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Logarithmic De Rham, Infinitestimal and Betti

Cohomologies

By Bruno CHIARELLOTTO and Marianna FORNASIERO*

Abstract. Given a log scheme Y over C, Kato and Nakayama
[27] were able to associate a topological space Y57, We will use the log

infinitesimal site Ylf]‘? and its structural sheaf O,,1.4; we will prove that
inf

H (Yzl;;;,(’)yf},) =~ H (Y5y,C). The isomorphism will be obtained
using log De Rham cohomological spaces H, Ri.lo g(Y/ C) along the lines
of [36]. These results generalize the (ideally) log smooth case of [27].

Introduction

For a non singular scheme Y over C the hyper-cohomology of the al-
gebraic De Rham complex calculates the Betti cohomology H (Y, C).
For singular Y there is no straighforward generalization of this calcula-
tion: indeed, it is the algebraic side that causes problems. To deal with this
case, Grothendieck has introduced the algebraic Infinitesimal Site Y, ¢ [16].
Moreover, as explained in [18], when Y admits an embedding as a closed
subscheme of a smooth scheme X, one can also consider the completion

QXTY of the De Rham complex € along Y and define the De Rham Co-

homology of Y over C as H (Y, Qle) At this point one has three different
cohomologies

(1) Hpr(Y/C),

(2) HA(}/infonmf)v
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and
(3) H (Y C).

The isomorphism between (2) and (3) was proved by Grothendieck ([16])
only in the case of a smooth scheme over C. The isomorphism between
(1) and (3) was proved by Herrera-Liebermann ([20]), in the case of Y
proper over C, while Deligne (unpublished), and Hartshorne ([18, Chapter
IV, Theorem (I.I)]) proved it for a general (not necessary proper) scheme
over C. A direct statement asserting the isomorphism of these cohomology
groups for arbitrary C-schemes Y cannot be found in literature, although
all the necessary ingredients are given. The proof presented in this paper, if
applied to classical schemes, can be used to fill this gap (see §1). Of course
the generalization of this problem to the case of mixed or finite characteristic
has been carefully studied by Berthelot and Ogus.

On the other hand, in more recent years the notion of scheme and
the properties of schemes have been generalized by the introduction of log
schemes. Among the expected features of log schemes, there is the fact
that log smooth schemes (which are in general singular as schemes) should
behave like classical smooth schemes and moreover should also be related
to analytic schemes. The goal of the present work is to introduce the log
scheme analogues of (1),(2),(3) over C, and prove the isomorphisms between
them.

With these ideas in mind we first consider the analogue of Grothendieck’s
Infinitesimal Site ([16]) in the logarithmic context (see also [25] for positive
characteristic). We work with pro-crystals and we link them to the logarith-
mic stratification on pro-objects. If we consider an fs log scheme Y over C,
in general one cannot expect to have a global closed immersion of Y in a log
smooth log scheme, instead we take a good embedding system for it ([36,
Definition 2.2.10], i.e. a simplicial scheme Y. which is an étale hypercovering
of Y which admits a locally closed immersion in a log smooth log simplicial
scheme X.). Then we can define the Log De Rham Cohomology of Y over
C (Definition 0.14) (using such a good embedding system by taking log for-
mal tube of Y. in X. (§0.4)) and give a direct proof of the existence of an
isomorphism between the Log Infinitesimal Cohomology of Y over C, and
its Log De Rham Cohomology, namely we prove the following isomorphism

<o ~
(4) H (Y;n?, OY#:?) = HDR,log (Y/C)
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This allows us to make our definition of Log De Rham Cohomology inde-
pendent of any choice.

For the remaining isomorphisms, we were inspired by an article of K.
Kato and C. Nakayama ([27, Theorem (0.2), (2)]). Given an fs (ideally) log
smooth log scheme X over C, Kato and Nakayama associate a topological
space Xj;o and show that the algebraic Log De Rham Cohomology of X
(which is defined as the hypercohomology of the log De Rham complex w )

is isomorphic to the cohomology of the constant sheaf C on X{, i.e.

log’
(5) HpRog(X/C) = H (X,wy) = H (Xjg,, C).

In fact, K. Kato and C. Nakayama proved a more general result, which
is a sort of “Logarithmic Riemann-Hilbert correspondence”. Indeed, in the
case when X is ideally log smooth log scheme over C, the authors construct a
log Riemann-Hilbert equivalence ® between the category of unipotent local
systems on X7 and the category of vector bundles on X, equipped with
an integrable log connection with nilpotent residues. In the literature, we
also can find generalizations of this Riemann-Hilbert correspondence, due
to K.Kato, L. Illusie, C. Nakayama ([22]) and A. Ogus ([33]). Both of these
works consider the case when X is ideally log smooth log scheme over C. In
the first work the authors extend ® to an equivalence between the category

of quasi-unipotent local systems on X and the category of vector bundles

lo
on the “Kummer étale ringed site” X ketgof X endowed with an integrable log
connection satisfying a condition of nilpotence of the residues on this site.
In the second work, A. Ogus generalize ® to the category of local systems
n Xj* with arbitrary (i.e. not necessarily quasi-unipotent) monodromies.
In this present work, we consider the case of constant coefficients, and
we prove an analogue of (5) for a general (i.e. not necessarily ideally log
smooth) fs log scheme Y over C. This generalization, together with com-
parison theorem (4), should be the starting point for proving a more general
log correspondence between the category of log constructible pro-coherent
crystals on Ylojg and the category of constructible sheaves on Yoo ([8]),
which will be an extension of results proved by Deligne ([9]) to the loga-
rithmic context. In §2, we extend the theory of Kato-Nakayama ([27]) to
the log formal setting. To this end, we first introduce a ringed topological
space (X \Y)log , associated to the log formal analytic space (X \Y) , with

sheaf of rings (’)é‘%y)m (Definition 2.6). This definition is a delicate point
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because in general one does not have an exact closed immersion of Y into
a log smooth log scheme X over C and the topological space X ﬁg depends
upon the monoid which locally gives the log structure on X; so we should
study the map Ylgg — X l‘ffgL, where the structural sheaves of rings depend
heavily on the log structure. In our case, on the other hand, we will reduce
ourselves only to exact closed immersions or we take log formal tubes which
are again associated to exact closed immersions. Hence, the contribution
from the log structure to Y77 and X are the same. So, we will define
the underlying topological space of the ringed space (X TY)Z"Q as Yl‘;’; and
the structural sheaf by taking completion only with respect to the ideal of
the closed immersion (see Definitions 2.2 and 2.6). We will not want to
deal in this paper with the possibly more general definition of completion in

the context of Kato-Nakayama topological spaces. We construct the com-
“log
(X[y)en '

of the complex w )’(lffg, introduced by Kato-Nakayama for a log smooth log
scheme X ([27, (3.5)]).

Later, in §3, we give a “formal version” of the Deligne Poincaré Residue

plex w (Definition 2.7 and (53)), which is a sort of “formal analogue”

map ([10, (3.6.7.1)]), in the particular case of a smooth scheme X over
C, endowed with log structure given by a normal crossing divisor D, and
Y — X a closed subscheme, with the induced log structure (§3.2). We show
that this map is an isomorphism. It is useful for describing the cohomology
of the complex kaTY)“"'

Using that description in §4, we can prove the Log Formal Poincaré
Lemma (Theorem 4.1) for an fs log scheme Y which admits a locally closed
(not exact) immersion into a log smooth log scheme X over C, under the
hypothesis that the schemes are of Zariski type (see after Lemma 0.8, con-
dition satisfied at any level of a good embedding system): given a general
fs log scheme Y of Zariski and finite type over C, i: Y — X a locally closed
immersion, with X log smooth of Zariski and finite type over C, the Betti
Cohomology of the associated topological space Y}‘;;‘ is isomorphic to the

hyper-cohomology of the complex w()l(og/ Jan"
In §5, under the previous hypotheses, we show that w&XTY)m is quasi-
isomorphic to Rnw{)l:f;)an = R7.Cyuos (Proposition 5.2), where 7: Y00 —

Y% is the canonical (continuous, proper and surjective) Kato-Nakayama
map of topological spaces. Then, we prove that there exists an isomorphism
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i h 1 H (YY" w .
in cohomology H' ( Wiy yan

the algebraic Log De Rham Cohomology (Theorem 5.3). Finally, by using
a good embedding system of Y over C, we conclude with the main theorem
of this article (Theorem 5.4): the cohomology of the constant sheaf C on
the topological space Y%, associated to an fs log scheme Y , is isomorphic

log’
to the Log De Rham Cohomology of Y,

) = H (Y, w'XTy) between the analytic and

ave.
H (}/mf?v Oyf;}?

) = Hppiog(Y/C) = H (Ygg, C).

We would like to thank L. Illusie, E. Grosse-Klénne, C. Nakayama and
T. Tsuji for their precious comments and suggestions. We would like also to
thank A. Ogus. We acknowledge the fundamental help given by A. Shiho,
both in explaining us some parts of his articles and for several illuminating
discussions.

We have also to thank the anonymous referee for his remarks and ob-
jections which have allowed us to improve our earlier version.

Preliminaries

Notations. by S we denote the logarithmic scheme Spec C endowed
with the trivial log structure, and, by a log scheme, we mean a logarithmic
scheme over S, whose underlying scheme is a separated C-scheme of finite
type. Moreover, if A" is a complex of sheaves and k € N, then A’'[k] is the
complex defined in degree j as A7,

0.1. The logarithmic infinitesimal site

Given a log scheme X, endowed with a fine log structure M, we denote
by InfLog(X/S) the Logarithmic Infinitesimal Site of X over S. It is given
by 4—uples (U, T, Mp,i), where U is an étale scheme over X, (T, Mr) is
a scheme with a fine log structure over S, i is an exact closed immersion
(U, M) — (T,Mr) over S, defined by a nilpotent ideal on T, i.e. 1 is
a nilpotent exact closed immersion. Morphisms, coverings (for the usual
étale topology), and sheaves on InfLog(X/S) are defined in the usual way.
The category of all sheaves on InfLog(X/S) is a ringed topos, called the

Logarithmic Infinitesimal Topos of X over S, and denoted by (X/ S)lifgc, or

simply by X zlz!j]f
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0.2. Pro-crystals and logarithmic stratification
Let X be a log smooth log scheme. For the definition of pro-objects we
refer to [1], [2], [13], [16, §6.2].

DEFINITION 0.1. A pro-crystal in szgf is a collection {Fy}rex of

OX;()? -modules in me such that, for every morphims g: (U, T/, My, i) —

(U, T, Mrp,i) in XZZ‘}, the natural maps

9 Fyr — Frr

induce an isomorphism of pro-objects {g*Fi(U,T, Mr,i)}rex =
{FLU", T, Mr:,i') }rer. In a similar way we can define Artin-Rees pro-
crystals (see [32, Proposition 0.5.1]).

For each integer i > 0, let Allog(i) be the i—th log infinitesimal neigh-
bourhood (here for the definition we use [25, Remark (5.8)]) of the di-
agonal (X, M) — (X,M) xg (X, M), and let Alzog(i) be the i—th log
infinitesimal neighbourhood of (X, M) — (X, M) xg (X, M) xg (X, M)
(where the fiber product is taken in the category of fine log schemes).

We have the canonical projections pi(i),p2(7): Allog(') — (X, M), and

p31(2), p32(1), p21(7): Afog(') — Allog('). We denote by QPX log the struc-
tural sheaf of rings OA}’og(i)’ for each v = 1,2, 4 > 0. In partlcular, we

can regard @yl og AS an Ox—module in two ways, via the canonical pro-
jections p1(7), pg( ). So, we call the left Ox—module structure (resp. right
Ox —module structure) on Q’Xl the structure given by p (i) (resp. p2(7)).

We introduce a logarithmic stratiﬁcation on the category of pro-coherent
Ox—modules. We could define a logarithmic stratification “at any level” of
the pro object, and consider the pro-category of log stratified Ox —modules.
But this stratification would be too restrictive for our purpose. We need to
work with a larger category and, to this end, we introduce the logarithmic
stratification as a pro-morphism.

DEFINITION 0.2. [13, Definition 1.3] Let {Fy}rex be a pro-coherent
Ox module. A logarithmic stratification on {Fy}icx is a pro-morphism

{Fihe (T @ ( PV, b



Cohomologies of Log-Schemes 211
such that the coidentity diagram

F Rk gop 1,
id{?f’k}kl lid{%k}k®{%‘,o}i
{FrIn {Fr}n

LICTA
—

and the coassociativity diagram

S(74) ;
{%k}k j—k>k {O‘ka}k ® ‘{@ﬁélog}i
Sk | IOTT G
id ¢ o i
o 1,0 ' Lfk}k@s{@ﬁ(’,log}i o 1,2 1,
{Fete @{P Y 1og i — {Frbe O{P % 1ogri @{PY oq bi

. L 1j .
are commutative, where g; ;: P )éll 0g P )gjl og AT€ the natural compatible

maps, and Sl )i = {62’(3'}(,~7j) (see [35, Lemma 3.2.3] for the definition of
8%+ Aoy (1) X (x.an) Aoy (1) — Al (i + ).

As in the classical context ([32], [5], [13]), by using the above definition,
one can prove the following

THEOREM 0.3. There exists an equivalence of categories between
(a) the category of pro-crystals on InfLog(X/S);
(b) the category of Ox pro-modules {My}rcx on X, endowed with a loga-
rithmic stratification.

REMARK 0.4. In fact, our pro-crystals are actually Artin-Rees pro-
crystals and one could refine the previous result on these objects.

0.3. Linearization of the log De Rham complex

Let wy be the log De Rham complex of the log smooth log scheme X.
As in the classical case ([5, p. 2.17]), we denote the complex of Artin-Rees
pro-coherent Oy modules which is the linearization of wy by {Lx (wy )i }ieN,
ie.

(6) {Lx(wx)itieN =t {Py ), }ieN ®ox wy-
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Since, for all 4, j € N, there exist maps @’;flg@w’}( — @;ﬁlog@)w'}( ®9P§glog,
each term of (6) has a canonical logarithmic stratification, in the sense of
Definition 0.2 (][5, Construction 2.14]).

We have a local description of the differential maps {Lx(dy);}; of this
complex. Indeed, let M be the log structure on Allog(i). Let U — X
be an étale morphism of schemes, and let m € I'(U, M). Then, there
exists uniquely an element u,,; in I'(U, (@%log)*) C T'(U, M%), such that
p2(i)*(m) = p1(i)*(M)um,; ([35, pp. 43, 44]). In particular, we have that
Um,i — 1 € Ker {T(U,®Y,, ) — T'(U,Ox)} ([35, Lemma 3.2.7]).

Let now z € X, and t1, ..., t, € M, be such that {dlogt;}1<;<, is a basis
of w}(x. We can restrict to an étale neighborhood U of x, and suppose
that {dlogtj} is a local basis of w}( on U. Let uj;, 1 <j <r,12>0,
be the elements in I'(U, (g);flog)*) such that pa(i)*(t;) = p1(2)*(t;)uj4, as
above. We put &;; := u;; — 1 € T'(Al (i),@;’-flog) (note that the &;;’s are

log
compatible with respect to 7).

ProprosITION 0.5. In the above notations, '
(1) [35, Lemma 3.2.7], for each i > 0, the Ox—module @;ﬁlog is locally free
with basis

' r
{g=1[¢30<> a5 <i}
j=1 j=1

where a = (a1,...,a,) is a multi-index of length r. In particular,
{&1.1,..,& 1} is a basis for the locally free Ox—module 9}’;’1[%, étale locally
at x;

(2) [35, Proposition 3.2.5], there exists a canonical isomorphism of Ox—
modules I /H> =, wk, where X = Ker {A*: @;}log — Ox} (with
A X — Allog(l) the exact closed immersion). Under this identification,
the local basis {dlogt;}i<j<r of wk is identified with {£;1}1<j<r-

Therefore, for each ¢ > 0, the map Lx(dy); is the Ox —linear map

k. opli k 1i—1 k+1
LX(dX)’L . @X,log ®OX wX > @X,lOg ®OX wX

defined, for a € Ox, w € w§<, and n; € N such that n; + ... +n, <4, by
setting

i—1
Lx(d%)i(adlt . &row)y=a- > n&lt g G (14 i) - o
j=1,...,r
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(7) w Gy @dlogty Awt+ally g El ) © dw.
0.4. Log formal tubes, log formal De Rham complex and good
embedding systems

Let i: Y — X be a locally closed immersion of fs log schemes. Even in
the classical “crystalline” case the definition of the divided powers envelope
cannot be transposed in the log setting by copying the ordinary definition:
one has to take an exactification of the previous closed immersion. This can
be done only étale locally and, moreover, the exactification is not unique.
The problem has been solved in [25] (in ch.p) by using the universality of
the PD envelopes in order to glue the local constructions. In the same
article it has been also indicated that this method can be used in ch.0 for
the n-th log infinitesimal neighborhood, which will satisfy some universal
property on the elements of the infinitesimal site with the given order n of
nilpotency [25, Remark (5.8)]. On the other hand, for his definition of Log
Convergent Cohomology, Shiho in [35] (here we are in mixed characteristic)
had to show how to associate a log convergent tube to a closed immersion
which is not exact. This has been done by gluing the local data using
a hypothesis about the existence of charts in the Zariski topology for the
closed immersion (see [35, Proposition-Definition 3.2.1]). We want to clarify
the universal construction of the log formal tube in the following.

DEFINITION 0.6. We assume ¢: (Y, N) — (X, M) is an exact closed
immersion. The log formal completion, or simply the log formal tube, X TY
of X along Y is the classical formal completion of the scheme X along its
closed subscheme Y, endowed with log structure given by the inverse image
of M via the canonical map X TY — X.

Let us suppose now that the closed immersion i: Y < X is not exact.
Let us denote by (x) the following condition (we refer to [36, §2.2. Condition

)

(%) there exists (at least one) factorization of i of the form
(¥.N) = (X, ) L5 ()

where ' is an exact closed immersion and f’ is a log étale morphism.
We note that if ¢ admits a chart (Ry — M,Sy — N, R -, S) such
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that a9 is surjective, the above condition is satisfied ([36, Remark 2.2.1]).
Indeed, we put R := (a9)71(S) and define (X', M’) by setting X' :=
X XSpecqin Spec C[R'] and M’ the pull back of the canonical log structure
on Spec C[R'].

DEFINITION 0.7. Let i: Y < X be a closed immersion which satisfies
condition (x). We define the log formal tube X|Y of X along Y as the log
formal tube of X’ along Y (Definition 0.6).

LEMMA 0.8. Definition 0.7 is a good definition, i.e. it is independent
of the choice of the factorization as in (x).

PrOOF. The proof is analogous to [36, Proof. of Lemma 2.2.2], on
replacing rigid analytic spaces with log formal tubes. U

We recall that a fine log scheme (X, M) is said to be of Zariski type if
there exists an open covering X = |J, X; with respect to Zariski topology
such that (X;, M|x,) admits a chart for any i ([36, Definition 1.1.1]). More-
over, if i: Y — X is a locally closed immersion of fs log schemes of finite
type over S and assume that Y and X are of Zariski type, then there ex-
ists an open covering (for the Zariski topology) X = (J,c; X« such that the
morphisms iq : (Yo, V) := (Y, N) X (x p1) (Xa, M) — (Xa, M) are closed im-
mersions and they satisfy condition (x) (see [36, Proposition 2.2.4, Remark
2.2.6]).

In general, let now i: Y — X be a locally closed immersion, where Y
and X are of Zariski and finite type over S. Then one can define the n—th
log infinitesimal neighborhood (Y;,, Ny,) of (Y, N) in (X, M) as a solution of
an universal property (see [25, Remark (5.8)] and [35, Remark 3.2.2]) and,
in particular, the locally closed immersion Y — Y, is exact. If we are in the
hypotheses of Definition 0.7, always following [25, Remark (5.8)], the n—log
infinitesimal neighborhood of Y in X coincides with that of Y in X’. Now,
being the locally closed immersions Y,, — Y, exact and compatible, for
any n € N, we can give the following

DEFINITION-LEMMA 0.9.  With the assumptions made above, let us de-
fine the log formal tube of X along Y as

(8) (X]Y, N) := lim(Y;,, Ny).

n
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This is Y as topological space, endowed with sheaf of rings O Xy = lim Oy,

n
(note that Y, is not the classical n—th infinitesimal netghborhood of Y in X )

and the pre-log structure lim Ny, is in fact a log structure on X|Y (which we
n

denote by N), which makes the locally closed immersion Y — XTY ezact.
Moreover, this definition is compatible with Definitions 0.6 and 0.7.

PROOF. Given a group M; and two (integral) monoids Ma, M3, we say

that the sequence M; 1, My -5 My is an exact (resp. left exact) sequence
of monoids if Ker f = {1} and Coker f = M (resp. if Ker f = {1} and
Coker f — M3 is injective). Moreover, a sequence of sheaves of (integral)
monoids on X, with Jl; a sheaf of groups,

(9) Ay Ly —% s

is exact if Ker f = {1} (constant sheaf) and Coker f =, Ms. Given a
log scheme (X, M) over S, by this definition of exact sequence, we get in
particular that

Oy — M — M/O%

is exact. Moreover, we also note that, if Jly S, My -2 M3 is a left exact
sequence of sheaves of monoids on X with Jl; a sheaf of groups, then, only
if Mo is integral, one can show that, for any open set U C X, the sequence

of monoids Jt; (U) ) Mo (U) 99 M3(U) is left exact.
Now, in the previous context, let us denote by Y the log formal com-
pletion X|Y defined in (8) as locally ringed topological space over S. Since

O;. = lim Oy, C lim Ny, then N is in fact a log structure on Y. Moreover,
n TL

since each N,, is integral, then also N is integral. For proving that the
closed immersion Y < Y is exact and the above construction is compatible
with Definitions 0.6 and 0.7, we can work locally on Y and assume that
i:Y — X is a closed immersion satisfying condition (x). So, by using a
factorization as in (x), we may suppose that i is exact and reduce to the
following closed immersions

(10) YoV, v x
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where the first arrow is also exact, by definition of n—th log infinitesimal
neighborhood. We can put on Y two log structures: one is N, the other
is h*M, induced by the log structure M on X. If we put the log structure
h*M on Y, we note that all the closed immersions in (10) become exact.
We have to show that N is isomorphic to h*M

To this end, let us consider the following exact sequences of sheaves of
monoids on Y,

Of — h*M — h*M/O% = h™'(M/O%)
and, for any n € N,
(11) Oy, —>N — N, /Oy, =h~ Y mj0%).
We first show that the following sequence

0, =m0, = N — h™'(M/0%) = lim(N,,/O},)
is left exact. Indeed, for any open set U C X, since, for any n, O;‘/n(U ) —
N,(U) is injective, and {U — N (U) = Lim(N,(U))} is a sheaf (not only a
presheaf), we deduce that O;ﬁ/ TN is injective. To prove that Coker f =
N/(’); — h™}(M/O%) is injective, it will be enough to prove that, for any

open set U C X, the map N(U)/(’);(U) 2, “HM/O%)(U) is injective

(as a map of monoids, hence as a map of sets). In fact, since Coker f is
the associated sheaf of the presheaf {U — N(U)/ 05 (U)}, we will get an
injective map from Coker f to h™1(M/O%).

To prove that ¢ is injective, let us take {sp}n,{tn}n € lim N, (U)

n
such that ¥({sn}n) = Yv({ta}n) = m = {my}, in K1 (M/O%)(U) =
im(N, /Oy, )(U). From the exact sequence (11), for any n, there exists

u, € Oy, (U) (which is a group) such that s, = t,u, in N,(U) and, if
bry: Nn(U) — nfl(U)a prn(sn) = Sp—1, prn(tn) = tp—1. Then, s, 1 =
tp—1Up—1 In Nn—1<U)a and s,—1 = prn(sn) = prn(tnun) = an(tn)PTn(Un) =
tn—1prn(uy). Since N,,_1(U) is integral, then pry,(u,) = u,—1, for any n, so
{untn € lim Oy, (U).
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Therefore, we are reduced to the following commutative diagram of
sheaves of integral monoids,

* i \ f — *

or = i\f =L AT M/O%)
(12) | T |

O3 < M B Y (MO%)

where the first row is left exact and the second row is exact (A coming
from the universal property of the projective limit N ). We note that a map
of monoids is an isomorphism if it is a morphism which is injective and
surjective as a map of sets: we have only to show that A is bijective. To this
end, for every x € X, we consider diagram (12) at the stalk = and we prove
that the map of monoids A: (h*M), — Am is bijective. Let mq,mo €
(h*M), be such that A(m1) = A(mg) in N,. Then, fi\(m1) = fi\(m2), so
there exists t € (’);x such that m; = ia(t)me, hence A(m1) = A(ma)i1(t) =

A(mg). Now, since N, is integral, 1 = i1(¢) and so 1 = ¢ (41 is injective). To
prove that X is surjective, let n € N,. If fi(n) =1, then n € z'lO;'i/ N and so
n =i1(t) = A(i2(t)), for some ¢ € OF . If fi(n) # 1, then fi(n) = fa(m),

)

for some m € (h*M),. So, fi(n) = fi(A(m)) and there exists ¢ € O;. such

that n = A(m)iy(t) = A(mia(t)) in N,. On the other hand, by using the
definition of isomorphism one can show that the upper short sequence in
(12) is exact. O

From the above definition, it follows that the construction of the log
formal tube is functorial with respect to locally closed immersions.

DEFINITION 0.10. In the previous hypotheses and assuming X log
smooth log scheme, we define the log formal De Rham complex w’ iy of

X|
—= OXTY ®i-104 iflwx, with differential induced by

Xy :
that of wy. Moreover, this construction is functorial with respect to locally
closed immersions. We define the Log De Rham Cohomology of Y over S

as

X along Y as w

(13) Hpptog (Y, N)/C) = H (Y, w1 ).
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REMARK 0.11. One should prove that the previous definition of Log
De Rham Cohomology is independent of the choices: see discussions after
Definition 0.14. Along the line of [36], we can also give another equivalent
definition of the log formal tube of X along Y, under a suitable condition
(see [36, Proposition 2.2.4]). This is a sort of log formal version of the
convergent theory which has been developed in [36, §2.2]. But for such a
construction, it is difficult to prove the functoriality, so we prefer to use
Definition-Lemma 0.9 to have a log formal tube which is a global defined
object.

We give now a definition of Log De Rham Cohomology of a log scheme
Y of finite type over S (Definition 0.14), by using good embedding systems
(Definition 0.12).

DEFINITION 0.12. [36, Definition 2.2.10] Let (Y, N) be an fs log scheme
of finite type over S. A good embedding system of (Y, N) over S is a diagram

(14) (Y,N) <L (V.,N.) <& (X, M)

where (Y., N.) is a simplicial fine log scheme over (Y, N) such that (Y}, N;)
is of finite type over S and of Zariski type, (X., M.) is a simplicial fine
log scheme over S such that each (Xj, M;) is log smooth log scheme over
S and of Zariski type, g.: Y. — Y is an étale hypercovering such that
g;M — M; is an isomorphism for any j € N and . is a morphism of
simplicial fine log schemes such that each i; is a locally closed immersion.

By using analogous methods to those of [36, Proposition 2.2.11], we can
prove that there exists at least one good embedding system of Y over S.
Indeed, let {Y;}ier be an étale covering of Y, such that each Y; is affine of
finite type over S and that (Y;, N) — S has a chart ({1} — C*, R;y, —
N,{1} — R;). There exist surjections C[N"| — I'(Y;, Oy;), N — R;.
So, let us take P; := Spec C|[N™ & N™i], endowed with log structure L;
given by N™i — C[N™ @ N™i]. We get a closed immersion of log schemes
ji: (Y5, N) — (P;, L;), such that the diagram

CN" & N™] — T(Y;,0y,)

(15) 1 1
Nmi — R
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is commutative. Then, we set (Yo, No) := (II; Y. Nj11.v;), (FPo, Lo) =
IL,(Pi, Li) and ig := [, 7i;- For n € N, let (Y, Ny) (vesp. (Pp,Ly)) be
the (n+ 1)—fold fiber product of (Yy, No) (resp. (Po, Lo)) over (Y, N) (resp.
over S). Let ip: (Yn, Ny) < (Py, Ly) be the closed immersion defined by
the fiber product of 4.

We prove now that this construction of a good embedding system for a
log scheme (Y, N) of finite type over S is functorial, in the following sense.

LEMMA 0.13. In the previous assumptions, let f: (Y,N) — (Y',N')
be a morphism of log schemes, where (Y,N), (Y',N') are of finite and
Zamsk‘z type over S. Then there exist two good embedding systems Y «——

Y. & Pofor Y over S and Y — Y/ Y for Y' over S which are
compatible between them, namely such that the following diagram

Y — Y. &P
(16) 7] ll h|

Y — Y/ & p!
18 commutative.

PROOF. We can take étale coverings {Y;}icr of YV, and {Y/}ier of Y/
such that each Y;, Y/ are affine of finite type over S, and there exist maps
(Y;, N) — (Y], N') admitting a chart (R;y, — N, R] vy, — N',R, —

R;) (see [36, §1.1]). Let us take the surjections Nt — R’ and N — R;
such that the diagram of monoids

Nt — R
(17) ! !
N™ . R,

is commutative, and the surjections C[N"| — TI'(Y;, Oy;), C[N%] —
I'(Y/, Oy,) such that the diagram of rings

CIN*] — T(Y{, Oy)
! !
CIN™] — I'(Y; Oy,)
is commutative. Let P; := Spec C[N™ @ N™i] (resp. P! := Spec C[N* @

(2

N']), endowed with log structure L; (resp. L!) given by N™ — C[N" &
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N™] (resp. NY% — C[N% @ N%]). Then the following diagram, where the
horizontal maps are closed immersions,

(Y, N) & (B, Li)
(18) fi| hi |

(Y/,N') &5 (P L)

is commutative and it admits the chart (17), namely j;, j; admit charts
which are compatible with charts of f; and h;.

Then, we set (Yo, No) = (II;Yi, N1, v;), (Po.Lo) = [[;(F, L) and
i 1= Hz]z (vesp. (}f()/’N(/)) = (Hz }/;/aN|Hi}’i’)’ (P0/7L6) = Hz(‘Pz/?L;,) and
ig := 11, 4}) and fo :=[], fi and ho := [[, hi. For n € N, let us take the (n+
1)—fold fiber products (Y, N,,) and (P,, L,,) (resp. (Y,,,N,) and (P}, L))
of (Yo, No) over (Y, N) and of (P, Lo) over S (resp. of (Y, N{}) over (Y', N')
and of (P, L{)) over S). Let in: (Y, Ny) < (P, Ly) (resp. i,: (Y,,N}) —
(P}, L)) be the closed immersion defined by the fiber product of iy (resp.
ip) and fn: (Yn,N,) — (Y, N;),hy: (Pn, L) — (P}, L) be the fiber
products of fy and hg respectively. [

DEFINITION 0.14. Let (Y, N) be an fs log scheme of finite type over

S, and let (Y, N) <= (Y., N.) < (X.,M.) be a good embedding system of
(Y,N) over S. We define the Log De Rham Cohomology of Y over S as

(19) Hppiog (Y, N)/C) = H (¥, Rg.a(w 1)

where each w__ . is defined as in Definition 0.10.
X;1Y;

Now, one should prove that our definition of Log De Rham Cohomology
is independent of the choice of the good embedding system. We could
work out the problem as in [36], but we will prefer to prove, in section
§1, that there exists a canonical isomorphism between the Log De Rham
Cohomology of Y (Definition 0.14) and its Log Infinitesimal Cohomology.
Therefore, from this comparison theorem we will deduce that the Log De
Rham Cohomology defined above is in fact a good cohomology theory and
independent of all the choices.
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0.5. Kato-Nakayama topological space

Let now X" be the (fs) log analytic space associated to X. Kato-
Nakayama define the topological space Xﬁg associated to X" as the set
{(z,h)|r € X h € Hom(MZ SY, h(f) = f(z)/|f(x)|, for any f €
O%an ,} (Where St = {x € C;|z| = 1}). Let now 3: P — M be a fixed
local chart for X" with P an fs monoid. The topology on X log 18 locally
defined as follows:

DEFINITION 0.15. In the local chart 8, X l‘fj; is identified with a closed
subset of X% x Hom(P9,S'), via the map Xipy — X x Hom(P%,S!):

(x,h) — (x, hp), where hp is the composite P9 — MI? st So, Xjou
is locally endowed with the topology induced from the natural topology on

Xan x Hom(P9,S!).

This local topology does not depend on the choice of the chart, so it
induces a well defined global topology on Xj;¢ (27, (1.2.1), (1.2.2)]). There
exists a surjective map of topological spaces 7: Xﬁj’; — X9 (z,h) — x,

which is continuous and proper ([27, Lemma (1.3)]). Though X% in general

is not an analytic space, it is still endowed with a nice sheaf of rings Ol)?,’;n.
Indeed, let Lx be the sheaf of abelian groups on X log which represents the
“logarithms of local sections of 7=1(M9)” (27, (1.4)]). There exists an

exact sequence of sheaves of abelian groups

0 — 7Y Oxam) 2 Ly ZB 7Y (MP/0%..) — 0

If we consider commutative 771(Oyan)-algebras B on Xipg» endowed with
a homomorphism Lx — B of sheaves of abelian groups which commutes
with &, then Ol)?%n is the universal object among such B ([27, (3.2)]).

We suppose that X satisfies the following hypothesis ([27, Theorem
(0.2), (2))

(*) Locally for the étale topology, there exists an fs monoid P, an ideal
® of P, and a morphism f: X — Spec (C[P]/(®)) of log schemes over
S, such that the underlying morphism of schemes is smooth, and the log

structure on X is associated to P — Oyx.

REMARK 0.16. We note that, if X is (ideally) log smooth over S, then
it satisfies hypothesis (*) (|22, Definition (1.5)]), because X is a filtered
semi-toroidal variety ([23, Definition 5.2], [14, Proposition 11.1.0.11]).
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THEOREM 0.17. [27, Theorem (0.2), (2)]. Let X be an fs (ideally)
log smooth log scheme (see Remark 0.16). Then, there exists a canonical
1somorphism

HY(X,wy) = HY(Xpg, C), for all q € Z.

1. Log Infinitesimal and Log De Rham Cohomologies

From now on, let Y be an fs log scheme of finite type over S, endowed
with log structure N. For the moment, we suppose that there exists a
(locally) closed immersion i: (Y, N) — (X, M), where X is an fs log smooth

log scheme. We consider the direct image functor ziflgf*' Ylif? — X ZZZ? For

a crystal & of YZZ;L)?, we briefly describe the construction of the direct image
i%9. 9. in characteristic zero. Let (U, T, My, j) € InfLog((X,M)/S), then

vzrzfcons&der the fiber product (in the category of fine log schemes) Uy =
(Y, N) x(x,a (U, M). By base change, the map Uy — (T, M) is a closed
immersion. We can take the n—th log infinitesimal neighborhood of Uy
inside (7, Mr), and denote it by (7, My). Let A\,: (T, My,) — (T, Mr).
Then, (i35, %), 0tr.g) = W0 AneF 0y 1, 0,50

n

Moreover, the Artin-Rees pro-crystal {F, }n,en on InfLog((X,M)/S),
associated to zifﬂc*@, is defined on (U, T, Mr,j) € InfLog((X,M)/S) as
Fnw,rMrj) = A Fy T Mijn)) = Anx(Fr,) ([32, Proposition 0.5.1]).

In particular, the Artin-Rees pro-crystal {O,, }eN associated to /Li(,;i]f*oylog,

is in fact defined, on each (U,T,Mr,j), as ({On}nEN)(U,T,MT,j)
{AnOr, bren:

REMARK 1.1. From Theorem 0.3, the log stratified Ox—pro-module
associated to the (Artin-Rees) pro-crystal {Op}nen is equal to
{(On) (x,x,M,id) }neN = { MOy, fneN, where Y, is the n—th log infinitesimal
neighborhood of Y — X. We simply denote it by {Oy, }nen. Moreover,

(7 izgf*(’) log)(XX Mid) = OXTY (see Definition-Lemma 0.9).

We now compare the Log De Rham Cohomology of Y with its Log
Infinitesimal Cohomology. For each fixed v > 0, we consider the diagonal
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immersion of fine log schemes X — X%, where X" is the fiber product
over S of v+ 1 copies of (X, M) over S. We denote by A% log(.) the -

th log infinitesimal neighborhood of the diagonal of X", and by ®% log 1t
structural sheaf of rings Oay 1og "

Now, if we fix v and vary + € N, we get the Artin-Rees pro-object of
sheaves {P% log}z on X. On the other hand, if we fix ¢ and vary v € N, we
get a sheaf on the simplicial log smooth log scheme

XY 0 T X?P=XxsXxsX — X'=XxgX X

which is the following cosimplicial sheaf of rings on X

dO e — —
1,2 d1 2 Z — . V,i
(20) 0 OX d1 9)X Jdog — @X Jog —s T @X,log
A2, . — -

where the maps are given by the faces of the simplicial log scheme {X*},. If
we vary v and i, we get a cosimplicial sheaf of Artin-Rees Ox pro-modules

{@);{Zlog}ljzi' .
We define the cosimplicial Artin-Rees pro-object {Q;’jg}yyi, by setting

— gpvtLi
(21) Cglog Xlo;

for every 7, > 0. Then, for each v > 0, there is a canonical homomor-
phism of pro-rings a}jo’;g: @g&;l 0g QZ;?, defined by the canonical injection
{0,1,...,v} — {0,1,...,v,v+ 1}. So, we have a homomorphism of cosimpli-
cial pro-rings

(22) {alog}l {@X log}Z - {QZOQ}Z

Let N be an Ox—module. As in the classical case, we define the cosimplicial
pro-module

(23) {Qio(W)}i == {Qj }i ®ox N

We note that, for fixed v > 0, {Q;’O;(N)}Z is clearly a {Qlyéz}i—module,
and so an Ox—bimodule with the obvious left and right structures. More-
over, if we regard {Qlog( )}i as a cosimplicial pro-module on {@;llog}i (by
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restriction of scalars, via {a;’(ﬁ]}i), we see that it is the cosimplicial pro-
module associated with the Ox—pro-module with canonical stratification
{Qlog( Vb= {@k’zlog}i ®oy N. Indeed, for each v < p, {Qlog( )} is
obtained from {Q; g( )}i by base change with respect to any of the canon-
ical morphisms {@;(Z,log}i — {@/;éflog}i‘ Now, for each integer k > 2, we
consider the differential operator d* of the log De Rham complex,

dk wl)’“( — w];("’l
Asin [16, p. 347], for each v > 0, d* induces a homomorphism of Artin-Rees
pro-objects

(24) {Quy (@)} {Qpy (k)Y — {Qi (W™}

and we get the following cosimplicial complex of Artin-Rees pro-objects,
(25) {Q(0x)} — A{Q, (wWX)} — @y (Wi} — . — {Qn Wk} — -

The double complex associated to the cosimplicial complex of Artin-Rees
pro-objects {QZ;; (wy)}i is a resolution of wy (Cech resolution). Indeed, we
consider the double complex of Ox pro-modules

(26) wy 25 (@ (wx)}: "2 QL (Wi )} P L QU (W) — .

where the maps are obtained from the cosimplicial maps (20) (with respect
to the cosimplicial index v), by “forgetting one face” ([7, p. 12]). Then, one
can show that (26) is locally homotopic to zero, by using the degenerating
maps of the cosimplicial complex (20) ([3, §V, Lemma 2.2.1]). Now, we
apply to (26) the additive functor {Oy, }neN @0 (—) (where {Oy;, }neN is
as in Remark 1.1), in the category of pro-coherent Ox—modules. Since it
respects the local homotopies, we find that the complex

d1 do do— d1 +do

(27) {0y, }n ®wy 2% (Oy, }n @ {QN (wi)}i {0y, }n ® {Quk (W)}

is also locally homotopic to zero.
We give now a sort of “Log Poincaré Lemma” in characteristic zero.

THEOREM 1.2. The complex of Artin-Rees Ox pro-modules

(28) [Ox 2 {Lx(wx)}i]

d [ % T
= [OX —O> {Q)AIX log}Z — {@i( log}l ®(QX w}f - {g)ié,log}i ®OX w%f - "']
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18 exact.

Proor. From (7), it follows that the composition Ox —
{Lx(0x)i}i — {Lx(w}()i}i is zero, so (28) is in fact a complex of Ox
pro-modules. Moreover, it is represented by the following complexes

. 0y, . 1. ) 2.
(20) [0x 2 9%, X oLl o, Wk YT 9Lt g0, W YR
for any i € N. We show that these complexes are exact by induction on
i € N. When ¢ = 0, the complex (29) reduces to 0 — Ox i, Ox — 0,
which is exact. When ¢ = 1 the complex (29) is
L x (d$

0— Oy Ll B L
which is locally homotopic to zero, via the Ox —linear homotopy defined on
the local basis as

1,1 so=A* 1 S1 1,1
@)X,log OX Wx Q)X,log

§in — 0 dlogt;, +— &1

for j = 1,...,7 (see Proposition 0.5, (2)). Since dy = p2(1)* and A*ops(1)* =
id, we get that sg o dg = id. Moreover, dg o sg + s1 © LX(dg()l = 1id.

Now, let us suppose that the complex (29) for i —1 is exact. We consider
the sequences of locally free Ox —modules, for any p =0, ..., 7,

i—p jori—p+1 P 1,i—p P 1,i—p—1 P
0— H"P/IH Qox Wy — Py oy Qox Wy — P30 Qox wy — 0

(where X = Ker {A*: ‘O]).lill og — Ox}). These are exact (moreover, they
are locally homotopic to zero; note that K7 /HPT = Symi=P(H /H?)).
So, by using these sequences and the inductive hypothesis, we can reduce
to show the exactness of the following complex

— 0y . ) -
0 — 3 ot B gt g Wy Y

L (@)imr opir i
i gpier jgriertl g o r

But this is locally homotopic to zero, via the following O x —linear homotopy
on the local basis,

HPJHTPT @0, Wk S HTPELHITPI2 g W
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laé_p...gaT ®§’L‘171/\.../\§ip,1 —

Tai_p
P
1 m+1¢aq ar £
i Z (1) 51,7;—p+1 T '£T7i—p+1§i7n7i_p+1 Q&1 A AN Ao A fi;nl
m=1

with a1 +- - -4+, = i —p. We extend this definition by linearity. It is easy to
compute that sj0Lx (d%); = id and LX(dg{l)i_pﬂospjtsp“ollx(dg()i_p =
id, for each p > 1. I

COROLLARY 1.3. Let {My}neN be a pro-coherent Ox module. Then
the complex

d 1, 1,
0 — {Mn}n — {Mn}n ®ox {@))glog}i — {Mn}n ®oy {g))éz,log}i ®ox w}(
Li
- {Mn}n ®0X {g))él,log}'i ®0X w?( e
s exact.
ProOOF. In order to prove this corollary it is sufficient to follow the
proof of Theorem 1.2. By induction on ¢, we can reduce to prove the exact-

ness at any level, and, since the additive functor {M, }r,eN®0, (—) respects
the local homotopies, we can conclude. [

Now, from Corollary 1.3, the following complex of Artin-Rees Ox pro-
modules

(30) {0y, }n 2 {0y, }n @ (2K 0o li — {0y, 1 @ (PN, 1 ®oy Wk — ..

is also exact, in the category of pro-coherent Ox modules.
We consider now the following double complex ([J)

dol
{0y, }n s {030 ® {PY 0} © wi
d1—do l di1—dp l
d2—d1+dol d2_d1+d0l
1 |

v—1, d v .

! !
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Now, from (27), all the columns of ([J), except the first, are locally homo-
topic to zero. Moreover, from (30), the second row of (OJ) is exact. The
(v + 1)—th row of this double complex (v > 2) is obtained from the second
row by tensorizing (over Ox) with the (log stratified) Artin-Rees pro-object
(P oa}i- Indeed, for each v > 0, {P), }i = {PY 0} @ {PY,,.}5- So,
since the second row is exact, by following similar arguments as in proof
of Corollary 1.3, since the additive functor {2 ligz}l ®oy (—) respects the
local homotopies, we see that each row of (), except the first, is also exact.

Therefore, we can conclude that the double complex {Oy,}, ®
{Qlog (wy)}i is a resolution of both the first column {Oyn}n@){@}flog}i, and
the first row {Oy, },, ® wy of (). Then, since all pro-systems satisfy the
Mittag-Leffler condition, we get the two following canonical isomorphisms
in cohomology,

(31) H (Y, lim Oy, @ Py,,) — H (Y, lim Oy, ® Q! (wy))
(n i) (n,i)
(32) HDR,log((K N)/(C) =H (Y7 1£n OYn ® wX)

~

— H (Y, lim Oy, ® Q}: (wy)).
(n.i)

REMARK 1.4. Since the Artin-Rees Ox pro-module {Oy;, },, is endowed
with a log stratification (see Remark 1.1), we have isomorphisms, for any
v, k>0,

{0y, hn @ {PY 0 i @ wx = AP b @ {0y, }n @ wy

and so there is an identification

{0y, 10 ® { Qg (wx) i = {Q1 Oy, @ wx) -

In order to calculate H (Y% O zog) one can define the sheaf X :=

inf?

leY on InfLog(Y/S) (Y, being the n—th log infinitesimal neighborhood

n

of Y in X, and~denoting the sheaf of Ylif]? represented by the object), which
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covers the final object of Yll;]g (as in the classical case [16, §5.2]). We denote

by X" the product of X with itself v times. This sheaf is an inductive limit
of representable sheaves

(33) XV =1lim Ay (i)
where AV (i) is the i—th log infinitesimal neighborhood of X" along its

closed log subscheme Y. Therefore, if & is any module on InfLog(Y/S),
there exists a Leray spectral sequence ([16, §5.2, p. 338]),

) U : lo
(34) EYy? = HP (v — HYX",F)) = H (Y17, F).

We want to show that this spectral sequence degenerates, giving a canonical
isomorphism
(35) H (Y], %) = H (v — lm F(AL(0))).

7
To this end, we recall that, for each (U,T) in InfLog(Y/S), there are
isomorphisms

HInfLog((U7 T)? g) = HInfLog((Y;yf}J)\(U,T)v](U,T)g) = HZar(T7 o‘fp(U,T))

K5

(iglyfjf)KU,T) — Yfgf ([5, Propositions 5.24, 5.26]). We first consider the
local case and suppose that Y < X satisfies condition (x). We may as-
sume Y is affine (so also AY. (i) is affine). Moreover, we assume that % is
quasi-coherent on each nilpotent thickening (so %A;(z’) is quasi-coherent).

Then,

where (Y'lrf?)\(U,T) is the restricted topos, and jyr) is the morphism

(36) H%ar(Al{/(l)v @AVY(Z)) = H;]nfLog((K Al{/(l))v %) =0

for any ¢ > 0. Under these conditions, we take an injective resolution & —
I' of ¥ in Yilﬁ?, namely, for each (U,T) € InfLog((Y,N)/S), Fr — I is
exact, and I% is flasque, for each k > 0 ([3, VI, 1.1.5)).

By (33), HI(X"H,9) = ha(D(X¥*1,1)) = ha(D(im AY(i), 1)) =

g (im AY-(i),1)) = h(lim Hom, o, (AY(i),1)), where h? =
— - inf

q
R (Hom,, 1o (1
nf 7 )



Cohomologies of Log-Schemes 229

Kerd4/Imd9! (see [5, Definition 5.15] for the definition of the global sec-
tion functor). For simplicity, we denote by {¥;};cn the inverse system of
complexes {Homytlog(Ayy(i),I‘)}ieN. Since I is injective and the maps
(Y, A} (i) — (YZ{TA}V/(l + 1)) are monomorphisms in InfLog(Y/S), we
have that the transition maps §; ; — 9, are surjective, for any i € N.
The inverse system {%; };cN satisfies the Mittag-Leffler condition, so we get
the exact sequence

0 — lim'r771(%;) — h9(limG;) — lim h%(%;) — 0.
Moreover, if we assume that F is a crystal, since h971(%;) is equal to
F(AY (i) if ¢ = 1 and is equal to 0 otherwise, the inverse system
{h971(%G;) }ien also satisfies the Mittag-Leffler condition, so we get an iso-
morphism A9(lim ;) = lim h7(G;). Therefore,

A z

HY (Xy—i-l F) = hmHmeog((K AY (7)), F) = hmH%mﬂ(Agz(i), Q'TAg,(i))

Q 7

and so, by (36), HY(X"t',F) = 0, for any ¢ > 0. Then (34) degenerates

and for the crystal F = Oy10, we have
inf
lo ~ . . v . .
H (Y7, Oytog) = H (v +— 1im Opy ) (Ay (1)) = H (Y, 1im Oay i)

% %

Finally, since the cosimplicial sheaves on Y., hm Oy, ® @)X log and
(n )

lim Opy, ;) coincide,

i

(37)  H( Z’;g,ozlﬁ) > H (Y,lim Op: () = H (Y, lim Oy, @ @Y',,).
i (n.i)

If we do not assume that Y is affine, but we always admit the existence of a
locally closed immersion ¢: Y — X, then one can define a cosimplicial sheaf
0* on Yz, given by, for each fixed v > 0 and for any open U < Yy,

0": U — lim Oy 10, (U, AY(4))) = Oyo (U, XV |U))

i wa inf
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where X VTU is as in Definition-Lemma 0.9. By taking a covering of Yz,,

by affine open sets and using (37) as in [16, (5.1), p. 339], we end with a

canonical isomorphism

(38)  H (Y, Oytog) = H (Yzar, 07) = H (Y, lim Oy, © P,
(ni)

By (31), (32) and (38), we conclude that there exists a canonical isomor-
phism

(39) Hpiag ((Y:N)/€) 2 H (Y,14. Oy

REMARK 1.5. Forgetting log structure, one could use analogous tech-
niques in the classical setting (which are nothing but a miscellanea of those
ones indicated in [16]) and obtain the isomorphism (39) for any scheme
Y over S (without log). This fact, together with the result proved by
Hartshorne in [18, Chapter IV, Theorem L.I], gives the isomorphisms be-
tween (1), (2) and (3) in the Introduction.

Now, we consider an fs log scheme (Y, N) of finite type over S which
does not necessarily admit a (locally) closed immersion (Y, N) — (X, M)

as above. We take a good embedding system Y &y, &S Pofor Y over S
and define the Log De Rham Cohomology of Y as in Definition 0.14. By
analogous arguments to those of [36, Proposition 2.1.20], one can show that
the Log Infinitesimal Cohomology satisfies the descent property with respect
to étale hypercoverings, namely there exists a canonical isomorphism

. 1 ~ . l _ . [ *
H (}/;no‘?,oylog) = H (Y °9 g. loylog) :H (Y o9 g. (/)Ylog).

inf tinf? inf tinf? inf
Then we have canonical isomorphisms

(39)
H (Y, Oyiog) = H (Y75, Oy ton) 2 Hippyog((Y2, N.)/€) =

H (Y, Rg.0(w) 1)) = Hppiog (Y, N)/C).
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2. The Complex w09
Xy

We will transpose our construction to the log analytic situation. If X
is a log scheme, then the associated topological space Xﬁf; depends not
only on the underlying scheme but also on the log structure. Let us start
with an exact closed immersion i: Y < X of fs log schemes of finite type
over S, where X is log smooth. Let Y% X% be the associated fs log
analytic spaces, and let i¥*: Y% — X% be the corresponding analytic
exact closed immersion with defining ideal $. When the context obviates
any confusion, we will omit the superscript (—)*" in denoting the associated
analytic spaces.

We consider the closed analytic subspaces Y of X, defined by the ideals
9’“, with k£ € N. On each such Y; we consider the log structure induced by
Mx, i.e.,ifig: Yy — X is the closed immersion, then we take My, =iy Mx.
We have a sequence of exact closed immersions, which we denote by ¢,

@
Therefore, we have a projective system of rings {Oy, = i,:l(OX/Sﬁk); Okt
Oy, b Oy, }k>1, where the transition maps y, are surjective. Moreover,
the diagram

SOI;I(MYkH) — My,
(10 ouer | o |
‘Pil (OYk+1 ) — Oy,

is commutative, for each k > 1. Since Mx is a fine log structure on X, each
Y} is endowed with a fine log structure.
The closed immersion iy : Y, — X is exact, for each k, so ([25, (1.4.1)])

(41) My /Oy, = ixMx /0y, =i (Mx/O%) = (Mx/OX) .-

REMARK 2.1. Since the underlying topological space of each Y}, is equal
to Y, it follows from (41) that My, /O3, = (Mx/O%)yy, for each k > 1.

Therefore, if we consider the associated sheaf of groups (My, /O3, )% =
M%/(’)’}'}k, we have that, for each k > 1,

(42) M /03, = (MY /OX))y-
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Let Yklog (resp. X'9) be the Kato-Nakayama topological space associ-
ated to Yy (resp. to X), and let 7p: kaog — Y}, (resp. 7x: X9 — X)
be the corresponding surjective, continuous and proper map of topological
spaces (§0.4). We now consider the “formal” analytic space X TY, which is
Y as topological space, and whose structural sheaf is

Oy = lim Oy, = limi; ' (Ox /9").
k k

X[y

Now, since the closed immersion i: Y — X is exact, the formal completion
of the fs log analytic space X along the closed log subspace Y is equal to the
classical completion X |Y endowed with the log structure induced by Mx
(Definition 0.6). So, if Iy X|Y < X, then the log structure on X|Y is

i}TYM x. We denote it by M Xy We now define a ringed topological space

(X TY)IOQ (’)lof ), associated to the log formal analytic space X TY.
DEFINITION 2.2.  With the previous notation, we define (X TY)log to be
the topological space Y9, endowed with the following sheaf of rings

lo — lo
(43) OX“TY = TYI(OXh/) ®T;1(OX) Oy’

LEMMA 2.3. [27, Lemma (3.3)] With the previous notation, let x € Y,
y € Y09 be such that 7y (y) = x. Let Lx be the sheaf of logarithms of local
sections of Ty (M) (§0.4). Let {t1,....,t,} be a family of elements of the
stalk £x y, whose image under the map exp,: £x , — T (MP]O%)y is a

B . gp % log . ; .
Z—basis ofMny/Ova Then, (9( X[¥)y is isomorphic, as O(XD,)’Z

[T}, ...,Tn], via the correspondence

—algebra,

to the polynomial ring O

(X[V)
. log
O(X|Y),ac[T1’ o In] — O(XTY),y
(44)
T; — t;

fori=1,...,n

PrOOF. By [27, Lemma (3.3)], applied to X9 the isomorphism
l ~ . . l
O)?gy =~ 7.1 (Ox)y[Th, ..., T,] implies that O Ogi vy Tyl(OXTY)y B 10y),

(XY),y
75 (Ox)y[T1, oo Tu) 2 75 (O iy Nyl T, oo Ta] = O [T}, ..., T,). O

(X[Y)@
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REMARK 2.4. In [22, Proposition (3.7)], the authors proved that, given
an fs log analytic space X, for any Ox—module M the natural homo-
morphism M — RT*(OZ)?Q ®oy M) is an isomorphism. In particular, for
M = Oy, Ox — Rn((’)é?g ). A “formal version” of this last isomorphism
can be given, namely

(45) Oy — Rr (7°0

Xiy ) = R7.(0%7).

Xy Xy

The proof can be worked out as in [22, Proposition (3.7)] and [29, Proof of
Lemma 4.5], by applying Lemma 2.3.

LEMMA 2.5. [27, Lemma (8.4)] Let r € Z. We define a filtration

log log
ﬁlT(Oth) on OXTY by

(46) Bl (O1,) = 71 (Oxy) @r-1(0y) il (OF)

(where ﬁlr(Ol)?g) is defined by Kato-Nakayama as Im{t7}(Ox) ®z

(D Sym,¥Lx) — (’)l)?g}). Then, the canonical map
T HMP /O%) = Lx /77 (Ox) C il (OF) /filg(O'Y)
induces the following isomorphism

(47) TN (Oyy) @z (SymB(ME ) O%)) — fil,(O'% ) /fil, 1 (02 ).

Xy Xy Xy

PrROOF. By [27, Lemma (3.4)], for any r > 0, we have an isomorphism
(48)  7NOx) @z (Symp(ME/O%)) — fil, (OF)/fil,1 (OF).

So,
TN (Oiy) @27 (Symi(MP/O%)) =

Tﬁl(oxfy) ®T_1(Ox) (Tﬁl(OX) ®z Tﬁl(symTZ(M}q(p/O})))
and, by (48), this is isomorphic to

(49) 7 HOiy) @10y file (OR) /fil 1 (OFF).
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Now, since the functor Tfl(OXTY) ®r-1(0y) (=) is right exact, it follows

that (49) is isomorphic to fil,(O log )/ﬁlr 1( ﬁ?‘gy). O

Let us assume now that i: Y — X is a locally closed immersion (not
necessarily exact). We consider, for any n € N, the n—th log infinitesimal
neighborhood (Y, N,,) of Y in X (see §0. 4) and the exact locally closed
immersions Y — Y,, — X\Y where (X\Y N) is the log formal tube of X
along Y (Definition-Lemma 0.9). We repeat the construction of the Kato-
Nakayama space (§0.5) for the analytic log formal tube X |Y We define
the sheaf & of abelian groups on the topological space (X |Y)l"9 = Ylog
as the fiber product of ¥y and 7 N9 over 7! N9. It represents the
“sheaf of logarithms of local sections of 771N 7. We have the following
commutative diagram of sheaves of abelian groups on Y99,

0— 2miZ — ¢ e (N |
| ! !

0— 2miZ — Py O )\ I—y
| ! vl

0 — 2miZ — Cont(—,iR) — Cont(—,S!) —0

Moreover, we also have the following commutative diagram with exact rows,

. —1 EexTp _1

00— 2mZ — T OXIY — (’)qu — 0
|| ! L

0— 2miZ — 1 R [y

Now, since Y < X|V is exact (by Definition-Lemma 0.9), then
_lng/T_lO* ir >~ r=1(N9%/0O%) as sheaves on Y!°9. Therefore, we get
the following exact sequence

(50) 0— 77104 == & B YN /OF) — 0.

DEFINITION 2.6. We define the sheaf of 771(O —algebras

X]Y)

(51) ol;?y = (17 1(Oypy) @2 Symy(2)) /A
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with the same notations and meanings as in [27, §(3.2)], where A is the
ideal locally generated by sections of the form f®1—1® h(f), for f a local

. -1
section of T (OXTY)‘

Then, in the case when ¢ is a locally closed immersion, we can de-
fine the ringed topological space (X|Y)"9 to be the topological space Y9
endowed with sheaf of rings Ol)?IgY defined above. Now, if ¢ is an exact
closed immersion, we can compare the sheaves in Definitions 2.2 and 2.6.

We have a well defined morphism of sheaves of OX]Y—algebras on Y9,
b T_I(OX]Y) ®r-10y Ol;g — (T_I(OXTY) ®z Symy($))/A. By working
locally on Y9 if 2 € Y, y € Y9 are such that 7(y) = x, from the ex-
act sequence (50) and by using arguments as in [27, Lemma (3.3)], we get
P, =~ T_I(OXIY)y ®Z%". So, the stalk at y of the right hand side is isomor-
phic, as (’)(Xiym—algebra, to the polynomial ring O(XTY),x[Tl’ ..., Ip,]. But,
since the closed immersion ¢ is exact, from Lemma 2.3 we also have that
the stalk at y of the left hand side is isomorphic to (’)( XV [T1,...,T},] and
we conclude that ® is an isomorphism.

Let us assume now that 7 is a closed immersion satisfying condition (x),
i.e. such that it admits a factorization Y < X’ £, X into an exact closed
immersion i’ and a log étale map f’. Since Y,, coincides with the n—th log

infinitesimal neighborhood of Y in X', we get that the sheaf Ol;?y coincides
with Ol;%y, by construction. Later we will use this fact, since condition (*)
is always étale locally satisfied in the case of a locally closed immersion.

DEFINITION 2.7. In the previous notations, for any ¢ € N, 0 < ¢ <
rkzwY, we define the following sheaf on y'log

log .l _
(52) w?d;’f = O;?Y Rr-1(0x) T (Wh)

where Ol;%/ is as in Definition 2.6.

Since X is log smooth over S, it follows that w% is a locally free Ox —

module of finite type, and so w09 ig locally free o'
Xy X[y

type. Moreover, by definition of C’)l)?‘fy as quotient of 771(O XTY)@zSymZ(EAB),

—module of finite
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we see that there exists a unique derivation dl: (’)l;“?’y — w;’l&g which
extends 771(O <, w;dY and satisfies d!(z) = dlog(exp(x)), for each

element z € $. This d' can be extended to get a differential

Xh/)

(53) de: W9 Tt Lles,
Xy Xy

“log

Therefore, we obtain a complex wXTY

3. Formal Poincaré Residue Map

In this section, we give a “formal version” of the Poincaré Residue map
given by Deligne ([10, (3.1.5.2)]). We consider an fs log scheme Y, with log
structure My, and an exact closed immersion 7: ¥ — X, where X is an
fs log smooth log scheme, with log structure Mx. We also suppose that
the underlying scheme of X is smooth over S, and its log structure Mx is
given by a normal crossing divisor D — X, ie. Mx = j.O; N Ox — Ox,
where j: U = X — D — X is the open immersion. Let X", Y*" be the log
analytic spaces associated to X and Y, which we will simply denote by X,
Y, when no confusion can arise.

We take the log De Rham complex wy = Q' (log Mx) = Q' (log D). Its
completion w_._, along the closed subscheme Y of X, satisfies

X[y

i o~ R
for each 7, 0 <4 < n = dim X, because the Ox—modules wé( are coherent.

9 . . I i+1 .
We denote by d* the differential wXTY — wXTY of the complex wy ®o

OXTY' We consider the weight filtration W. on wy ([10, (3.1.5.1)]): each
term Wi(wh) = QcF AWk is a locally free Ox—module and the map
Wk(w}() — wg( is injective, for each 0 < k < ¢ < n. Now, since i is an
exact closed immersion, by Definition 0.6 the log formal tube of X along Y
coincides with the classical formal completion. So, from [30, §9, Theorem

55, Corollary 1], O is flat over Ox. Therefore we get that the morphism

Xy

Wi (wy) ®oy Ox[y — Wk ®oy Ox{y = w;dy
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is also injective. Then, we define an increasing filtration W on w. by

Xy’
setting

Wk(w;dy) = Wk(w&') Xox Ox]y

foreach 0 < k <i<n.

Since Wi, (w X\y) Im{wk @0, V* @0, OXTY & W ®oy XTY}’ we
can write the term W}, of the filtration as wX QZ k v where Q. is the

X[y XY

completion of the classical De Rham complex () along Y. Moreover, we

note that W’f(wédy) is a locally free O XIY—submodule of widy, for each 1.

We suppose now that, locally at a point € Y < X, the normal crossing
divisor D is the union of smooth irreducible components D = D1 U...U D,.,
where each component D; is locally defined by the equation z; = 0 (for a
local coordinate system {z1, ..., z,} of X at 2). Let S* be the set of strictly
increasing sequences of indices o = (o1, ..., 0} ), where o; € {1,...,7}, and let
Dy = Dy, N...N Dy,,. Let Dk = U,egr Do and DF be the disjoint union
[, e+ Dy Moreover, let 7k DF — X be the canonical map. Then,

locally at z, the O Xy -submodule W (w’ . ) of w’ . can be written as

Xy Xy

A~

Wi (W' Z QZ k v dlogzy, A ... Adlogzy,

oeSk

X|Y

for each 0 < ¢ < n. Therefore, the elements of Wk( i TY) are locally linear

combinations of terms 1 A dlogz,, A ... A dlogz,, , with n € Q;";

Let Y, = Dy NY, and Y* = [, i (Ys), with Y, = D, NY. We have
the following cartesian diagram

Yk < Dk
y <& X

Since each intersection D, is smooth over S, we can take the sheaf of classical

dlfferentlal i—forms Q% over D¥; then, 7Tk( e) = @egr(ioxQp, ), where
Dy — X.

SO, (Wf(QZDk))[y = (@aesk (Z.U*Qi[)a))hf = @gesk (Z.U*QiDJ)Ty'
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From the cartesian diagram

Y, — D,
(55) Lol
y 4 X

we deduce the map i, DUTYU < X|Y. From [17, (Corollaire (10.14.7))], it
follows that . '

009,y 2 i0n(@ )
and then

(56) (s = @ inn (2, 1)

oeSk

3.1. The Formal Poincaré Residue
In [10, (3.1.5.2)], Deligne defines a map of complexes

(57) Res : Gr}/ (Qx (log D)) — 7¥Q .. (%) [ K]

for each k& < n, called the Poincaré Residue map, where ¥ is defined as
in [10, (3.1.4)], and represents the orientations of the intersections D, of
k components of D. Given a local section n A dlogzs, A ... A dlogz,, €
Gr}/ (0% (log D)), with 7 € QK" the map Res sends it to ND, @
(orientation oy...0%). Deligne proved that Res is an isomorphism of com-
plexes ([10]). Moreover, from [10, (3.1.8.2)], the following sequence of iso-
morphisms

RFj.C = 94(.0y) = 9" (U (log D)) =

implies that there exists an identification

k
(58) ek = Coz \ M¥ /0%

(Mx is the log structure on X associated to the normal crossing divisor D,
and elj( is the direct image of €* via the map 7*: D¥ — X [10, (3.1.4.1)]).
Using diagram (54), and (56), we can extend the Deligne Poincaré Residue
map to the formal case. Indeed, we consider the map

(59) Res’: Grkw(w;]y) = Gr}j/(wg( ®oy O e A L (")

XTY) * th/k
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for each k < p <n, which is locally given by

n A dlogzs, A ... Adlogz,, — Moy © (orientation oy...0%)

where n € QP This is the completion Res’ of the Deligne Poincaré

k
Xy’
Residue map (57), in degree p, along the closed subscheme Y. We see that
the maps Res’ induce the following O x — linear isomorphism of complexes

(60) Res : Gr}’ (W' )ifer'Dkiyk(ek)[—k]

for each k < n.
To this end, we briefly recall the classical construction of the Deligne
Poincaré Residue map. So, given o € S*, we consider the application

—k
(61) pos O — Galt (W)
which is locally defined by
(62) po(n) =:n A dlogze, A ... A dlogzy,.

This map does not depend on the choice of the local coordinates z; ([12,
3.6.6]). Moreover we have that

p0'<zo'i : ﬁ) =0 and pa(dzai A 7) =0

for all sections 3 € Qg’{k, and v € Q])D;l*k. Therefore p, factorizes into
Qg(_k — iU*Q%_gk ® (orientation oy...0%)
(63) i’ / Py
Gl (8.

Thus, all these maps being locally compatible with the differentials, the
maps p, define a morphism of complexes

(64) P T (M) k] — Crl (wy).

This morphism is locally defined by (62), and it is a global morphism on X:
it is an isomorphism of complexes. Its inverse isomorphism Gr}¥ (wy) —
Wbek (e*)[—k] is the Deligne Poincaré Residue map Res ([12, (3.6.7.1)]).
We can see that Res' is an Ox —linear morphism of complexes: so one can
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deduce that the maps Res’ in (59), are compatible with the differentials in-

duced from w_._ and Q' [—k], because Res’ comes from the Ox —linear
Xy Dkyk

map Res? by completion along Y. Indeed, we note that
Gr}Y (w Gry (wx) ®ox O

X|Y) X[y

and, from (56), we have that

(R (B M)y = €D el ()

oesk

12

7}59 k|Yk( k)[_k]

So one can conclude that the morphism of complexes Res (60) is an iso-
morphism, for each k£ < n.

We can also construct the morphism Res by using a formal version of
the classical construction of Res’, described in (61), (62), (63), (64). Indeed,
we can define the map

(65) Pyt Xt — Grl (w

Xy X|Y)

which is the completlon along Y of (61), and is locally defined as in (62),

but with n € Qp Xy . Then, we can see that this map p oy factorizes into

—k . .
QI);(TY - ZU*QPDUIYU ® (orientation oy...0%)
(66) Pl 7,
Grk: (W)

Xy

which is the formal analogue of (63). We conclude that there exists an
isomorphism of complexes on X

(67) Py s T () [k — Gl (w

Ply* DF|y'k X|Y)

In view of this construction, we can give the following

DEFINITION 3.1. In the previous notation, we define the Ox—linear
morphism of complexes

(68) Res : Grll (w,) — #4000 (e5) (K]

(67).

as the inverse morphism of p-

Y
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Xy

We consider the case Wh|en X is smooth over S, with log structure given
by a normal crossing divisor D on X, and Y is a closed subscheme of X with
induced log structure. Under the same notations of the previous section,
from the classical formal Poincaré Lemma ([18, IV, Theorem 2.1] we get

that Qbkiyk is a resolution of the constant sheaf Cy, on Y. Then, from the

isomorphism RAes', and from (58), we deduce that,

3.2. Cohomology of w

k
> Cyr @cek = Cyr 0z \ MY /0% if q=k

(69)  %4(Gry” (Wyiy))
and
(70) %Q(Grkw(wm)) =0 if q#k

Therefore, we deduce that, for each point x € Y N D, there exists an iso-
morphism

q
(71) Wiy )e = C 07 \(ME/OX )
4. Formal Log Poincaré Lemma

In this section, we generalize the logarithmic version of the Poincaré
Lemma, proved by Kato-Nakayama ([27, Theorem (3.8)]) in the case of an
(ideally) log smooth log analytic space (i.e. a log analytic space satisfying
the assumption (0.4) in [27]). We extend this result to the case of a general
fs log analytic space over S, and prove the following

THEOREM 4.1. Leti: Y — X be a locally closed immersion of fs log
schemes of Zariski and finite type over S, where X 1is log smooth over S.

Let w(;gy Jan be the complex introduced in §2. Then, there exists a quasi-
isomorphism

= “log
(72) Cylog — w(XIY)”‘"'

To prove this theorem we first need some preliminary results. The meth-
ods of the proof are similar to those of [27]. In the sequel, we will indicate
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with the same notation the algebraic log scheme and its associated log an-
alytic space (without using the (—)*" notation).

Let us suppose that the closed immersion ¢ is exact. Let P — Mx be
a chart, with P an fs monoid. Let p be a prime ideal of P which is sent to
0 € Ox under P — Mx — Ox. Let T be the fs log analytic space whose
underlying space is the same as that of X but whose log structure My is
associated to P\ p — Orp. Similarly, let Z be the closed log subspace of
T whose underlying space is the same as that of Y and whose log structure
is the inverse image of M7. We have the following commutative diagram of
fine log analytic spaces

(Y,i*My) <> (X, My)
(73) L

(Z.i5My) < (T, Mry)
where the vertical maps are the identity over the underlying analytic spaces.
We also note that, since theAclosed immersions ¢ and ¢p are both exact, the
log formAal analytic space T|Z coincides with the classical formal analytic
space X|Y and so
(74) W;.FTZ = wp ®oy OX]Y'
Xy’
let Frpwg( be the Ox—subsheaf of wg( defined by Ffwg( =0, if r < 0
F,ng( = Im{wy @uwi " — w},if0<r <g; Fqug( =wk, if ¢ < r (27,
Fil, in Lemma (4.4)]).

On the complex w'_.._ we consider the induced filtration

X[y

We introduce now a filtration on the complex w So, for q,r € Z,

EPy oy = FPuy ®0, O

T ¥X] xjy-

LEMMA 4.2. [27, Lemma (4.4)] In the previous context,
b , ,
(1) Fy} WXTY s a subcomplex of wXTy.
(2) For any r € 7, there is an isomorphism of complezes

r

(75)  APP/(P~p)P) @z [-1] —

R b, . JEP .
Tz Py Eraw
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whose degree q part is given by

(1 Ao Apr) ®7 (N ®oy f) — dlog(pr) A ... Adlog(pr) A (n ®oy f)

where p1,...,pr € PP, n®o, [ €w!. w,®0, OXIY The differential of

T|Z
the left side is equal to (id ®7zd ), where d is the differential of wT‘Z
(3) Let a € P9 and assume that a does not belong to (P ~ p)9. Then the
complex (w;]dy)qez with differential
.4 q+1 .
dy: Wity T Yy dlog(a) A x + dz

s acyclic.
PROOF. (2). By applying the functor (—)®0O ]y to the exact sequence
of coherent sheaves 4.4.1 in [27, Lemma (4.4)], and using (74), we have

0 — wpg, — wyjy — OXTY ©z PP[(P N p)? — 0.

(3). Since da(Equ ) c FP +1“’ o it s sufficient to prove that, for each

XJy
r € Z, the complex (EF

X |

rray] Y/ rq— 1wX‘ )qez with differential induced

by d, is acyclic. But by (2), this complex is isomorphic to the complex
((A@+q H) ®q w;{z)qez with differential z ® y — (a A ) ® y, where H =

(PP/(P~p)?) @zQ. O

Let P be an fs monoid and let X be the log analytic space Spec C[P],
endowed with log structure P — Ox. Let ¢: Y < X be an exact closed
immersion, where Y is a fine log analytic space endowed with the induced
log structure. We fix a point z € Y. Since i: ¥ — X is exact, via the
canonical isomorphism

wl. = C[P);

Xjy Iy ®7 PP

1
Xy’
sending p to 1 ® p ([31, §3]). The image of this map is contained in the
closed 1—forms. Therefore, we get a map

the map P — w sending p € P9 to dlogp, corresponds to the map

M}q(px/OX:B = p?P— %1( X|Y)
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and, by cup product, we deduce a map

q q
(76) AL, /05 ) = \ PP — 31(w, ).

Let b be the prime ideal of P which is the inverse image of the maximal
ideal of Ox, under P — Ox,. We denote by X (b) the closed analytic
subspace Spec (C[P]/(b)) of X, endowed with log structure induced by that
of X. The underlying analytic space of X (b) is equal to Spec C[P \ b], and
x belongs to its smooth open analytic subspace Spec C[(P \ b)9P]. Let Y (b)
be the fiber product

Y(b) — X(b)
(77) ! l
Y — X

which is a closed subspace of X (b). Moreover, let (X]Y)(b) be the comple-

tion X(b)TY(b) of X (b) along its closed subspace Y (b), and let wA(XTY)(b) be

the formal log complex of (X[Y)(b), with differential maps ch

We denote by (O )‘ilbzo the kernel of J%, @]

N R 1
(xTY)(b) xIV)®) — “xivy(e)

LEMMA 4.3. [27, Lemma (4.5)] In the previous context,
(1) there exists an isomorphism

&~ di=0
(78) C — (O(XTY)(b))f”b
and a quasi-isomorphism
(79) C— (Q(X]Y)(b))‘”

(2) Let bwﬁy be the subcomplex of w')dy
be the O x —subsheaf ofwgdy generated by bwzdy’ with b € b. For any q, the
map

whose degree q part is defined to

q
(80) NI /0%)s ©2.C — (w1 /b0, )
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which is induced by the map (76), is bijective.
(3) For any ideal a of P such that a C b, the stalk at x of the canonical map
of complexes

(81) w}(iy/ aw'X]Y — w}(IY/ bwkiy

is a quasi-isomorphism (where the definition of aw’ s similar to that of

A Xy
waiY in (2)).

PROOF. We first note that the complex w'_. /aw' .  is isomorphic to
Xy’ Xy

Y xir)@" Indeed, since a is an ideal of the monoid P, by [27, Lemma (3.6),
(2)], wi/awk =~ w%c(a), and it follows that

. . ~ . o~
WXTY/anTY = wX/an ®(’)X OXlY =

Wx(a) ®ox Oxiy = Yy aiv(a) = “xiv)(a)

We start to prove (1) and (2). We may restrict ourselves to the open neigh-
bourhood Spec C[(P ~\ b)9] of x in X (b), and consider the restriction of
Y (b) to this open neighborhood. So, = belongs to the closed subspace
Y (b)NSpec C[(P . b)9] of the non-singular analytic space Spec C[(P~ b)9P].

In this local situation, from [18, IV Theorem 2.1] we know that the

complex (2 is a resolution of the constant sheaf Cy(p) over Y (b).

X (b)Y (b)
Therefore, the stalk at = of (O
a quasi-isomorphism

(XTY)(b))dlb:O is isomorphic to C, and there is

[as)

C Qxpivw)
so (1) is proved. Now, we apply Lemma 4.2 by taking X (b), P, b as X, P
and p. We consider 37 of both sides of Lemma 4.2, (2), and take the stalk at

x. Then, %q(FTb(w'(XIY)(b))/Frbfl(wtxiy)(b)))m is isomorphic to A" P9 /(P ~

b))% R7 %qiT(QAX(b)TY(b))x’ which is isomorphic to A" P% /(P ~\ b)% @7 C
if ¢ =r and is zer? if ¢ 7é r. Therefore, since wXIY / waTY 2w (XY’ the
stalk at = of %q(wXTY/waTY) is isomorphic to A\*(M¥,/O% ) ©zC, so (2)
is proved.

We prove (3) in four steps (see [27, Proof of Lemma (4.5)]).
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Step 1. We show that to prove (3) we may assume that a is a prime
ideal. Assume there exists a for which (81) is not a quasi-isomorphism.
Since Z[P] is a Noetherian ring, the set of such a has a maximal element g.
We show that g is a prime ideal. To this end, we use similar arguments to
those in [27, Proof of Lemma (4.5), Step 1.], where, in our context we have to
take C equal to the complex w and p = {b € P; b" € q, forsomen > 1}.

Xy
Then we may assume that q is a primary ideal and by [27, Lemma (4.2), (2)],
there exists a € P, such that {x € P;ax € q} = p. Hence we are left with
the case a € p and to prove the acyclicity of the complex q’w'XTY / qw')dy,
where ¢ = q U Pa. Now, we note that it is isomorphic to the complex

(W?XTY)(p))qEZ with differential x — dlog(a) A x + dx, and so the acyclicity
follows from Lemma 4.2, (3).

Step 2. We show that to prove (3) for the pair (P, a), it is enough to
prove (3) for the pairs (P ~\ p, @) for prime ideals p C b of P (& being the
empty ideal of P N\ p).

By Step 1, we may assume a is a prime ideal of P. Let P/ = P \ a,
X' = Spec (C[P])*™ with log structure associated to P — Ox. Moreover,
let Y/ =Y xx X'. Then the underlying analytic space of X (a) (resp. X (b),
Y (a), Y(b)) coincides with that of X' = X'(@) (resp. that of X'(b'), Y,
Y'(b"), where b’ = PNb). So, by using the graded terms with respect to the

filtration F'® on w'(XTY) @ 0 'XTY) ) and by applying Lemma 4.2, (2),

one can repeat [27, Proof of Lemma (4.5), Step 2] and conclude.

d
“

Step 3. We prove (3) in the particular case where P = N, for some
r > 0. In this situation, for any prime ideal p of P, P ~ p is isomor-
phic to N* for some s < r. Thus we may assume P = N" and a = &
by Step 2. We have X = C" as an analytic space, with canonical log
structure given by a normal crossing divisor D — X, and Y is a closed
analytic subspace of X, with induced log structure. Then, we have the

isomorphism of complexes wxiy = Qy(log D) ®o, O Therefore, we

Xjy-
are reduced to the case analyzed in §3.2, and we can use the isomorphism

(71) to describe the stalk at z of %q(w‘xiy). So, by applying Lemma
4.3, (2),. %q(wﬁy/bwﬁy)x =~ NY(MF/O%)r ®z C, which is isomorphic
to %q(wxiy)z’ via (71).
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Step 4. Now, we prove (3) in the general situation. By Step 2, we may
assume a = &. For a non-empty ideal I of the monoid P, we can consider
the toric variety B(Spec C[P]), which we get from X by “blowing-up” along
I as in [28, §I, Theorem 10]. It is endowed with a canonical log structure

([25, B.7)(D)])-

Note. From [26, Proposition (9.8)], and [28, §I, Theorem 11], it is pos-
sible to choose an ideal I of P, such that, if X = B; 7(Spec C[P]), with log
structure M, then, for any y € X, (M /O%)y is isomorphic to N for
some 7(y) > 0. Let f: X — X be the proper map, corresponding to
the “blowing-up” of X along I. Then, locally, X is isomorphic to an open

sub log analytic space of Spec C[N"] endowed with canonical log structure
N" — C|[N"].

Then, we consider the following cartesian diagram

Y o5

X
(52 iy g
y 40X

where ¥ = f7H(Y) is a closed subspace of X, and we suppose it to be
endowed with the inverse image of the log structure M. We denote by f
the morphism f: X|Y — X]Y (deduced from the cartesian diagram (82)).
We also note that the vertical maps in (82) are log-étale, so

(83) wg & ffwy.

Then, from (83), we get

1%

(84) wey = Fwy

Moreover, by [28, §I, Corollary 1. c)], there exists a quasi-isomorphism
(85) Oy — Rf,O

Since f is proper, and X, X are schemes of finite type over S, applying the
fundamental theorem of a proper morphism for analytic spaces which come
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from algebraic varieties [18, §I, Proposition (6.2)] to the structural sheaf
Ox, we get

(86) (RfO% )iy — Rf*(o;z]fz)
and, from the isomorphism (85), we get

(87) (@ Xy
Therefore, since the O g-module (resp. Ox —module) w% (resp. w%) is free
of finite rank, for any ¢, from (84) and (87), we finally get an isomorphism
in the derived category

(88) Wy = Rf*w)m;.
Consider now any & € Y such that f(#) = x. Let b be the prime ideal of N
equal to the inverse image of the maximal ideal of O . under N* — O ..
We denote by a the ideal of O ¢ which is the inverse image of the ideal
b under f. We have a C b. We also note that b depends on the choice of

Z lying over x, but a depends only on z € X. We consider the following
commutative diagram

(w}(IY)z 7 (w}(IY/ bwkiy)‘”
(59) = T
(Rf*wﬁg)x —  (Rfs (wﬁ?/awﬁ?))x

Now, for every & € f~!(z), since we have just proved (3) in the case when
P =N r >0, and @,a C Oy . are two ideals contained in b, we have
that %q(w'j(h})j — %q(w‘)ﬂ? / awm}})i is an isomorphism. It follows that

q . q . . . . . _1 .
¥ (w)”(]f/) — K (wﬁ? / awﬁ?) is an isomorphism on the fiber f7(z):
then, by proper base change for complexes of sheaves ([24, §II1.6]), the

lower horizontal arrow in (89) is an isomorphism. Therefore, the map

(90) W wyy e — Wy /bW gy )a

C 0(, » ~

is injective. =~ Moreover, by Lemma 4.3, (1), ¥ (WXTY/waTY)I =
0 . >~ 0 . ~o o~ 0 . o~

Ei4 (w(XIY)(b))“ — C, and also # (wﬁ?/bwﬁf/)z =K (W(XH’)(EJ))“ ~ C,
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for any point Z lying over x, with associated ideal b. Thus, from the follow-
ing composition map

C= %O(W}(]y/bwﬁy)m — %O(Rf*(wﬁ?/awﬁ?))z -

(w5 /gyl — C
we get that the map
(91) %O(W'XTY /bw iy )z — 9O (R f*(wm /0w 515))a

is injective. Now, from diagram (89), since the composed map (w'Xh/)m —

(R f*(wx‘? / awﬁ?))x is an isomorphism, it follows that the map (91) is also
surjective, and so it is an isomorphism.

Therefore, from diagram (89), the map
(92) %O(WXTY)I — %O(WXTY/ bwyiy)e

is also an isomorphism, and we can conclude that #°(w’

X]Y)w =C

Now, the isomorphism (80), factorizes through

q
NI, 0% ) ©2H0W ) — K)o — KO b )

and we can conclude that the map (90) is also surjective, and so it is an
isomorphism. []

From Lemma 4.3, we can deduce the following

PROPOSITION 4.4. [27, Proposition (4.6)] Let' Y be an fs log analytic
space over S, and let i:' Y — X be an exact closed immersion of Y into
an fs log smooth log analytic space X. Then, for all q € 7Z, there is an
isomorphism

(93) NME/O%)y ©2,C — H?(w

XIY)

; o AIP 1
induced by the map dlog: MX]Y — iny.
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PROOF. Since the question is local on X, we may assume that X =
Spec C[P], where P is an fs monoid. Let = € Y, and let b C P be the inverse
image of the maximal ideal of Ox ;. Now, by Lemma 4.3, (3),

H gy o = H (w001

and, by Lemma 4.3, (2),

q

for each point z € Y. [

Now, we use Lemma 4.3 and Proposition 4.4 to prove a “formal version”
of the logarithmic Poincaré Lemma.

PROOF OF THEOREM 4.1. In the previous notation, let x € Y, y €
Y9 be such that 7(y) = x. Since the problem is local on Y, we may assume

that i satisfies condition () and consider a factorization ¥ < X' -%» X,
where 7' is an exact closed immersion. Since, by definition, le|0 5 = le/Og/ ,
we can reduce to proving the statement in the case when i is an exact closed
immersion. In this case, let {t1,...,t,} be a family of elements of £x , whose
image via the map exp,: ¥x, — MY, /O% , is a Z—basis of MY’ /O% .
Let R be the polynomial ring C[T7, ..., T,]. From Lemma 2.3, the stalk

log .. . .

at y of OXTY is isomorphic to OX|Y7I[
to T;. Therefore, we consider the C—linear homomorphism

Ti,...,T,], where each t; corresponds

(94) R— O
XYy

which sends T; — t;, for i = 1, ...,n. Since

is a quasi-isomorphism, it is sufficient to prove that the canonical map

(95) Qp,c — Y vy

is a quasi-isomorphism. To this end, we introduce a filtration on €2, /C a8
follows: for any r € Z, let Fil, (2, /(C) be the subcomplex of 1, /C whose
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degree ¢ part is the C—submodule of Q% /C generated by elements of the

type f -7, with f € R an element of degree < r, and v € AY (B}, ZdT;).
We also introduce a filtration on w % : for any r € Z, let Fil, (w ')
X[vy Xy

be the subcomplex of le‘O 5 whose degree g part Fil, (wi’_l{;f) is defined as

. Jdogy . @4 lo -1
FllT(w?{TY{]) =: ﬁlT(OX!TJY) ®T’1(Ox) T (wg()

where ﬁlr(Ol)‘;‘f’ ) is the filtration defined in Lemma 2.5.

Y
Then, by Lemma 2.5,

: Aal : ‘7l ~ _— . *
Fil, (%) /Fil, 1 (w,/0) = 7! (ww @z Symy( MY /0%) )

and, by Proposition 4.4, for any ¢,
99 (77w, 2 SymE(MEP/0%))) =

q
Conr ' (\(ME/0%) @ Symp(ME /O%)).

On the other hand, Filr(QR/(C)/Filr_l(QR/(C) is the complex

q n n
q— C oz (\ P ZT) @z Symy(EP ZT)

i=1 i=1

which is isomorphic to C @z A1Y(MY /0% )z @z SymYy (M /O%)e. The dif-
ferentials of this complex are zero.

'7lOg

w57 induces a
XYy

Therefore, for any r € Z, the canonical map 2, c—
quasi-isomorphism

. . . . = . -lo . Slo
(96) Fil.(Qp,c) /Fily—1(Qp/,c) — Fil, (wxhi)/Fﬂ’“_l (wxhg)

w7 is a quasi-isomorphism, for
XYy

and this implies that the map €2, c—
each point y € Y9, [J



252 Bruno CHIARELLOTTO and Marianna FORNASIERO

5. Log De Rham and Log Betti Cohomologies

The goal of this section is to compare the Log Betti Cohomology
H (Y'°9,C) of an fs log scheme Y, with its algebraic Log De Rham Co-
homology H (Y, WXIY)' Therefore, we begin with

THEOREM 5.1. Leti: Y — X be a locally closed immersion of fs log
schemes of Zariski and finite type over S, where X is log smooth over S.
Then, for any q € Z, there exists an isomorphism

(97) HI(Y"9 C) = HI(Y, Wiy) = H} g 10g(Y/C).

PROOF. In the previous section, we have checked that H9(Y'9 C) =

Hq(Ylog,w')’(lﬁg), for any ¢ € Z. So, we will first show that the Log Betti
Cohomology of Y is isomorphic to the analytic Log De Rham Cohomology

H (Y, ka]Y)an) (Proposition 5.2). Finally, we will check that the algebraic

log De Rham complex w}(]Y
log De Rham complex w'(XIY)an (Theorem 5.3). O

is quasi-isomorphic to its associated analytic

PROPOSITION 5.2.  [27, (4.8), 4.8.5] Under the same assumptions as
i Theorem 5.1, there exists a quasi-isomorphism

',log)

— R7 (wXTY

(98) w(XTY)an

PROOF. Since the problem is local on Y, we may assume that ¢ satisfies
condition (x) and thus reduce to proving the statement for an exact closed
immersion. We apply [27, Lemma (1.5)], taking the constant sheaf C on
Y"*. We have canonical isomorphisms

q
RqT*Cylog = RqT*T_l(:Y”" = (C ®Z /\ Mig/p/o;

where the sheaf M{” /O3 is isomorphic to (M’ /O% )|y, by (41). Moreover,
the following composed map

q
Coz \(ML/O%)y — KW jyyan) —
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q
(99) R7,Cyos — C &7 \(ME/O%))y

is the identity map (where the second map comes from Theorem 4.1). There-
fore, since the first map is an isomorphism by Proposition 4.4, we can con-
clude. UJ

We now compare the algebraic log De Rham complex wXIY with its

associated analytic log De Rham complex w (X]y)an

, and show that they are

quasi-isomorphic.

THEOREM 5.3. Under the same assumptions as in Theorem 5.1, let
g: X% — X be the canonical morphism. If we consider the cartesian
diagram

YGTL [N X(ln
(100) 9y | 9]
y & 00X
then the morphism
(101) wXTY — Rg*w(XTY)a"

duces an isomorphism in cohomology

S H Y, w,

(102) H (Y7w (XTY)an)

'XTY )

PROOF. We can work locally on Y and assume that ¢ satisfies condition

(%). So, we reduce to proving the statement for an exact closed immersion.
Then, by working locally on X, we may assume that there exists a strict
étale morphism ¢: X — Spec C[P], for some fs monoid P. We divide the
proof into two steps:
1) We begin by proving the assertion in the case where P = N", for some
r € N, i.e. in the case of a smooth scheme X over S, with log structure given
by a normal crossing divisor D — X. Then, by the formal Poincaré residue
isomorphism (60), for each & < n, we have the following identifications

(103) HI(Y, Gl (wy, ) 2 RV, 750 (2).
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Moreover, by [18, §IV],

Hq—k(y AkQ He k(Yan AkQ ~ Hq_k(Yk’(m,(C)

Dk‘yk( )) Dk, anlyk an( ))

and so

HI(Y, Gy (w >~ HI(Y™, Gr) (w)

(XTY)an))
for each k, 0 < k < n. Therefore, we can conclude that the morphism (101)
induces the isomorphism H (Y, w’ H (Y w

W iy))

|Y) <XTY)W)‘ 3

2) We now prove the assertion for a general fs monoid P. We take I and
B;(Spec C[P]) as in the Note interpolated in the proof of Lemma 4.3. We
define X as the base change of the morphism B;(Spec C[P]) — Spec C[P]
by the strict étale morphism X — SpecC[P]. Let f: X — X. We
consider the cartesian diagram (82), for the algebraic and analytic cases.
Then, by applying the same arguments as in the proof of Lemma 4.3, (84),
(87), (88), we can conclude that, in the algebraic setting,

~Rfw

“Xiy “xiy

and similarly, in the analytic setting,

. ~ ran -
Uxiyyen = BRI iy

Therefore, to prove the assertion it is sufficient to check that there exists
an isomorphism H (V,w ~h~/) = H (Y w'(f(]f/)a")' But this follows from
step 1), because locally, X is strict étale over Spec C[N"], for some r € N,
endowed with canonical log structure N — C[N"]. [

We are ready now to prove our main

THEOREM 5.4. The cohomology of the constant sheaf C on the topo-
logical space Ylg“, associated to an fs log scheme Y of finite type over S, is

tsomorphic to the Log De Rham Cohomology of Y,
H (Y8, Oyton) = Hp g (Y/C) = H (Y5, C).

inf?

Proor. We take a good embedding system Y Ly, 8 X oofY
over S. In the construction of good embedding systems in [36, Proposition
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2.2.11], the first map Yj 25 Y of the hypercovering of Y is étale and
surjective, and each other map of the hypercovering Y,, ", ¥ is constructed
by taking the (n 4 1)—fold fiber product of Yy over Y. Thus, if we consider
the following cartesian diagram

log

Yblog gO_) Ylog
Tl Tl
Yo & v

then the map of topological spaces g(l)og is surjective and, since gg is strict
étale, then g(l)og is also an étale map of topological spaces in the sense of [27,
Lemma (2.2)], i.e. it is a local homeomorphism of topological spaces. Then,
by [34, Proposition (4.1.8)], géog is a morphism of universal cohomological
descent in the sense of [11, Definition (5.3.4)] (or [34]), and, since for any n €
N, the (n+1)—fold fiber product of topological spaces Yy Xyiog ... Xyiog Yolog
is equal to (Y Xy ... Xy Yp)"9, we get a canonical isomorphism

(104) H (Y9, Cyriog) = H (Y19, Cyrio).
Now, by Theorem 5.1,
H (Yaiogv CYW{OQ) — HDR,log(Yn/C)‘

Then, by definition of Log De Rham Cohomology, we finally get a canonical
isomorphism

H‘ (Ylo‘g, Cylog)

12

H (Y19, Cy109) = Hpp04(Y-/C)
H (Y7 Rg'*w ) = HbR,log(Y/C)‘ 0

I

xJy.
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