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Logarithmic De Rham, Infinitesimal and Betti

Cohomologies

By Bruno Chiarellotto and Marianna Fornasiero∗

Abstract. Given a log scheme Y over C, Kato and Nakayama
[27] were able to associate a topological space Y an

log . We will use the log

infinitesimal site Y log
inf and its structural sheaf OY log

inf
; we will prove that

H
.

(Y log
inf ,OY log

inf
) ∼= H

.

(Y an
log ,C). The isomorphism will be obtained

using log De Rham cohomological spaces H
.

DR,log(Y/C) along the lines
of [36]. These results generalize the (ideally) log smooth case of [27].

Introduction

For a non singular scheme Y over C the hyper-cohomology of the al-

gebraic De Rham complex calculates the Betti cohomology H
.
(Y an,C).

For singular Y there is no straighforward generalization of this calcula-

tion: indeed, it is the algebraic side that causes problems. To deal with this

case, Grothendieck has introduced the algebraic Infinitesimal Site Yinf [16].

Moreover, as explained in [18], when Y admits an embedding as a closed

subscheme of a smooth scheme X, one can also consider the completion

Ω
.

X |̂Y of the De Rham complex Ω
.

X along Y and define the De Rham Co-

homology of Y over C as H
.
(Y,Ω

.

X |̂Y ). At this point one has three different

cohomologies

H
.

DR(Y/C),(1)

H
.
(Yinf ,OYinf

),(2)
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and

H
.
(Y an,C).(3)

The isomorphism between (2) and (3) was proved by Grothendieck ([16])

only in the case of a smooth scheme over C. The isomorphism between

(1) and (3) was proved by Herrera-Liebermann ([20]), in the case of Y

proper over C, while Deligne (unpublished), and Hartshorne ([18, Chapter

IV, Theorem (I.I)]) proved it for a general (not necessary proper) scheme

over C. A direct statement asserting the isomorphism of these cohomology

groups for arbitrary C-schemes Y cannot be found in literature, although

all the necessary ingredients are given. The proof presented in this paper, if

applied to classical schemes, can be used to fill this gap (see §1). Of course

the generalization of this problem to the case of mixed or finite characteristic

has been carefully studied by Berthelot and Ogus.

On the other hand, in more recent years the notion of scheme and

the properties of schemes have been generalized by the introduction of log

schemes. Among the expected features of log schemes, there is the fact

that log smooth schemes (which are in general singular as schemes) should

behave like classical smooth schemes and moreover should also be related

to analytic schemes. The goal of the present work is to introduce the log

scheme analogues of (1),(2),(3) over C, and prove the isomorphisms between

them.

With these ideas in mind we first consider the analogue of Grothendieck’s

Infinitesimal Site ([16]) in the logarithmic context (see also [25] for positive

characteristic). We work with pro-crystals and we link them to the logarith-

mic stratification on pro-objects. If we consider an fs log scheme Y over C,

in general one cannot expect to have a global closed immersion of Y in a log

smooth log scheme, instead we take a good embedding system for it ([36,

Definition 2.2.10], i.e. a simplicial scheme Y. which is an étale hypercovering

of Y which admits a locally closed immersion in a log smooth log simplicial

scheme X.). Then we can define the Log De Rham Cohomology of Y over

C (Definition 0.14) (using such a good embedding system by taking log for-

mal tube of Y. in X. (§0.4)) and give a direct proof of the existence of an

isomorphism between the Log Infinitesimal Cohomology of Y over C, and

its Log De Rham Cohomology, namely we prove the following isomorphism

H
.
(Y log
inf ,OY log

inf
) ∼= H

.

DR,log(Y/C).(4)
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This allows us to make our definition of Log De Rham Cohomology inde-

pendent of any choice.

For the remaining isomorphisms, we were inspired by an article of K.

Kato and C. Nakayama ([27, Theorem (0.2), (2)]). Given an fs (ideally) log

smooth log scheme X over C, Kato and Nakayama associate a topological

space Xan
log and show that the algebraic Log De Rham Cohomology of X

(which is defined as the hypercohomology of the log De Rham complex ω
.

X)

is isomorphic to the cohomology of the constant sheaf C on Xan
log, i.e.

H
.

DR,log(X/C) =: H
.
(X,ω

.

X) ∼= H
.
(Xan

log,C).(5)

In fact, K. Kato and C. Nakayama proved a more general result, which

is a sort of “Logarithmic Riemann-Hilbert correspondence”. Indeed, in the

case when X is ideally log smooth log scheme over C, the authors construct a

log Riemann-Hilbert equivalence Φ between the category of unipotent local

systems on Xan
log and the category of vector bundles on X, equipped with

an integrable log connection with nilpotent residues. In the literature, we

also can find generalizations of this Riemann-Hilbert correspondence, due

to K.Kato, L. Illusie, C. Nakayama ([22]) and A. Ogus ([33]). Both of these

works consider the case when X is ideally log smooth log scheme over C. In

the first work the authors extend Φ to an equivalence between the category

of quasi-unipotent local systems on Xan
log and the category of vector bundles

on the “Kummer étale ringed site” Xket of X endowed with an integrable log

connection satisfying a condition of nilpotence of the residues on this site.

In the second work, A. Ogus generalize Φ to the category of local systems

on Xan
log with arbitrary (i.e. not necessarily quasi-unipotent) monodromies.

In this present work, we consider the case of constant coefficients, and

we prove an analogue of (5) for a general (i.e. not necessarily ideally log

smooth) fs log scheme Y over C. This generalization, together with com-

parison theorem (4), should be the starting point for proving a more general

log correspondence between the category of log constructible pro-coherent

crystals on Y log
inf and the category of constructible sheaves on Y an

log ([8]),

which will be an extension of results proved by Deligne ([9]) to the loga-

rithmic context. In §2, we extend the theory of Kato-Nakayama ([27]) to

the log formal setting. To this end, we first introduce a ringed topological

space (X |̂Y )log, associated to the log formal analytic space (X |̂Y )an, with

sheaf of rings Olog
(X |̂Y )an

(Definition 2.6). This definition is a delicate point
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because in general one does not have an exact closed immersion of Y into

a log smooth log scheme X over C and the topological space Xan
log depends

upon the monoid which locally gives the log structure on X; so we should

study the map Y an
log −→ Xan

log, where the structural sheaves of rings depend

heavily on the log structure. In our case, on the other hand, we will reduce

ourselves only to exact closed immersions or we take log formal tubes which

are again associated to exact closed immersions. Hence, the contribution

from the log structure to Y an
log and Xan

log are the same. So, we will define

the underlying topological space of the ringed space (X |̂Y )log as Y an
log and

the structural sheaf by taking completion only with respect to the ideal of

the closed immersion (see Definitions 2.2 and 2.6). We will not want to

deal in this paper with the possibly more general definition of completion in

the context of Kato-Nakayama topological spaces. We construct the com-

plex ω
.,log

(X |̂Y )an
(Definition 2.7 and (53)), which is a sort of “formal analogue”

of the complex ω
.,log
Xan , introduced by Kato-Nakayama for a log smooth log

scheme X ([27, (3.5)]).

Later, in §3, we give a “formal version” of the Deligne Poincaré Residue

map ([10, (3.6.7.1)]), in the particular case of a smooth scheme X over

C, endowed with log structure given by a normal crossing divisor D, and

Y ↪→ X a closed subscheme, with the induced log structure (§3.2). We show

that this map is an isomorphism. It is useful for describing the cohomology

of the complex ω
.

(X |̂Y )an
.

Using that description in §4, we can prove the Log Formal Poincaré

Lemma (Theorem 4.1) for an fs log scheme Y which admits a locally closed

(not exact) immersion into a log smooth log scheme X over C, under the

hypothesis that the schemes are of Zariski type (see after Lemma 0.8, con-

dition satisfied at any level of a good embedding system): given a general

fs log scheme Y of Zariski and finite type over C, i : Y ↪→ X a locally closed

immersion, with X log smooth of Zariski and finite type over C, the Betti

Cohomology of the associated topological space Y an
log is isomorphic to the

hyper-cohomology of the complex ω
.,log

(X |̂Y )an
.

In §5, under the previous hypotheses, we show that ω
.

(X |̂Y )an
is quasi-

isomorphic to Rτ∗ω
.,log

(X |̂Y )an
∼= Rτ∗CY log (Proposition 5.2), where τ : Y an

log −→
Y an is the canonical (continuous, proper and surjective) Kato-Nakayama

map of topological spaces. Then, we prove that there exists an isomorphism
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in cohomology H
.
(Y an, ω

.

(X |̂Y )an
) ∼= H

.
(Y, ω

.

X |̂Y ) between the analytic and

the algebraic Log De Rham Cohomology (Theorem 5.3). Finally, by using

a good embedding system of Y over C, we conclude with the main theorem

of this article (Theorem 5.4): the cohomology of the constant sheaf C on

the topological space Y an
log , associated to an fs log scheme Y , is isomorphic

to the Log De Rham Cohomology of Y ,

H
.
(Y log
inf ,OY log

inf
) ∼= H

.

DR,log(Y/C) ∼= H
.
(Y an
log ,C).
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Preliminaries

Notations. by S we denote the logarithmic scheme Spec C endowed

with the trivial log structure, and, by a log scheme, we mean a logarithmic

scheme over S, whose underlying scheme is a separated C-scheme of finite

type. Moreover, if A
.
is a complex of sheaves and k ∈ N, then A

.
[k] is the

complex defined in degree j as Aj+k.

0.1. The logarithmic infinitesimal site

Given a log scheme X, endowed with a fine log structure M , we denote

by InfLog(X/S) the Logarithmic Infinitesimal Site of X over S. It is given

by 4−uples (U, T,MT , i), where U is an étale scheme over X, (T,MT ) is

a scheme with a fine log structure over S, i is an exact closed immersion

(U,M) ↪→ (T,MT ) over S, defined by a nilpotent ideal on T , i.e. i is

a nilpotent exact closed immersion. Morphisms, coverings (for the usual

étale topology), and sheaves on InfLog(X/S) are defined in the usual way.

The category of all sheaves on InfLog(X/S) is a ringed topos, called the

Logarithmic Infinitesimal Topos of X over S, and denoted by (X/S)loginf , or

simply by X log
inf .
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0.2. Pro-crystals and logarithmic stratification

Let X be a log smooth log scheme. For the definition of pro-objects we

refer to [1], [2], [13], [16, §6.2].

Definition 0.1. A pro-crystal in X log
inf is a collection {�k}k∈K of

O
Xlog

inf
-modules in X log

inf such that, for every morphims g : (U ′, T ′,MT ′ , i
′)−→

(U, T,MT , i) in X log
inf , the natural maps

g∗�kT −→ �kT ′

induce an isomorphism of pro-objects {g∗�k(U, T,MT , i)}k∈K ∼=
{�k(U

′, T ′,MT ′ , i
′)}k∈K . In a similar way we can define Artin-Rees pro-

crystals (see [32, Proposition 0.5.1]).

For each integer i ≥ 0, let ∆1
log(i) be the i−th log infinitesimal neigh-

bourhood (here for the definition we use [25, Remark (5.8)]) of the di-

agonal (X,M) ↪→ (X,M) ×S (X,M), and let ∆2
log(i) be the i−th log

infinitesimal neighbourhood of (X,M) ↪→ (X,M) ×S (X,M) ×S (X,M)

(where the fiber product is taken in the category of fine log schemes).

We have the canonical projections p1(i), p2(i) : ∆1
log(i) −→ (X,M), and

p31(i), p32(i), p21(i) : ∆2
log(i) −→ ∆1

log(i). We denote by �ν,i
X,log the struc-

tural sheaf of rings O∆ν
log(i), for each ν = 1, 2, i ≥ 0. In particular, we

can regard �1,i
X,log as an OX−module in two ways, via the canonical pro-

jections p1(i), p2(i). So, we call the left OX−module structure (resp. right

OX−module structure) on �1,i
X,log the structure given by p1(i) (resp. p2(i)).

We introduce a logarithmic stratification on the category of pro-coherent

OX−modules. We could define a logarithmic stratification “at any level” of

the pro object, and consider the pro-category of log stratified OX−modules.

But this stratification would be too restrictive for our purpose. We need to

work with a larger category and, to this end, we introduce the logarithmic

stratification as a pro-morphism.

Definition 0.2. [13, Definition 1.3] Let {�k}k∈K be a pro-coherent

OX module. A logarithmic stratification on {�k}k∈K is a pro-morphism

{�k}k
s{�k}k−→ {�k}k ⊗ {�1,i

X,log}i
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such that the coidentity diagram

{�k}k
s{�k}k−→ {�k}k ⊗ {�1,i

X,log}i
id{�k}k↓ ↓id{�k}k⊗{qi,0}i

{�k}k
id{�k}k−→ {�k}k

and the coassociativity diagram

{�k}k
s{�k}k−→ {�k}k ⊗ {�1,i

X,log}i
s{�k}k↓ ↓

s{�k}k⊗id{�
1,i
X,log

}i

{�k}k ⊗ {�1,i
X,log}i

id{�k}k⊗s{�
1,i
X,log

}i−→ {�k}k ⊗ {�1,i
X,log}i ⊗ {�

1,i
X,log}i

are commutative, where qi,j : �1,i
X,log −→ �1,j

X,log are the natural compatible

maps, and s{�1,i
X,log}i

= {δi,jX }(i,j) (see [35, Lemma 3.2.3] for the definition of

δi,jX : ∆1
log(i)×(X,M) ∆1

log(j) −→ ∆1
log(i+ j)).

As in the classical context ([32], [5], [13]), by using the above definition,

one can prove the following

Theorem 0.3. There exists an equivalence of categories between

(a) the category of pro-crystals on InfLog(X/S);

(b) the category of OX pro-modules {�k}k∈K on X, endowed with a loga-

rithmic stratification.

Remark 0.4. In fact, our pro-crystals are actually Artin-Rees pro-

crystals and one could refine the previous result on these objects.

0.3. Linearization of the log De Rham complex

Let ω
.

X be the log De Rham complex of the log smooth log scheme X.

As in the classical case ([5, p. 2.17]), we denote the complex of Artin-Rees

pro-coherent OX modules which is the linearization of ω
.

X by {LX(ω
.

X)i}i∈N,

i.e.

{LX(ω
.

X)i}i∈N =: {�1,i
X,log}i∈N⊗OX

ω
.

X .(6)
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Since, for all i, j ∈ N, there exist maps �1,i+j
X,log⊗ωkX −→ �1,i

X,log⊗ωkX⊗�1,j
X,log,

each term of (6) has a canonical logarithmic stratification, in the sense of

Definition 0.2 ([5, Construction 2.14]).

We have a local description of the differential maps {LX(d
.

X)i}i of this

complex. Indeed, let M i be the log structure on ∆1
log(i). Let U −→ X

be an étale morphism of schemes, and let m ∈ Γ(U,M). Then, there

exists uniquely an element um,i in Γ(U, (�1,i
X,log)

∗) ⊂ Γ(U,M i), such that

p2(i)
∗(m) = p1(i)

∗(m)um,i ([35, pp. 43, 44]). In particular, we have that

um,i − 1 ∈ Ker {Γ(U,�1,i
X,log) −→ Γ(U,OX)} ([35, Lemma 3.2.7]).

Let now x ∈ X, and t1, ..., tr ∈Mx be such that {dlog tj}1≤j≤r is a basis

of ω1
X,x. We can restrict to an étale neighborhood U of x, and suppose

that {dlog tj} is a local basis of ω1
X on U . Let uj,i, 1 ≤ j ≤ r, i ≥ 0,

be the elements in Γ(U, (�1,i
X,log)

∗) such that p2(i)
∗(tj) = p1(i)

∗(tj)uj,i, as

above. We put ξj,i := uj,i − 1 ∈ Γ(∆1
log(i),�

1,i
X,log) (note that the ξj,i’s are

compatible with respect to i).

Proposition 0.5. In the above notations,

(1) [35, Lemma 3.2.7], for each i ≥ 0, the OX−module �1,i
X,log is locally free

with basis

{ξai :=
r∏
j=1

ξ
aj
j,i|0 ≤

r∑
j=1

aj ≤ i}

where a = (a1, ..., ar) is a multi-index of length r. In particular,

{ξ1,1, ..., ξr,1} is a basis for the locally free OX−module �1,1
X,log, étale locally

at x;

(2) [35, Proposition 3.2.5], there exists a canonical isomorphism of OX−
modules �/�2 ∼=−→ ω1

X , where � := Ker {∆∗ : �1,1
X,log −→ OX} (with

∆: X ↪→ ∆1
log(1) the exact closed immersion). Under this identification,

the local basis {dlog tj}1≤j≤r of ω1
X is identified with {ξj,1}1≤j≤r.

Therefore, for each i ≥ 0, the map LX(d
.

X)i is the OX−linear map

LX(dkX)i : �1,i
X,log ⊗OX

ωkX −→ �1,i−1
X,log ⊗OX

ωk+1
X

defined, for a ∈ OX , ω ∈ ωkX , and nj ∈ N such that n1 + ... + nr ≤ i, by

setting

LX(dkX)i(aξ
n1
1,i · ... · ξnrr,i ⊗ ω) = a ·

∑
j=1,...,r

njξ
n1
1,i−1 · ... · ξ

nj−1
j,i−1 (1 + ξj,i−1) · ...
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... · ξnrr,i−1 ⊗ dlog tj ∧ ω + a ξn1
1,i−1 · ... · ξnrr,i−1 ⊗ dω.(7)

0.4. Log formal tubes, log formal De Rham complex and good

embedding systems

Let i : Y ↪→ X be a locally closed immersion of fs log schemes. Even in

the classical “crystalline” case the definition of the divided powers envelope

cannot be transposed in the log setting by copying the ordinary definition:

one has to take an exactification of the previous closed immersion. This can

be done only étale locally and, moreover, the exactification is not unique.

The problem has been solved in [25] (in ch.p) by using the universality of

the PD envelopes in order to glue the local constructions. In the same

article it has been also indicated that this method can be used in ch.0 for

the n-th log infinitesimal neighborhood, which will satisfy some universal

property on the elements of the infinitesimal site with the given order n of

nilpotency [25, Remark (5.8)]. On the other hand, for his definition of Log

Convergent Cohomology, Shiho in [35] (here we are in mixed characteristic)

had to show how to associate a log convergent tube to a closed immersion

which is not exact. This has been done by gluing the local data using

a hypothesis about the existence of charts in the Zariski topology for the

closed immersion (see [35, Proposition-Definition 3.2.1]). We want to clarify

the universal construction of the log formal tube in the following.

Definition 0.6. We assume i : (Y,N) ↪→ (X,M) is an exact closed

immersion. The log formal completion, or simply the log formal tube, X |̂Y
of X along Y is the classical formal completion of the scheme X along its

closed subscheme Y , endowed with log structure given by the inverse image

of M via the canonical map X |̂Y −→ X.

Let us suppose now that the closed immersion i : Y ↪→ X is not exact.

Let us denote by ()) the following condition (we refer to [36, §2.2. Condition

())])

()) there exists (at least one) factorization of i of the form

(Y,N)
i′
↪→ (X ′,M ′)

f ′−→ (X,M)

where i′ is an exact closed immersion and f ′ is a log étale morphism.

We note that if i admits a chart (RX −→ M,SY −→ N,R
α−→ S) such
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that αgp is surjective, the above condition is satisfied ([36, Remark 2.2.1]).

Indeed, we put R′ := (αgp)−1(S) and define (X ′,M ′) by setting X ′ :=

X ×SpecC[R] Spec C[R′] and M ′ the pull back of the canonical log structure

on Spec C[R′].

Definition 0.7. Let i : Y ↪→ X be a closed immersion which satisfies

condition ()). We define the log formal tube X |̂Y of X along Y as the log

formal tube of X ′ along Y (Definition 0.6).

Lemma 0.8. Definition 0.7 is a good definition, i.e. it is independent

of the choice of the factorization as in ()).

Proof. The proof is analogous to [36, Proof. of Lemma 2.2.2], on

replacing rigid analytic spaces with log formal tubes. �

We recall that a fine log scheme (X,M) is said to be of Zariski type if

there exists an open covering X =
⋃
iXi with respect to Zariski topology

such that (Xi,M|Xi
) admits a chart for any i ([36, Definition 1.1.1]). More-

over, if i : Y ↪→ X is a locally closed immersion of fs log schemes of finite

type over S and assume that Y and X are of Zariski type, then there ex-

ists an open covering (for the Zariski topology) X =
⋃
α∈I Xα such that the

morphisms iα : (Yα, N) := (Y,N)×(X,M) (Xα,M) ↪→ (Xα,M) are closed im-

mersions and they satisfy condition ()) (see [36, Proposition 2.2.4, Remark

2.2.6]).

In general, let now i : Y ↪→ X be a locally closed immersion, where Y

and X are of Zariski and finite type over S. Then one can define the n−th

log infinitesimal neighborhood (Yn, Nn) of (Y,N) in (X,M) as a solution of

an universal property (see [25, Remark (5.8)] and [35, Remark 3.2.2]) and,

in particular, the locally closed immersion Y ↪→ Yn is exact. If we are in the

hypotheses of Definition 0.7, always following [25, Remark (5.8)], the n−log

infinitesimal neighborhood of Y in X coincides with that of Y in X ′. Now,

being the locally closed immersions Yn ↪→ Yn+1 exact and compatible, for

any n ∈ N, we can give the following

Definition-Lemma 0.9. With the assumptions made above, let us de-

fine the log formal tube of X along Y as

(X |̂Y, N̂) := lim
−→
n

(Yn, Nn).(8)
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This is Y as topological space, endowed with sheaf of rings O
X |̂Y = lim

←−
n

OYn
(note that Yn is not the classical n−th infinitesimal neighborhood of Y in X)

and the pre-log structure lim
←−
n

Nn is in fact a log structure on X |̂Y (which we

denote by N̂), which makes the locally closed immersion Y ↪→ X |̂Y exact.

Moreover, this definition is compatible with Definitions 0.6 and 0.7.

Proof. Given a group M1 and two (integral) monoids M2,M3, we say

that the sequence M1
f−→M2

g−→M3 is an exact (resp. left exact) sequence

of monoids if Ker f = {1} and Coker f
∼=−→ M3 (resp. if Ker f = {1} and

Coker f −→ M3 is injective). Moreover, a sequence of sheaves of (integral)

monoids on X, with �1 a sheaf of groups,

�1
f−→ �2

g−→ �3(9)

is exact if Ker f = {1} (constant sheaf) and Coker f
∼=−→ �3. Given a

log scheme (X,M) over S, by this definition of exact sequence, we get in

particular that

O∗
X −→M −→M/O∗

X

is exact. Moreover, we also note that, if �1
f−→ �2

g−→ �3 is a left exact

sequence of sheaves of monoids on X with �1 a sheaf of groups, then, only

if �2 is integral, one can show that, for any open set U ⊆ X, the sequence

of monoids �1(U)
f(U)−→ �2(U)

g(U)−→ �3(U) is left exact.

Now, in the previous context, let us denote by Ŷ the log formal com-

pletion X |̂Y defined in (8) as locally ringed topological space over S. Since

O∗
Ŷ

= lim
←−
n

O∗
Yn ⊂ lim

←−
n

Nn, then N̂ is in fact a log structure on Ŷ . Moreover,

since each Nn is integral, then also N̂ is integral. For proving that the

closed immersion Y ↪→ Ŷ is exact and the above construction is compatible

with Definitions 0.6 and 0.7, we can work locally on Y and assume that

i : Y ↪→ X is a closed immersion satisfying condition ()). So, by using a

factorization as in ()), we may suppose that i is exact and reduce to the

following closed immersions

Y ↪→ Yn ↪→ Ŷ
h
↪→ X(10)
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where the first arrow is also exact, by definition of n−th log infinitesimal

neighborhood. We can put on Ŷ two log structures: one is N̂ , the other

is h∗M , induced by the log structure M on X. If we put the log structure

h∗M on Ŷ , we note that all the closed immersions in (10) become exact.

We have to show that N̂ is isomorphic to h∗M .

To this end, let us consider the following exact sequences of sheaves of

monoids on Y ,

O∗
Ŷ
−→ h∗M −→ h∗M/O∗

Ŷ
= h−1(M/O∗

X)

and, for any n ∈ N,

O∗
Yn

fn−→ Nn −→ Nn/O∗
Yn = h−1(M/O∗

X).(11)

We first show that the following sequence

O∗
Ŷ

= lim
←−
n

O∗
Yn

f−→ N̂ −→ h−1(M/O∗
X) = lim

←−
n

(Nn/O∗
Yn)

is left exact. Indeed, for any open set U ⊆ X, since, for any n, O∗
Yn

(U) ↪→
Nn(U) is injective, and {U �−→ N̂(U) = lim

←−
n

(Nn(U))} is a sheaf (not only a

presheaf), we deduce that O∗
Ŷ

f−→ N̂ is injective. To prove that Coker f =

N̂/O∗
Ŷ
−→ h−1(M/O∗

X) is injective, it will be enough to prove that, for any

open set U ⊆ X, the map N̂(U)/O∗
Ŷ

(U)
ψ−→ h−1(M/O∗

X)(U) is injective

(as a map of monoids, hence as a map of sets). In fact, since Coker f is

the associated sheaf of the presheaf {U �−→ N̂(U)/O∗
Ŷ

(U)}, we will get an

injective map from Coker f to h−1(M/O∗
X).

To prove that ψ is injective, let us take {sn}n, {tn}n ∈ lim
←−
n

Nn(U)

such that ψ({sn}n) = ψ({tn}n) = m = {mn}n in h−1(M/O∗
X)(U) ∼=

lim
←−
n

(Nn/O∗
Yn)(U). From the exact sequence (11), for any n, there exists

un ∈ O∗
Yn

(U) (which is a group) such that sn = tnun in Nn(U) and, if

prn : Nn(U) −→ Nn−1(U), prn(sn) = sn−1, prn(tn) = tn−1. Then, sn−1 =

tn−1un−1 in Nn−1(U), and sn−1 = prn(sn) = prn(tnun) = prn(tn)prn(un) =

tn−1prn(un). Since Nn−1(U) is integral, then prn(un) = un−1, for any n, so

{un}n ∈ lim
←−
n

O∗
Yn(U).
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Therefore, we are reduced to the following commutative diagram of

sheaves of integral monoids,

O∗
Ŷ

i1
↪→ N̂

f1−→ h−1(M/O∗
X)

‖ λ↑ ‖
O∗
Ŷ

i2
↪→ h∗M

f2−→ h−1(M/O∗
X)

(12)

where the first row is left exact and the second row is exact (λ coming

from the universal property of the projective limit N̂). We note that a map

of monoids is an isomorphism if it is a morphism which is injective and

surjective as a map of sets: we have only to show that λ is bijective. To this

end, for every x ∈ X, we consider diagram (12) at the stalk x and we prove

that the map of monoids λ : (h∗M)x −→ N̂x is bijective. Let m1,m2 ∈
(h∗M)x be such that λ(m1) = λ(m2) in N̂x. Then, f1λ(m1) = f1λ(m2), so

there exists t ∈ O∗
Ŷ ,x

such that m1 = i2(t)m2, hence λ(m1) = λ(m2)i1(t) =

λ(m2). Now, since N̂x is integral, 1 = i1(t) and so 1 = t (i1 is injective). To

prove that λ is surjective, let n ∈ N̂x. If f1(n) = 1, then n ∈ i1O∗
Ŷ ,x

and so

n = i1(t) = λ(i2(t)), for some t ∈ O∗
Ŷ ,x

. If f1(n) �= 1, then f1(n) = f2(m),

for some m ∈ (h∗M)x. So, f1(n) = f1(λ(m)) and there exists t ∈ O∗
Ŷ ,x

such

that n = λ(m)i1(t) = λ(mi2(t)) in N̂x. On the other hand, by using the

definition of isomorphism one can show that the upper short sequence in

(12) is exact. �

From the above definition, it follows that the construction of the log

formal tube is functorial with respect to locally closed immersions.

Definition 0.10. In the previous hypotheses and assuming X log

smooth log scheme, we define the log formal De Rham complex ω
.

X |̂Y of

X along Y as ω
.

X |̂Y := O
X |̂Y ⊗i−1OX

i−1ω
.

X , with differential induced by

that of ω
.

X . Moreover, this construction is functorial with respect to locally

closed immersions. We define the Log De Rham Cohomology of Y over S

as

H
.

DR,log((Y,N)/C) := H
.
(Y, ω

.

X |̂Y ).(13)
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Remark 0.11. One should prove that the previous definition of Log

De Rham Cohomology is independent of the choices: see discussions after

Definition 0.14. Along the line of [36], we can also give another equivalent

definition of the log formal tube of X along Y , under a suitable condition

(see [36, Proposition 2.2.4]). This is a sort of log formal version of the

convergent theory which has been developed in [36, §2.2]. But for such a

construction, it is difficult to prove the functoriality, so we prefer to use

Definition-Lemma 0.9 to have a log formal tube which is a global defined

object.

We give now a definition of Log De Rham Cohomology of a log scheme

Y of finite type over S (Definition 0.14), by using good embedding systems

(Definition 0.12).

Definition 0.12. [36, Definition 2.2.10] Let (Y,N) be an fs log scheme

of finite type over S. A good embedding system of (Y,N) over S is a diagram

(Y,N)
g.←− (Y.,N.)

i.
↪→ (X.,M.)(14)

where (Y.,N.) is a simplicial fine log scheme over (Y,N) such that (Yj , Nj)

is of finite type over S and of Zariski type, (X.,M.) is a simplicial fine

log scheme over S such that each (Xj ,Mj) is log smooth log scheme over

S and of Zariski type, g. : Y. −→ Y is an étale hypercovering such that

g∗jM −→ Mj is an isomorphism for any j ∈ N and i. is a morphism of

simplicial fine log schemes such that each ij is a locally closed immersion.

By using analogous methods to those of [36, Proposition 2.2.11], we can

prove that there exists at least one good embedding system of Y over S.

Indeed, let {Yi}i∈I be an étale covering of Y , such that each Yi is affine of

finite type over S and that (Yi, N) −→ S has a chart ({1} −→ C∗, Ri,Yi −→
N, {1} −→ Ri). There exist surjections C[Nni ] −→ Γ(Yi,OYi), Nmi −→ Ri.

So, let us take Pi := Spec C[Nni ⊕ Nmi ], endowed with log structure Li
given by Nmi −→ C[Nni ⊕ Nmi ]. We get a closed immersion of log schemes

ji : (Yi, N) ↪→ (Pi, Li), such that the diagram

C[Nni ⊕ Nmi ] −→ Γ(Yi,OYi)
↑ ↑

Nmi −→ Ri

(15)
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is commutative. Then, we set (Y0, N0) := (
∐
i Yi, N|

∐
i Yi

), (P0, L0) :=∐
i(Pi, Li) and i0 :=

∐
i ji. For n ∈ N, let (Yn, Nn) (resp. (Pn, Ln)) be

the (n+1)−fold fiber product of (Y0, N0) (resp. (P0, L0)) over (Y,N) (resp.

over S). Let in : (Yn, Nn) ↪→ (Pn, Ln) be the closed immersion defined by

the fiber product of i0.

We prove now that this construction of a good embedding system for a

log scheme (Y,N) of finite type over S is functorial, in the following sense.

Lemma 0.13. In the previous assumptions, let f : (Y,N) −→ (Y ′, N ′)
be a morphism of log schemes, where (Y,N), (Y ′, N ′) are of finite and

Zariski type over S. Then there exist two good embedding systems Y ←−
Y.

i.
↪→ P. for Y over S and Y ′ ←− Y.′

i.′
↪→ P.′ for Y ′ over S which are

compatible between them, namely such that the following diagram

Y ←− Y.
i.
↪→ P.

f↓ f.↓ h.↓
Y ′ ←− Y.′

i.′
↪→ P.′

(16)

is commutative.

Proof. We can take étale coverings {Yi}i∈I of Y , and {Y ′
i }i∈I of Y ′

such that each Yi, Y
′
i are affine of finite type over S, and there exist maps

(Yi, N) −→ (Y ′
i , N

′) admitting a chart (Ri,Yi −→ N,R′
i,Y ′i
−→ N ′, R′

i −→
Ri) (see [36, §1.1]). Let us take the surjections Nti −→ R′

i and Nmi −→ Ri
such that the diagram of monoids

Nti −→ R′
i

↓ ↓
Nmi −→ Ri

(17)

is commutative, and the surjections C[Nni ] −→ Γ(Yi,OYi), C[Nsi ] −→
Γ(Y ′

i ,OY ′i ) such that the diagram of rings

C[Nsi ] −→ Γ(Y ′
i ,OY ′i )

↓ ↓
C[Nni ] −→ Γ(Yi,OYi)

is commutative. Let Pi := Spec C[Nni ⊕ Nmi ] (resp. P ′
i := Spec C[Nsi ⊕

Nti ]), endowed with log structure Li (resp. L′
i) given by Nmi −→ C[Nni ⊕
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Nmi ] (resp. Nti −→ C[Nsi ⊕ Nti ]). Then the following diagram, where the

horizontal maps are closed immersions,

(Yi, N)
ji
↪→ (Pi, Li)

fi↓ hi↓

(Y ′
i , N

′)
j′i
↪→ (P ′

i , L
′
i)

(18)

is commutative and it admits the chart (17), namely ji, j
′
i admit charts

which are compatible with charts of fi and hi.

Then, we set (Y0, N0) := (
∐
i Yi, N|

∐
i Yi

), (P0, L0) :=
∐
i(Pi, Li) and

i0 :=
∐
i ji (resp. (Y ′

0 , N
′
0) := (

∐
i Y

′
i , N|

∐
i Y
′
i
), (P ′

0, L
′
0) :=

∐
i(P

′
i , L

′
i) and

i′0 :=
∐
i j

′
i) and f0 :=

∐
i fi and h0 :=

∐
i hi. For n ∈ N, let us take the (n+

1)−fold fiber products (Yn, Nn) and (Pn, Ln) (resp. (Y ′
n, N

′
n) and (P ′

n, L
′
n))

of (Y0, N0) over (Y,N) and of (P0, L0) over S (resp. of (Y ′
0 , N

′
0) over (Y ′, N ′)

and of (P ′
0, L

′
0) over S). Let in : (Yn, Nn) ↪→ (Pn, Ln) (resp. i′n : (Y ′

n, N
′
n) ↪→

(P ′
n, L

′
n)) be the closed immersion defined by the fiber product of i0 (resp.

i′0) and fn : (Yn, Nn) −→ (Y ′
n, N

′
n), hn : (Pn, Ln) −→ (P ′

n, L
′
n) be the fiber

products of f0 and h0 respectively. �

Definition 0.14. Let (Y,N) be an fs log scheme of finite type over

S, and let (Y,N)
g.←− (Y.,N.)

i.
↪→ (X.,M.) be a good embedding system of

(Y,N) over S. We define the Log De Rham Cohomology of Y over S as

H
.

DR,log((Y,N)/C) := H
.
(Y,Rg.∗(ω

.

X.̂|Y.))(19)

where each ω
.

Xj |̂Yj
is defined as in Definition 0.10.

Now, one should prove that our definition of Log De Rham Cohomology

is independent of the choice of the good embedding system. We could

work out the problem as in [36], but we will prefer to prove, in section

§1, that there exists a canonical isomorphism between the Log De Rham

Cohomology of Y (Definition 0.14) and its Log Infinitesimal Cohomology.

Therefore, from this comparison theorem we will deduce that the Log De

Rham Cohomology defined above is in fact a good cohomology theory and

independent of all the choices.
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0.5. Kato-Nakayama topological space

Let now Xan be the (fs) log analytic space associated to X. Kato-

Nakayama define the topological space Xan
log associated to Xan as the set

{(x, h)|x ∈ Xan, h ∈ Hom(Mgp
x ,S1), h(f) = f(x)/|f(x)|, for any f ∈

O∗
Xan,x} (where S1 = {x ∈ C; |x| = 1}). Let now β : P −→ M be a fixed

local chart for Xan, with P an fs monoid. The topology on Xan
log is locally

defined as follows:

Definition 0.15. In the local chart β, Xan
log is identified with a closed

subset of Xan × Hom(P gp,S1), via the map Xan
log ↪→ Xan × Hom(P gp,S1):

(x, h) �−→ (x, hP ), where hP is the composite P gp −→Mgp
x

h−→ S1. So, Xan
log

is locally endowed with the topology induced from the natural topology on

Xan ×Hom(P gp,S1).

This local topology does not depend on the choice of the chart, so it

induces a well defined global topology on Xan
log ([27, (1.2.1), (1.2.2)]). There

exists a surjective map of topological spaces τ : Xan
log −→ Xan : (x, h) �−→ x,

which is continuous and proper ([27, Lemma (1.3)]). Though Xan
log in general

is not an analytic space, it is still endowed with a nice sheaf of rings OlogXan .

Indeed, let LX be the sheaf of abelian groups on Xan
log which represents the

“logarithms of local sections of τ−1(Mgp)” ([27, (1.4)]). There exists an

exact sequence of sheaves of abelian groups

0 −→ τ−1(OXan)
k−→ LX

exp−→ τ−1(Mgp/O∗
Xan) −→ 0

If we consider commutative τ−1(OXan)-algebras B on Xan
log, endowed with

a homomorphism LX −→ B of sheaves of abelian groups which commutes

with k, then OlogXan is the universal object among such B ([27, (3.2)]).

We suppose that X satisfies the following hypothesis ([27, Theorem

(0.2), (2)])

(*) Locally for the étale topology, there exists an fs monoid P , an ideal

Φ of P , and a morphism f : X −→ Spec (C[P ]/(Φ)) of log schemes over

S, such that the underlying morphism of schemes is smooth, and the log

structure on X is associated to P −→ OX .

Remark 0.16. We note that, if X is (ideally) log smooth over S, then

it satisfies hypothesis (*) ([22, Definition (1.5)]), because X is a filtered

semi-toroidal variety ([23, Definition 5.2], [14, Proposition II.1.0.11]).
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Theorem 0.17. [27, Theorem (0.2), (2)]. Let X be an fs (ideally)

log smooth log scheme (see Remark 0.16). Then, there exists a canonical

isomorphism

Hq(X,ω
.

X) ∼= Hq(Xan
log,C), for all q ∈ Z.

1. Log Infinitesimal and Log De Rham Cohomologies

From now on, let Y be an fs log scheme of finite type over S, endowed

with log structure N . For the moment, we suppose that there exists a

(locally) closed immersion i : (Y,N) ↪→ (X,M), where X is an fs log smooth

log scheme. We consider the direct image functor iloginf∗ : Y log
inf −→ X log

inf . For

a crystal � of Y log
inf , we briefly describe the construction of the direct image

iloginf∗�, in characteristic zero. Let (U, T,MT , j) ∈ InfLog((X,M)/S), then

we consider the fiber product (in the category of fine log schemes) UY =

(Y,N)×(X,M) (U,M). By base change, the map UY ↪→ (T,MT ) is a closed

immersion. We can take the n−th log infinitesimal neighborhood of UY
inside (T,MT ), and denote it by (Tn,Mn). Let λn : (Tn,Mn) ↪→ (T,MT ).

Then, (iloginf∗�)(U,T,MT ,j) := lim
←−
n

λn∗�(UY ,Tn,Mn,jn).

Moreover, the Artin-Rees pro-crystal {�n}n∈N on InfLog((X,M)/S),

associated to iloginf∗�, is defined on (U, T,MT , j) ∈ InfLog((X,M)/S) as

�n(U,T,MT ,j) := λn∗(�(UY ,Tn,Mn,jn)) = λn∗(�Tn) ([32, Proposition 0.5.1]).

In particular, the Artin-Rees pro-crystal {On}n∈N associated to iloginf∗OY log
inf

,

is in fact defined, on each (U, T,MT , j), as ({On}n∈N)(U,T,MT ,j) :=

{λn∗OTn}n∈N.

Remark 1.1. From Theorem 0.3, the log stratified OX−pro-module

associated to the (Artin-Rees) pro-crystal {On}n∈N is equal to

{(On)(X,X,M,id)}n∈N = {λn∗OYn}n∈N, where Yn is the n−th log infinitesimal

neighborhood of Y ↪→ X. We simply denote it by {OYn}n∈N. Moreover,

(iloginf∗OY log
inf

)(X,X,M,id) = O
X |̂Y (see Definition-Lemma 0.9).

We now compare the Log De Rham Cohomology of Y with its Log

Infinitesimal Cohomology. For each fixed ν ≥ 0, we consider the diagonal
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immersion of fine log schemes X ↪→ Xν , where Xν is the fiber product

over S of ν + 1 copies of (X,M) over S. We denote by ∆ν
X,log(i) the i-

th log infinitesimal neighborhood of the diagonal of Xν , and by �ν,i
X,log its

structural sheaf of rings O∆ν
X,log(i).

Now, if we fix ν and vary i ∈ N, we get the Artin-Rees pro-object of

sheaves {�ν,i
X,log}i on X. On the other hand, if we fix i and vary ν ∈ N, we

get a sheaf on the simplicial log smooth log scheme

−→
...

−→
Xν

−→
...

−→
· · ·

−→
−→
−→
−→

X2 = X ×S X ×S X
−→
−→
−→

X1 = X ×S X −→
−→ X

which is the following cosimplicial sheaf of rings on X

0 −→ OX
d0−→
d1−→

�1,i
X,log

d0−→
d1−→
d2−→

�2,i
X,log

−→
−→
−→
−→
· · ·

−→
...

−→
�ν,i
X,log

−→
...

−→
· · ·(20)

where the maps are given by the faces of the simplicial log scheme {Xν}ν . If

we vary ν and i, we get a cosimplicial sheaf of Artin-Rees OX pro-modules

{�ν,i
X,log}ν,i.
We define the cosimplicial Artin-Rees pro-object {Qν,ilog}ν,i, by setting

Qν,ilog := �ν+1,i
X,log(21)

for every i, ν ≥ 0. Then, for each ν ≥ 0, there is a canonical homomor-

phism of pro-rings αν,
.

log : �ν,.

X,log −→ Qν,
.

log, defined by the canonical injection

{0, 1, ..., ν} ↪→ {0, 1, ..., ν, ν + 1}. So, we have a homomorphism of cosimpli-

cial pro-rings

{α∗,i
log}i : {�

∗,i
X,log}i −→ {Q

∗,i
log}i.(22)

Let � be an OX−module. As in the classical case, we define the cosimplicial

pro-module

{Q∗,i
log(�)}i := {Q∗,i

log}i ⊗OX
�.(23)

We note that, for fixed ν ≥ 0, {Qν,ilog(�)}i is clearly a {Qν,ilog}i−module,

and so an OX−bimodule with the obvious left and right structures. More-

over, if we regard {Qν,ilog(�)}i as a cosimplicial pro-module on {�ν,i
X,log}i (by
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restriction of scalars, via {αν,ilog}i), we see that it is the cosimplicial pro-

module associated with the OX−pro-module with canonical stratification

{Q0,i
log(�)}i = {�1,i

X,log}i ⊗OX
�. Indeed, for each ν ≤ µ, {Qµ,ilog(�)}i is

obtained from {Qν,ilog(�)}i by base change with respect to any of the canon-

ical morphisms {�ν,i
X,log}i −→ {�

µ,i
X,log}i. Now, for each integer k ≥ 2, we

consider the differential operator dk of the log De Rham complex,

dk : ωkX −→ ωk+1
X

As in [16, p. 347], for each ν ≥ 0, dk induces a homomorphism of Artin-Rees

pro-objects

{Qν,ilog(dk)}i : {Q
ν,i
log(ω

k
X)}i −→ {Qν,ilog(ω

k+1
X )}i(24)

and we get the following cosimplicial complex of Artin-Rees pro-objects,

{Q∗,ilog(OX)}i −→ {Q∗,ilog(ω
1
X)}i −→ {Q∗,ilog(ω

2
X)}i −→ ... −→ {Q∗,ilog(ω

k
X)}i −→ ...(25)

The double complex associated to the cosimplicial complex of Artin-Rees

pro-objects {Q∗,i
log(ω

.

X)}i is a resolution of ω
.

X (Čech resolution). Indeed, we

consider the double complex of OX pro-modules

ω
.

X
d0−→ {Q0,i

log(ω
.

X)}i d1−d0−→ {Q1,i
log(ω

.

X)}i d2−d1+d0−→ ... −→ {Qν,i
log(ω

.

X)}i −→ ...(26)

where the maps are obtained from the cosimplicial maps (20) (with respect

to the cosimplicial index ν), by “forgetting one face” ([7, p. 12]). Then, one

can show that (26) is locally homotopic to zero, by using the degenerating

maps of the cosimplicial complex (20) ([3, §V, Lemma 2.2.1]). Now, we

apply to (26) the additive functor {OYn}n∈N⊗OX
(−) (where {OYn}n∈N is

as in Remark 1.1), in the category of pro-coherent OX−modules. Since it

respects the local homotopies, we find that the complex

{OYn}n ⊗ ω
.

X

d0−→ {OYn}n ⊗ {Q0,i
log(ω

.

X)}i
d1−d0−→ {OYn}n ⊗ {Q1,i

log(ω
.

X)}i
d2−d1+d0−→ ...(27)

is also locally homotopic to zero.

We give now a sort of “Log Poincaré Lemma” in characteristic zero.

Theorem 1.2. The complex of Artin-Rees OX pro-modules

[OX
d0−→ {LX(ω

.

X)}i](28)

= [OX
d0−→ {�1,i

X,log}i −→ {�1,i
X,log}i ⊗OX ω1

X −→ {�1,i
X,log}i ⊗OX ω2

X −→ ...]
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is exact.

Proof. From (7), it follows that the composition OX −→
{LX(OX)i}i −→ {LX(ω1

X)i}i is zero, so (28) is in fact a complex of OX
pro-modules. Moreover, it is represented by the following complexes

[OX
d0−→ �1,i

X,log

LX (d0
X )i−→ �1,i−1

X,log ⊗OX ω1
X

LX (d1
X )i−1−→ �1,i−2

X,log ⊗OX ω2
X

LX (d2
X )i−2−→ ...](29)

for any i ∈ N. We show that these complexes are exact by induction on

i ∈ N. When i = 0, the complex (29) reduces to 0 −→ OX id−→ OX −→ 0,

which is exact. When i = 1 the complex (29) is

0 −→ OX d0−→ �1,1
X,log

LX(d0X)1−→ ω1
X −→ 0

which is locally homotopic to zero, via the OX−linear homotopy defined on

the local basis as

�1,1
X,log

s0=∆∗−→ OX ω1
X

s1−→ �1,1
X,log

ξj,1 �−→ 0 dlog tj �−→ ξj,1

for j = 1, ..., r (see Proposition 0.5, (2)). Since d0 = p2(1)∗ and ∆∗◦p2(1)∗ =

id, we get that s0 ◦ d0 = id. Moreover, d0 ◦ s0 + s1 ◦ LX(d0
X)1 = id.

Now, let us suppose that the complex (29) for i−1 is exact. We consider

the sequences of locally free OX−modules, for any p = 0, ..., r,

0 −→ �i−p/�i−p+1 ⊗OX
ωp
X −→ �1,i−p

X,log ⊗OX
ωp
X −→ �1,i−p−1

X,log ⊗OX
ωp
X −→ 0

(where � = Ker {∆∗ : �1,1
X,log −→ OX}). These are exact (moreover, they

are locally homotopic to zero; note that �i−p/�i−p+1 ∼= Symi−p(�/�2)).

So, by using these sequences and the inductive hypothesis, we can reduce

to show the exactness of the following complex

0 −→ �i/�i+1 LX(d0X)i−→ �i−1/�i ⊗OX
ω1
X

LX(d1X)i−1−→ ...

...
LX(drX)i−r−→ �i−r/�i−r+1 ⊗OX

ωrX −→ 0

But this is locally homotopic to zero, via the following OX−linear homotopy

on the local basis,

�i−p/�i−p+1 ⊗OX
ωpX

sp−→ �i−p+1/�i−p+2 ⊗OX
ωp−1
X
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ξα1
1,i−p · · · ξαr

r,i−p ⊗ ξi1,1 ∧ · · · ∧ ξip,1 �−→

1

i

p∑
m=1

(−1)m+1ξα1
1,i−p+1 · · · ξαr

r,i−p+1ξim,i−p+1 ⊗ ξi1,1 ∧ · · · ∧ ξ̂im,1 ∧ · · · ∧ ξip,1

with α1+· · ·+αr = i−p. We extend this definition by linearity. It is easy to

compute that s1◦LX(d0
X)i = id and LX(dp−1

X )i−p+1◦sp+sp+1◦LX(dpX)i−p =

id, for each p ≥ 1. �

Corollary 1.3. Let {�n}n∈N be a pro-coherent OX module. Then

the complex

0 −→ {�n}n d0−→ {�n}n ⊗OX
{�1,i

X,log}i −→ {�n}n ⊗OX
{�1,i

X,log}i ⊗OX
ω1
X

−→ {�n}n ⊗OX
{�1,i

X,log}i ⊗OX
ω2
X −→ ...

is exact.

Proof. In order to prove this corollary it is sufficient to follow the

proof of Theorem 1.2. By induction on i, we can reduce to prove the exact-

ness at any level, and, since the additive functor {�n}n∈N⊗OX
(−) respects

the local homotopies, we can conclude. �

Now, from Corollary 1.3, the following complex of Artin-Rees OX pro-

modules

{OYn
}n d0−→ {OYn

}n ⊗ {�1,i
X,log}i −→ {OYn

}n ⊗ {�1,i
X,log}i ⊗OX

ω1
X −→ ...(30)

is also exact, in the category of pro-coherent OX modules.

We consider now the following double complex (�)

{OYn}n ⊗ ω
.

X
d0↓

{OYn}n
d0−→ {OYn}n ⊗ {�1,i

X,log}i ⊗ ω
.

X
d1−d0↓ d1−d0↓

{OYn}n ⊗ {�1,i
X,log}i

d0−→ {OYn}n ⊗ {�2,i
X,log}i ⊗ ω

.

X
d2−d1+d0↓ d2−d1+d0↓

... ...

↓ ↓
{OYn}n ⊗ {�ν−1,i

X,log}i
d0−→ {OYn}n ⊗ {�ν,i

X,log}i ⊗ ω
.

X

↓ ↓
... ...
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Now, from (27), all the columns of (�), except the first, are locally homo-

topic to zero. Moreover, from (30), the second row of (�) is exact. The

(ν + 1)−th row of this double complex (ν ≥ 2) is obtained from the second

row by tensorizing (over OX) with the (log stratified) Artin-Rees pro-object

{�ν−1,i
X,log}i. Indeed, for each ν ≥ 0, {�ν,i

X,log}i ∼= {�
ν−1,i
X,log}i ⊗ {�

1,j
X,log}j . So,

since the second row is exact, by following similar arguments as in proof

of Corollary 1.3, since the additive functor {�ν−1,i
X,log}i ⊗OX

(−) respects the

local homotopies, we see that each row of (�), except the first, is also exact.

Therefore, we can conclude that the double complex {OYn}n ⊗
{Q∗,i

log(ω
.

X)}i is a resolution of both the first column {OYn}n⊗{�∗,i
X,log}i, and

the first row {OYn}n ⊗ ω
.

X of (�). Then, since all pro-systems satisfy the

Mittag-Leffler condition, we get the two following canonical isomorphisms

in cohomology,

H
.
(Y, lim

←−
(n,i)

OYn ⊗�∗,i
X,log)

∼=−→ H
.
(Y, lim

←−
(n,i)

OYn ⊗Q∗,i
log(ω

.

X))(31)

H
.

DR,log((Y,N)/C) := H
.
(Y, lim

←−
n

OYn ⊗ ω
.

X)(32)

∼=−→ H
.
(Y, lim

←−
(n,i)

OYn ⊗Q∗,i
log(ω

.

X)).

Remark 1.4. Since the Artin-ReesOX pro-module {OYn}n is endowed

with a log stratification (see Remark 1.1), we have isomorphisms, for any

ν, k ≥ 0,

{OYn}n ⊗ {�ν,i
X,log}i ⊗ ω

.

X
∼= {�ν,i

X,log}i ⊗ {OYn}n ⊗ ω
.

X

and so there is an identification

{OYn}n ⊗ {Q∗,i
log(ω

.

X)}i ∼= {Q∗,i
log(OYn ⊗ ω

.

X)}n,i.

In order to calculate H
.
(Y log
inf ,OY log

inf
), one can define the sheaf X̃ :=

lim
−→
n

Ỹn on InfLog(Y/S) (Yn being the n−th log infinitesimal neighborhood

of Y in X, and˜denoting the sheaf of Y log
inf represented by the object), which
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covers the final object of Y log
inf (as in the classical case [16, §5.2]). We denote

by X̃ν the product of X̃ with itself ν times. This sheaf is an inductive limit

of representable sheaves

X̃ν = lim
−→
i

∆̃ν−1
Y (i)(33)

where ∆ν
Y (i) is the i−th log infinitesimal neighborhood of Xν along its

closed log subscheme Y . Therefore, if � is any module on InfLog(Y/S),

there exists a Leray spectral sequence ([16, §5.2, p. 338]),

Ep,q2 = Hp+1(ν �−→ Hq(X̃ν ,�)) =⇒ H
.
(Y log
inf ,�).(34)

We want to show that this spectral sequence degenerates, giving a canonical

isomorphism

H
.
(Y log
inf ,�) ∼= H

.
(ν �−→ lim

←−
i

�(∆ν
Y (i))).(35)

To this end, we recall that, for each (U, T ) in InfLog(Y/S), there are

isomorphisms

H
.

InfLog((U, T ),�) ∼= H
.

InfLog((Y
log
inf )|(U,T ), j

∗
(U,T )�) ∼= H

.

Zar(T,�(U,T ))

where (Y log
inf )|(U,T ) is the restricted topos, and j(U,T ) is the morphism

(Y log
inf )|(U,T ) −→ Y log

inf ([5, Propositions 5.24, 5.26]). We first consider the

local case and suppose that Y ↪→ X satisfies condition ()). We may as-

sume Y is affine (so also ∆ν
Y (i) is affine). Moreover, we assume that � is

quasi-coherent on each nilpotent thickening (so �∆ν
Y (i) is quasi-coherent).

Then,

Hq
Zar(∆

ν
Y (i),�∆ν

Y (i)) ∼= Hq
InfLog((Y,∆

ν
Y (i)),�) = 0(36)

for any q > 0. Under these conditions, we take an injective resolution � −→
I
.
of � in Y log

inf , namely, for each (U, T ) ∈ InfLog((Y,N)/S), �T −→ I
.

T is

exact, and IkT is flasque, for each k ≥ 0 ([3, VI, 1.1.5]).

By (33), Hq(X̃ν+1,�) = hq(Γ(X̃ν+1, I
.
)) = hq(Γ(lim

−→
i

∆̃ν
Y (i), I

.
)) =

hq(Hom
Y log
inf

(lim
−→
i

∆̃ν
Y (i), I

.
)) = hq(lim

←−
i

Hom
Y log
inf

(∆̃ν
Y (i), I

.
)), where hq =



Cohomologies of Log-Schemes 229

Ker dq/Im dq−1 (see [5, Definition 5.15] for the definition of the global sec-

tion functor). For simplicity, we denote by {�.

i}i∈N the inverse system of

complexes {Hom
Y log
inf

(∆̃ν
Y (i), I

.
)}i∈N. Since I

.
is injective and the maps

(Y,∆ν
Y (i)) −→ (Y,∆ν

Y (i + 1)) are monomorphisms in InfLog(Y/S), we

have that the transition maps �
.

i+1 −→ �
.

i are surjective, for any i ∈ N.

The inverse system {�.

i}i∈N satisfies the Mittag-Leffler condition, so we get

the exact sequence

0 −→ lim
←−
i

1hq−1(�
.

i) −→ hq(lim
←−
i

�
.

i) −→ lim
←−
i

hq(�
.

i) −→ 0.

Moreover, if we assume that � is a crystal, since hq−1(�
.

i) is equal to

�(∆ν
Y (i)) if q = 1 and is equal to 0 otherwise, the inverse system

{hq−1(�
.

i)}i∈N also satisfies the Mittag-Leffler condition, so we get an iso-

morphism hq(lim
←−
i

�
.

i)
∼= lim
←−
i

hq(�
.

i). Therefore,

Hq(X̃ν+1,�) ∼= lim
←−
i

Hq
InfLog((Y,∆

ν
Y (i)),�) ∼= lim

←−
i

Hq
Zar(∆

ν
Y (i),�∆ν

Y (i))

and so, by (36), Hq(X̃ν+1,�) = 0, for any q > 0. Then (34) degenerates

and for the crystal � = O
Y log
inf

we have

H
.
(Y log
inf ,OY log

inf
) ∼= H

.
(ν �−→ lim

←−
i

O∆ν
Y (i)(∆

ν
Y (i))) = H

.
(Y, lim

←−
i

O∆∗Y (i)).

Finally, since the cosimplicial sheaves on YZar lim
←−
(n,i)

OYn ⊗ �∗,i
X,log and

lim
←−
i

O∆∗Y (i) coincide,

H
.
(Y log
inf ,OY log

inf
) ∼= H

.
(Y, lim

←−
i

O∆∗Y (i)) ∼= H
.
(Y, lim

←−
(n,i)

OYn ⊗�∗,i
X,log).(37)

If we do not assume that Y is affine, but we always admit the existence of a

locally closed immersion i : Y ↪→ X, then one can define a cosimplicial sheaf

�∗ on YZar, given by, for each fixed ν ≥ 0 and for any open U ↪→ YZar,

�ν : U �−→ lim
←−
i

O
Y log
inf

((U,∆ν
U (i))) = O

Y log
inf

((U,Xν |̂U))
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where Xν |̂U is as in Definition-Lemma 0.9. By taking a covering of YZar
by affine open sets and using (37) as in [16, (5.1), p. 339], we end with a

canonical isomorphism

H
.
(Y log
inf ,OY log

inf
) ∼= H

.
(YZar,�

∗) = H
.
(Y, lim

←−
(n,i)

OYn ⊗�∗,i
X,log).(38)

By (31), (32) and (38), we conclude that there exists a canonical isomor-

phism

H
.

DR,log((Y,N)/C) ∼= H
.
(Y log
inf ,OY log

inf
).(39)

Remark 1.5. Forgetting log structure, one could use analogous tech-

niques in the classical setting (which are nothing but a miscellanea of those

ones indicated in [16]) and obtain the isomorphism (39) for any scheme

Y over S (without log). This fact, together with the result proved by

Hartshorne in [18, Chapter IV, Theorem I.I], gives the isomorphisms be-

tween (1), (2) and (3) in the Introduction.

Now, we consider an fs log scheme (Y,N) of finite type over S which

does not necessarily admit a (locally) closed immersion (Y,N) ↪→ (X,M)

as above. We take a good embedding system Y
g.←− Y.

i.
↪→ P. for Y over S

and define the Log De Rham Cohomology of Y as in Definition 0.14. By

analogous arguments to those of [36, Proposition 2.1.20], one can show that

the Log Infinitesimal Cohomology satisfies the descent property with respect

to étale hypercoverings, namely there exists a canonical isomorphism

H
.
(Y log
inf ,OY log

inf
) ∼= H

.
(Y.loginf , g.

−1O
Y log
inf

) = H
.
(Y.loginf , g.

∗O
Y log
inf

).

Then we have canonical isomorphisms

H
.
(Y log
inf ,OY log

inf
) ∼= H

.
(Y.loginf ,OY.loginf

)
(39)∼= H

.

DR,log((Y.,N.)/C) ∼=

H
.
(Y,Rg.∗(ω

.

X.̂|Y.)) =: H
.

DR,log((Y,N)/C).
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2. The Complex ω
.,log

X |̂Y

We will transpose our construction to the log analytic situation. If X

is a log scheme, then the associated topological space Xan
log depends not

only on the underlying scheme but also on the log structure. Let us start

with an exact closed immersion i : Y ↪→ X of fs log schemes of finite type

over S, where X is log smooth. Let Y an, Xan be the associated fs log

analytic spaces, and let ian : Y an ↪→ Xan be the corresponding analytic

exact closed immersion with defining ideal 	. When the context obviates

any confusion, we will omit the superscript (−)an in denoting the associated

analytic spaces.

We consider the closed analytic subspaces Yk of X, defined by the ideals

	k, with k ∈ N. On each such Yk we consider the log structure induced by

MX , i.e., if ik : Yk ↪→ X is the closed immersion, then we take MYk = i∗kMX .

We have a sequence of exact closed immersions, which we denote by ϕk,

Y = Y1
ϕ1
↪→ Y2

ϕ2
↪→ Y3

ϕ3
↪→ ...

ϕk
↪→ Yk+1

ϕk+1
↪→ ... ↪→ X

Therefore, we have a projective system of rings {OYk ∼= i−1
k (OX/	k); ϕk :

OYk+1
−→ OYk}k≥1, where the transition maps ϕk are surjective. Moreover,

the diagram

ϕ−1
k (MYk+1

) −→ MYk
αk+1 ↓ αk↓

ϕ−1
k (OYk+1

) −→ OYk
(40)

is commutative, for each k ≥ 1. Since MX is a fine log structure on X, each

Yk is endowed with a fine log structure.

The closed immersion ik : Yk ↪→ X is exact, for each k, so ([25, (1.4.1)])

MYk/O∗
Yk

= i∗kMX/O∗
Yk
∼= i−1

k (MX/O∗
X) = (MX/O∗

X)|Yk .(41)

Remark 2.1. Since the underlying topological space of each Yk is equal

to Y , it follows from (41) that MYk/O∗
Yk
∼= (MX/O∗

X)|Y , for each k ≥ 1.

Therefore, if we consider the associated sheaf of groups (MYk/O∗
Yk

)gp ∼=
Mgp
Yk
/O∗

Yk
, we have that, for each k ≥ 1,

Mgp
Yk
/O∗

Yk
∼= (Mgp

X /O∗
X)|Y .(42)
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Let Y log
k (resp. X log) be the Kato-Nakayama topological space associ-

ated to Yk (resp. to X), and let τk : Y log
k −→ Yk (resp. τX : X log −→ X)

be the corresponding surjective, continuous and proper map of topological

spaces (§0.4). We now consider the “formal” analytic space X |̂Y , which is

Y an as topological space, and whose structural sheaf is

O
X |̂Y := lim

←−
k

OYk ∼= lim
←−
k

i−1
k (OX/	k).

Now, since the closed immersion i : Y ↪→ X is exact, the formal completion

of the fs log analytic space X along the closed log subspace Y is equal to the

classical completion X |̂Y , endowed with the log structure induced by MX

(Definition 0.6). So, if i
X |̂Y : X |̂Y ↪→ X, then the log structure on X |̂Y is

i∗
X |̂YMX . We denote it by M

X |̂Y . We now define a ringed topological space

((X |̂Y )log,Olog
X |̂Y

), associated to the log formal analytic space X |̂Y .

Definition 2.2. With the previous notation, we define (X |̂Y )log to be

the topological space Y log, endowed with the following sheaf of rings

Olog
X |̂Y

:= τ−1
Y (O

X |̂Y )⊗τ−1
X (OX) O

log
X .(43)

Lemma 2.3. [27, Lemma (3.3)] With the previous notation, let x ∈ Y ,

y ∈ Y log be such that τY (y) = x. Let 
X be the sheaf of logarithms of local

sections of τ−1
X (Mgp

X ) (§0.4). Let {t1, ..., tn} be a family of elements of the

stalk 
X,y, whose image under the map expy : 
X,y −→ τ−1
X (Mgp

X /O∗
X)y is a

Z−basis of Mgp
X,x/O∗

X,x. Then, Olog
(X |̂Y ),y

is isomorphic, as O
(X |̂Y ),x

−algebra,

to the polynomial ring O
(X |̂Y ),x

[T1, ..., Tn], via the correspondence

O
(X |̂Y ),x

[T1, ..., Tn] −→ Olog
(X |̂Y ),y

Ti �−→ ti

(44)

for i = 1, ..., n.

Proof. By [27, Lemma (3.3)], applied to X log, the isomorphism

OlogX,y ∼= τ−1
X (OX)y[T1, ..., Tn] implies that Olog

(X |̂Y ),y
∼= τ−1

Y (O
X |̂Y )y ⊗τ−1

X (OX)y

τ−1
X (OX)y[T1, ..., Tn] ∼= τ−1

Y (O
X |̂Y )y[T1, ..., Tn] ∼= O(X |̂Y ),x

[T1, ..., Tn]. �
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Remark 2.4. In [22, Proposition (3.7)], the authors proved that, given

an fs log analytic space X, for any OX−module M the natural homo-

morphism M −→ Rτ∗(OlogX ⊗OX
M) is an isomorphism. In particular, for

M = OX , OX
∼=−→ Rτ∗(OlogX ). A “formal version” of this last isomorphism

can be given, namely

O
X |̂Y

∼=−→ Rτ∗(τ
∗O

X |̂Y ) = Rτ∗(Olog
X |̂Y

).(45)

The proof can be worked out as in [22, Proposition (3.7)] and [29, Proof of

Lemma 4.5], by applying Lemma 2.3.

Lemma 2.5. [27, Lemma (3.4)] Let r ∈ Z. We define a filtration

fîlr(Olog
X |̂Y

) on Olog
X |̂Y

by

fîlr(Olog
X |̂Y

) := τ−1(O
X |̂Y )⊗τ−1(OX) filr(OlogX )(46)

(where filr(OlogX ) is defined by Kato-Nakayama as Im{τ−1(OX) ⊗Z

(
⊕r

j=1 Symj
Z
X) −→ OlogX }). Then, the canonical map

τ−1(Mgp
X /O∗

X) ∼= 
X/τ
−1(OX) ⊆ fil1(OlogX )/fil0(OlogX )

induces the following isomorphism

τ−1(O
X |̂Y )⊗Z τ

−1(Symr
Z(Mgp

X /O∗
X))

∼=−→ fîlr(Olog
X |̂Y

)/fîlr−1(Olog
X |̂Y

).(47)

Proof. By [27, Lemma (3.4)], for any r ≥ 0, we have an isomorphism

τ−1(OX)⊗Z τ
−1(Symr

Z(Mgp
X /O∗

X))
∼=−→ filr(OlogX )/filr−1(OlogX ).(48)

So,

τ−1(O
X |̂Y )⊗Z τ

−1(Symr
Z(Mgp

X /O∗
X)) ∼=

τ−1(O
X |̂Y )⊗τ−1(OX)

(
τ−1(OX)⊗Z τ

−1(Symr
Z(Mgp

X /O∗
X))

)

and, by (48), this is isomorphic to

τ−1(O
X |̂Y )⊗τ−1(OX) filr(OlogX )/filr−1(OlogX ).(49)
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Now, since the functor τ−1(O
X |̂Y ) ⊗τ−1(OX) (−) is right exact, it follows

that (49) is isomorphic to fîlr(Olog
X |̂Y

)/fîlr−1(Olog
X |̂Y

). �

Let us assume now that i : Y ↪→ X is a locally closed immersion (not

necessarily exact). We consider, for any n ∈ N, the n−th log infinitesimal

neighborhood (Yn, Nn) of Y in X (see §0.4) and the exact locally closed

immersions Y ↪→ Yn ↪→ X |̂Y , where (X |̂Y, N̂) is the log formal tube of X

along Y (Definition-Lemma 0.9). We repeat the construction of the Kato-

Nakayama space (§0.5) for the analytic log formal tube X |̂Y . We define

the sheaf 
̂ of abelian groups on the topological space (X |̂Y )log = Y log

as the fiber product of 
Y and τ−1N̂gp over τ−1Ngp. It represents the

“sheaf of logarithms of local sections of τ−1N̂gp ”. We have the following

commutative diagram of sheaves of abelian groups on Y log,

0 −→ 2πiZ −→ 
̂
exp−→ τ−1N̂gp −→ 0

‖ ↓ ↓
0 −→ 2πiZ −→ 
Y

exp−→ τ−1Ngp −→ 0

‖ ↓ cY ↓
0 −→ 2πiZ −→ Cont(−, iR) −→ Cont(−,S1) −→ 0

Moreover, we also have the following commutative diagram with exact rows,

0 −→ 2πiZ −→ τ−1O
X |̂Y

exp−→ τ−1O∗
X |̂Y −→ 0

‖ ↓ ↓
0 −→ 2πiZ −→ 
̂

exp−→ τ−1N̂gp −→ 0

Now, since Y ↪→ X |̂Y is exact (by Definition-Lemma 0.9), then

τ−1N̂gp/τ−1O∗
X |̂Y
∼= τ−1(Ngp/O∗

Y ) as sheaves on Y log. Therefore, we get

the following exact sequence

0 −→ τ−1O
X |̂Y

h−→ 
̂
exp−→ τ−1(Ngp/O∗

Y ) −→ 0.(50)

Definition 2.6. We define the sheaf of τ−1(O
X |̂Y )−algebras

Olog
X |̂Y

:= (τ−1(O
X |̂Y )⊗Z SymZ(
̂))/A(51)
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with the same notations and meanings as in [27, §(3.2)], where A is the

ideal locally generated by sections of the form f ⊗1−1⊗h(f), for f a local

section of τ−1(O
X |̂Y ).

Then, in the case when i is a locally closed immersion, we can de-

fine the ringed topological space (X |̂Y )log to be the topological space Y log

endowed with sheaf of rings Olog
X |̂Y

defined above. Now, if i is an exact

closed immersion, we can compare the sheaves in Definitions 2.2 and 2.6.

We have a well defined morphism of sheaves of O
X |̂Y−algebras on Y log,

Φ: τ−1(O
X |̂Y ) ⊗τ−1OX

OlogX −→ (τ−1(O
X |̂Y ) ⊗Z SymZ(
̂))/A. By working

locally on Y log, if x ∈ Y , y ∈ Y log are such that τ(y) = x, from the ex-

act sequence (50) and by using arguments as in [27, Lemma (3.3)], we get


̂y
∼= τ−1(O

X |̂Y )y⊕Z⊕n. So, the stalk at y of the right hand side is isomor-

phic, as O
(X |̂Y ),x

−algebra, to the polynomial ring O
(X |̂Y ),x

[T1, ..., Tn]. But,

since the closed immersion i is exact, from Lemma 2.3 we also have that

the stalk at y of the left hand side is isomorphic to O
(X |̂Y ),x

[T1, ..., Tn] and

we conclude that Φ is an isomorphism.

Let us assume now that i is a closed immersion satisfying condition ()),

i.e. such that it admits a factorization Y
i′
↪→ X ′ f ′−→ X into an exact closed

immersion i′ and a log étale map f ′. Since Yn coincides with the n−th log

infinitesimal neighborhood of Y in X ′, we get that the sheaf Olog
X |̂Y

coincides

with Olog
X ′̂|Y

, by construction. Later we will use this fact, since condition ())

is always étale locally satisfied in the case of a locally closed immersion.

Definition 2.7. In the previous notations, for any q ∈ N, 0 ≤ q ≤
rkZω

1
X , we define the following sheaf on Y log

ωq,log
X |̂Y

:= Olog
X |̂Y
⊗τ−1(OX) τ

−1(ωqX)(52)

where Olog
X |̂Y

is as in Definition 2.6.

Since X is log smooth over S, it follows that ωqX is a locally free OX−
module of finite type, and so ωq,log

X |̂Y
is a locally free Olog

X |̂Y
−module of finite

type. Moreover, by definition ofOlog
X |̂Y

as quotient of τ−1(O
X |̂Y )⊗ZSymZ(
̂),
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we see that there exists a unique derivation d̂1 : Olog
X |̂Y

−→ ω1,log

X |̂Y
which

extends τ−1(O
X |̂Y )

d−→ ω1
X |̂Y and satisfies d̂1(x) = dlog(exp(x)), for each

element x ∈ 
̂. This d̂1 can be extended to get a differential

d̂q : ωq,log
X |̂Y
−→ ωq+1,log

X |̂Y
.(53)

Therefore, we obtain a complex ω
.,log

X |̂Y
.

3. Formal Poincaré Residue Map

In this section, we give a “formal version” of the Poincaré Residue map

given by Deligne ([10, (3.1.5.2)]). We consider an fs log scheme Y , with log

structure MY , and an exact closed immersion i : Y ↪→ X, where X is an

fs log smooth log scheme, with log structure MX . We also suppose that

the underlying scheme of X is smooth over S, and its log structure MX is

given by a normal crossing divisor D ↪→ X, i.e. MX = j∗O∗
U ∩ OX ↪→ OX ,

where j : U = X −D ↪→ X is the open immersion. Let Xan, Y an be the log

analytic spaces associated to X and Y , which we will simply denote by X,

Y , when no confusion can arise.

We take the log De Rham complex ω
.

X = Ω
.

X(logMX) = Ω
.

X(logD). Its

completion ω
.

X |̂Y , along the closed subscheme Y of X, satisfies

ωi
X |̂Y
∼= ωiX ⊗OX

O
X |̂Y

for each i, 0 ≤ i ≤ n = dimX, because the OX−modules ωiX are coherent.

We denote by d̂i the differential ωi
X |̂Y −→ ωi+1

X |̂Y
of the complex ω

.

X ⊗OX

O
X |̂Y . We consider the weight filtration W. on ω

.

X ([10, (3.1.5.1)]): each

term Wk(ω
i
X) = Ωi−kX ∧ ωkX is a locally free OX−module and the map

Wk(ω
i
X) −→ ωiX is injective, for each 0 ≤ k ≤ i ≤ n. Now, since i is an

exact closed immersion, by Definition 0.6 the log formal tube of X along Y

coincides with the classical formal completion. So, from [30, §9, Theorem

55, Corollary 1], O
X |̂Y is flat over OX . Therefore we get that the morphism

Wk(ω
i
X)⊗OX

O
X |̂Y −→ ωiX ⊗OX

O
X |̂Y = ωi

X |̂Y
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is also injective. Then, we define an increasing filtration Ŵ. on ω
.

X |̂Y , by

setting

Ŵk(ω
i
X |̂Y ) =: Wk(ω

i
X)⊗OX

O
X |̂Y

for each 0 ≤ k ≤ i ≤ n.

Since Ŵk(ω
i
X |̂Y ) = Im{ωkX ⊗OX

Ωi−kX ⊗OX
O
X |̂Y

∧⊗id−→ ωiX ⊗OX
O
X |̂Y }, we

can write the term Ŵk of the filtration as ωkX ∧ Ωi−k
X |̂Y

, where Ω
.

X |̂Y is the

completion of the classical De Rham complex Ω
.

X along Y . Moreover, we

note that Ŵk(ω
i
X |̂Y ) is a locally free O

X |̂Y−submodule of ωi
X |̂Y , for each i.

We suppose now that, locally at a point x ∈ Y ↪→ X, the normal crossing

divisor D is the union of smooth irreducible components D = D1 ∪ ...∪Dr,

where each component Di is locally defined by the equation zi = 0 (for a

local coordinate system {z1, ..., zn} of X at x). Let Sk be the set of strictly

increasing sequences of indices σ = (σ1, ..., σk), where σi ∈ {1, ..., r}, and let

Dσ = Dσ1 ∩ ... ∩ Dσk . Let Dk =
⋃
σ∈Sk Dσ and Dk be the disjoint union∐

σ∈Sk Dσ. Moreover, let πk : Dk −→ X be the canonical map. Then,

locally at x, the O
X |̂Y -submodule Ŵk(ω

i
X |̂Y ) of ωi

X |̂Y can be written as

Ŵk(ω
i
X |̂Y ) =

∑

σ∈Sk

Ωi−k
X |̂Y
∧ dlogzσ1 ∧ ... ∧ dlogzσk

for each 0 ≤ i ≤ n. Therefore, the elements of Ŵk(ω
i
X |̂Y ) are locally linear

combinations of terms η ∧ dlogzσ1 ∧ ... ∧ dlogzσk , with η ∈ Ωi−k
X |̂Y

.

Let Yk = Dk ∩ Y , and Y k =
∐
σ∈Sk(Yσ), with Yσ = Dσ ∩ Y . We have

the following cartesian diagram

Y k ↪→ Dk

πkY ↓ πk↓
Y

i
↪→ X

(54)

Since each intersectionDσ is smooth over S, we can take the sheaf of classical

differential i−forms Ωi
Dk over Dk; then, πk∗ (Ω

i
Dk) ∼=

⊕
σ∈Sk(iσ∗ΩiDσ

), where

iσ : Dσ ↪→ X.

So, (πk∗ (Ω
i
Dk))̂|Y

∼= (
⊕

σ∈Sk(iσ∗ΩiDσ
))̂|Y
∼=

⊕
σ∈Sk(iσ∗ΩiDσ

)̂|Y .



238 Bruno Chiarellotto and Marianna Fornasiero

From the cartesian diagram

Yσ ↪→ Dσ

↓ iσ↓
Y

i
↪→ X

(55)

we deduce the map îσ : Dσ |̂Yσ ↪→ X |̂Y . From [17, (Corollaire (10.14.7))], it

follows that

(iσ∗Ω
i
Dσ

)̂|Y
∼= îσ∗(Ω

i
Dσ |̂Yσ

)

and then

(πk∗Ω
i
Dk )̂|Y

∼=
⊕

σ∈Sk

îσ∗(Ω
i
Dσ |̂Yσ

).(56)

3.1. The Formal Poincaré Residue

In [10, (3.1.5.2)], Deligne defines a map of complexes

Res
.
: GrWk (Ω

.

X(logD)) −→ πk∗Ω
.

Dk(ε
k)[−k](57)

for each k ≤ n, called the Poincaré Residue map, where εk is defined as

in [10, (3.1.4)], and represents the orientations of the intersections Dσ of

k components of D. Given a local section η ∧ dlogzσ1 ∧ ... ∧ dlogzσk ∈
GrWk (ΩpX(logD)), with η ∈ Ωp−kX , the map Res sends it to η|Dσ

⊗
(orientationσ1...σk). Deligne proved that Res is an isomorphism of com-

plexes ([10]). Moreover, from [10, (3.1.8.2)], the following sequence of iso-

morphisms

Rkj∗C ∼= �k(j∗Ω
.

U ) ∼= �k(Ω
.

X(logD)) ∼= εkX

implies that there exists an identification

εkX
∼= C⊗Z

k∧
Mgp
X /O∗

X(58)

(MX is the log structure on X associated to the normal crossing divisor D,

and εkX is the direct image of εk via the map πk : Dk −→ X [10, (3.1.4.1)]).

Using diagram (54), and (56), we can extend the Deligne Poincaré Residue

map to the formal case. Indeed, we consider the map

R̂es
p
: GrŴk (ωp

X |̂Y
) ∼= GrŴk (ωpX ⊗OX

O
X |̂Y ) −→ π̂k∗Ω

p−k
Dk |̂Y k

(εk)(59)



Cohomologies of Log-Schemes 239

for each k ≤ p ≤ n, which is locally given by

η ∧ dlogzσ1 ∧ ... ∧ dlogzσk �−→ η|(Dσ |̂Yσ)
⊗ (orientationσ1...σk)

where η ∈ Ωp−k
X |̂Y

. This is the completion R̂es
p

of the Deligne Poincaré

Residue map (57), in degree p, along the closed subscheme Y . We see that

the maps R̂es
p

induce the following OX− linear isomorphism of complexes

R̂es
.

: GrŴk (ω
.

X |̂Y )
∼=−→ π̂k∗Ω

.

Dk |̂Y k
(εk)[−k](60)

for each k ≤ n.

To this end, we briefly recall the classical construction of the Deligne

Poincaré Residue map. So, given σ ∈ Sk, we consider the application

ρσ : Ωp−kX −→ GrWk (ωpX)(61)

which is locally defined by

ρσ(η) =: η ∧ dlogzσ1 ∧ ... ∧ dlogzσk .(62)

This map does not depend on the choice of the local coordinates zi ([12,

3.6.6]). Moreover we have that

ρσ(zσi · β) = 0 and ρσ(dzσi ∧ γ) = 0

for all sections β ∈ Ωp−kX , and γ ∈ Ωp−1−k
X . Therefore ρσ factorizes into

Ωp−kX −→ iσ∗Ω
p−k
Dσ
⊗ (orientationσ1...σk)

ρσ↓ ↙ρσ
GrWk (ωpX).

(63)

Thus, all these maps being locally compatible with the differentials, the

maps ρσ define a morphism of complexes

ρ
.
: πk∗Ω

.

Dk(ε
k)[−k] −→ GrWk (ω

.

X).(64)

This morphism is locally defined by (62), and it is a global morphism on X:

it is an isomorphism of complexes. Its inverse isomorphism GrWk (ω
.

X) −→
πk∗Ω

.

Dk(ε
k)[−k] is the Deligne Poincaré Residue map Res

.
([12, (3.6.7.1)]).

We can see that Res
.
is an OX−linear morphism of complexes: so one can
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deduce that the maps R̂es
p

in (59), are compatible with the differentials in-

duced from ω
.

X |̂Y and Ω
.

Dk |̂Y k
[−k], because R̂es

p
comes from the OX−linear

map Resp by completion along Y . Indeed, we note that

GrŴk (ω
.

X |̂Y ) ∼= GrWk (ω
.

X)⊗OX
O
X |̂Y

and, from (56), we have that

(πk∗Ω
.

Dk(ε
k)[−k])̂|Y ∼=

⊕

σ∈Sk

îσ∗(Ω
.

Dσ |̂Yσ
)(εk)[−k] ∼= π̂k∗Ω

.

Dk |̂Y k
(εk)[−k].

So one can conclude that the morphism of complexes R̂es
.

(60) is an iso-

morphism, for each k ≤ n.

We can also construct the morphism R̂es
.

by using a formal version of

the classical construction of Res
.
, described in (61), (62), (63), (64). Indeed,

we can define the map

ρ
σ|̂Y : Ωp−k

X |̂Y
−→ GrŴk (ωp

X |̂Y
)(65)

which is the completion along Y of (61), and is locally defined as in (62),

but with η ∈ Ωp−k
X |̂Y

. Then, we can see that this map ρ
σ|̂Y factorizes into

Ωp−k
X |̂Y

−→ iσ∗Ω
p−k
Dσ |̂Yσ

⊗ (orientationσ1...σk)

ρσ↓ ↙ρσ

GrŴk (ωp
X |̂Y

)

(66)

which is the formal analogue of (63). We conclude that there exists an

isomorphism of complexes on X

ρ
.

|̂Y : πk∗Ω
.

Dk |̂Y k
(εk)[−k] −→ GrŴk (ω

.

X |̂Y ).(67)

In view of this construction, we can give the following

Definition 3.1. In the previous notation, we define the OX−linear

morphism of complexes

R̂es
.

: GrŴk (ω
.

X |̂Y ) −→ π̂k∗Ω
.

Dk |̂Y k
(εk)[−k](68)

as the inverse morphism of ρ
.

|̂Y (67).
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3.2. Cohomology of ω
.

X |̂Y
We consider the case when X is smooth over S, with log structure given

by a normal crossing divisor D on X, and Y is a closed subscheme of X with

induced log structure. Under the same notations of the previous section,

from the classical formal Poincaré Lemma ([18, IV, Theorem 2.1] we get

that Ω
.

Dk |̂Y k
is a resolution of the constant sheaf CYk on Yk. Then, from the

isomorphism R̂es
.

, and from (58), we deduce that,

�q(GrWk (ω
.

X |̂Y )) ∼= CY k ⊗C ε
k
X
∼= CY k ⊗Z

k∧
Mgp
X /O∗

X if q = k(69)

and

�q(GrWk (ω
.

X |̂Y )) = 0 if q �= k.(70)

Therefore, we deduce that, for each point x ∈ Y ∩ D, there exists an iso-

morphism

�q(ω
.

X |̂Y )x ∼= C⊗Z

q∧
(Mgp

X /O∗
X)x.(71)

4. Formal Log Poincaré Lemma

In this section, we generalize the logarithmic version of the Poincaré

Lemma, proved by Kato-Nakayama ([27, Theorem (3.8)]) in the case of an

(ideally) log smooth log analytic space (i.e. a log analytic space satisfying

the assumption (0.4) in [27]). We extend this result to the case of a general

fs log analytic space over S, and prove the following

Theorem 4.1. Let i : Y ↪→ X be a locally closed immersion of fs log

schemes of Zariski and finite type over S, where X is log smooth over S.

Let ω
.,log

(X |̂Y )an
be the complex introduced in §2. Then, there exists a quasi-

isomorphism

CY log

∼=−→ ω
.,log

(X |̂Y )an
.(72)

To prove this theorem we first need some preliminary results. The meth-

ods of the proof are similar to those of [27]. In the sequel, we will indicate
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with the same notation the algebraic log scheme and its associated log an-

alytic space (without using the (−)an notation).

Let us suppose that the closed immersion i is exact. Let P −→ MX be

a chart, with P an fs monoid. Let p be a prime ideal of P which is sent to

0 ∈ OX under P −→MX −→ OX . Let T be the fs log analytic space whose

underlying space is the same as that of X but whose log structure MT is

associated to P � p −→ OT . Similarly, let Z be the closed log subspace of

T whose underlying space is the same as that of Y and whose log structure

is the inverse image of MT . We have the following commutative diagram of

fine log analytic spaces

(Y, i∗MX)
i
↪→ (X,MX)

↓ ↓
(Z, i∗TMT )

iT
↪→ (T,MT )

(73)

where the vertical maps are the identity over the underlying analytic spaces.

We also note that, since the closed immersions i and iT are both exact, the

log formal analytic space T |̂Z coincides with the classical formal analytic

space X |̂Y and so

ω
.

T |̂Z
∼= ω

.

T ⊗OX
O
X |̂Y .(74)

We introduce now a filtration on the complex ω
.

X |̂Y . So, for q, r ∈ Z,

let Fp
r ω

q
X be the OX−subsheaf of ωqX defined by Fp

r ω
q
X = 0, if r < 0;

Fp
r ω

q
X = Im{ωrX ⊗ ωq−rT −→ ωqX}, if 0 ≤ r ≤ q; Fp

r ω
q
X = ωqX , if q ≤ r ([27,

Filr in Lemma (4.4)]).

On the complex ω
.

X |̂Y we consider the induced filtration

F̂p
r ω

.

X |̂Y = Fp
r ω

.

X ⊗OX
O
X |̂Y .

Lemma 4.2. [27, Lemma (4.4)] In the previous context,

(1) F̂p
r ω

.

X |̂Y is a subcomplex of ω
.

X |̂Y .

(2) For any r ∈ Z, there is an isomorphism of complexes

r∧
(P gp/(P � p)gp)⊗Z ω

.

T |̂Z [−r]
∼=−→ F̂p

r ω
.

X |̂Y /F̂
p
r−1ω

.

X |̂Y(75)
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whose degree q part is given by

(p1 ∧ ... ∧ pr)⊗Z (η ⊗OX
f) �−→ dlog(p1) ∧ ... ∧ dlog(pr) ∧ (η ⊗OX

f)

where p1, ..., pr ∈ P gp, η⊗OX
f ∈ ωq

T |̂Z
∼= ω

.

T ⊗OX
O
X |̂Y . The differential of

the left side is equal to (id⊗Z d̂
.
), where d̂

.
is the differential of ω

.

T |̂Z .

(3) Let a ∈ P gp and assume that a does not belong to (P � p)gp. Then the

complex (ωq
X |̂Y

)q∈Z with differential

da : ωq
X |̂Y
−→ ωq+1

X |̂Y
; x �−→ d log(a) ∧ x+ dx

is acyclic.

Proof. (2). By applying the functor (−)⊗O
X |̂Y to the exact sequence

of coherent sheaves 4.4.1 in [27, Lemma (4.4)], and using (74), we have

0 −→ ω1
T |̂Z −→ ω1

X |̂Y −→ OX |̂Y ⊗Z P
gp/(P � p)gp −→ 0.

(3). Since da(F̂
p
r ω

q

X |̂Y
) ⊂ F̂p

r+1ω
q+1

X |̂Y
, it is sufficient to prove that, for each

r ∈ Z, the complex (F̂p
r+qω

q

X |̂Y
/F̂p

r+q−1ω
q

X |̂Y
)q∈Z with differential induced

by da is acyclic. But by (2), this complex is isomorphic to the complex

((
∧r+q
Q H) ⊗Q ω−r

T |̂Z
)q∈Z with differential x ⊗ y �−→ (a ∧ x) ⊗ y, where H =

(P gp/(P � p)gp)⊗Z Q. �

Let P be an fs monoid and let X be the log analytic space Spec C[P ],

endowed with log structure P −→ OX . Let i : Y ↪→ X be an exact closed

immersion, where Y is a fine log analytic space endowed with the induced

log structure. We fix a point x ∈ Y . Since i : Y ↪→ X is exact, via the

canonical isomorphism

ω1
X |̂Y
∼= C[P ]̂|Y ⊗Z P

gp

the map P gp −→ ω1
X |̂Y , sending p ∈ P gp to dlog p, corresponds to the map

sending p to 1 ⊗ p ([31, §3]). The image of this map is contained in the

closed 1−forms. Therefore, we get a map

Mgp
X,x/O∗

X,x
∼= P gp −→ �1(ω

.

X |̂Y )
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and, by cup product, we deduce a map

q∧
(Mgp

X,x/O∗
X,x)

∼=
q∧
P gp −→ �q(ω

.

X |̂Y ).(76)

Let b be the prime ideal of P which is the inverse image of the maximal

ideal of OX,x under P −→ OX,x. We denote by X(b) the closed analytic

subspace Spec (C[P ]/(b)) of X, endowed with log structure induced by that

of X. The underlying analytic space of X(b) is equal to Spec C[P � b], and

x belongs to its smooth open analytic subspace Spec C[(P �b)gp]. Let Y (b)

be the fiber product

Y (b) ↪→ X(b)

↓ ↓
Y ↪→ X

(77)

which is a closed subspace of X(b). Moreover, let (X |̂Y )(b) be the comple-

tion X(b)̂|Y (b) of X(b) along its closed subspace Y (b), and let ω
.

(X |̂Y )(b)
be

the formal log complex of (X |̂Y )(b), with differential maps d̂
.

b.

We denote by (O
(X |̂Y )(b)

)d̂
1
b=0 the kernel of d̂1

b: O
(X |̂Y )(b)

−→ ω1
(X |̂Y )(b)

.

Lemma 4.3. [27, Lemma (4.5)] In the previous context,

(1) there exists an isomorphism

C
∼=−→ (O

(X |̂Y )(b)
)
d̂1b=0
x(78)

and a quasi-isomorphism

C
∼=−→ (Ω

.

(X |̂Y )(b)
)x(79)

(2) Let bω
.

X |̂Y be the subcomplex of ω
.

X |̂Y whose degree q part is defined to

be the OX−subsheaf of ωq
X |̂Y

generated by bωq
X |̂Y

, with b ∈ b. For any q, the

map

q∧
(Mgp

X /O∗
X)x ⊗Z C −→ �q(ω

.

X |̂Y /bω
.

X |̂Y )x(80)
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which is induced by the map (76), is bijective.

(3) For any ideal a of P such that a ⊂ b, the stalk at x of the canonical map

of complexes

ω
.

X |̂Y /aω
.

X |̂Y −→ ω
.

X |̂Y /bω
.

X |̂Y(81)

is a quasi-isomorphism (where the definition of aω
.

X |̂Y is similar to that of

bω
.

X |̂Y in (2)).

Proof. We first note that the complex ω
.

X |̂Y /aω
.

X |̂Y is isomorphic to

ω
.

(X |̂Y )(a)
. Indeed, since a is an ideal of the monoid P , by [27, Lemma (3.6),

(2)], ω1
X/aω

1
X
∼= ω1

X(a), and it follows that

ω
.

X |̂Y /aω
.

X |̂Y
∼= ω

.

X/aω
.

X ⊗OX
O
X |̂Y
∼=

ω
.

X(a) ⊗OX
O
X |̂Y
∼= ω

.

X(a)̂|Y (a)
= ω

.

(X |̂Y )(a)
.

We start to prove (1) and (2). We may restrict ourselves to the open neigh-

bourhood Spec C[(P � b)gp] of x in X(b), and consider the restriction of

Y (b) to this open neighborhood. So, x belongs to the closed subspace

Y (b)∩Spec C[(P�b)gp] of the non-singular analytic space Spec C[(P�b)gp].

In this local situation, from [18, IV Theorem 2.1] we know that the

complex Ω
.

X(b)̂|Y (b)
is a resolution of the constant sheaf CY (b) over Y (b).

Therefore, the stalk at x of (O
(X |̂Y )(b)

)d̂
1
b=0 is isomorphic to C, and there is

a quasi-isomorphism

C
∼=−→ (Ω

.

X(b)̂|Y (b)
)x

so (1) is proved. Now, we apply Lemma 4.2 by taking X(b), P , b as X, P

and p. We consider �q of both sides of Lemma 4.2, (2), and take the stalk at

x. Then, �q(F̂b
r (ω

.

(X |̂Y )(b)
)/F̂b

r−1(ω
.

(X |̂Y )(b)
))x is isomorphic to

∧r P gp/(P �

b)gp ⊗Z �q−r(Ω
.

X(b)̂|Y (b)
)x, which is isomorphic to

∧r P gp/(P � b)gp ⊗Z C

if q = r and is zero if q �= r. Therefore, since ω
.

X |̂Y /bω
.

X |̂Y
∼= ω

.

(X |̂Y )(b)
, the

stalk at x of �q(ω
.

X |̂Y /bω
.

X |̂Y ) is isomorphic to
∧q(Mgp

X,x/O∗
X,x)⊗ZC, so (2)

is proved.

We prove (3) in four steps (see [27, Proof of Lemma (4.5)]).
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Step 1. We show that to prove (3) we may assume that a is a prime

ideal. Assume there exists a for which (81) is not a quasi-isomorphism.

Since Z[P ] is a Noetherian ring, the set of such a has a maximal element q.

We show that q is a prime ideal. To this end, we use similar arguments to

those in [27, Proof of Lemma (4.5), Step 1.], where, in our context we have to

take C equal to the complex ω
.

X |̂Y and p = {b ∈ P ; bn ∈ q, for somen ≥ 1}.
Then we may assume that q is a primary ideal and by [27, Lemma (4.2), (2)],

there exists a ∈ P , such that {x ∈ P ; ax ∈ q} = p. Hence we are left with

the case a ∈ p and to prove the acyclicity of the complex q′ω
.

X |̂Y /qω
.

X |̂Y ,

where q′ = q ∪ Pa. Now, we note that it is isomorphic to the complex

(ωq
(X |̂Y )(p)

)q∈Z with differential x �−→ d log(a)∧x+dx, and so the acyclicity

follows from Lemma 4.2, (3).

Step 2. We show that to prove (3) for the pair (P, a), it is enough to

prove (3) for the pairs (P � p,∅) for prime ideals p ⊂ b of P (∅ being the

empty ideal of P � p).

By Step 1, we may assume a is a prime ideal of P . Let P ′ = P � a,

X ′ = Spec (C[P ′])an with log structure associated to P ′ −→ OX′ . Moreover,

let Y ′ = Y ×XX ′. Then the underlying analytic space of X(a) (resp. X(b),

Y (a), Y (b)) coincides with that of X ′ = X ′(∅) (resp. that of X ′(b′), Y ′,
Y ′(b′), where b′ = P ∩b). So, by using the graded terms with respect to the

filtration F̂a on ω
.

(X |̂Y )(a)
and ω

.

(X |̂Y )(b)
and by applying Lemma 4.2, (2),

one can repeat [27, Proof of Lemma (4.5), Step 2] and conclude.

Step 3. We prove (3) in the particular case where P = Nr, for some

r ≥ 0. In this situation, for any prime ideal p of P , P � p is isomor-

phic to Ns, for some s ≤ r. Thus we may assume P = Nr and a = ∅

by Step 2. We have X = Cr as an analytic space, with canonical log

structure given by a normal crossing divisor D ↪→ X, and Y is a closed

analytic subspace of X, with induced log structure. Then, we have the

isomorphism of complexes ω
.

X |̂Y
∼= Ω

.

X(logD) ⊗OX
O
X |̂Y . Therefore, we

are reduced to the case analyzed in §3.2, and we can use the isomorphism

(71) to describe the stalk at x of �q(ω
.

X |̂Y ). So, by applying Lemma

4.3, (2), �q(ω
.

X |̂Y /bω
.

X |̂Y )x ∼=
∧q(Mgp

X /O∗
X)x ⊗Z C, which is isomorphic

to �q(ω
.

X |̂Y )x, via (71).
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Step 4. Now, we prove (3) in the general situation. By Step 2, we may

assume a = ∅. For a non-empty ideal I of the monoid P , we can consider

the toric variety BI(Spec C[P ]), which we get from X by “blowing-up” along

I as in [28, §I, Theorem 10]. It is endowed with a canonical log structure

([25, (3.7)(1)]).

Note. From [26, Proposition (9.8)], and [28, §I, Theorem 11], it is pos-

sible to choose an ideal Ĩ of P , such that, if X̃ = BĨ(Spec C[P ]), with log

structure M̃ , then, for any y ∈ X̃, (M̃/O∗
X̃

)y is isomorphic to Nr(y), for

some r(y) ≥ 0. Let f : X̃ −→ X be the proper map, corresponding to

the “blowing-up” of X along Ĩ. Then, locally, X̃ is isomorphic to an open

sub log analytic space of Spec C[Nr] endowed with canonical log structure

Nr −→ C[Nr].

Then, we consider the following cartesian diagram

Ỹ
ĩ
↪→ X̃

f|Y ↓ f↓
Y

i
↪→ X

(82)

where Ỹ = f−1(Y ) is a closed subspace of X̃, and we suppose it to be

endowed with the inverse image of the log structure M̃ . We denote by f̂

the morphism f̂ : X̃ |̂Ỹ −→ X |̂Y (deduced from the cartesian diagram (82)).

We also note that the vertical maps in (82) are log-étale, so

ω
.

X̃
∼= f∗ω

.

X .(83)

Then, from (83), we get

ω
.

X̃ |̂Ỹ
∼= f̂∗ω

.

X |̂Y .(84)

Moreover, by [28, §I, Corollary 1. c)], there exists a quasi-isomorphism

OX
∼=−→ Rf∗OX̃ .(85)

Since f is proper, and X, X̃ are schemes of finite type over S, applying the

fundamental theorem of a proper morphism for analytic spaces which come
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from algebraic varieties [18, §I, Proposition (6.2)] to the structural sheaf

OX̃ , we get

(Rf∗OX̃ )̂|Y
∼=−→ Rf̂∗(OX̃ |̂Ỹ )(86)

and, from the isomorphism (85), we get

O
X |̂Y

∼=−→ Rf̂∗(OX̃ |̂Ỹ ).(87)

Therefore, since the OX̃ -module (resp. OX−module) ωq
X̃

(resp. ωqX) is free

of finite rank, for any q, from (84) and (87), we finally get an isomorphism

in the derived category

ω
.

X |̂Y
∼= Rf̂∗ω

.

X̃ |̂Ỹ .(88)

Consider now any x̃ ∈ Ỹ such that f(x̃) = x. Let b̃ be the prime ideal of Nr

equal to the inverse image of the maximal ideal of OX̃,x̃ under Nr −→ OX̃,x̃.
We denote by a the ideal of OX̃,x̃ which is the inverse image of the ideal

b under f . We have a ⊂ b̃. We also note that b̃ depends on the choice of

x̃ lying over x, but a depends only on x ∈ X. We consider the following

commutative diagram

(ω
.

X |̂Y )x −→ (ω
.

X |̂Y /bω
.

X |̂Y )x
∼=↓ ↓

(Rf̂∗ω
.

X̃ |̂Ỹ )x −→ (Rf̂∗(ω
.

X̃ |̂Ỹ /aω
.

X̃ |̂Ỹ ))x

(89)

Now, for every x̃ ∈ f−1(x), since we have just proved (3) in the case when

P = Nr, r ≥ 0, and ∅, a ⊂ OX̃,x̃ are two ideals contained in b̃, we have

that �q(ω
.

X̃ |̂Ỹ )x̃ −→ �q(ω
.

X̃ |̂Ỹ /aω
.

X̃ |̂Ỹ )x̃ is an isomorphism. It follows that

�q(ω
.

X̃ |̂Ỹ ) −→ �q(ω
.

X̃ |̂Ỹ /aω
.

X̃ |̂Ỹ ) is an isomorphism on the fiber f−1(x):

then, by proper base change for complexes of sheaves ([24, §III.6]), the

lower horizontal arrow in (89) is an isomorphism. Therefore, the map

�q(ω
.

X |̂Y )x −→ �q(ω
.

X |̂Y /bω
.

X |̂Y )x(90)

is injective. Moreover, by Lemma 4.3, (1), �0(ω
.

X |̂Y /bω
.

X |̂Y )x ∼=

�0(ω
.

(X |̂Y )(b)
)x

∼=−→ C, and also �0(ω
.

X̃ |̂Ỹ /b̃ω
.

X̃ |̂Ỹ )x̃ ∼= �0(ω
.

(X̃ |̂Ỹ )(b̃)
)x̃ ∼= C,
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for any point x̃ lying over x, with associated ideal b̃. Thus, from the follow-

ing composition map

C ∼= �0(ω
.

X |̂Y /bω
.

X |̂Y )x −→ �0(Rf̂∗(ω
.

X̃ |̂Ỹ /aω
.

X̃ |̂Ỹ ))x −→

�0(ω
.

X̃ |̂Ỹ /aω
.

X̃ |̂Ỹ )x̃ −→ C

we get that the map

�0(ω
.

X |̂Y /bω
.

X |̂Y )x −→ �0(Rf̂∗(ω
.

X̃ |̂Ỹ /aω
.

X̃ |̂Ỹ ))x(91)

is injective. Now, from diagram (89), since the composed map (ω
.

X |̂Y )x −→
(Rf̂∗(ω

.

X̃ |̂Ỹ /aω
.

X̃ |̂Ỹ ))x is an isomorphism, it follows that the map (91) is also

surjective, and so it is an isomorphism.

Therefore, from diagram (89), the map

�0(ω
.

X |̂Y )x −→ �0(ω
.

X |̂Y /bω
.

X |̂Y )x(92)

is also an isomorphism, and we can conclude that �0(ω
.

X |̂Y )x ∼= C.

Now, the isomorphism (80), factorizes through

q∧
(Mgp

X,x/O∗
X,x)⊗Z �0(ω

.

X |̂Y )x −→ �q(ω
.

X |̂Y )x −→ �q(ω
.

X |̂Y /bω
.

X |̂Y )x

and we can conclude that the map (90) is also surjective, and so it is an

isomorphism. �

From Lemma 4.3, we can deduce the following

Proposition 4.4. [27, Proposition (4.6)] Let Y be an fs log analytic

space over S, and let i : Y ↪→ X be an exact closed immersion of Y into

an fs log smooth log analytic space X. Then, for all q ∈ Z, there is an

isomorphism

q∧
(Mgp

X /O∗
X)|Y ⊗Z C

∼=−→ �q(ω
.

X |̂Y )(93)

induced by the map ˆdlog : Mgp

X |̂Y
−→ ω1

X |̂Y .
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Proof. Since the question is local on X, we may assume that X =

Spec C[P ], where P is an fs monoid. Let x ∈ Y , and let b ⊂ P be the inverse

image of the maximal ideal of OX,x. Now, by Lemma 4.3, (3),

�q(ω
.

X |̂Y )x ∼= �q(ω
.

X |̂Y /bω
.

X |̂Y )x

and, by Lemma 4.3, (2),

�q(ω
.

X |̂Y /bω
.

X |̂Y )x ∼=
q∧

(Mgp
X,x/O∗

X,x)⊗Z C

for each point x ∈ Y . �

Now, we use Lemma 4.3 and Proposition 4.4 to prove a “formal version”

of the logarithmic Poincaré Lemma.

Proof of Theorem 4.1. In the previous notation, let x ∈ Y , y ∈
Y log be such that τ(y) = x. Since the problem is local on Y , we may assume

that i satisfies condition ()) and consider a factorization Y
i′
↪→ X ′ g−→ X,

where i′ is an exact closed immersion. Since, by definition, ω
.,log

X |̂Y
= ω

.,log

X ′̂|Y
,

we can reduce to proving the statement in the case when i is an exact closed

immersion. In this case, let {t1, ..., tn} be a family of elements of 
X,x whose

image via the map expx : 
X,x −→Mgp
X,x/O∗

X,x is a Z−basis of Mgp
X,x/O∗

X,x.

Let R be the polynomial ring C[T1, ..., Tn]. From Lemma 2.3, the stalk

at y of Olog
X |̂Y

is isomorphic to O
X |̂Y,x[T1, ..., Tn], where each ti corresponds

to Ti. Therefore, we consider the C−linear homomorphism

R −→ Olog
X |̂Y,y

(94)

which sends Ti �−→ ti, for i = 1, ..., n. Since

C −→ Ω
.

R/C

is a quasi-isomorphism, it is sufficient to prove that the canonical map

Ω
.

R/C −→ ω
.,log

X |̂Y,y
(95)

is a quasi-isomorphism. To this end, we introduce a filtration on Ω
.

R/C as

follows: for any r ∈ Z, let Filr(Ω
.

R/C) be the subcomplex of Ω
.

R/C whose
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degree q part is the C−submodule of ΩqR/C generated by elements of the

type f · γ, with f ∈ R an element of degree ≤ r, and γ ∈
∧q(

⊕n
i=1 ZdTi).

We also introduce a filtration on ω
.,log

X |̂Y,y
: for any r ∈ Z, let Filr(ω

.,log

X |̂Y
)

be the subcomplex of ω
.,log

X |̂Y
whose degree q part Filr(ω

q,log

X |̂Y
) is defined as

Filr(ω
q,log

X |̂Y
) =: fîlr(Olog

X |̂Y
)⊗τ−1(OX) τ

−1(ωqX)

where fîlr(Olog
X |̂Y

) is the filtration defined in Lemma 2.5.

Then, by Lemma 2.5,

Filr(ω
.,log

X |̂Y
)/Filr−1(ω

.,log

X |̂Y
) ∼= τ−1

(
ω

.

X |̂Y ⊗Z Symr
Z(Mgp

X /O∗
X)

)

and, by Proposition 4.4, for any q,

�q
(
τ−1(ω

.

X |̂Y ⊗Z Symr
Z(Mgp

X /O∗
X))

)
∼=

C⊗Z τ
−1(

q∧
(Mgp

X /O∗
X)⊗Z Symr

Z(Mgp
X /O∗

X)).

On the other hand, Filr(Ω
.

R/C)/Filr−1(Ω
.

R/C) is the complex

q �−→ C⊗Z (

q∧ n⊕
i=1

ZTi)⊗Z Symr
Z(

n⊕
i=1

ZTi)

which is isomorphic to C⊗Z
∧q(Mgp

X /O∗
X)x ⊗Z Symr

Z(Mgp
X /O∗

X)x. The dif-

ferentials of this complex are zero.

Therefore, for any r ∈ Z, the canonical map Ω
.

R/C −→ ω
.,log

X |̂Y,y
induces a

quasi-isomorphism

Filr(Ω
.

R/C)/Filr−1(Ω
.

R/C)
∼=−→ Filr(ω

.,log

X |̂Y
)/Filr−1(ω

.,log

X |̂Y
)(96)

and this implies that the map Ω
.

R/C −→ ω
.,log

X |̂Y,y
is a quasi-isomorphism, for

each point y ∈ Y log. �



252 Bruno Chiarellotto and Marianna Fornasiero

5. Log De Rham and Log Betti Cohomologies

The goal of this section is to compare the Log Betti Cohomology

H
.
(Y log,C) of an fs log scheme Y , with its algebraic Log De Rham Co-

homology H
.
(Y, ω

.

X |̂Y ). Therefore, we begin with

Theorem 5.1. Let i : Y ↪→ X be a locally closed immersion of fs log

schemes of Zariski and finite type over S, where X is log smooth over S.

Then, for any q ∈ Z, there exists an isomorphism

Hq(Y log,C) ∼= Hq(Y, ω
.

X |̂Y ) =: Hq
DR,log(Y/C).(97)

Proof. In the previous section, we have checked that Hq(Y log,C) ∼=
Hq(Y log, ω

.,log

X |̂Y
), for any q ∈ Z. So, we will first show that the Log Betti

Cohomology of Y is isomorphic to the analytic Log De Rham Cohomology

H
.
(Y an, ω

.

(X |̂Y )an
) (Proposition 5.2). Finally, we will check that the algebraic

log De Rham complex ω
.

X |̂Y is quasi-isomorphic to its associated analytic

log De Rham complex ω
.

(X |̂Y )an
(Theorem 5.3). �

Proposition 5.2. [27, (4.8), 4.8.5] Under the same assumptions as

in Theorem 5.1, there exists a quasi-isomorphism

ω
.

(X |̂Y )an

∼=−→ Rτ∗(ω
.,log

X |̂Y
).(98)

Proof. Since the problem is local on Y , we may assume that i satisfies

condition ()) and thus reduce to proving the statement for an exact closed

immersion. We apply [27, Lemma (1.5)], taking the constant sheaf C on

Y an. We have canonical isomorphisms

Rqτ∗CY log
∼= Rqτ∗τ

−1CY an ∼= C⊗Z

q∧
Mgp
Y /O∗

Y

where the sheaf Mgp
Y /O∗

Y is isomorphic to (Mgp
X /O∗

X)|Y , by (41). Moreover,

the following composed map

C⊗Z

q∧
(Mgp

X /O∗
X)|Y −→ �q(ω

.

(X |̂Y )an
) −→
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Rqτ∗CY log

∼=−→ C⊗Z

q∧
(Mgp

X /O∗
X)|Y(99)

is the identity map (where the second map comes from Theorem 4.1). There-

fore, since the first map is an isomorphism by Proposition 4.4, we can con-

clude. �

We now compare the algebraic log De Rham complex ω
.

X |̂Y with its

associated analytic log De Rham complex ω
.

(X |̂Y )an
, and show that they are

quasi-isomorphic.

Theorem 5.3. Under the same assumptions as in Theorem 5.1, let

g : Xan −→ X be the canonical morphism. If we consider the cartesian

diagram

Y an ian

↪→ Xan

gY ↓ g↓
Y

i
↪→ X

(100)

then the morphism

ω
.

X |̂Y −→ Rĝ∗ω
.

(X |̂Y )an
(101)

induces an isomorphism in cohomology

H
.
(Y, ω

.

X |̂Y )
∼=−→ H

.
(Y an, ω

.

(X |̂Y )an
).(102)

Proof. We can work locally on Y and assume that i satisfies condition

()). So, we reduce to proving the statement for an exact closed immersion.

Then, by working locally on X, we may assume that there exists a strict

étale morphism ϕ : X −→ Spec C[P ], for some fs monoid P . We divide the

proof into two steps:

1) We begin by proving the assertion in the case where P = Nr, for some

r ∈ N, i.e. in the case of a smooth scheme X over S, with log structure given

by a normal crossing divisor D ↪→ X. Then, by the formal Poincaré residue

isomorphism (60), for each k ≤ n, we have the following identifications

Hq(Y,GrWk (ω
.

X |̂Y )) ∼= Hq−k(Y, π̂k∗Ω
.

Dk |̂Y k
(εk)).(103)
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Moreover, by [18, §IV],

Hq−k(Y, π̂k∗Ω
.

Dk |̂Y k
(εk)) ∼= Hq−k(Y an, π̂k∗Ω

.

Dk,an |̂Y k,an
(εk)) ∼= Hq−k(Y k,an,C)

and so

Hq(Y,GrWk (ω
.

X |̂Y )) ∼= Hq(Y an,GrWk (ω
.

(X |̂Y )an
))

for each k, 0 ≤ k ≤ n. Therefore, we can conclude that the morphism (101)

induces the isomorphism H
.
(Y, ω

.

X |̂Y ) ∼= H
.
(Y an, ω

.

(X |̂Y )an
).

2) We now prove the assertion for a general fs monoid P . We take Ĩ and

BĨ(Spec C[P ]) as in the Note interpolated in the proof of Lemma 4.3. We

define X̃ as the base change of the morphism BĨ(Spec C[P ]) −→ Spec C[P ]

by the strict étale morphism X −→ Spec C[P ]. Let f : X̃ −→ X. We

consider the cartesian diagram (82), for the algebraic and analytic cases.

Then, by applying the same arguments as in the proof of Lemma 4.3, (84),

(87), (88), we can conclude that, in the algebraic setting,

ω
.

X |̂Y
∼= Rf̂∗ω

.

X̃ |̂Ỹ

and similarly, in the analytic setting,

ω
.

(X |̂Y )an
∼= Rf̂an∗ ω

.

(X̃ |̂Ỹ )an
.

Therefore, to prove the assertion it is sufficient to check that there exists

an isomorphism H
.
(Ỹ , ω

.

X̃ |̂Ỹ ) ∼= H
.
(Ỹ an, ω

.

(X̃ |̂Ỹ )an
). But this follows from

step 1), because locally, X̃ is strict étale over Spec C[Nr], for some r ∈ N,

endowed with canonical log structure Nr −→ C[Nr]. �

We are ready now to prove our main

Theorem 5.4. The cohomology of the constant sheaf C on the topo-

logical space Y an
log , associated to an fs log scheme Y of finite type over S, is

isomorphic to the Log De Rham Cohomology of Y ,

H
.
(Y log
inf ,OY log

inf
) ∼= H

.

DR,log(Y/C) ∼= H
.
(Y an
log ,C).

Proof. We take a good embedding system Y
g.←− Y.

i.
↪→ X. of Y

over S. In the construction of good embedding systems in [36, Proposition



Cohomologies of Log-Schemes 255

2.2.11], the first map Y0
g0−→ Y of the hypercovering of Y is étale and

surjective, and each other map of the hypercovering Yn
gn−→ Y is constructed

by taking the (n+ 1)−fold fiber product of Y0 over Y . Thus, if we consider

the following cartesian diagram

Y log
0

glog0−→ Y log

τ↓ τ↓
Y0

g0−→ Y

then the map of topological spaces glog0 is surjective and, since g0 is strict

étale, then glog0 is also an étale map of topological spaces in the sense of [27,

Lemma (2.2)], i.e. it is a local homeomorphism of topological spaces. Then,

by [34, Proposition (4.1.8)], glog0 is a morphism of universal cohomological

descent in the sense of [11, Definition (5.3.4)] (or [34]), and, since for any n ∈
N, the (n+1)−fold fiber product of topological spaces Y log

0 ×Y log ...×Y logY
log
0

is equal to (Y0 ×Y ...×Y Y0)
log, we get a canonical isomorphism

H
.
(Y log,CY log) ∼= H

.
(Y.log,CY.log).(104)

Now, by Theorem 5.1,

H
.
(Y log
n ,C

Y log
n

)
∼=−→ H

.

DR,log(Yn/C).

Then, by definition of Log De Rham Cohomology, we finally get a canonical

isomorphism

H
.
(Y log,CY log) ∼= H

.
(Y.log,CY.log)

∼= H
.

DR,log(Y./C)

∼= H
.
(Y,Rg.∗ω

.

X.̂|Y.) =: H
.

DR,log(Y/C). �
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Lecture Notes Math., 407, Springer-Verlag, New York, Berlin, (1974).



256 Bruno Chiarellotto and Marianna Fornasiero

[4] Berthelot, P., Cohomologie rigide et cohomologie rigide à supports propres
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