is not trivial. There is a

homomorphism ψ : Gn → Z with ψ(a) = 1 and ψ(b) = 1. Then ψ(hn) =
4n �= 1 in Z.

We show that Gn is not a classical link group. We see Gn is neither of
type (a), (b) nor (c) in Theorem 4.3.

We prove this for n > 1. Note that since the torus-covering-link Sn has
two components, m in Theorem 4.3 is two.

(Case (a)) If Gn is of type (a),

Gn = Z × Z.

The group Gn is commutative.
There is a natural surjective homomorphism

f : Gn → Z/2 ∗ Z/2 = 〈a′〉 ∗ 〈b′〉 (4.10)

with f(a) = a′ and f(b) = b′. Since Z/2 ∗ Z/2 is not commutative, Gn is
not commutative, which is a contradiction.

(Case (b)) If Gn is of type (b),

Gn = (Z × Z) ∗Z Z = (〈k〉 × 〈hn〉) ∗Z 〈q〉, (4.11)
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where the amalgamation is given by hn = qα for some integer α > 1. Here
hn = (a2b2)n is the generator of the center Zn of the group Gn, and q is
the generator of the last factor Z of (4.11). The generators k, hn and q are
written by a’s and b’s. There is a natural surjective homomorphism f as
written in (4.10) in Case (a). Let k′ := f(k), h′n := f(hn) and q′ := f(q).
Since Z/2∗Z/2 has a trivial center, 〈h′n〉 = 1, and the amalgamation becomes
q′α = 1. Hence we have

f(Gn) = (〈k′〉 × 〈h′n〉) ∗Z 〈q′〉
= 〈k′〉 ∗Z 〈q′〉,

where the amalgamation is givem by q′α = 1.
Since α > 1 and a non-trivial element of Z/2 ∗ Z/2 has order 2 or ∞,

we have α = 2 and q′ 2 = 1. Then the numbers of a′’s and b′’s in q′ are
different mod 2, hence the numbers of a’s and b’s in q are different mod 2.
However, since the relations of Gn do not change the numbers of a’s and b’s,
and hn = q2 and the numbers of a’s and b’s of hn are the same, q has the
same numbers of a’s and b’s. This is a contradiction.

(Case (c)) If Gn is of type (c),

G = (Z × Z) ∗� (Z ∗Z Z),

where Z ∗Z Z is a classical knot group of a torus knot of type (α, β) for some
α > 1 and |β| > 1, i.e. Z ∗Z Z = 〈x, y |xα = yβ〉. Similarly to Case (b),
x′α = 1 for x′ := f(x) and we have x′ is of order 2 i.e. α = 2. Hence x′

consists of different numbers of a′’s and b′’s mod 2, which means x consists
of different numbers of a’s and b’s mod 2. However, since hn = xα = x2, x
consists of the same numbers of a’s and b’s. This is a contradiction.

In the case n = 1, since the center group of G1 is Z1 = 〈a2, b2 |a2b2 =
b2a2〉, which has two generators, if G1 is a classical link group, G1 must be
of type (a). The rest of the proof is the same as in Case (a).

Therefore the link group of Sn (n > 0) is not a classical link group.
Next we show that the torus-covering-links Sn and Sm are different for

n �= m. It suffices to show that there is a contradiction if their link groups
Gn and Gm are isomorphic. It suffices to show when n, m > 1. If Gn and
Gm are isomorphic,

G′
n/[G

′
n, G

′
n] = G′

m/[G
′
m, G

′
m],

where G′
j = Gj/Zj = 〈a, b |(a2b2)j = 1〉 and [G′

j , G
′
j ] is the commutator
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subgroup of G′
j for j = n,m. Then we have

G′′
n : = G′

n/[G
′
n, G

′
n]

= 〈a, b |(a2b2)n = 1, ab = ba〉
= 〈a, b, c |(a2b2)n = 1, ab = ba, c = ab〉.

By eliminating b by b = a−1c, we have

G′′
n = 〈a, c |(aca−1c)n = 1, ac = ca〉

= 〈a, c |c2n = 1, ac = ca〉
= Z × Z/2n.

Hence we have G′′
n �= G′′

m and Sn �= Sm for n �= m.

Remark. There is an algorithm whereby one can determine the center
of a group with one defining relation ([1], [32]). This algorithm gives an
alternative proof of the fact that the center group ofG′

n = 〈a, b |(a2b2)n = 1〉
is trivial.

We can consider the knot version of Theorem 4.6.

Theorem 4.9. Let ΓT,n,ε,ε′ be the torus-covering-chart of degree 4 without
black vertices, and with its boundary braids Δ2n+1 and σε

1σ
ε′
3 , where Δ =

(σ1σ2σ3)4, n is a positive integer, and ε, ε′ ∈ {+1,−1}. Then the torus-
covering-knot Sn,ε,ε′ associated with ΓT,n,ε,ε′ is ribbon but not a spun T 2-
knot. Moreover, for a fixed n, the torus-covering-links are equivalent, which
we will denote by Sn. Then Sn and Sm are different for n �= m.

proof. The proof that Sn,ε,ε′ is ribbon and it does not depend on the
choice of ε and ε′ is the same as Proposition 4.5. We show that the knot
group Gn of Sn is not classical knot group and Gn �= Gm for n �= m.

Note that for n = 0, S0 is the trivial torus knot.
The knot group Gn is computed as follows: Let x1, . . . , x4 be the gener-

ators. Then the relations concerning the boundary braid σ1σ3 are

x1 = x2,

x3 = x4.

The other relations concerning the other boundary braid Δ2n+1 are

x1 = (x1x2x3x4)nx1x2x3x4x
−1
3 x−1

2 x−1
1 (x1x2x3x4)−n,

x2 = (x1x2x3x4)nx1x2x3x
−1
2 x−1

1 (x1x2x3x4)−n,

x3 = (x1x2x3x4)nx1x2x
−1
1 (x1x2x3x4)−n,

x4 = (x1x2x3x4)nx1(x1x2x3x4)−n.
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By denoting a := x1 = x2 and b := x3 = x4, we have two relations:

a = (a2b2)na2ba−2(a2b2)−n,

b = (a2b2)na(a2b2)−n,

the former of which can be deformed to the following:

a(a2b2)na2 = (a2b2)na2b

a(a2b2)n+1 = (a2b2)n+1b.

Hence we have

Gn = π1(R4 − Sn)
= 〈a, b |b(a2b2)n = (a2b2)na, a(a2b2)n+1 = (a2b2)n+1b〉.

Let Zn := 〈hn〉, where hn = (a2b2)2n+1. Then Zn is the center group of Gn.
Since

ahn = a(a2b2)2n+1 = (a2b2)n+1b(a2b2)n = (a2b2)2n+1a = hna,

bhn = b(a2b2)2n+1 = (a2b2)na(a2b2)n+1 = (a2b2)2n+1b = hnb,

Zn is a subgroup of the center group, and moreover it is a normal subgroup
of Gn.

Similar to the proof of Theorem 4.6, it suffices to show that the quotient
group G′

n = Gn/Zn has a trivial center.

G′
n = 〈a, b |b(a2b2)n = (a2b2)na, a(a2b2)n+1 = (a2b2)n+1b, (a2b2)2n+1 = 1〉

= 〈a, b, x |x = a2b2, bxn = xna, axn+1 = xn+1b, x2n+1 = 1〉.

By eliminating b by b = xnax−n, we have

G′
n = 〈a, x |x = a2xna2x−n, x2n+1a = ax2n+1, x2n+1 = 1〉

= 〈a, x |x = a2xna2x−n, x2n+1 = 1〉
= 〈a, x |x2n+1 = (a2xn)2 = 1〉
= 〈a, x, y |x2n+1 = 1, y2 = 1, a2xn = y〉
= 〈a〉 ∗U 〈x, y |x2n+1 = 1, y2 = 1〉,

where U = 〈a2〉 = 〈yxn+1〉 = Z and the amalgamation is given by a2 =
yxn+1 = yx−n. Let H1 := 〈a〉 and H2 := 〈x, y |x2n+1 = 1, y2 = 1〉. Note
that H2 = 〈x, y |x2n+1 = 1, y2 = 1〉 is a free product of Z/(2n + 1) and
Z/2.
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Let h be a center element of G′
n. Since H1 = 〈a〉 = U ∪ Ua, let us take

{1, a} as the left coset representatives of U in H1. Choose some set of left
coset representatives of U in H2, and denote it by C. By Theorem 4.7, h
has a canonical form

h = u(a)c1ac2 · · · act(a),

where u ∈ U and c1, . . . , ct ∈ C − {1}.
Since ah = ha, we have

ua(a)c1ac2 · · · act(a) = u(a)c1ac2 · · · act(a)a,

hence

uac1ac2 · · · act = uc1ac2 · · · acta.

If t > 0, uac1ac2 · · · act and uc1ac2 · · · acta are both in canonical forms but
they differ. This contradicts the uniqueness of canonical forms. Hence we
have

h = u(a) = ak

for an integer k.
Since hx = xh, we have akx = xak. If k = 2l + 1, we have

akx = (a2)lax = uax,

xak = xa2la = x(yxn+1)la = ca,

where u = a2l ∈ U and c = x(yxn+1)l. If k = 2l �= 0, we have

akx = (a2)lx = ux,

xak = xa2l = x(yxn+1)l = c,

where u = a2l ∈ U and c = x(yxn+1)l. Since l �= 0, we have

(yxn+1)m1x �= (yxn+1)m2c = (yxn+1)m2x(yxn+1)l

in X2 for every m1,m2 ∈ Z, which means Ux �= Uc in X2. Hence we can
choose x and c to be different left coset representatives of U in H2. Then
the canonical forms of akx and xak are uax and ca (if k = 2l + 1), or ux
and c (if k = 2l), which differ. This contradicts the uniqueness of canonical
forms.
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Hence k = 0 and h = 1, i.e. G′
n = Gn/Z

′
n has a trivial center, which

means that Zn = 〈hn〉 = 〈(a2b2)2n+1〉.
This center group Zn = 〈hn〉 of Gn is not trivial. There is a homomor-

phism ψ : Gn → Z with ψ(a) = 1 and ψ(b) = 1. Then ψ(hn) = 4(2n+1) �= 1
in Z.

By Burde and Murasugi’s Theorem (Theorem 4.3), if Gn is a classical
knot group, then Gn is a torus knot group. Let Gp,q be the (p, q)-torus knot
group, i.e. Gp,q := 〈u, v |up = vq〉 for coprime integers p and q. We can
assume that 1 < p < q. Let Zp,q := 〈up〉 = 〈vq〉 be the center group of Gp,q.
We have

G′
p,q = Gp,q/Zp,q

= 〈u, v |up = vq = 1〉
= Z/p ∗ Z/q.

Then we have

G′′
n : = G′

n/[G
′
n, G

′
n]

= 〈a, x |x2n+1 = 1, a4x2n = 1, ax = xa〉
= 〈a, x |x2n+1 = 1, a4 = x, ax = xa〉
= 〈a |a4(2n+1) = 1〉
= Z/4(2n+ 1),

and

G′′
p,q : = G′

p,q/[G
′
p,q, G

′
p,q]

= 〈u, v |up = vq = 1, uv = vu〉
= Z/p× Z/q.

Since G′′
n = G′′

p,q, we have pq = 4(2n + 1). Since G′
n has an element of

order 2n+ 1, and a non-trivial torsion element of G′
p,q has order r which is

a devisor of p or q, we can assume that 2n + 1 is a devisor of q. Since p, q
are coprime positive integers, we have p = 4 and q = 2n+ 1.

For any element w of order 2 in G′
4,2n+1 = Z/4 ∗ Z/(2n + 1), w can be

written as w = w′ 2 for some element of order 4 in G′
4,2n+1. Since y in G′

n

is of order 2, there is an element y′ with y = y′ 2 in G′
n. Then we have

G′
n = 〈a, x, y, y′ |x2n+1 = 1, y2 = 1, a2xn = y, y = y′ 2〉

= 〈a, x, y′ |x2n+1 = 1, y′ 4 = 1, a2xn = y′ 2〉.

45



Let N4,2n+1,v′ be a normal subgroup of G′
4,2n+1 generated by an element

v′ of order 2n + 1. Since for any such v′, v′ = 1 iff v = 1, the quotient
group G′

4,2n+1/N4,2n+1,v′ does not depend on the choice of v′. Let us denote
G′

4,2n+1/N4,2n+1,v′ by G′
4,2n+1/N4,2n+1. Let Nn be a normal subgroup of G′

n

generated by x, which is an element of order 2n+1. Let f : G′
n → G′

4,2n+1 be
the isomorphism. Then Nn and N4,2n+1,v′ is isomorphic by f |Nn for some v′.
Then by Lemma 4.8 we have G′

n/Nn
∼= G′

4,2n+1/N4,2n+1. Let us compute:

G′′
n := G′

n/Nn

= 〈a, x, y′ |x2n+1 = 1, y′ 4 = 1, a2xn = y′ 2, x = 1〉
= 〈a, y′ |y′ 4 = 1, a2 = y′ 2〉,

G′′
4,2n+1 := G′

4,2n+1/N4,2n+1

= 〈u, v |u4 = 1, v2n+1 = 1, v = 1〉
= 〈u |u4 = 1〉
= Z/4Z.

Any element of G′′
4,2n+1 has order 1, 2 or 4. However, the order of ay′ in G′′

n

is neither 1, 2 nor 4. Take a homomorphism φ : G′′
n → S3 with φ(a) = (12),

φ(y) = (23), where S3 is the symmetry group of degree 3. This φ is well-
defined. Then we have

φ(ay′) = (12)(23) = (123) �= e,

φ((ay′)2) = (12)(23)(12)(23) = (132) �= e,

φ((ay′)4) = (123)4 = (123) �= e,

in S3, which means neither ay′, (ay′)2 nor (ay′)4 is trivial in G′′
n. This is a

contradiction.
For n �= m, Sn �= Sm. Since

G′′
n = Z/4(2n+ 1) �= Z/4(2m+ 1) = G′′

m

for n �= m, we have Sn �= Sm.

A classical link group has no torsion element (cf. Theorem 4.2). There
is a surface knot whose knot group has torsion elements (cf. [27]). The link
group of a symmetry-spun T 2-link has no torsion elements (cf. (0.4)). Then
how about torus-covering-links?

46



Theorem 4.10. Let S be the torus-covering-link associated with a torus-
covering-chart of degree m without black vertices. Then its link group has
no torsion element.

proof. Let E := D2 × S1 × S1 − S. Let A be a non trivial abelian
subgroup of π1(E), and Ẽ a covering space over E corresponding to the
subgroup A. Then it suffices to show the following:

(1) π1(E) = π1(R4 − S),

(2) For i ≥ 2, πi(E) = 0,

(3) H3(Ẽ) �= Zn for |n| ≥ 2.

If the above hold, then since πi(Ẽ) = πi(E) = 0 for i ≥ 2, we have Hq(A) ∼=
Hq(Ẽ) for any q. Then if A is a finite cyclic group Zn, by [15] H3(A) = Zn,
which contradicts (3). Hence, π1(E) = π1(R4 − S) has no torsion element.

(1) It can be shown by van Kampen’s theorem.
(2) There is a fiber bundle π : E → S1 with the fiber F = D2×S1−cl(a).

Then by the exact sequence of a fiber bundle, we obtain πq(E) = πq(F ) (q ≥
2). There is another fiber bundle π′ : F → S1 with the fiber F ′ is an m-
punctured disk, which is homotopic to S1 ∨ S1 ∨ · · · ∨ S1. By the exact
sequence of a fiber bundle again, we obtain πq(F ) = πq(S1∨S1∨· · ·∨S1) (q ≥
2). Because πq(S1) = 0 (q ≥ 2), πq(S1 ∨ S1 ∨ · · · ∨ S1) = 0 (q ≥ 2).

(3) By the Mayer-Vietoris exact sequence, we see that H3(E) = Zm .
Let A be a subgroup of π1(E) generated by all the torsion elements of order
n. Then Ẽ is locally path-connected regular covering space.

There is a commutative diagram (cf. [17]),

H3(Ẽ) π∗−→ H3(E)
κ↘ ↙ ι

E∞
0,3

where π∗ is a homomorphism induced by the projection π : Ẽ → E, κ is a
surjection, and ι is an injection.

Take a torsion element x of H3(Ẽ) ∼= A. Since a homomorphisim from
Zn to Z

m is a 0-map, π∗(x) = 0, so ι ◦ π∗(x) = 0 in E∞
0,3. On the other

hand, if every torsion element (that is, every generator) of H3(Ẽ) ∼= A goes
to zero in E∞

0,3, E
∞
0,3 = 0, for κ is surjective. However, E∞

0,3 cannot be zero,
for ι : H3(E) = Zm → E∞

0,3 is injective. Therefore A is an emptyset and
H3(Ẽ) �= Zn for |n| ≥ 2.
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Corollary 4.11. Let F be a 2-knot with torsion elements. Then the surface
knot of genus one obtained from F by adding a trivial 1-handle is NOT a
torus-covering-knot.

Remark. For example, we can take such a 2-knot F as the 5-twist-spun
trefoil.

5 Unknotting numbers

It is known that any surface link can be deformed to a trivial surface link
by applying a finite number of 1-handle surgeries.

For an oriented surface link, its unknotting number is the minimum num-
ber of oriented 1-handle surgeries needed to deform it to trivial.

For an oriented surface link, adding a free edge to the surface link chart
corresponds to a nice 1-handle surgery, which is a kind of an oriented 1-
handle surgery. In this section we study unknotting numbers of torus-
covering-links.

Theorem 5.1. Let τ(S,ΓT ) be the torus-covering-link obtained by turning
a torus-covering-link (S,ΓT ) once. Then if S is unknotted, τ(S,ΓT ) is also
unknotted.

proof. It suffices to show in the case where S has one component, i.e.
S is a torus-covering-knot. We consider that the torus-covering-knot S is
embedded in B3×S1 and B3×S1 is embedded in R

4 by R
4 = S4−{∗} = B3×

S1∪iS
2×B2−{∗}, where ∂B3 = S2 and ∂B2 = S1 and i : S2×S1 → S2×S1

is the identity map. There is a handlebody whose boundary is S, for S is
unknotted. Let us denote this handlebody byH. Then ∂H∩(B3×S1) = ∂H.
Let K be H ∩ ∂B = H ∩ (S2 ×S1). We can assume that the handlebody H
is in R

3 ×{t0} and S2 ×S1 is embedded in R
4. Let f : S2 ×S1 → R

4 be the
embedding. For every p ∈ S1, f(S2 × {p}) ⊂ D3, where D3 is a 3-ball. In
other words, S2 ×{p} is trivially embedded. If for some p ∈ S1, f(S2 ×{p})
is not trivially embedded in R

4, then S2 × I ⊂ S2 ×S1 cannot be embedded
in R

4, where I � p is a sufficiently small interval.
Hence f(S2 × S1) = S2 × f(S1), where S2 is trivially embedded and

f(S1) may be knotted. This knotted f(S1) can be deformed to the trivially
embedded S1 by an ambient isotopy of R

4, but we must consider the follow-
ing situation: H ⊂ R

3 × {t0}, and ∂H ⊂ B3 × f(S1), where B3 is a 3-ball
with ∂B3 = S2.

Since ∂H is a trivially embedded closed 2-manifold in B3 × f(S1), we
see that H ⊂ B3 × f(S1). Therefore, H ⊂ B. From the construction of
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τ(S,ΓT ), there is a handlebody whose boundary is τ(S,ΓT ), which means
τ(S,ΓT ) is also unknotted.

Corollary 5.2. Let S be the torus-covering-link associated with a torus-
covering-chart ΓT and τ(S) be the turned torus-covering-link of (S,ΓT ).
Then S and τ(S) have the same unknotting number.

Proposition 5.3. Let ΓT be a torus-covering-chart of degree m with only
free edges. Then the torus-covering-link S associated with ΓT is unknotted.

Before the proof, we give a lemma.

Lemma 5.4. Let

Ok := O
(
m;

k−1∏
j=0

(m− 1 ↘ m− k + j)
k−1∏
j=0

(m+ 1 ↗ m+ k − j)
)

for k = 1, 2, . . . ,m − 1. Then the oval nest Ok can be deformed to the
following:

Ok = O
(
m; (m− 1 ↘ m− k)(m+ 1 ↗ m+ k)

)
= O

(
m− k; (m− k + 1 ↗ m)(m+ 1 ↗ m+ k)

)
= O

(
m+ k; (m+ k − 1 ↘ m)(m− 1 ↘ m− k)

)
.

proof. First, we show that the sequence of integers
∏k−1

j=0(m − 1 ↘
m− k + j) can be deformed by the braid relations to the following:

k−1∏
j=0

(m− 1 ↘ m− k + j)

= (m− 1 ↘ m− k)(m− 1 ↘ m− k + 1) · · · (m− 1)
= (m− k) · (m− k + 1 ↘ m− k) · · · (m− 1 ↘ m− k)

=
k−1∏
j=0

(m− k + j ↘ m− k). (5.1)

This can be seen from the easy equation

(l ↘ i1)(l ↘ i2) = (l − 1 ↘ i2 − 1)(l ↘ i1). (5.2)
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By (5.2), we see that

k−1∏
j=0

(m− 1 ↘ m− k + j)

= (m− 1 ↘ m− k)
k∏

j=2

(m− 1 ↘ m− k + j − 1)

=
k−1∏
j=1

(m− 2 ↘ m− k + j − 1) · (m− 1 ↘ m− k)

= · · ·

=
k−1∏
j=0

(m− k + j ↘ m− k),

which is (5.1). Similarly, we have another equation

k−1∏
j=0

(m+ 1 ↗ m+ k − j) =
k−1∏
j=0

(m+ k − j ↗ m+ k). (5.3)

Hence, by (5.2), (5.3) and (1.7.1),. . . ,(1.7.6), we have

Ok

= O
(
m;

k−1∏
j=0

(m− 1 ↘ m− k + j)
k−1∏
j=0

(m+ 1 ↗ m+ k − j)
)

= O
(
m;

k−2∏
j=0

(m− k + j ↘ m− k) ·

k−2∏
j=0

(m+ k − j ↗ m+ k)(m− 1 ↘ m− k)(m+ 1 ↗ m+ k)
)

= O
(
m; (m− 1 ↘ m− k)(m+ 1 ↗ m+ k)

)
= O

(
m− k; (m− k + 1 ↗ m)(m+ 1 ↗ m+ k)

)
= O

(
m+ k; (m+ k − 1 ↘ m)(m− 1 ↘ m− k)

)
.

proof of Proposition 5.3. It suffices to show in the case where S has
one component, i.e. S is a torus-covering-knot. Moreover, we may assume
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that the torus-covering-chart ΓT has the least possible free edges. Then we
can assume ΓT to be of degree m and

ΓT =
m−1⋃
k=1

Fk.

Let us see what the surface link chart ΓS obtained from ΓT is like. Let

Ok := O
(
m;

k−1∏
j=0

(m− 1 ↘ m− k + j)
k−1∏
j=0

(m+ 1 ↗ m+ k − j)
)
,

for k = 1, 2, . . . ,m− 1 and

O0 := O(m; ∅) = Fm.

Then the 1-handle chart He is deformed to

He =
m−1⋃
k=0

Ok,

where e is the trivial braid of degree m. Then the surface link chart ΓS is
as follows:

ΓS =
m−1⋃
k=0

Ok ∪
m−1⋃
k=0

Ok ∪
m−1⋃
k=1

Fk.

Now, we show that the surface link chart ΓS can be deformed to an
unknotted chart. Let Ik(k = 1, 2, . . . ,m− 1) be a chart such that

Ik := Ok ∪
m+k−1⋃

j=m−k+1

Fj ∪ Fm−k.

We show that

Ik = Ok ∪
m+k−1⋃

j=m−k+1

Fj ∪ Fm−k

=
m+k⋃

j=m−k

Fj (5.4)

for k = 1, . . . ,m− 1.
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By Lemma 5.4 and (1.7.1),. . . , (1.7.6) we have

Ik = O
(
m+ k; (m+ k − 1 ↘ m)(m− 1 ↘ m− k)

)
∪

m+k−1⋃
j=m−k+1

Fj ∪ Fm−k

= Fm+k ∪
m+k−1⋃

j=m−k+1

Fj ∪ Fm−k

=
m+k⋃

j=m−k

Fj ,

which is (5.4). Since O0 = Fm, ΓS ⊃ I1. Hence by (5.4), ΓS ⊃ I2. Repeat
this step and we have

ΓS ⊃ Im−1 =
2m−1⋃
j=1

Fj .

Hence by (1.7.5), ΓS can be deformed to have only free edges, which is an
unknotted chart.

Proposition 5.5. Let ΓT be a torus-covering-chart of degree m which has
no white vertices. In other words, ΓT has only free edges and loops. Then
the unknotting number of the torus-covering-link S associated with ΓT is at
most m− 1.

proof. The torus-covering-chart ΓT can be deformed to the form of
disjoint union of free edges by adding (m − 1)-1-handles,

⋃m−1
j=1 Fj . Hence,

by Proposition 5.3, the unknotting number of S is at most m− 1.

Theorem 5.6. There is a torus-covering-knot whose unknotting number is
n, where n is any positive integer. Let S be the spun or turned spun T 2-knot
of a classical knot β = cl(σ3

1σ
3
2 · · ·σ3

n) (degree n + 1) with n > 0. Then the
unknotting number of S is n.

proof. The torus-covering-knot S can be described by a torus-covering-
chart ΓT of degree n+1 with neither black vertices nor white vertices. More
precisely, ΓT has no black vertices and its boundary braids are β and e (the
trivial braid of degree n + 1), or β and β. Then by Proposition 5.5, the
unknotting number of S is at most n. It suffices to show that we must apply
at least n 1-handle surgeries to deform S to a trivial surface knot.
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Let us tricolor S. It suffices to tricolor the classical knot β. The classical
braid b = σ3

1σ
3
2 · · ·σ3

n can be devided into n blocks bi = σ3
i (i = 1, 2, . . . , n).

Let us denote by q′i (resp. qi+1) the start point of the i-th (resp. (i+ 1)-th)
string of bi and by q′′i (resp. q′i+1) the end point of the i-th (resp. (i+1)-th)
string of bi for i = 2, . . . , n. For some q, a point of the diagram of b, let
C(q) be the color of the edge with q on it.

We consider tricoloring b with C(qi) = C(q′′i ) for every i. The diagram
of the braid bi consists of five edges. The four edges of them each contain
one of the start points or end points. Let us denote by pi a point of the fifth
edge.

The tricoloring of the braid bi is determined by two of the three colors
C(q′i) = C((q′′i ), C(qi+1) = C(q′i+1) and C(pi). Hence the tricoloring of b is
determined by C(q1), C(q2), . . . , C(qn+1), and Mochizuki’s cocycle invariant
Φθ(S) is as follows:

Φθ(S) = 3n+1,

which means there are 3n+1 possible ways of tricoloring.
Adding one 1-handle to S means identifying C(e1) and C(e2) for some

edges e1 and e2 in the diagram of b. Let ek be on the braid bjk
(k = 1, 2).

If e1 = e2 or e1, e2 ∈ {e(q′i), e(q′′i )} or {e(qi+1), e(q′i+1)}, then the cocycle
invariant does not change. If not, then C(qj2) = C(q′j2) or C(qj2+1) =
C(q′j2+1) is determined by the 1-handle, and the cocycle invariant becomes
3n. We have

Φθ(S′) = Φθ(S) or Φθ(S)/3,

where S′ is the resulting surface knot.
Hence we must apply at least n 1-handle surgeries to deform S to have

Mochizuki’s cocycle invariant 3, which is a necessary condition for the trivial
surface knot.

As a more concrete example, we can give an alternative proof of the fact
that the spun (or the turned spun) T 2-knot of a torus (p, q)-knot has the
unknotting number one:

Proposition 5.7. Let S (resp.τ(S)) be the spun (resp.turned spun ) T 2-
knot of a torus (p, q)-knot. Then the unknotting number of S and τ(S) is
one.

Remark. Kanenobu and Marumoto showed in [26] that the unknotting
number of the spun torus (p, q)-knot is one, which shows that the unknotting
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number of the spun T 2-knot of a torus (p, q)-knot is also one.

proof. By Theorem 5.1, it suffices to show that the unknotting number
of S is one. We use the same notation as in the Proposition 5.3, that is;

Ok = O
(
p; (p− 1 ↘ p− k)(p+ 1 ↗ p+ k)

)
,

He =
p−1⋃
k=0

Ok

for k = 0, 1, . . . ,m−1. Note that for k = 0, (p−1 ↘ p−k)(p+1 ↗ p+k) = ∅
and Ok = O(p; ∅) = Fp. Moreover, let us define b and O′

k as follows:

b = (1 ↗ p− 1)q,

O′
k = O

(
m; (m− 1 ↘ m− k)(m+ 1 ↗ m+ k) · b).

The oval nest O′
k is obtained from Ok by adding loops describing b around

it.

Since the (p, q)-torus knot is the closure of a braid b = (σ1 ·σ2 · · ·σp−1)q,
the surface link chart ΓS obtained from ΓT is as follows:

ΓS =
m−1⋃
i=0

Oi ∪
m−1⋃
i=0

O′
i.

Remark that ΓS is a ribbon chart.
We show that ΓS can be deformed to an unknotted chart by adding a

free edge.
(Step 1) Let us denote q mod p by r ∈ {0, 1, 2, . . . , p− 1}. Let us define

an element τ of the symmetry group Sp−1 by(
1 2 · · · r − 1 r r + 1 r + 2 · · · p− 1

p− r + 1 p− r + 2 · · · p− 1 p− r 1 2 · · · p− r − 1

)
.

Observe that for i ∈ {0, 1, 2, . . . , p− 1}\{r}, σi · b = b · στ(i).
(Step 2) We show that

Op−k−1 ∪Op−k ∪ F2p−k = Op−k−1 ∪ Fk ∪ F2p−k,

for k ∈ {0, 1, 2, . . . , p− 1}\{r}.
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By Lemma 5.4, we have

Op−k−1 ∪Op−k ∪ F2p−k

= O
(
k + 1; (k + 2 ↗ p)(p+ 1 ↗ 2p− k − 1)

)
∪O(

k; (k + 1 ↗ p)(p+ 1 ↗ 2p− k)
)∪F2p−k

= O
(
k + 1; (k + 2 ↗ p)(p+ 1 ↗ 2p− k − 1)

)
∪O(

k; (k + 1 ↗ p)(p+ 1 ↗ 2p− k − 1)
)∪F2p−k

= O
(
k + 1; (k + 2 ↗ p)(p+ 1 ↗ 2p− k − 1)

)
∪O(

k; (k + 2 ↗ p)(p+ 1 ↗ 2p− k − 1)
)∪F2p−k

= Op−k−1 ∪ Fk ∪ F2p−k.

(Step 3) Similarly, we show that

O′
p−k−1 ∪O′

p−k ∪ Fτ(k) = O′
p−k−1 ∪ F2p−k ∪ Fτ(k),

for k ∈ {1, 2, . . . , p− 1}\{r}.
First, remark that

O(k; b) = Fτ(k)

for k ∈ {1, 2, . . . , p− 1}\{r} . This is because b · k · b = b · b · τ(k) = τ(k).
Then by Lemma 5.4 and 2p− k > p, we have

O′
p−k−1 ∪O′

p−k ∪ Fτ(k)

= O
(
2p− k − 1; (2p− k − 2 ↘ p)(p− 1 ↘ k + 1) · b)

∪O(
2p− k; (2p− k − 1 ↘ p)(p− 1 ↘ k) · b)

∪O (k; b)
= O′

p−k−1 ∪O(2p− k; b) ∪O (k; b)
= O′

p−k−1 ∪ F2p−k ∪ Fτ(k).

(Step 4) Let us denote Step 2 as follows:

φl : Ol−1 ∪Ol ∪ Fp+l −→ Ol−1 ∪ Fp−l ∪ Fp+l,

and Step 3 as

ψl : O′
l−1 ∪O′

l ∪ Fτ(p−l) −→ O′
l−1 ∪ Fp+l ∪ Fτ(p−l).
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We introduce several notations to make things easy to see. Let us define
F l, F ′ l and F ′′ l as follows:

F l := Fp−l,

F ′ l := Fp+l,

F ′′ l := Fτ(p−l).

Then Step 2 is written as follows:

φl : Ol−1 ∪Ol ∪ F ′ l −→ Ol−1 ∪ F l ∪ F ′ l,

for 1 ≤ l ≤ p− 1, and Step 3 is

ψl : O′
l−1 ∪O′

l ∪ F ′′ l −→ O′
l−1 ∪ F ′ l ∪ F ′′ l,

for 1 ≤ l ≤ p − 1 with l �= p − r. Moreover, for an integer m, let us define
τm to be

τm := p− τ−m(r).

Then we have

Fτ−m(r) = Fτ(τ−(m+1)(r)) = F ′′ p−τ−(m+1)(r) = F ′′ τm+1

= Fp−(p−τ−m(r)) = F p−τ−m(r) = F τm ,

and

F2p−τ−m(r) = Fp+(p−τ−m(r)) = F ′ p−τ−m(r) = F ′ τm .

We show that ΓS can be deformed to an unknotted chart by adding a
free edge Fr. Let us define charts I0, I1, . . . , and I2p−4. First, define I0 as
follows:

I0 := ΓS ∪ Fr

= O0 ∪Oτ1 ∪ · · · ∪Oτp−2 ∪Oτ0

O′
0 ∪O′

τ1
∪ · · · ∪O′

τp−2
∪O′

τ0

∪ Fr.

For n ∈ {1, 2, . . . , p− 2}, let us define I2n as follows:

I2n := O0 ∪Oτn+1 ∪Oτn+2 ∪ · · · ∪Oτp−2 ∪Oτ0 ∪ F τ1 ∪ · · · ∪ F τn

∪O′
0 ∪O′

τn+1
∪O′

τn+2
∪ · · · ∪O′

τp−2
∪O′

τ0
∪ F ′ τ1 ∪ · · · ∪ F ′ τn

∪ Fr

= O0 ∪Oτn+1 ∪Oτn+2 ∪ · · · ∪Oτp−2 ∪Oτ0 ∪ F ′′ τ2 ∪ · · · ∪ F ′′ τn+1

∪O′
0 ∪O′

τn+1
∪O′

τn+2
∪ · · · ∪O′

τp−2
∪O′

τ0
∪ F ′ τ1 ∪ · · · ∪ F ′ τn

∪ Fr.
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For n ∈ {0, 1, 2, . . . , p− 3}, let us define I2n+1 as follows:

I2n+1 := O0 ∪Oτn+1 ∪Oτn+2 ∪ · · · ∪Oτp−2 ∪Oτ0 ∪ F τ1 ∪ · · · ∪ F τn

∪O′
0 ∪O′

τn+2
∪ · · · ∪O′

τp−2
∪O′

τ0
∪ F ′ τ1 ∪ · · · ∪ F ′ τn ∪ F ′ τn+1

∪ Fr

= O0 ∪Oτn+1 ∪Oτn+2 ∪ · · · ∪Oτp−2 ∪Oτ0 ∪ F ′′ τ2 ∪ · · · ∪ F ′′ τn+1

∪O′
0 ∪O′

τn+2
∪ · · · ∪O′

τp−2
∪O′

τ0
∪ F ′ τ1 ∪ · · · ∪ F ′ τn+1

∪ Fr.

We show that I2n+1 (resp. I2n+2) is obtained from I2n (resp. I2n+1) by
applying Step 3 (resp. Step 2) for n = 0, 1, . . . , p− 3.

When we have I2n, there is an integer l0 < τn+1 such that for any
l with l0 < l < τn+1, O′

l /∈ I2n and O′
l0

∈ I2n. Since r = τ0(r) and
Fr = F ′′ p−τ−1(r) = F ′′ τ1 , we have

I2n ⊃ F ′′ l0+1 ∪ · · · ∪ F ′′ τn+1−1 ∪ F ′′ τn+1

∪O′
l0 ∪ F ′ l0+1 ∪ · · · ∪ F ′ τn+1−1 ∪O′

τn+1
.

By applying Steps 3 and its inverses, we can deform O′
τn+1

to F ′
τn+1

, which
is I2n+1:

ψl0+1 ◦ · · · ◦ ψτn+1−1 ◦ ψτn+1 ◦ ψ−1
τn+1−1 ◦ · · · ◦ ψ−1

l0+2 ◦ ψl0+1(I2n) = I2n+1.

Similarly, we can deform I2n+1 to I2n+2 by applying Steps 2 and its
inverses and deforming Oτn+1 to F τn+1 :

φl0+1 ◦ · · · ◦ φτn+1−1 ◦ φτn+1 ◦ φ−1
τn+1−1 ◦ · · · ◦ φ−1

l0+2 ◦ φl0+1(I2n+1) = I2n+2.

Remark that here l0 is the same integer used in deforming I2n to I2n+1.
Since τ has order p − 1, by repeating Steps 3 and Steps 2 alternately

p− 2 times each, we have

I2(p−2) = O0 ∪Oτ0

p−2⋃
m=1

F τm

∪O′
0 ∪O′

τ0

p−2⋃
m=1

F
′ τm

∪ Fr

= O0 ∪Op−r ∪O′
0 ∪O′

p−r

⋃
k �=p, 2p−r

Fk.
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On the other hand, O0 = Fp. Hence, we have free edges of all labels
except 2p− r, using which we can deform the oval nest

Op−r = O
(
2p− r; (2p− r − 1 ↘ p)(p− 1 ↘ r)

)
to the free edge F2p−r.

Therefore ΓS ∪Fr can be deformed to contain
⋃2p−1

k=1 Fk, using which we
can deform ΓS ∪Fr to have only free edges, which is an unknotted chart.

Remark. Proposition 5.7 holds for a classical braid b of degree m with
the following conditions (here we consider the prime integer p as an arbitrary
positive integer m);

There exists some element τ of the symmetry group of degree m− 1, and

1. except for some i and τ(i), σi · b = b · στ(i)

2. the order of τ is m− 1.

What classical braids satisfy the conditions in the above-mentioned re-
mark?

Proposition 5.8. We consider classical braids whose degree are at least
two. The classical braids which satisfy the conditions in the above remark
are in the following forms:

(1) ιq0(Δ
2m
p ) · ι0p(Δ2n

q ) · (Θq
p · Θp

q)l · Θq
p,

(2) σ2m
1 σ2n−1

3 (σ2σ1σ3σ2)2l−1 or σ2m−1
1 σ2n

3 (σ2σ1σ3σ2)2l−1,

where the degree of the braid is p+ q in (1) and 4 in (2) and m, n and
l are integers and p, q are positive integers such that

1. p = 1, q > 1,

2. p > 1, q = 1 or

3. p > 1 and q > 1 are coprime.

And

(Δj)2 = (σ1σ2 · · ·σj−1)j

for j = p, q, which is, Garside’s Δ for j-braids, and

Θq
p = σp · Π′p

p−1 · Πp
q−1 · σp · Π′p

p−2 · Πp
q−2 · · ·σp · Π′p

p−q
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if p > q, and

Θq
p = σp · Π′p

p−1 · Πp
q−1 · σp · Π′p

p−2 · Πp
q−2 · · ·σp · Πp

q−p

if q > p, where Πp
i and Π′p

i is the notations introduced in Section 3, which
are

Πp
i = σp+1σp+2 · · ·σp+i,

Π′p
i = σp−1σp−2 · · ·σp−i.

q

p

Fig. 5.1. Θq
p

proof. Let b be the classical braid of degree m which satisfies the
conditions. If σib = bσj , we use the phrase that the generator σi is sent to
the generator σj through b. By the condition 1, at most one pair of the i-th
and (i+ 1)-th strings do not send a generator σi to some generator through
b.

Let φ(b) be an element of the symmetry group of degree m induced by
the classical braid b, and let bφ : {1, 2, . . . ,m} → {1, 2, . . . ,m} be a map
such that

φ(b) =
(

1 2 · · · m
bφ(1) bφ(2) · · · bφ(m)

)
.

For any j �= i, the j-th and (j+1)-th strings come to some k-th and (k+1)-
th or k-th and (k − 1)-th strings through b, i.e. φb(j, j + 1) = (k, k + 1) or
(k, k − 1). If the first and second strings come to some k-th and (k + 1)-th
(resp. k-th and (k− 1)-th) strings, then the third string comes to (k+2)-th
(resp. (k − 2)-th) string, and so on. Hence we see that

bφ(1, 2, . . . i) =

{
(k1, k1 + 1, . . . , k1 + i− 1)
(k1, k1 − 1, . . . , k1 − i+ 1)
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and

bφ(i+ 1, i+ 2, . . .m) =

{
(k2, k2 + 1, . . . , k2 +m− i− 1)
(k2, k2 − 1, . . . , k2 −m+ i+ 1)

for some k1 and k2.
Let b1 (resp. b2) be a classical braid consisting of from the first to the

i-th (resp. from the (i + 1)-th to the m-th) strings of the classical braid b.
Let Cb1 := {1, 2, . . . , i} and Cb2 := {i+ 1, i+ 2, . . . ,m}. By the condition,
in b, b1 and b2 can be separated by their tubular neighborhoods and Cb1

and Cb2 are contained in the canonical reduction system of b. We have two
cases: {

bφ(Cb1) = Cb1 , bφ(Cb2) = Cb2 ,

bφ(Cb1) = Cb2 , bφ(Cb2) = Cb1 .

(Case 1) If bφ(Cb1) = Cb1 and bφ(Cb2) = Cb2 , then cl(b) has at least two
components, which contradicts the condition that cl(b) is a knot.

(Case 2) If bφ(Cb1) = Cb2 and bφ(Cb2) = Cb1 , b is in the following form:

ιn2
0 (b1) · ι0n1

(b2) · C,

where n1 := i and n2 := m − i, and bj is a braid of degree nj with σkbj =
bjστj(k) for some τj (j = 1, 2) and every k, and C = (Θn2

n1
· Θn1

n2
)l · Θn2

n1
. By

regarding each b1 and b2 as a string, we have the degree-two-braid σ2l+1
1 .

Since bj (j = 1, 2) sends every generator to some generator,

b1 = (Δ′
n1

)m1 ,

b2 = (Δ′
n2

)m2

for some m1 and m2, where Δ′
i is a braid of degree i which sends every

generator σj to a generator σi−j . For an even n = 2ν, (Δ′
i)

n is a center
element, hence (Δ′

i)
n = (Δi)2ν for Garside’s Δi. We see when the closure of

the braid b has one component.
Here n1 (resp. n2) corresponds to p (resp. q), and m1 (resp. m2)

corresponds to m (resp. n) in the statement of Proposition 5.8.
We consider the following cases:

(I) n1 �= n2 and n1, n2 ≥ 2,

(II) n1 = 1 and n2 ≥ 2 or n1 ≥ 2 and n2 = 1,
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(III) n1 = n2,

(IV) n1 = 0.

(I) When n1 �= n2 and n1, n2 ≥ 2.
(I-1) If m1 and m2 are even, n1 and n2 are coprime.
We have

φ(b) =
(

1 2 · · · n1 n1 + 1 n1 + 2 · · · n1 + n2

n2 + 1 n2 + 2 · · · n1 + n2 1 2 · · · n2

)
and

bφ(l) =

{
l − n1 if j > n1

l + n2 if j ≤ n1.

Then bjφ(1) = 1 − j1n1 + j2n2 for some non-negative integers j1 and j2

with j1 + j2 = j. Since cl(b) is a knot, bn1+n2
φ (1) = 1 and bjφ(1) �= 1 for

j = 1, 2, . . . , n1 + n2 − 1. Hence if non-negative integers k1 and k2 satisfy

bn1+n2
φ (1) = 1 − k1n1 + k2n2 = 1,

that is,

k1n1 = k2n2, (5.5)

then k1 and k2 must satisfy

k1 + k2 = n1 + n2. (5.6)

We can assume that n1 < n2. If n2 = kn1 for some positive integer k, then
(5.5) is k1n1 = k2kn1 and k1 = k, k2 = 1 satisfies (5.5). However,

n1 + n2 = (1 + k)n1 > 1 + k = k1 + k2,

which contradicts (5.6). Hence n1 and n2 are coprime.
If n1 and n2 are coprime, since k1n1 = k2n2, we have k1 = n2 and

k2 = n1, and cl(b) is a knot.
(I-2) There is no case when n1 < n2 and m2 is odd or when n1 > n2 and

m1 is odd.
We can assume that n1 > n2 and m1 is odd. Then φ(b) is as follows:(

1 · · · j · · · n1 n1 + 1 · · · n1 + n2

n1 + n2 · · · n1 + n2 − (j − 1) · · · n2 + 1 ∗ · · · ∗
)
.

61



Then similarly to (I-1), since n2 + 1 ≤ n1,

b2φ(n1) = bφ(n2 + 1) = n1 + n2 − (n2 + 1 − 1) = n1.

This is a contradiction.
(I-3) There is no case when n1 < n2 and m1 is odd and m2 is even or

when n1 > n2 and m1 is even and m2 is odd.
We can assume that n1 < n2 and m1 is odd and m2 is even. Then φ(b)

is as follows:(
1 2 · · · n1 n1 + 1 n1 + 2 · · · n1 + n2

n1 + n2 n1 + n2 − 1 · · · n2 + 1 1 2 · · · n2

)
.

Then similarly to (I-1), we can show that n1 and n2 are coprime.
Let k be an integer with 0 < k < n1 determined by k := n2 − ln1 for

some positive integer l. Then we have

bl+2
φ (1) = k,

bφ(k) = n1 + n2 − k + 1 = n1(l + 1) + 1 > n1,

bl+1
φ (n1(l + 1) + 1) = 1,

which means,

b
2(l+2)
φ (1) = 1.

Since cl(b) is a knot,

n1 + n2 = 2(l + 2).

Hence we have

k + (l + 1)n1 = 2(l + 2),
k = 4 − n1 − (n1 − 2)l.

Since n1 ≥ 3 and l ≥ 1, we have

k = 4 − n1 − (n1 − 2)l ≤ 4 − 3 − 1 = 0,

which contradicts the assumption that k > 0.
(II) When n1 = 1 and n2 ≥ 2 or n1 ≥ 2 and n2 = 1. We can assume

that n1 = 1 and n2 ≥ 2.
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(II-1) If m2 is even, then

φ(b) =
(

1 2 3 · · · n2 + 1
n2 + 1 1 2 · · · n2

)
.

Since φ(b) has order n2 + 1, cl(b) is a knot.
(II-2) There is no case when m2 is odd. If m2 is odd, then

φ(b) =
(

1 2 · · · n2 n2 + 1
n2 + 1 n2 · · · 2 1

)
.

Then b2φ(1) = bφ(n2 + 1) = 1, which is a contradiction.
(III) When n1 = n2. Let us denote n := n1 = n2.
(III-1) If n ≥ 2, then there are two cases: n = 2, m1 is even and m2 is

odd, or, n = 2, m1 is odd and m2 is even.
By (I-1), there is no case when m1 and m2 are even. We can assume m1

is odd. If m2 is even, then φ(b) is as follows:(
1 2 · · · n n+ 1 n+ 2 · · · 2n
2n 2n− 1 · · · n+ 1 1 2 · · · n

)
.

Then we have

b4φ(1) = b3φ(2n) = b2φ(n) = bφ(n+ 1) = 1.

Hence, if n > 2, this is a contradiction. If n = 2, then φ(b) is order 4 and
cl(b) is a knot.

If m2 is odd, then φ(b) is as follows:(
1 2 · · · n n+ 1 n+ 2 · · · 2n
2n 2n− 1 · · · n+ 1 n n+ 1 · · · 1

)
.

Then we have

b2φ(1) = bφ(2n) = 1,

which is a contradiction.
(III-2) If n = n1 = n2 = 1, then b = σ2k−1

1 . This is a torus (2, 2k − 1)-
knot.

(IV) If n1 = 0, the classical braid b is that of in (III-2).
Ifm2 is even, the classical braid b is a pure braid, which is a contradiction.
If m2 is odd, then we have

b2φ(1) = bφ(n2) = 1. (5.7)

If n2 = 2, the classical braid b is that of in (III-2). If n2 > 2, this contradicts
(5.7).
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