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The Bergman Kernel on Tube Domains of Finite Type

By Joe Kamimoto

Abstract. In this paper, asymptotic expansions of the Bergman
kernel and the Szegö kernel are computed for pseudoconvex tube do-
mains of finite type in Cn+1 (n ≥ 1).
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1. Introduction

In the function theory of several complex variables, it is a very impor-

tant thema to understand the boundary behavior of the Bergman kernel

B(z) and there are many interesting studies about this behavior. In par-

ticular, the strongly pseudoconvex case is quite well understood. Let Ω be

a C∞-smoothly bounded strongly pseudoconvex domain in Cn+1 (n ≥ 1).

Hörmander [19] and Diederich [9],[10] showed the limit of B(z)d(z)n+2 at

a boundary point z0 equals the determinant of the Levi form at z0 times

(n+1)!/4πn+1. Here d(z) is the Euclidean distance from z to the boundary.

Later C. Fefferman [14] obtained the following very strong result about the

asymptotic expansion:

B(z) = ϕ(z)r(z)−n−2 + ψ(z) log r(z),(1.1)

where −r is a defining function of Ω and ϕ,ψ are C∞-functions on Ω̄.

In this paper, we are interested in the case of weakly pseudoconvex do-

mains of finite type. In this case, many detailed results have been obtained

in estimating the size of the Bergman kernel (see the reference in [2],[24],

etc.). More precisely, Boas, Straube and Yu [2] (see also [12]) obtained a

result about the boundary limit in the sense of Hörmander for some large

class of finite type domains. Indeed, they showed that if Ω is a bounded

pseudoconvex domain in Cn+1 and the boundary point z0 is semiregular

(which is also called h-extendible) with multitype (1, 2m1, . . . , 2mn), then

the nontangential limit of B(z)d(z)
∑ n

j=1 1/mj+2 at z0 equals some positive

number which is determined by local model only. But, there seems very

few study about asymptotic expansions like (1.1) in the weakly pseudocon-

vex case. The author [22] has computed an asymptotic expansion of the

Bergman kernel for two-dimensional pseudoconvex tube domains of finite

type. The purpose of this paper is to give an asymptotic expansion of the

Bergman kernel in the general dimensional case.

Let us explain our analysis for the Bergman kernel. For tube domains, it

is known that the Bergman kernel can be expressed by using simple integrals
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(Section 4). Our analysis is based on this integral expression. From this

expression, the integral of the form:

F (x) =

∫
Rn

e−2[f(w)−(x|w)]dw (x ∈ Rn)

appears and its analysis is important. Here the function f locally defines

the base of the tube domain. The finite type condition implies that f can be

locally approximated by a convex quasihomogeneous polynomial P (Section

2). The tube domain defined by this polynomial P can be considered as an

appropriate model and we analyze the singularity of the Bergman kernel for

this model domain (Section 5). On the other hand, the singularity of the

Bergman kernel is completely determined by local geometry of the bound-

ary in our case (Section 6). By using this localization, general domains

can be considered as perturbations of model domains. Some computation

in Section 7 implies that this perturbation reflects the many terms of the

asymptotic expansion of the Bergman kernel. In the computation, the pre-

cise analysis of the integral F is necessary. Roughly speaking, we give some

estimates for the derivatives of F by using F itself in Lemma 7.5.

Last let us explain an important geometrical idea in our computation.

Let z0 be a weakly pseudoconvex point on the boundary. Generally, the

geometrical situation of the boundary around z0 is complicated. Indeed,

D’Angelo’s variety type and Catlin’s multitype are not always uniform

around z0. This fact gives a serious influence to the singularity of the

Bergman kernel. It is a natural phenomenon that its behavior from the

tangential direction becomes complicated. But in the case of tube domains,

the domains can be approximated by quasihomogeneous domains whose

boundaries have relatively simple stratification structures from the view-

point of the multitype. (More generally, the class of semiregular domains

has the same properties, see [11],[36]. ) From this geometrical property,

we introduce new variables which induce a real blowing up at z0 (Section

2.2). By using these variables, the singularity can be stratified in a clear

form. We express the singularity from the vertical direction in the form of

an asymptotic expansion. In the weakly pseudoconvex case, several vari-

ables are necessary to express the singularity. In this respect, the weakly

pseudoconvex case differs from the strongly pseudoconvex case.

In Section 8, an analogous result about the Szegö kernel is given.
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2. Results

Let Ω be a domain in Cn+1 (n ≥ 1) and denote by A2(Ω) the subspace

of L2(Ω) consisting of holomorphic functions. The Bergman kernel B(z) of

Ω (on the diagonal) is defined by

B(z) =
∑
j

|ϕj(z)|2,

where {ϕj}j is a complete orthonormal basis of A2(Ω). The above sum is

uniformly convergent on any compact set in Ω. This implies that B(z) is

real analytic on Ω.

In this paper, we consider the following class of domains. Given a domain

ω in Rn+1. The tube domain over the base ω is defined by

Ω = Rn+1 + iω = {z = x + iy ∈ Cn+1;x ∈ Rn+1, y ∈ ω}.

Here we set z = (z′, zn+1) = (z1, . . . , zn, zn+1) ∈ Cn+1 with zj = xj +

iyj , x = (x′, xn+1) = (x1, . . . , xn, xn+1) ∈ Rn+1 and y = (y′, yn+1) =

(y1, . . . , yn, yn+1) ∈ Rn+1. A projection Π from Cn+1 to Rn+1 is defined

by Π(z) = �(z) = y. It is well known that the pseudoconvexity of Ω =

Rn+1 + iω is equivalent to the convexity of the base ω.

2.1. Assumptions

Throughout this section, we give the following assumptions on a tube

domain Ω = Rn+1 + iω and its boundary point z0. The base domain ω is

a convex domain in Rn+1 with C∞-smooth boundary and z0 is a point of

finite type, in the sense of D’Angelo. Moreover, Catlin’s multitype of z0 is

(m1(∂Ω, z0), . . . ,mn+1(∂Ω, z0)). Note that Lemma 3.1, below, implies that

y0 = Π(z0) ∈ ∂ω is of finite type in the sense of Bruna-Nagel-Wainger. (In

Section 3.1, we will explain the concepts of these ”types” and this type for

y0 is called R-finite type.)
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2.2. Appropriate coordinates

From the convexity of ω and the finite type condition of y0, we can

choose a coordinate in Rn+1, where the base is contained, so that:

(1) The point y0 is the origin.

(2) The y1, . . . , yn directions give the tangent plane to ∂ω at y0.

(3) The yn+1 direction gives the normal (in the case of a bounded ω) or

it gives a half line which is contained in ω ∪ {y0} (in the case of an

unbounded ω).

For an unbounded ω, there are a domain A in Rn (possibly, A = Rn)

containing the origin and a C∞-function f on A such that f(0) = |∇f(0)| =

0 and

ω = {y ∈ Rn+1; yn+1 > f(y1, . . . , yn) = f(y′) (y′ ∈ A)}.

For a bounded domain ω, there are a domain A in Rn containing the origin

and C∞-functions f and f̃ on A such that

ω = {y ∈ Rn+1; f(y′) < yn+1 < f̃(y′) (y′ ∈ A)}.

According to the following result of Schulz [32], the finite type condition

implies that the function f(y′) can be decomposed into a quasihomogeneous

convex polynomial and a remainder term as follows.

Lemma 2.1 ([32]). There exists a rotation L in Rn so that the function

f(y′) can be expressed near the origin as follows:

f(Ly′) = P (y′) + R(y′).

Here P and R satisfy the following properties. Set mj = mj(∂Ω, P )/2

(j = 1, . . . , n).

(i) P (y′) is a convex polynomial having the quasihomogeneity:

P (t1/2m1y1, . . . , t
1/2mnyn) = tP (y1, . . . , yn) for all t > 0

and P (y′) > 0 if y′ 
= 0.
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(ii) There exist constants C > 0 and γ ∈ (0, 1] such that |R(y′)| ≤
Cσ(y′)1+γ , where σ(y′) :=

∑n
j=1 y

2mj

j near the origin.

From the above lemma, we will consider the domain ωP = {y ∈ Rn+1;

yn+1 > P (y′)} as an appropriate model for the analysis on the domain ω

near the origin. Hereafter we choose the coordinates y′ = (y1, . . . , yn) so

that f is divided as in the above lemma.

2.3. Real blowing up

Next let us introduce a mapping ”real blowing up” at y0 ∈ ∂ω.

For δ > 0, let ωδ = {y ∈ ω; yn+1 < δ}. Let m be the least common mul-

tiplicity of m1, . . . ,mn and let lj = m/mj . Let π̃ be a mapping from Rn+1

to Rn+1 such that π̃(τ1, . . . , τn, ρ) = π̃(τ, ρ) = (y1, . . . , yn, yn+1), where{
yj = τjρ

lj (j = 1, . . . , n)

yn+1 = ρ2m.
(2.1)

We set U = π̃−1(ω) and Uδ = π̃−1(ωδ). It is easy to see π̃−1(ωP ) = ∆P ×
(0,∞), where

∆P = {τ ∈ Rn;P (τ) < 1}.

Let π be the restriction of the mapping π̃ on the set Ū . Note that π is

a diffeomorphic mapping from U to ω and π−1(0) = ∆P × {0}. This fact

means that π is a real blowing up at 0.

2.4. Asymptotic expansion

Let D be a set in Rp, not necessarily open. We say that f is a C∞-

function on D if f is C∞-smooth in the interior of D and all partial deriva-

tives of f can be continuously extended to the boundary. For δ > 0, we

define Γδ = {(τ, ρ) ∈ ∆P × [0, δ);P (τ)+Cρ2mγσ(τ)1+γ < 1}, where C, γ are

positive numbers as in Lemma 2.1. The following is a main result of this

paper.

Theorem 2.2. The Bergman kernel B(z) of a tube domain Ω =

Rn+1 + iω has the form near z0 ∈ ∂Ω:

B(z) =
Φ(τ, ρ)

ρ2m(ν+2)
+ Φ̃(τ, ρ) log ρ,(2.2)
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where ν =
∑n

j=1 1/mj and Φ(τ, ρ), Φ̃(τ, ρ) are C∞-functions on the set Uδ,

with some small positive number δ, satisfying the following properties.

(i) Φ(τ, ρ) can be extended to be a C∞-function on Uδ ∪ (∆P × {0}).
More precisely, Φ(τ, ρ) admits the following asymptotic expansion with re-

spect to ρ: for any N ∈ N,

Φ(τ, ρ) =
N∑

k=0

Φk(τ)ρk + RN (τ, ρ)ρN+1 + ˜̃Φ(τ, ρ)ρ2m(ν+2),

where each coefficients Φk(τ) are C∞-functions on ∆P , RN (τ, ρ) is contin-

uous on Γδ and ˜̃Φ(τ, ρ) is a C∞-function on Uδ. In particular, the first

coefficient Φ(τ, 0) = Φ0(τ) is Φ(τ) as in (5.3) in Section 5, which is positive

on ∆P and is unbounded as τ approaches the boundary of ∆P .

(ii) Φ̃(τ, ρ) can be extended to be a C∞-function on Uδ.

Remark 2.3. From the theorem, we obtain a result about the bound-

ary limit as in the Introduction. The nontangential limit of B(z)ρ2m(ν+2),

as z → z0 ∈ ∂Ω, equals

Φ(0) = Φ0(0) =
1

2n+ν+2πn+1

∫
Rn

dζ∫
Rn e−2[P (µ)−(ζ|µ)]dµ

(see Section 5). This value is determined by the function P only. More

precisely, if the Bergman kernel is restricted to the set {y ∈ Rn+1; yn+1 >

P (y′)1+ε} (ε > 0), then the coefficient of ρk equals the constant Φk(0) for

k ≥ 0. We will discuss about the coefficients in more detail in Section 7.4.

Remark 2.4. In this paper, we do not discuss about the singularities

of the coefficient functions Φk(τ) at ∂∆P in detail. Roughly speaking, the

singularity with respect to τ concerns with the singularity from the tangen-

tial direction. In the two-dimensional case, their singularities are computed

in [22] (see Remark 7.20). But, the geometrical situation of the boundary

around z0 is very complicated in the general dimensional case. Therefore

the singularity of Φk(τ) also becomes complicated and it must be expressed

by using several variables. The singularity from the vertical direction is

essentially important and it can be seen as in the theorem.

Remark 2.5. Our asymptotic expansion, with respect to ρ, has a sim-

ilar form to (1.1) in the strongly pseudoconvex case. The essential differ-

ence appears in the expansion variable. That is to say, in the strongly or
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the weakly pseudoconvex case, the asymptotic expansion takes the Tay-

lor series type or the Puiseux series type, respectively. In [24], a similar

asymptotic expansion is computed for another class of domains of semireg-

ular. From these observations, we may conjecture that the Bergman kernel

always admits an asymptotic expansion like (2.2) for the class of pseudo-

convex domains of semiregular. But it is known that this type of expansion

cannot be generalized to the general finite type domains (see [17],[24]).

3. Finite Type Conditions

3.1. Four kinds of type

The concepts of many kinds of types, which are introduced in [6],[32],

[21],[8],[27],[7], are very important for precise analysis on degenerate hyper-

surfaces in real or complex spaces. Here let us recall the definitions of four

kinds of type at boundary points of domains in Rn+1 or Cn+1. Let Z+ be

the set of nonnegative integers.

3.1.1 Real line type and real multitype

These types were introduced by Bruna-Nagel-Wainger [6], Schulz [32],

Iosevich-Sawyer-Seeger [21]. Let ω be a domain in Rn+1 with C∞-smooth

boundary S and ρ ∈ C∞(Rn+1) a defining function of ω, i.e., ∇ρ(x) 
= 0

when ρ(x) = 0 and

ω = {x ∈ Rn+1; ρ(x) < 0} and S = {x ∈ Rn+1; ρ(x) = 0}.

For each η = (η1, . . . , ηn+1) ∈ Rn+1, let 〈η,∇〉 =
∑n+1

j=1 ηj∂/∂xj be the

directional derivative in direction η and let 〈η,∇〉j denote the jth power of

this derivative. Let Tx be the affine tangent plane to S at x, i.e. Tx = {η ∈
Rn+1; 〈η,∇〉ρ(x) = 0}. We suppose that x ∈ S is a convex point, i.e.

〈η,∇〉2ρ(x) =
n+1∑
j,k=1

∂2ρ

∂xj∂xk
(x)ηjηk ≥ 0 for all η ∈ Tx.

Following [32],[21], let us define the real line type and the real multitype

of S at x. For x ∈ S and m ∈ Z+, we define the sets

Sm = Sm(x) =

η ∈ Rn+1;
m∑

j=0

|〈η,∇〉jρ(x)| = 0

 .
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It is clear that S0 = Rn+1 and S1 = Tx. If x ∈ S is a strongly convex point,

i.e. 〈η,∇〉2ρ(x) > 0 for all nonzero η ∈ Tx, then S2 = {0}. If j < k, then

Sj ⊃ Sk. As was shown in [32], the convexity implies that Sm are linear

subspaces in Tx. Now if there exists an integer m such that Sm = {0}, then

we say that x ∈ S is a point of R-finite type. From now on, we assume the

R-finite type condition on x. Then there are integers a1, . . . , ak such that

1 = a1 < · · · < ak, 2 ≤ k ≤ n and

{0} = Sak � · · · � Sa2 � Sa1 = S1 = Tx � S0 = Rn+1

and the sequence is maximal, i.e.,

Saj = Saj+1 = · · · = Saj+1−1, 1 ≤ j ≤ k − 1.

The largest number ak is called as the real line type of S at x, which is

denoted by RL(S, x). This number means the maximal order of contact of

real lines with S at x. Let dj = dimSaj . In particular, d0 = n + 1, d1 = n,

dk = 0. For j = 1, . . . , n, let

m̃j(S, x) = al if n + 1 − dl−1 < j ≤ n + 1 − dl, l = 1, . . . , k.

Then (n+1)-tuple RM(S, x) = (m̃1(S, x), . . . , m̃n+1(S, x)) ∈ Nn+1 is called

the real multitype of S at x. The definitions of RL(S, x) and RM(S, x) are

independent of the linear coordinate of Rn+1.

Now, the next three types are defined on the boundary of complex do-

mains. Let Ω be a domain in Cn+1 with C∞-smooth boundary M and let

z0 lie on M . Let r ∈ C∞(Cn+1) be a defining function of Ω, i.e., |∇r(z)| 
= 0

when r(z) = 0 and

Ω = {z ∈ Cn+1; r(z) < 0} and M = {z ∈ Cn+1; r(z) = 0}.

3.1.2 Variety type

This type was introduced by D’Angelo [8]. The variety (1-)type of M at

z0 is defined by

∆1(M, z0) = sup

{
ν(z∗r)

ν(z − z0)

}
,(3.1)

where the supremum is taken over all germs of nontrivial one-dimensional

complex varieties z : D → Cn+1 with z(0) = z0. Here D is the unit disk in
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C, ν(f) denotes the order of vanishing of the function f at 0 and z∗r = r◦z.
In this paper, we say that z0 is a point of finite type if ∆1(M, z0) < ∞.

More generally, one can define the q-type of M at z0, q ≥ 1:

∆q(M, z0) = inf
S

∆1(M ∩ S, z0) 1 ≤ q ≤ n + 1.

Here S runs over all (n − q + 2)-dimensional complex hyperplanes passing

through z0 and ∆1(M ∩ S, z0) denotes the 1-type of the domain Ω ∩ S

(considered as a domain in S) at z0.

3.1.3 Complex line type

This type was introduced by McNeal [27]. The complex line type

CL(M, z0) of M at z0 is defined in the same way as in (3.1) by consid-

ering, instead of complex varieties, only affine complex lines through z0,

i.e.,

CL(M, z0) = sup
l

ν(l∗r),

for l is a parameterization of a complex line with l(0) = z0.

3.1.4 Complex multitype

This type was introduced by Catlin [7]. Let Γn+1 denote the set of all

(n + 1)-tuples of numbers λ = (λ1, . . . , λn+1) with 0 ≤ λj ≤ ∞ such that

(i) λ1 ≤ · · · ≤ λn+1.

(ii) For each k, either λk = +∞ or there is a set of nonnegative integers

a1, . . . , ak, with ak > 0, such that
∑k

j=1 aj/λj = 1.

An element of Γn+1 will be referred to as a weight. The set of weights

can be ordered lexicographically; i.e., if Λ′ = (λ′
1, . . . , λ

′
n+1) and Λ′′ =

(λ′′
1, . . . , λ

′′
n+1), then Λ′ < Λ′′ if for some k, λ′

j = λ′′
j for all j < k, but

λ′
k < λ′′

k. A weight Λ ∈ Γn+1 is said to be distinguished if there exist

holomorphic coordinates (z1, . . . , zn+1) about z0 with z0 mapped to the

origin such that DαD̄βr(z0) = 0 whenever
∑n+1

j=1 (αj + βj)/λj < 1, where

Dα :=
∂|α|

∂zα1
1 · · · ∂zαn+1

n+1

and D̄β :=
∂|β|

∂z̄β1
1 · · · ∂z̄βn+1

n+1

.

The complex multitype CM(M, z0) of M at z0 is defined to be the smallest

weight CM(M, z0) = (m1(M, z0), . . . ,mn+1(M, z0)) in Γn+1 (smallest in

the lexicographic sense) such that CM(M, z0) ≥ Λ for every distinguished

weight Λ. Note that m1(M, z0) = 1
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3.2. On tube domains

Let us consider the relation among the above types in the case of tube

domains. Under the assumption of the convexity on the base, these types

have the following relations.

Lemma 3.1. If z0 ∈ ∂Ω is a point of finite type, then y0 = Π(z0) ∈ ∂ω

is a point of R-finite type. More precisely, we have

∆q(∂Ω, z0) = mn+2−q(∂Ω, z0) = m̃n+2−q(∂ω, y0) 1 ≤ q ≤ n + 1.

and

∆1(∂Ω, z0) = CL(∂Ω, z0) = RL(∂ω, y0).

Moreover the above numbers are even integers, if q 
= n + 1.

Proof. From the convexity, the equalities about the types for complex

domains are shown by McNeal [27], Boas and Straube [1] and Yu [35]. Next,

it is shown in Proposition 5 in [35] that the complex multitype equals the

weight Λ0, which is defined in [35]. We can also obtain other equalities by

restricting the concept of Λ0 to the real space. It is easy to know that the

above numbers are even from the convexity. �

4. Integral Formula

For ζ = (ζ1, . . . , ζN ), η = (η1, . . . , ηN ) in RN , we set dζ = dζ1 · · · dζN
and (ζ|η) = ζ1η1 + · · · + ζNηN .

It is known in [25],[34],[30],[4],[13] that the Bergman kernel of a tube

domain Ω = Rn+1 + iω is expressed as

B(z) =
1

(2π)n+1

∫
Λ∗

e−2(y|u) 1

ϕ(u)
du,(4.1)

where

ϕ(u) =

∫
ω
e−2(u|w)dw

and Λ∗ = {u ∈ Rn+1;ϕ(u) < ∞}. Since the Bergman kernel B(z) is a

function of y only in the tube case, we denote B(z) by K(y) hereafter.

Let us see a precise shape of the set Λ∗. For a convex set ω ⊂ Rn+1, its

recession cone Λω is defined to be Λω = {y ∈ Rn+1; v + ty ∈ ω for all v ∈ ω,
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t ≥ 0}. The recession cone of a convex set is the maximal element in the

family of those cones whose shifts are contained in this set (c.f. [29]). If ω

is bounded, then Λω = {0} and Λ∗ = Rn+1. In the case of unbounded ω,

the integrable condition of ϕ(u) implies that u ∈ Λ∗ if and only if (u|y) > 0

for all y ∈ ω. This means that Λ∗ is the dual cone of Λω, i.e.,

Λ∗ = {u ∈ Rn+1; (u|y) > 0 for y ∈ Λω}.

More precisely, we consider the recession cone in the coordinates which

was introduced in Section 2.2. For R > 0, set B̃R = {y′ ∈ Rn; f(y′) < R}
and BR = {(y1/R, . . . , yn/R) ∈ Rn; y′ ∈ B̃R}. Let B be the intersection of

BR for all R > 0. It is easy to see that B is a nonempty set and that the

recession cone of ω is

Λω = {(tŷ′, t) ∈ Rn+1; t ≥ 0, ŷ′ ∈ B}.

The definition of the dual cone leads to

Λ∗ = {(−sû′, s) ∈ Rn+1; s > 0, û′ ∈ B∗},

where

B∗ = {û′ ∈ Rn; (û′|ŷ′) < 1 for ŷ′ ∈ B}.

Note that B∗ contains the origin. For example, if there are positive numbers

C and ε such that f(y′) ≥ C|y′|1+ε when |y′| ≥ 1, then B = {0} and

B∗ = Rn. In the bounded case, we set B∗ = Rn.

For the convenience for the computation later, we rewrite the integral

representation (4.1) by changing the integral variables (uj = −sûj (j =

1, . . . , n), un+1 = s). In the unbounded case, we have

K(y) =
2

(2π)n+1

∫ ∞

0
e−2yn+1sF (y′; s)sn+1ds,

F (y′; s) =

∫
B∗

e2s(y′|û′) 1

D(û′; s)
dû′,

D(û′; s) =

∫
A
e−2s[f(w′)−(û′|w′)]dw′.

(4.2)
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5. Analysis in the Model Case

Throughout this paper, the following terminology and notation are used.

For a weight Γ := (p1, . . . , pN ) (pj > 0) and a positive number α, we say

that a polynomial P (x1, . . . , xN ) is (Γ : α)-homogeneous, if P satisfies

P (tp1x1, . . . , t
pNxN ) = tαP (x1, . . . , xN ) for all t > 0.

Note that the case Γ = Γm := (1/2m1, . . . , 1/2mn) will often appear later,

where (1, 2m1, . . . , 2mn) is the multitype at a boundary point. The follow-

ing symbols are useful in our computation below. For t > 0 and x ∈ Rn,

define δt(x) and δ∗t (x) by

δt(x) = (t1/2m1x1, . . . , t
1/2mnxn),

δ∗t (x) = (t1−1/2m1x1, . . . , t
1−1/2mnxn).

Let us consider the model case of our analysis. Let P be a convex

polynomial of x ∈ Rn satisfying the property (i) as in Lemma 2.1, that is,

P is (Γm : 1)-homogeneous and satisfies P (x) > 0 if x 
= 0. Note that the

above conditions imply P (0) = |∇P (0)| = 0. In this section, we consider

the tube domain ΩP = Rn+1 + iωP , where ωP is defined by

ωP = {y = (y′, yn+1) ∈ Rn+1; yn+1 > P (y′) = P (y1, . . . , yn)}.

This class of domains is considered as appropriate models for our analysis

on general tube domains of finite type.

By using the mapping π as in Section 2.2, the singularity of the Bergman

kernel can be expressed in the following clear form in the model case. Recall

that τj = yj/y
1/2mj

n+1 (j = 1, . . . , n) and ρ = y
1/2m
n+1 .

Proposition 5.1. The Bergman kernel K(y) has the form

K(y) = Φ(τ)ρ−2m(ν+2),(5.1)

where ν =
∑n

j=1 1/mj and Φ(τ) is a C∞-function on ∆P and is unbounded

as τ approaches ∂∆P .

Proof. In the model case, B∗ = Rn and A = Rn in (4.2). By changing

the integral variables ( µj = s1/2mjwj , vj = s1−1/2mj ûj (j = 1, . . . , n) ), we



378 Joe Kamimoto

obtain

K(y) =
2

(2π)n+1

∫ ∞

0
e−2syn+1G(δs(y

′))sν+1ds,

G(X) =

∫
Rn

e2(X|v) 1

E(v)
dv,

E(v) =

∫
Rn

e−2[P (µ)−(v|µ)]dµ.

(5.2)

Moreover, by changing the integral variables (s ↔ syn+1) in the above

integral, the equation (5.1) can be obtained, where

Φ(τ) =
2

(2π)n+1

∫ ∞

0
e−2sG(δs(τ))sν+1ds.(5.3)

It is easy to see the regularity of Φ(τ) on ∆P . Suppose that ρ = 1. If τ

tends to ∂∆P , then z tends to ∂ΩP . Since the Bergman kernel of ΩP is

unbounded as z → ∂ΩP , then (5.1) implies that Φ(τ) is also unbounded as

τ → ∂∆P . �

Let q be the rank of the Levi form at the origin and let p = n−q. In this

case, the number mj such that mj > 1 is p. Set Γm̂ = (1/2m1, . . . , 1/2mp) ∈
Np. By using the following lemma from [21], the singularity of the Bergman

kernel can be essentially expressed by using the (p + 1)-variables.

Lemma 5.2 ([21]). The rotation L in Lemma 2.1 can be chosen so that

P (y′) = P̂ (y1, . . . , yp) + cp+1y
2
p+1 + · · · + cny

2
n,

where P̂ is (Γm̂ : 1)-homogeneous and cj are positive numbers.

Now set ∆P̂ = {τ̂ ∈ Rp; P̂ (τ̂) < 1}. Let us introduce the variables

(τ̂1, . . . , τ̂p, ρ̂) = (τ̂ , ρ̂) as{
τ̂j = yj [yn+1 −

∑n
k=p+1 cky

2
k]

−1/2mj (j = 1, . . . , p)

ρ̂ = [yn+1 −
∑n

k=p+1 cky
2
k]

1/2m.

The above relations induce a mapping from ω to ∆P̂ × (0,∞). In the

model case, the singularity of the Bergman kernel is essentially expressed

by (τ̂ , ρ̂) ∈ ∆P̂ × (0,∞).
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Proposition 5.3. The Bergman kernel K(y) has the form

K(y) = Φ̂(τ̂)ρ̂−2m(ν̂+q+2),

where ν̂ =
∑p

j=1 1/mj and Φ̂(τ̂) is a C∞-function on ∆P̂ and is unbounded

as τ̂ approaches ∂∆P̂ .

Proof. Set µ̂ = (µ1, . . . , µp), v̂ = (v1, . . . , vp), X̂ = (X1, . . . , Xp),

ŷ = (y1, . . . , yp). We define

Ĝ(X̂) =

∫
Rp

e2(X̂|v̂) 1

Ê(v̂)
dv̂ and Ê(v̂) =

∫
Rp

e−2[P̂ (µ̂)−(v̂|µ̂)]dµ̂.

By Lemma 5.2,

E(v) =

∫
Rn

e−2[P (µ)−(v|µ)]dµ

= Ê(v̂)
n∏

j=p+1

∫
R

e−2(cjµ
2
j−vjµj)dµj

=
(π

2

)n−p
2

 n∏
j=p+1

c
−1/2
j

 e
1
2

∑ n
k=p+1

1
ck

v2
kÊ(v̂).

By substituting the above into the integral G(X),

G(X) =

∫
Rn

e(X|v) 1

E(v)
dv

=

(
2

π

)n−p
2

 n∏
j=p+1

c
1/2
j

 Ĝ(X̂)
n∏

j=p+1

∫
R

e
− 1

2
1
cj

v2
j+2Xjvj

dvj

= 2n−p

 n∏
j=p+1

cj

 Ĝ(X̂)
n∏

j=1

e2cjX
2
j .

Moreover, by substituting the above into the integral K(y),

K(y)

=
1

2pπn+1

 n∏
j=p+1

cj

∫ ∞

0
e−2s[yn+1−

∑ n
k=p+1 cky2

k]Ĝ(δ̂s(ŷ))sq+ν̂+1ds

= Φ̂(τ̂)ρ̂−q−ν̂−2,
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where

Φ̂(τ̂) =
1

2pπn+1

 n∏
j=p+1

cj

∫ ∞

0
e−2sĜ(δ̂s(τ̂))sq+ν̂+1ds

and δ̂s(τ̂) = (s1/2m1τ1, . . . , s
1/2mpτp). It is easy to see the regularity of Φ̂

on ∆P̂ . Suppose that ρ̂ = 1. If τ̂ tends to ∂∆P , then z tends to ∂ΩP . In a

similar fashion as in Proposition 5.1, Φ̂(τ̂) is also unbounded as τ̂ → ∂∆P̂ . �

6. Localization

In this section, we show that the singularity of the Bergman kernel

is completely determined by local geometry of the boundary under some

assumption. Similar types of localization lemmas have been obtained in

[22],[23],[15], but our localization is concerned with slightly more general

case. Actually, our proof of Theorem 2.2 needs the localization lemmas,

below. For k ∈ N and R > 0, let Bk(R) be the k-dimensional ball of

radius R. In this paper, we sometimes use c, cj , C etc. for various constants

without further comments.

Suppose that a domain ω ⊂ Rn+1 satisfies the following hypotheses.

There exist a neighborhood V0 of the origin in Rn, a C1-function f on V0

and positive numbers δ0, C0 such that

(1) f(x) > 0 if x 
= 0 and f(0) = 0,

(2) ω ∩ [V0 × (0, δ0)] = {y ∈ V0 × (0, δ0); yn+1 > f(y′)},

(3) ω \ [V0 × (0, δ0)] ⊂ {y ∈ Rn+1; yn+1 > C0|y′|}.

If ω is a convex domain with C∞-smooth boundary ∂ω containing the origin

and the origin is of R-finite type, then ω essentially satisfies the above

hypotheses.

Let us consider the Bergman kernel K(y) for a tube domain Rn+1 + iω.

For a set W in Rn, let N (W ) be the set of open sets in W containing the

origin. For U ∈ N (B∗), V ∈ N (Rn) and δ > 0, define the integral:

K(y;U, V, δ) =
1

(2π)n+1

∫
Λ∗(U)

e−2(y|u) 1

ϕ(u;V, δ)
du,

ϕ(u;V, δ) =

∫
ω∩[V ×(0,δ)]

e−2(u|w)dw,
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where Λ∗(U) := {(tû′, t) ∈ Rn+1; t > 0, û′ ∈ U}.

Proposition 6.1. For any U ∈ N (B∗), K − K(·;U,Rn,∞) is real

analytic near the origin.

Proof. The hypothesis (1) on f implies that f(x) = o(|x|) as x →
0. Therefore, for a small positive number ε, [Λ∗ \ Λ∗(U)] ∩ ∂Bn+1(1) can

be divided into finitely many sets {Uj} such that, for each j, there exists

nonempty set

ωj = {w ∈ ω;w ∈ Bn+1(1) and (w|ũ) < −ε for ũ ∈ Uj},

whose volume (denoted by V ol(ωj)) is positive. If ũ ∈ Uj and |y| < ε/2,

then −2(ũ|w − y) > 2(ε− ε/2) = ε. For u ∈ Λj := {tũ; t > 0, ũ ∈ Uj},

e2(y|u)ϕ(u) =

∫
ω
e−2(u|w−y)dw ≥

∫
ωj

e−2(u|w−y)dw ≥ V ol(ωj)e
ε|u|.(6.1)

Here we divide the integral as follows.

K(y) −K(y;U,Rn,∞) =
1

(2π)n+1

∫
Λ∗\Λ∗(U)

e−2(y|u) 1

ϕ(u)
du

=
1

(2π)n+1

∑
j

∫
Λj∩[Λ∗\Λ∗(U)]

e−2(y|u) 1

ϕ(u)
du.

The inequality (6.1) implies that each integral in the above sum is real

analytic in Bn+1(ε/2), so the lemma can be obtained. �

Proposition 6.2. For any V ∈ N (V0), there exists U1 ∈ N (B∗) such

that if U ∈ N (U1), then K(·;U,Rn,∞) −K(·;U, V, δ0) is real analytic near

the origin.

Proof. By simple computation,

|K(y;U,Rn,∞) −K(y;U, V, δ)|

≤ 1

(2π)n+1

∫
Λ∗(U)

e−2(y|u)

∣∣∣∣ 1

ϕ(u)
− 1

ϕ(u;V, δ)

∣∣∣∣ du
≤ 1

(2π)n+1

∫
Λ∗(U)

e−2(y|u) |ϕ(u) − ϕ(u;V, δ)|
|ϕ(u)||ϕ(u;V, δ)| du.
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From the above inequalities, the proposition can be shown by using the two

lemmas below. �

Lemma 6.3. For any V ∈ N (V0), there exist U2 ∈ N (B∗) and positive

numbers A1, A2 such that if U ∈ N (U2), then

|ϕ(u) − ϕ(u;V, δ0)| ≤ A1u
−1
n+1e

−A2un+1 for u ∈ Λ∗(U) \Bn+1(1).

Proof. We divide the integral and define ψ1(u), ψ2(u) as follows.

ϕ(u) − ϕ(u;V, δ0)

=

∫
ω∩[V ×(δ0,∞)]

e−2(u|w)dw +

∫
ω\[V ×(0,∞)]

e−2(u|w)dw

=: ψ1(u) + ψ2(u).

(6.2)

First, for V ∈ N (V0), there is a positive number η1 such that V ⊂
Bn+1(η1). Then

ψ1(u) ≤
∫
V ×(δ0,∞)

e−2(u|w)dw

≤ 1

2un+1
e−2δ0un+1

∫
|w′|<η1

e2|u′||w′|dw′ ≤ C

un+1
e−2[δ0un+1−η1|u′|].

(6.3)

Second, for V ∈ N (V0), there are positive numbers C1, η2 such that

the set Γ1 := {w ∈ Rn+1;wn+1 > C1|w′| and |w′| > η2} contains the set

ω \ [V × (0,∞)]. Then

ψ2(u) ≤
∫

Γ1

e−2(u|w)dw ≤ 1

2un+1

∫
|w′|>η2

e−2|w′|[C1un+1−|u′|]dw′

≤ C

un+1(C1un+1 − |u′|)n e−2η2[C1un+1−|u′|].

(6.4)

Putting (6.2),(6.3),(6.4) together, we can find a positive number M such

that if |u′| < Mun+1, then the inequality in the lemma holds. It is enough

to set U2 = Bn(M). �
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Lemma 6.4. For any V ∈ N (V0), there are U3 ∈ N (B∗) and a positive

number A3 such that if U ∈ N (U3), then

ϕ(u) ≥ ϕ(u;V, δ0) ≥
A3

un+1
n+1

for u ∈ Λ∗(U) \Bn+1(1).

Proof. There exist positive numbers η3, C2 such that the set Γ2 :=

{w ∈ Rn+1; |w′| < η3 and C2|w′| < wn+1 < δ0} is contained in ω ∩ [V ×
(0, δ0)]. Therefore, if u ∈ Λ∗(U) \Bn+1(1), then

ϕ(u;V, δ0) ≥
∫

Γ2

e−2(u|w)dw =
C

2un+1

1 − e−2η3[C2un+1+|u′|]

(2[C2un+1 + |u′|])n ≥ C

un+1
n+1

. �

Let ω1, ω2 be domains satisfying the hypotheses in the beginning of this

section and satisfying ω1∩ [V0× (0, δ0)] = ω2∩ [V0× (0, δ0)]. For j = 1, 2, let

K(j)(y) be the Bergman kernel of the domain Ωj = Rn+1 + iωj , respectively.

As a corollary of Propositions 6.1 and 6.2, we can get the following.

Proposition 6.5. K(1) −K(2) is real analytic near the origin.

7. Proof of Theorem 2.2

7.1. Preparation

We introduce a coordinate into Rn+1 containing the base ω as in Section

2.2. By using Lemma 2.1 in Section 2 and Proposition 6.5 in Section 6, in

order to analyze the singularities of the Bergman kernel, it is sufficient to

consider a domain whose base is ω = {y ∈ Rn+1; yn+1 > f(y′)}, where f is a

convex C∞-function on Rn such that f takes the form f(y′) = P (y′)+R(y′)
near the origin, where P,R are as in Lemma 2.1, and f satisfies f(y′) ≥
C|y′|1+ε for |y′| ≥ 1 where C, ε are some positive numbers.

Here recall some notation and symbol. Let m be the least common mul-

tiplicity of m1, . . . ,mn and let lj = m/mj . Let π̃ be a mapping from Rn+1

to Rn+1 such that π̃(τ1, . . . , τn, ρ) = π̃(τ, ρ) = (y1, . . . , yn, yn+1), where{
yj = τjρ

lj (j = 1, . . . , n)

yn+1 = ρ2m.
(7.1)
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We set U = π̃−1(ω) and π = π̃|Ū .

By changing the integral variables ( s1/2mjwj ↔ wj (j = 1, . . . , n),

syn+1 ↔ s ), (4.2) in Section 4 can be rewritten as

K(y) =
2

(2π)n+1

1

ρ2m(ν+2)

∫ ∞

0
e−2sG(δs(τ); ρs−1/2m)sν+1ds,

G(X; ξ) =

∫
Rn

e2(X|v) 1

E(v; ξ)
dv (X ∈ Rn, ξ ∈ (0, 1]),

E(v; ξ) =

∫
Rn

e−2[P (w)+a(w;ξ)−(v|w)]dw,

a(w; ξ) = ξ−2mR(δξ2m(w)).

(7.2)

We divide the integral in (7.2) and define the integrals K1,K2,K3 as follows:

K(y) =
2

(2π)n+1

1

ρ2m(ν+2)
×{∫ ∞

1
+

∫ 1

ρ2m

+

∫ ρ2m

0

}
e−2sG(δs(τ); ρs−1/2m)sν+1ds

=:
2

(2π)n+1

1

ρ2m(ν+2)
{K1(τ, ρ) + K2(τ, ρ) + K3(τ, ρ)}.

It is easy to see that ρ−2m(ν+2)K3(τ, ρ) is real analytic on a neighborhood

of Ū . We will analyze the behaviors of the functions K1(τ, ρ) and K2(τ, ρ)

at ∂∆P × {0}. Owing to the mapping π, we can decompose their singular-

ities clearly and investigate them with respect to each variables. Roughly

speaking, it will be shown that K1(τ, ρ) can be smoothly extended when

ρ tends to 0 but is unbounded as τ tends to ∂∆P , while K2(τ, ρ) has the

logarithmic singularities at ρ = 0 but is smooth for τ ∈ ∆P .

7.2. Analysis of K1(τ, ρ)

From (7.2), by changing the integral variables (wj ↔ s1/2mjwj (j =

1, . . . , n)), we have

K1(τ, ρ) =

∫ ∞

1
e−2sG̃(τ, ρ; s)sn+1ds,

G̃(τ, ρ; s) =

∫
Rn

e2s(τ |v) 1

Ẽ(v; ρ; s)
dv,

Ẽ(v; ρ; s) =

∫
Rn

e−2s[P (w)+a(w;ρ)−(v|w)]dw.

(7.3)
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This expression is useful to analyze K1(τ, ρ).

7.2.1 Localization

For η > 0, set Sη := {v ∈ Rn; |v| = η}. In particular we write S = S1. In

order to localize the singularities, let us introduce the following two functions

χc and Rd.

We express the variable v in the integral by using a polar coordinate:

v = δ∗u(v̂) for u > 0, v̂ ∈ Sη. Here η is a small positive number, which

will be determined later in the proof of Lemma 7.5. For c > 0, χc(v, ρ) ∈
C∞(Rn × (0,∞)) is a cut-off function such that

• χc(v, ρ) is independent of v̂ ∈ Sη.

• χc(v, ρ) = 1 if 0 ≤ u ≤ cρ−2m/2 and χc(v, ρ) = 0 if u ≥ cρ−2m.

• 0 ≤ χc(v, ρ) ≤ 1 for v ∈ Rn, ρ > 0.

For R > 0, define D(R) = {w = δu2m(w̃) ∈ Rn; 0 ≤ u ≤ R, w̃ ∈ S}. For

d > 0, let Rd be a C∞-function in Rn such that

• Rd(w) = R(w) for w ∈ D(d/2) and |Rd(w)| ≤ |R(w)| for w ∈ Rn.

• The support of Rd is contained in the set D(d).

• There exists a positive number C0 such that P (w) + Rd(w) ≥ C0|w|
if w 
∈ D(d/2).

Here let us introduce the functions χc, Rd into the integrals (7.3) and

define the integrals with the parameters c, d as follows.

K1(τ, ρ; c, d) =

∫ ∞

1
e−2sG̃(τ, ρ; s; c, d)sn+1ds,

G̃(τ, ρ; s; c, d) =

∫
Rn

e2s(τ |v) χc(v, ρ)

Ẽ(v; ρ; s; d)
dv,

Ẽ(v; ρ; s; d) =

∫
Rn

e−2s[P (w)+ad(w;ρ)−(v|w)]dw,

ad(w; ρ) = ρ−2mRd(δρ2m(w)).

(7.4)

Note that the above integrals formally tend to K1, G̃, Ẽ in (7.3), as c, d →
∞, respectively.
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The following lemma implies that it suffices to analyze the function

K1(τ, ρ; c, d), with some small c, d, to see the singularities K1(τ, ρ).

Lemma 7.1. For any d > 0, there exists c0 > 0 such that if c ∈ (0, c0),

then K1(·, ·; c, d)−K1(·, ·) is real analytic near an open neighborhood of Uδ.

Proof. First we regard K1(τ, ρ; c, d) − K1(τ, ρ) as a function of y.

By changing the integral variables from (4.2) into (7.3), the integral re-

gions B∗, A are changed into δ∗1/ρ2m(B∗), δ1/ρ2m(A), respectively. The re-

gions B∗, A can be localized as in Propositions 6.1 and 6.2. Corresponding

the supports of χc, Rd to the sets δ∗1/ρ2m(U), δ1/ρ2m(V ) respectively, where

U, V are as in Section 6, we can see the real analyticity of the above function

with respect to y near the origin. Moreover, the property (7.1) of π implies

the real analyticity with respect to (τ, ρ). �

7.2.2 Properties for ad(w;X)

The difference between integrals (7.2) and (5.2) in Section 5 shows that

the general case of finite type domains can be considered as some kind of

perturbation of the model case as in Section 5 and the information of the

perturbation is concentrated in the term a(w; ρ). The localization lemma

(Lemma 7.1) is necessary to investigate the function ad(w;X) for (w;X) ∈
Rn × [0,∞).

Since |R(w)| ≤ Cσ(w)1+γ for small |w|, it is easy to see that ad(w;X)

is a C∞-function on Rn × [0,∞). The following two lemmas are used to

estimate the integral Ẽ(v; ρ; s; d) in the next subsection.

Lemma 7.2. For any ε > 0, there exists a positive number d0 such that

if d ∈ (0, d0], then

|ad(w;X)| ≤ εσ(w) for (w;X) ∈ Rn × [0,∞).

Proof. From Lemma 2.1 in Section 2, if |w| is small, then |R(w)| ≤
Cσ(w)1+γ . Therefore, if d > 0 is a sufficiently small and if δX2m(w) ∈ D(d),

then we have

|ad(w;X)| = |X−2mRd(δX2m(w))| ≤ |X−2mR(δX2m(w))|
≤ CX2mγσ(w)1+γ ≤ C(X2mσ(w))γ · σ(w)

= Cσ(δX2m(w))γ · σ(w).
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Note that C is independent of d. Of course, ad(w,X) = 0, if δX2m(w) 
∈
D(d). The lemma can be shown by using the above estimates. �

Next the following lemma shows that the partial derivatives of ad with

respect to X can be uniformly estimated by using σ(w).

Lemma 7.3. For any k ∈ Z+, there exists a positive number Ck such

that ∣∣∣∣ ∂k

∂Xk
ad(w;X)

∣∣∣∣ ≤ Ckσ(w)1+ k
2m for (w;X) ∈ Rn × [0,∞).

Proof. Let S1, S2 be C∞-functions on Rn such that Rd(w) =

S1(w)S2(w) and S2(w) equals to 1 on D(d/2) and its support is contained in

D(R). For any l ≥ 1, Taylor’s formula implies that there exist C∞-functions

σj (j = 1, . . . , l − 1) and Rl such that

S1(w) = σ1(w) + · · · + σl−1(w) + Rl(w)

and each σj is a polynomial with (Γm : 1 + j
2m)-homogeneity and Rl sat-

isfies the estimate: |Rl(w)| ≤ Clσ(w)1+ l
2m on D(R) where Cl is a positive

constant.

Since each σj has the above homogeneity, we have

S1(δX2m(w)) = X2m+1σ1(w) + · · · + X2m+l−1σl−1(w) + Rl(δX2m(w)).

By using the above equation, a simple computation implies that there exists

the C∞-function R̃l(a) = R̃l(a1, . . . , an) on Rn, with aj = X ljwj , such that

∂l

∂X l

(
1

X2m
S1(δX2m(w))

)
=

1

X2m+l
R̃l(a).

Here R̃l(a) satisfies |R̃l(a)| ≤ Clσ(a)1+
l

2m where Cl is a positive constant.

Since the equation σ(a) = X2mσ(w) holds, we can get∣∣∣∣ ∂l

∂X l

(
1

X2m
S1(δX2m(w))

)∣∣∣∣
≤ |R̃l(a)|

σ(a)1+ l
2m

σ(w)1+ l
2m ≤ Clσ(w)1+ l

2m .

(7.5)
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It is easy to see that the above inequalities hold when l = 0.

On the other hand, a simple computation implies that there exists ˜̃Rl ∈
C∞

0 (Rn) such that

∂l

∂X l
S2(δX2m(w)) =

1

X l
˜̃Rl(a).

When l ≥ 1, since ˜̃Rl(a) is identically zero on D(d/2), we have

∣∣∣∣ ∂l

∂X l
S2(δX2m(w))

∣∣∣∣ ≤ | ˜̃Rl(a)|
σ(a)

l
2m

σ(w)
l

2m ≤ Clσ(w)
l

2m .(7.6)

Of course, when l = 0, the above inequalities hold. Putting (7.5),(7.6)

together, we can obtain the inequality in the lemma as follows: for k ∈ Z+,∣∣∣∣ ∂k

∂Xk
a(w;X)

∣∣∣∣ = ∣∣∣∣ ∂k

∂Xk

(
1

X2m
S1(δX2m(w)) · S2(δX2m(w))

)∣∣∣∣
≤

k∑
j=0

Cj

∣∣∣∣ ∂j

∂Xj

(
1

X2m
S1(δX2m(w))

)∣∣∣∣ · ∣∣∣∣ ∂k−j

∂Xk−j
S2(δX2m(w))

∣∣∣∣
≤ Ckσ(w)1+ k

2m .

This completes the proof of the lemma. �

By using the above argument, the limit of the partial derivatives of ad

can be computed. For k ∈ N, let σk(w) be the (Γm : 1 + k
2m)-homogeneous

polynomial as in the proof of Lemma 7.3.

Lemma 7.4. For any k ∈ N,

lim
X→0

∂k

∂Xk
ad(w;X) = k!σk(w) for each w ∈ Rn.

Proof. We use the same symbols as in the proof of the previous
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lemma. As in the proof of Lemma 7.3, we have

∂l

∂X l

(
1

X2m
S1(δX2m(w))

)
=

∂l

∂X l

{
Xσ1(w) + · · · + X lσl(w) +

1

X2m
Rl+1(δX2m(w))

}
= l!σl(w) +

∂l

∂X l

{
1

X2m
Rl+1(δX2m(w))

}
= l!σl(w) +

1

X2m+l
R̃l+1(a).

Since the estimate |X−2m−lR̃l+1(a)| ≤ Cl+1σ(w)1+ l+1
2m X holds, we have

lim
X→0

∂l

∂X l

(
1

X2m
S1(δX2m(w))

)
= l!σl(w) for each w ∈ Rn.

On the other hand, for l ∈ N,

lim
X→0

∂l

∂X l
(S2(δX2m(w))) = 0 for each w ∈ Rn.

Therefore, for each w ∈ Rn,

∂k

∂Xk
ad(w;X)

=
k∑

j=0

Cj
∂j

∂Xj

(
1

X2m
S1(δX2m(w))

)
· ∂k−j

∂Xk−j
S2(δX2m(w))

−→ k!σk(w) as X → 0.

This completes the proof of the lemma. �

7.2.3 Estimates for Ẽ(v; ρ; s; d)

Let us show the following lemma. Its proof is technically complicated,

so essential ideas will be explained in Remark 7.6 after the proof.

Lemma 7.5. We can set d = d1 > 0 as follows. For any k ∈ N, there

exists a positive constant Ck such that∣∣∣∣ ∂k

∂ρk
Ẽ(v; ρ; s; d1)

∣∣∣∣ ≤ Cks
ku(1+ 1

2m
)kẼ(v; ρ; s; d1)
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for u ≥ 1, s ≥ 1.

Proof. For the computation below, the integral variables in the inte-

gral Ẽ(v; ρ; s; d) in (7.4) are changed as follows:

Ẽ(v; ρ; s; d) = uν/2

∫
Rn

e−2su[P (w)+ad(w;X)−(v̂|w)]dw with X = u1/2mρ

(u > 0, |v̂| = η). Note that the above integral variable w is not the same as

that in (7.4).

Hereafter, in this proof, we always assume that u ≥ 1 and s ≥ 1. Let Σ

denote the set {w ∈ Rn+1;P (w) < 1} and define three integrals Ẽ1, Ẽ2, Ẽ3

by

Ẽ1(v; ρ; s; d) = uν/2

∫
Σ

∂k

∂Xk
e−2su[P (w)+ad(w;X)−(v̂|w)]dw,

Ẽ2(v; ρ; s; d) = uν/2

∫
Rn\Σ

∂k

∂Xk
e−2su[P (w)+ad(w;X)−(v̂|w)]dw,

Ẽ3(v; ρ; s; d) = uν/2

∫
Σ
e−2su[P (w)+ad(w;X)−(v̂|w)]dw.

The convergence of the second integral will be shown soon later.

[An estimate of the integrand ] We give some estimate for the integrand

of the above integrals. By a direct computation, we have

∂k

∂Xk
e−2su[P (w)+ad(w;X)−(v̂|w)]

=

(
k∑

l=1

(−2su)lBkl(w;X)

)
e−2su[P (w)+ad(w;X)−(v̂|w)].

(7.7)

Here each Bkl(w;X) can be written as some linear combination of the prod-

ucts of Aj(w;X) := ∂j

∂Xj ad(w;X) (1 ≤ j ≤ k). In fact,

Bkl(w;X) =
∑
α

Cα

l∏
j=1

Aj(w;X)αj (Cα ∈ R),

where the above summation is taken over all α = (α1, . . . , αl) ∈ Zl
+ with

α1 ≤ · · · ≤ αl and α1 + · · · + αl = k. From Lemma 7.3, we obtain
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|Bkl(w;X)| ≤ Cklσ(w)l+
k

2m for a positive constant Ckl. Therefore, there

is a positive constant Ck such that∣∣∣∣ ∂k

∂Xk
e−2su[P (w)+ad(w;X)−(v̂|w)]

∣∣∣∣
≤ Ck

(
k∑

l=1

(su)lσ(w)l+
k

2m

)
e−2su[P (w)+ad(w;X)−(v̂|w)].

[An estimate for Ẽ1(v; ρ; s; d)] The above inequality gives the following

estimate.

|Ẽ1(v; ρ; s; d)| ≤ u
ν
2

∫
Σ

∣∣∣∣ ∂k

∂Xk
e−2su[P (w)+ad(w;X)−(v̂|w)]

∣∣∣∣ dw
≤ C(su)ku

ν
2

∫
Σ
σ(w)1+ k

2m e−2su[P (w)+ad(w;X)−(v̂|w)]dw

≤ CskukẼ(v; ρ; s; d).

(7.8)

[An estimate for Ẽ2(v; ρ; s; d)] Before considering Ẽ2(v; ρ; s; d), we es-

timate the phase function in the integral. Let κ be the maximum of σ(w)

on ∂Σ = {w;P (w) = 1} and set ε1 = 1/(2κ). From Lemma 7.2, we can set

d = d1 > 0 such that |ad1(w;X)| ≤ ε1σ(w). Moreover the homogeneity of

P (w) − ε1σ(w) implies

P (w) + ad1(w,X) ≥ P (w) − ε1σ(w) ≥ 1

2
P (w) on Rn.(7.9)

We use the polar coordinate: w = δt(ŵ) (t > 0, ŵ ∈ ∂Σ). The value η = |v̂|
can be chosen so small that, if t ≥ 1,

1

2
P (w) − (v̂|w) =

t

2
−

n∑
j=1

v̂jŵjt
1

2mj

≥ t

2

1 − 2
n∑

j=1

|v̂j ||ŵj |t
1

2mj
−1

 ≥ t

4
.

(7.10)

Here we set the above value depending only on ∂Σ. By using inequalities
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(7.9),(7.10), Ẽ2(v; ρ; s; d1) can be estimated as follows:

|Ẽ2(v; ρ; s; d1)| ≤ u
ν
2

∫
Rn\Σ

∣∣∣∣ ∂k

∂Xk
e−2su[P (w)+ad1 (w;X)−(v̂|w)]

∣∣∣∣ dw
≤ Cks

kuk+ ν
2

∫
Rn\Σ

σ(w)k+ k
2m e−2su[P (w)+ad1 (w;X)−(v̂|w)]dw

≤ Cks
kuk+ ν

2

∫
Rn\Σ

σ(w)k+ k
2m e−2su[ 1

2
P (w)−(v̂|w)]dw

= Cks
kuk+ ν

2

∫ ∞

1
t

k
2m

+ ν
2
+k−1e−

1
2
sutdt

≤ Cks
− ν

2
− k

2mu− k
2m e−

1
2
su.

(7.11)

[An estimate for Ẽ3(v; ρ; s; d)] By a similar computation to the case of

Ẽ2, the phase can be estimated as follows. If 0 ≤ t ≤ 1, then

P (w) + ad1(w,X) − (v̂|w) ≤ 3

2
P (w) − (v̂|w) ≤ 3

2
t +

1

4
t

1
2M ≤ 7

4
t

1
2M ,

where M is the maximum of m1, . . . ,mn. The above estimate implies

Ẽ3(v; ρ; s; d1) = u
ν
2

∫
Σ
e−2su[P (w)+ad1 (w,X)−(v̂|w)]dw

≥ u
ν
2

∫ 1

0
e−

7
2
sut

1
2M t

ν
2
−1dt

≥ Cu( 1
2
−M)νs−Mν .

(7.12)

[The estimate in the lemma ] From (7.11),(7.12),

|Ẽ2(v; ρ; s; d1)| ≤ CẼ3(v; ρ; s; d1) ≤ CẼ(v; ρ; s; d1).(7.13)

By putting (7.8),(7.13) together,∣∣∣∣ ∂k

∂ρk
Ẽ(v; ρ; s; d1)

∣∣∣∣ = u
k

2m

∣∣∣∣ ∂k

∂Xk
Ẽ(v; ρ; s; d1)

∣∣∣∣
≤ u

k
2m {|Ẽ1(v; ρ; s; d1)| + |Ẽ2(v; ρ; s; d1)|}

≤ Csku(1+ 1
2m

)kẼ(v; ρ; s; d1).

This completes the proof of the lemma. �
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Remark 7.6. Here we explain essential ideas of the above proof. By

applying ”the chain rule”, the derivatives of Ẽ with respect to ρ reflect

some powers of s, u times some kind of derivatives of the function ad(w;X).

By using Lemma 7.3, these derivatives can be estimated by using s, u, σ(w)

only. Note that this estimate is independent of ρ. Moreover, we intrinsically

apply an idea of ”stationary phase method” (c.f. Chapter VIII in [33]). By

dividing the integral, we can see an essentially strong part in Ẽ1. Indeed

the critical point of the phase is contained in the set Σ, and so Ẽ2 can be

considered as a small term when s, u are large. The restriction of σ(w) on

Σ is bounded and, as a result, the derivatives of Ẽ with respect to ρ can be

estimated by Ẽ times some powers of s, u.

Lemma 7.7. For any k ∈ Z+, there exists a positive number Ck such

that∣∣∣∣ ∂k

∂ρk

1

Ẽ(v; ρ; s; d1)

∣∣∣∣ ≤ Cks
ku(1+ 1

2m
)k 1

Ẽ(v; ρ; s; d1)
for u ≥ 1, s ≥ 1.

Proof. A simple computation implies

∂k

∂ρk

1

Ẽ(v; ρ; s; d1)

=

∑
β

Cβ

∏
|β|=k

Ẽ(βj)(v; ρ; s; d1)

Ẽ(v; ρ; s; d1)

 1

Ẽ(v; ρ; s; d1)
,

(7.14)

where |β| := β1 + · · · + βk, the above summation is taken over all β :=

(β1, . . . , βk) ∈ Zk
+ with 0 ≤ β1 ≤ · · · ≤ βk ≤ k, Ẽ(k) denotes the k-th

partial derivatives of Ẽ with respect to ρ and Cβ ∈ R are constants. By

applying Lemma 7.6 to the above equation, we can obtain the estimate in

the lemma. �

Next we consider the limit of the derivatives of Ẽ.

Lemma 7.8. For any k ∈ N, there exist (Γm : l + k
2m)-homogeneous
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polynomials Bkl(w) (l = 1, . . . , k) such that

lim
ρ→0

∂k

∂ρk
Ẽ(v; ρ; s; d1)

=

k∑
l=1

(−2s)l
∫
Rn

Bkl(w)e−2s[P (w)−(v|w)]dw =: Ẽk(v; s)

for each v ∈ Rn, s > 0. When k = 0, we have

lim
ρ→0

Ẽ(v; ρ; s; d1) =

∫
Rn

e−2s[P (w)−(v|w)]dw =: Ẽ0(v; s).

Proof. First we consider the case k ≥ 1. In the same argument as in

the proof of Lemma 7.6, we have∣∣∣∣ ∂k

∂ρk
e−2s[P (w)+ad1 (w;ρ)−(v|w)]

∣∣∣∣ ≤ C(2s)kσ(w)k+ k
2m e−2s[ 1

2
P (w)−(v|w)].

Since the right hand side of the above is integrable with respect to w on Rn,

Lebesgue’s convergence theorem implies

lim
ρ→0

∂k

∂ρk
Ẽ(v; ρ; s; d1) =

∫
Rn

lim
ρ→0

∂k

∂ρk
e−2s[P (w)+ad1 (w;ρ)−(v|w)]dw.

From (7.7),

∂k

∂ρk
e−2s[P (w)+ad1 (w;ρ)−(v|w)] =

k∑
l=1

(−2s)lBkl(w; ρ)e−2s[P (w)+ad1 (w;ρ)−(v|w)].

By using Lemma 7.4,

lim
ρ→0

Bkl(w; ρ) = lim
ρ→0

∑
α

Cα

l∏
j=1

Aj(w; ρ)αj =
∑
α

Cα

l∏
j=1

(j!σj(w))αj .

Let Bkl(w) denote the above limit, then it is easy to check that the function

Bkl(w) has the (Γm : l + k
2m)-homogeneity. By summarizing the above

equations,

lim
ρ→0

∂k

∂ρk
e−2s[P (w)+ad1 (w;ρ)−(v|w)] =

k∑
l=1

(−2s)lBkl(w)e−2s[P (w)−(v|w)].
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The lemma has been shown when k ∈ N.

When k = 1, it is easy to get the equation in the lemma from the same

argument. �

7.2.4 Estimates for G̃(τ, ρ; s; c, d)

We choose c = c1 in the integral G̃ such that the real analyticity of

K1(·, ·; c1, d1) −K1(·, ·) holds as in Lemma 7.1. Let us introduce the set Γδ

and auxiliary integrals: Ψµ, G̃∗, Ẽ∗. For δ > 0, define

Γδ = {(τ, ρ) ∈ ∆P × [0, δ);P (τ) + Cρ2mγσ(τ)1+γ < 1},

where C and γ are as in Lemma 2.1. For µ ∈ Z+, define the integrals:

Ψµ(τ, ρ) =

∫ ∞

1
e−2sG̃∗(τ, ρ; s)s

n+µ+1ds,

G̃∗(τ, ρ; s) =

∫
Rn

e2s(τ |v) 1

Ẽ∗(v; ρ; s)
dv,

Ẽ∗(v; ρ; s) =

∫
Rn

e−2s[P (w)+Cρ2mγσ(w)1+γ−(v|w)]dw.

The convergence of the integral Ψµ for each (τ, ρ) in the interior of Γδ is

shown by considering the Bergman kernel of the tube domain whose base is

{y ∈ Cn+µ+1; yn+µ+1 > P (y′)+Cσ(y′)1+γ +
∑n+µ

j=n+1 y2
j } (y′ = (y1, . . . , yn))

and by similar calculation as in the proof of Proposition 5.3.

Let τ0 be an arbitrary point in ∆P and ε0 the positive number defined

by 1
2 times the distance from τ0 to the boundary of ∆P . Then the set

∆ε0(τ0) := {τ ∈ ∆P ; |τ − τ0| < ε0} is contained in ∆P .

Lemma 7.9. If p ∈ C(Rn) has at most polynomial growth, then there

exist a point (τ∗, ρ∗) in Γδ (which depends on τ0) and a positive number C

such that ∫
Rn

e2s(τ |v) p(v)

Ẽ∗(v; ρ; s)
dv ≤ CG̃∗(τ∗, ρ∗; s)

for (τ, ρ) ∈ ∆ε0(τ0) × [0, ρ∗].

Proof. The set S = {v; |v| = 1} can be divided into finitely many sets

{Uj} as follows. For each j, there exist a point τ
(j)
∗ in ∆P and a positive

small number ε such that (τ |ṽ)+ ε ≤ (τ
(j)
∗ |ṽ) for all τ ∈ ∆ε0(τ0) and ṽ ∈ Uj .
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Then there exists a positive constant Cj such that e2s(τ |v)p(v) ≤ Cje
2s(τ

(j)
∗ |v)

for s ≥ 1, v ∈ Λj := {tṽ; t > 0, ṽ ∈ Uj}. Let ρ∗ be a positive number such

that (τ
(j)
∗ , ρ∗) ∈ Γδ for all j. From these facts, if τ ∈ ∆ε(τ0), then∫

Λj

e2s(τ |v) p(v)

Ẽ∗(v; ρ; s)
dv ≤ Cj

∫
Λj

e2s(τ
(j)
∗ |v) 1

Ẽ∗(v; ρ; s)
dv

≤ Cj

∫
Rn

e2s(τ
(j)
∗ |v) 1

Ẽ∗(v; ρ∗; s)
dv = CjG̃∗(τ

(j)
∗ , ρ∗; s).

(7.15)

Here we set τ∗ = τ
(j)
∗ such that G̃∗(τ

(j)
∗ , ρ∗; s) takes the largest value for all

j. Then the inequality in the lemma can be obtained by summing (7.15)

over j. �

Lemma 7.10. For any α ∈ Zk
+ and k ∈ Z+, there exists a positive

number Cα,k such that if (τ, ρ) ∈ ∆ε0(τ0) × [0, ρ∗] and s ≥ 1, then∣∣∣∣ ∂α

∂τα

∂k

∂ρk
G̃(τ, ρ; s; c1, d1)

∣∣∣∣ ≤ Cα,ks
|α|+kG̃∗(τ∗, ρ∗, s).

Proof. By Leibniz rule, we have

∂k

∂ρk

(
χc1(v, ρ)

Ẽ(v; ρ; s; d1)

)
=

k∑
j=0

ajχ
〈j〉
c1 (v, ρ) · ∂j

∂ρj

(
1

Ẽ(v; ρ; s; d1)

)
,

where χ
〈j〉
c1 (v, ρ) := ∂k−j

∂ρk−j χc1(v, ρ) and aj are natural numbers. Since

|χ〈j〉
c1 (v, ρ)| (0 ≤ j ≤ k) are bounded, Lemma 7.7 implies

∣∣∣∣ ∂k

∂ρk

(
χa1(v, ρ)

Ẽ(v; ρ; s; d1)

)∣∣∣∣ ≤ k∑
j=0

|aj ||χ〈j〉
c1 (v, ρ)| ·

∣∣∣∣ ∂j

∂ρj

(
1

Ẽ(v; ρ; s; d1)

)∣∣∣∣
≤ Csku(1+ 1

2m
)k 1

Ẽ(v; ρ; s; d1)
.

From the above inequality and the definition of Ẽ∗, if (τ, ρ) is in Γδ, then

∂α

∂τα

∂k

∂ρk

(
e2s(τ |v) χc1(v, ρ)

Ẽ(v; ρ; s; d1)

)
≤ Cs|α|+ke2s(τ |v) pα,k(v)

Ẽ(v; ρ; s; d1)

≤ Cs|α|+ke2s(τ |v) pα,k(v)

Ẽ∗(v; ρ; s)
.
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From Lemma 7.9, if (τ, ρ) ∈ ∆ε0(τ0) × [0, ρ∗], then the inequality in the

lemma can be obtained. �

Remark 7.11. From the above argument, pα,k(v) (v = δ∗u(v̂)) can be

estimated as follows:

pα,k(v) ≤ Cu
1+ k

2m
+
∑ n

j=1 αj(1− 1
2mj

)
for u ≥ 1.

Last let us see the specific value of the limit of the derivatives of G̃. For

α ∈ Zn
+, k ∈ Z+, define the integrals:

G̃α,k(τ ; s) =

∫
Rn

e2s(τ |v)F̃k(v; s)

 n∏
j=1

v
αj

j

 dv,(7.16)

F̃k(v; s) =

∑
β

Cβ

∏
|β|=k

Ẽβj
(v; s)

Ẽ0(v; s)

 1

Ẽ0(v; s)
,

where Ẽk(v; s) are as in Lemma 7.8 and the above summation and the

constants are the same as in (7.14).

Lemma 7.12. For any α ∈ Zn
+, k ∈ Z+, s ≥ 1, τ0 ∈ ∆P ,

lim
(τ,ρ)→(τ0,0)

∂α

∂τα

∂k

∂ρk
G̃(τ, ρ; s; c, d) = (−1)k(2s)|α|+kG̃α,k(τ0; s).

Proof. From Lemmas 7.9 and 7.10, Lebesgue’s convergence theorem

implies the equation in the lemma. �

7.2.5 Smoothness of K1(τ, ρ)

Last we show that all partial derivatives of K1(τ, ρ) admit a continuous

extension to the set ∆P × {0}.
For α ∈ Zn

+, k ∈ Z+, define

K̃α,k(τ) =

∫ ∞

1
e−2sG̃α,k(τ ; s)sn+|α|+k+1ds.(7.17)
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Proposition 7.13. K1(τ, ρ; c1, d1) can be extended to be C∞-smooth

in (τ, ρ) on the set Uδ∪(∆P ×{0}). More precisely, for any α ∈ Zn
+, k ∈ Z+,

τ0 ∈ ∆P ,

lim
(τ,ρ)→(τ0,0)

∂α

∂τα

∂k

∂ρk
K1(τ, ρ; c1, d1) = K̃α,k(τ0).

Proof. Let ε0, τ∗, ρ∗ be as in Lemma 7.8. Suppose (τ, ρ) ∈ ∆ε0(τ0) ×
[0, ρ∗]. Then, Lemma 7.10 implies∫ ∞

1
e−2s

∣∣∣∣ ∂α

∂τα

∂k

∂ρk
G̃(τ, ρ; s; c1, d1)

∣∣∣∣ sn+1ds

≤ Cα,k

∫ ∞

1
e−2sG̃∗(τ∗, ρ∗; s)s

n+|α|+k+1ds

= Cα,kΨ|α|+k(τ∗, ρ∗) < ∞.

Therefore we have

∂α

∂τα

∂k

∂ρk
K1(τ, ρ; c1, d1) =

∫ ∞

1
e−2s

(
∂α

∂τα

∂k

∂ρk
G̃(τ, ρ; s; c1, d1)

)
sn+1ds.

Moreover, Lebesgue’s convergence theorem implies the continuity of the

above function on ∆ε0(τ0)× [0, ρ∗]. The limit in the lemma can be given by

using Lemma 7.12. �

7.3. Analysis of K2(τ, ρ)

The following proposition shows precise situation of the singularities of

K2(τ, ρ).

Proposition 7.14. There exist C∞-functions Φ2(τ, ρ) and Φ̃2(τ, ρ) on

the set Uδ such that

K2(τ, ρ) = Φ2(τ, ρ) + Φ̃2(τ, ρ)ρ
2m(ν+2) log ρ.

Proof. A simple computation implies that

K2(τ, ρ) =

∫ 1

ρ2m

e−2sG(δs(τ); ρs−1/2m)sν+1ds

= 2m

∫ 1

ρ
e−2u2m

G(δu2m(τ); ρu−1)u2m(ν+2)−1du.
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Since G(X; ξ) is C∞-smooth in X on Rn and the above integral interval is

finite, it is easy to see the differentiability with respect to τ . Thus, to obtain

the proposition, it suffices to show the following lemma. �

Lemma 7.15. Let f(u, ξ) be a C∞-function on [0, 1) × [0, 1) and κ ∈
Z+. Then there exist C∞-functions ϕ and ψ on [0, 1) so that

F (r) :=

∫ 1

r
f(u, ru−1)uκ−1du = ϕ(r) + ψ(r)rκ log r.

Proof. Taylor’s formula implies that for any N ∈ Z+,

f(u, ξ) =
κ+N∑
j=0

fj(u)ξj + RN+1(u, ξ)ξ
κ+N+1,

where fj ∈ C∞([0, 1)) and RN+1(u, ξ) ∈ C∞([0, 1) × [0, 1)). Substituting

the above equation into the integral in the lemma,

F (r) =
κ+N∑
j=0

Fj(r)r
j + rκ+N+1

∫ 1

r
RN+1(u, ru

−1)u−N−2du,

where Fj(r) =
∫ 1
r fj(u)uκ−j−1du. Here it is easy to see that if 0 ≤ j ≤ κ−1,

then Fj ∈ C∞([0, 1)) and if κ ≤ j ≤ κ + N , then Fj(r)r
j = cj−κr

j log r +

φj(r) where φj are C∞-functions on [0, 1) and

cj =
−1

j!
f

(j)
κ+j(0) =

−1

j!(κ + j)!

∂j

∂uj

∂κ+j

∂ξκ+j
f(u, ξ)

∣∣∣∣∣
(u,ξ)=(0,0)

.(7.18)

On the other hand, it is easy to check that the integral

R̃N+1(r) := rN+1

∫ 1

r
RN+1(u, ru

−1)u−N−2du =

∫ 1

r
RN+1(rv

−1, v)vNdv

is a CN -function on [0, 1). From these facts, we have

F (r) =
κ−1∑
j=0

Fj(r)r
j + rκ


N∑

j=0

cjr
j log r + R̃N+1(r)

+
κ+N∑
j=κ

φj(r).(7.19)
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Now let us take a C∞-function ϕ on (0, 1) whose asymptotic expansion as

r → 0 is ϕ(r) ∼
∑∞

j=0 cjr
j . Then there is a C∞-function ˜̃RN on [0, 1) such

that ϕ(r) −
∑N

j=0 cjr
j = ˜̃RN+1(r)r

N+1. From (7.19), we have

F (r) = ϕ(r)rκ log r + ˜̃RN+1(r)r
N+1 log r + R̃N+1(r) + C∞-functions.

Here since ˜̃RN+1(r)r
N+1 log r+R̃N+1(r) is CN -function on [0, 1) and N was

any nonnegative integer, the lemma can be shown. �

Remark 7.16. From the above argument, the asymptotic expansion

of Φ2(τ, ρ) can be obtained as follows:

Φ2(τ, ρ) =

2m(ν+2)−1∑
k=0

˜̃K0,k(τ)ρk + ˜̃R(τ, ρ)ρ2m(ν+2),

where

˜̃K0,k(τ) =
1

k!

2

(2π)n+1

∫ 1

0
e−2sG̃0,k(τ ; s)sn+k+1ds(7.20)

and ˜̃R(τ, ρ) is C∞-smooth on the set Uδ.

7.4. Asymptotic expansion

From the analysis of K1 and K2 in Sections 7.2 and 7.3, we can obtain

K(y) =
Φ(τ, ρ)

ρ2m(ν+2)
+ Φ̃(τ, ρ) log ρ + ˜̃Φ(τ, ρ),

near z0, where Φ(τ, ρ) ∈ C∞(Uδ∪(∆P×{0})) and Φ̃(τ, ρ), ˜̃Φ(τ, ρ) ∈ C∞(Uδ),

with some δ > 0. More precisely, let us see the asymptotic expansion of the

functions Φ(τ, ρ), Φ̃(τ, ρ) with respect to ρ. We define

Gk(X) =
∂k

∂ξk
G(X; ξ)

∣∣∣∣∣
ξ=0

=

∫
Rn

e−2(X|v)Fk(v)dv,

Fk(v) =
∂k

∂ξk

1

Ẽ(v; ξ)

∣∣∣∣∣
ξ=0

=

∑
β

Cβ

∏
|β|=k

Eβj
(v)

E0(v)

 1

E0(v)
,
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where Ek(v) = Ẽk(v; 1) (see Lemma 7.8) and the summation and the con-

stants are the same as in (7.14).

Proposition 7.17. (i) Φ(τ, ρ) admits the asymptotic expansion: for

any N ∈ Z+,

Φ(τ, ρ) =
N∑

k=0

Φk(τ)ρk + RN (τ, ρ)ρN+1,

where RN (τ, ρ) is continuous on the set Γδ. More precisely, each coefficient

Φk(τ) is a C∞-function on ∆P having the form:

Φk(τ) =
1

k!

2

(2π)n+1

∫ ∞

0
e−2sG̃0,k(τ ; s)sn+k+1ds(7.21)

=
1

k!

2

(2π)n+1

∫ ∞

0
e−2sGk(δs(τ))sν+1− k

2mds(7.22)

for 1 ≤ k ≤ 2m(ν + 2) − 1 where G̃0,k is as in (7.16). In particular,

Φ0(τ) = Φ(τ) as in (5.3) in Section 5.

(ii) Φ̃(τ, ρ) admits the asymptotic expansion: for any N ∈ Z+,

Φ̃(τ, ρ) =
N∑

k=0

Φ̃k(τ)ρk + R̃N (τ, ρ)ρN+1,

where R̃N (τ, ρ) is continuous on the set Uδ and each coefficient Φ̃k(τ) is a

C∞-function on ∆P having the form

Φ̃k(τ) = Ck
∂k

∂uk

(
e−2u2m

G2m(ν+2)+k(δu2m(τ))
) ∣∣∣∣∣

u=0

,(7.23)

where Ck is a nonzero constant (see (7.24) below).

Proof. (i) From the computation of K1 and K2, the coefficient of ρk

is K̃0,k(τ) + ˜̃K0,k(τ) for 1 ≤ k ≤ 2m(ν + 2)− 1. From (7.17), (7.20), we get

the form (7.21) of Φk(τ). By changing the integral variables (wj ↔ s1/2mjwj

(j = 1, . . . , n)), we can get another expression (7.22).

(ii) In order to obtain Proposition 7.14 from Lemma 7.15, it is sufficient

to compare K2(τ, ρ) with F (r). In fact, if we put

f(u, ξ) =
2 · 2m

(2π)n+1
e−2u2m

G(δu2m(τ); ξ)
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and κ = 2m(ν + 2), then the equation (7.23) is obtained from (7.18), where

Ck =
−1

k!

1

(2m(ν + 2) + k)!

2 · 2m
(2π)n+1

.(7.24)

The other parts of the proposition can be directly shown from the analysis

in the previous subsections. �

In the above asymptotic expansion, it is very difficult to compute the

coefficients in clear form. In order to see the essential quantities, we restrict

the Bergman kernel to the vertical line. Then the coefficients of the singular

part can be expressed by using Gj(0) (j ∈ Z+). Let r = yn+1.

Corollary 7.18. If K(y) = K(y′, yn+1) is restricted to the set

{y; y′ = 0}, then

K(0, r) =
Ψ(r)

rν+2
+ Ψ̃(r) log r,

where

Ψ(r) =

2m(ν+2)−1∑
j=0

cjGj(0)rj/(2m) + O(rν+2),

Ψ̃(r) =

N∑
k=0

c̃kG2m(ν+2+k)(0)rk + O(rN+1),

where N is any natural number and cj , c̃k are nonzero constants depending

only on j, k and (m1, . . . ,mn).

In the strongly pseudoconvex case, there are many studies about the

computation of coefficients by using boundary invariants. The following

question is analogous to the studies [3],[16],[18],[28],[26] about so-called ”

Ramadanov Conjecture” : Let Ω be a bounded strongly pseudoconvex do-

main of Cn. Assume that the logarithmic term does not appear in the

asymptotic expansion of the Bergman kernel, then Ω is biholomorphic equiv-

alent to the unit ball of Cn.

Question 7.19. Let Ω be a tube domain and z0 a boundary point

as in Section 2. Assume that the logarithmic term does not appear in

the asymptotic expansion of the Bergman kernel of Ω at z0, then does the
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boundary of Ω contact with the boundary of its model domain (as in Section

5) at z0 infinitely ?

In order to give an affirmative answer to the above question, it is enough

to show the following: If G2mk(0) = 0 for k ≥ ν + 2, then R(y′) ∼ 0 in the

sense of the Taylor expansion at 0, where R is as in Lemma 2.1. But it is

not easy to compute the value of Gj(0) clearly and at present we cannot

answer the above question.

Remark 7.20. In this paper, we do not discuss about the singularities

of the coefficients Φk at ∂∆P . Generally, it is difficult to compute asymptotic

expansions of Φk at ∂∆P . But, in the two-dimensional case, the coefficients

Φk can be expressed in the following interesting form (see [22]). In this case,

∆P = (−1, 1), m = m1 (≥ 2), τ = τ1 = y1/y
1/(2m)
2 and

Φk(τ) =
ϕk(τ)

(1 − τ2)3+k
+ ψk(τ) log(1 − τ2),

where ϕk, ψk are C∞-functions on [−1, 1]. Note that ϕ0(τ) > 0 and Φk(τ) ≡
0 if k is odd. This singularity can be considered to be of strongly pseudo-

convex type (1.1). In the general dimensional case, the singularities of the

coefficients are more complicated.

8. The Szegö Kernel

Let Ω be a domain with C∞-smooth boundary in Cn+1 and dσ a surface

element on ∂Ω. Let H2(∂Ω, dσ) be the closed subspace of L2(∂Ω, dσ) =

{f ;
∫
∂Ω |f |2dσ < ∞} consisting of those functions that extend holomorphi-

cally to Ω. Let {φj(z)} is a complete orthonormal basis of H2(∂Ω, dσ).

Here each φj can be considered as a holomorphic function on Ω. The Szegö

kernel of Ω (on the diagonal) is defined by

S(z) =
∑
j

|φj(z)|2.

The sum is uniformly convergent on any compact set in Ω.

In the case of the Szegö kernel, the strongly pseudoconvex case is also

well understood. Boutet de Monvel and Sjöstrand [5] obtained the asymp-

totic expansion of the Szegö kernel:

S(z) = ϕ̃(z)r(z)−n−1 + ψ̃(z) log r(z),
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where −r(z) is a defining function of Ω and ϕ̃, ψ̃ are C∞-functions on Ω̄ and

ϕ̃(z) > 0 on the boundary.

Let us consider the Szegö kernel for a tube domain Ω = Rn+1 + iω in

Cn+1. In the case of tube domains, the surface element dσ on ∂Ω can be

expressed by dσ = dx ∧ dµ, where dx = dx1 ∧ · · · ∧ dxn+1 (zj = xj + iyj)

and dµ is a surface element on ∂ω. For a tube domain Ω, the Szegö kernel

also has an integral representation (see [31] and compare with (4.1)).

S(z) =
1

(2π)n+1

∫
Λ∗

e−2(y|u) 1

ϕ̃(u)
du,

where

ϕ̃(u) =

∫
∂ω

e−2(u|w)dµ(w)

and Λ∗ = {u ∈ Rn+1; ϕ̃(u) < ∞}.
Now we give the assumptions on Ω = Rn+1 + iω and z0 ∈ ∂Ω as in

Section 2.1, i.e., ω is a convex domain with C∞-smooth boundary and z0

is a point of finite type. We introduce a coordinate into the space Rn+1

containing the base as in Section 2.2. From the definition, the Szegö kernel

depends on the surface element on the boundary. In this paper, we introduce

the following surface element dµ on ∂ω. For unbounded base ω, we take

dµ = dw1 ∧ · · · ∧ dwn. For bounded base ω, a surface element dµ satisfies

that
∫
∂ω gdµ ≥ 0 for g ≥ 0 and takes the form:

dµ =
n+1∑
j=1

αj(w)dw1 ∧ · · · ∧ d̂wj ∧ · · · ∧ dwn+1,

(d̂wj indicates that dwj is removed) where αj ∈ C∞(ω̄) satisfy αj(w) = 0

(1 ≤ j ≤ n) and αn+1(w) = 1 on some neighborhood of the origin. The

symbols τ, ρ, ν,m,Uδ,∆P ,Γδ are the same as in Theorem 2.2.

Theorem 8.1. The Szegö kernel S(z) of a tube domain Ω = Rn+1 + iω

has the form near z0 ∈ ∂Ω:

S(z) =
ΦS(τ, ρ)

ρ2m(ν+1)
+ Φ̃S(τ, ρ) log ρ,

where ΦS(τ, ρ), Φ̃S(τ, ρ) are C∞-functions on the set Uδ, with some small

positive number δ, satisfying the following properties.
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(i) ΦS(τ, ρ) can be extended to be a C∞-function on Uδ ∪ (∆P × {0}).
More precisely, ΦS(τ, ρ) admits the following asymptotic expansion with re-

spect to ρ: for any N ∈ N,

ΦS(τ, ρ) =

N∑
k=0

ΦS
k (τ)ρk + RS

N (τ, ρ)ρN+1 + ˜̃Φ
S
(τ, ρ)ρ2m(ν+2),

where each coefficients ΦS
k (τ) are C∞-functions on ∆P , RS

N (τ, ρ) is contin-

uous on Γδ and ˜̃Φ
S
(τ, ρ) is a C∞-function on Uδ. In particular, the first

coefficient ΦS
0 (τ) can be written as

ΦS
0 (τ) =

1

(2π)n+1

∫ ∞

0
e−2sG(δs(τ))sνds,

where G(δs(τ)) is as in Section 5. Moreover, ΦS
0 (τ) is positive on ∆P and

is unbounded as τ approaches the boundary of ∆P .

(ii) Φ̃S(τ, ρ) can be extended to be a C∞-function on Uδ.

Proof. By a similar argument in Section 6, an analogous localization

lemma can be obtained in the case of the Szegö kernel. Therefore it suffices

to consider a tube domain as in the Section 7.1. For this tube domain, the

Szegö kernel can be written as

S(z) =
1

(2π)n+1

∫ ∞

0
e−2yn+1sF (y′; s)snds,

where F is as in (4.2) by changing the integral variables as in the case

of the Bergman kernel. Since there is no essential difference between the

above integral and (4.2) in the case of the Bergman kernel, we can show the

theorem by the same computation. �

Remark 8.2. From the above proof, we see that the coefficients of

the asymptotic expansion of the Szegö kernel (with respect to the above

surface element) are very similar to those in the case of the Bergman kernel.

Actually, the Question 7.19 is equivalent to an analogous question in the

case of Szegö kernel.
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[25] Korányi, A., The Bergman kernel function for tubes over convex cones, Pa-
cific J. Math. 12 (1962), 1355–1359.

[26] Lee, H., The logarithmic singularities of the Bergman kernels for some model
domains, preprint.

[27] McNeal, J. D., Convex domains of finite type, J. Funct. Anal. 108 (1992),
361–373.

[28] Nakazawa, N., Asymptotic expansion of the Bergman kernel for strictly pseu-
doconvex complete Reinhardt domains in C2, Osaka J. Math. 31 (1994),
291–329.

[29] Rockafellar, R. T., Convex analysis, Princeton University Press, Princeton,
N. J., 1970.

[30] Saitoh, S., Fourier-Laplace transforms and the Bergman spaces, Proc. of
AMS 102 (1988), 985–992.

[31] Saitoh, S., Integral transforms, reproducing kernels and their applications,
Pitman Research Notes in Mathematics Series, 369, Longman, Harlow, 1997.

[32] Schulz, H., Convex hypersurfaces of finite type and the asymptotics of their
Fourier transforms, Indiana Univ. Math. J. 40 (1991), 1267–1275.

[33] Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and
oscillatory integrals, Princeton University Press, Princeton, NJ, 1993.

[34] Vinberg, E. V., The theory of homogeneous convex cones, Trudy Moskov.
Mat. Obsc. 12, 303–358; Trans. Moscow Math. Soc. 12 (1963), 303–358.

[35] Yu, J., Multitypes of convex domains, Indiana Univ. Math. J. 41 (1992),
837–849.

[36] Yu, J., Peak functions on weakly pseudoconvex domains, Indiana Univ.
Math. J. 43 (1994), 1271–1295.

(Received June 27, 2005)



408 Joe Kamimoto

Faculty of Mathematics
Kyushu University
Fukuoka 812–8581, Japan
E-mail: joe@math.kyushu-u.ac.jp


