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The Lp Boundedness of Wave Operators for
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Abstract. Let H = −∆ + V (x) be an odd m-dimensional
Schrödinger operator, m ≥ 3, H0 = −∆, and let W± =
lim

t→±∞
eitHe−itH0 be the wave operators for the pair (H,H0). We

say H is of generic type if 0 is not an eigenvalue nor a resonance
of H and of exceptional type if otherwise. We assume that V sat-
isfies F(〈x〉−2σ

V ) ∈ Lm∗ for some σ > 1
m∗

, m∗ = m−1
m−2 . We show

that W± are bounded in Lp(Rm) for all 1 ≤ p ≤ ∞ if V satisfies in

addition |V (x)| ≤ C〈x〉−m−2−ε
for some ε > 0 and if H is of generic

type; and that W± are bounded in Lp(Rm) for all p between m
m−2

and m
2 but not for p outside the closed interval [ m

m−2 ,
m
2 ] if V satis-

fies |V (x)| ≤ C〈x〉−m−3−ε
and if H is of exceptional type. This in

particular implies that the continuous part of the propagator satisfies

the Lp-Lq estimates ‖e−itHPc(H)u‖p ≤ C|t| 1
m ( 1

2− 1
q )‖u‖q for the dual

exponents 1
p + 1

q = 1 such that 1 ≤ q ≤ 2 ≤ p ≤ ∞ if H is of generic

type, and for m
m−2 < q ≤ 2 ≤ p < m

2 , m ≥ 5, or 3
2 < q ≤ 2 ≤ p < 3,

m = 3, if H of exceptional type.

1. Introduction

We begin with a brief review of scattering theory([17], [19], [1] and [21]).

Let H = −∆ + V (x) be a Schrödinger operator on Rm, m ≥ 1, with real

potentials V (x) which satisfy

|V (x)| ≤ C〈x〉−δ for some δ > 2(1.1)
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where 〈x〉 = (1 + |x|2) 1
2 . Then, H with domain D(H) = H2(Rm), the

Sobolev space of order 2, is selfadjoint in the Hilbert space H = L2(Rm)

and C∞
0 (Rm) is a core. The spectrum σ(H) of H consists of absolutely

continuous part [0,∞) and a finite number of non-positive eigenvalues {λj}
of finite multiplicities. We denote the point and the absolutely continuous

subspaces for H by Hp(H) and Hac(H) respectively, and the orthogonal

projections onto the respective subspaces by Pp(H) and Pac(H). The sin-

gular continuous spectrum and positive eigenvalues are absent from H. We

write H0 = −∆ for the free Schrödinger operator.

The wave operators W± = W±(H,H0) associated with the pair (H,H0)

are defined by the following strong limits in H:

W± = lim
t→±∞

eitHe−itH0 .(1.2)

It is well known that the limits exist, W± are isometries and they are asymp-

totically complete in the sense that Image W± = Hac(H). It follows that

W ∗
±W± = I, W±W

∗
± = Pac(H),(1.3)

where I is the identity operator on H. One of the merits of the wave

operators is the intertwining property: For Borel functions f on R

f(H)Pac(H) = W±f(H0)W
∗
±.(1.4)

For σ ∈ R we write Hσ for the weighted L2-space L2(Rm; 〈x〉2σdx). We say

that H has threshold singularities or H is of exceptional type if

N = {u ∈ H−σ : (1 + (−∆)−1V )u = 0} �= 0,(1.5)

for some 1
2 < σ < δ− 1

2 ; if otherwise, we say that H is of generic type. When

m ≥ 3 and H is of generic type, we have shown that W± are bounded in

Lp(Rm) for all 1 ≤ p ≤ ∞:

‖W±u‖p ≤ C‖u‖p, u ∈ Lp(Rm) ∩ L2(Rm)(1.6)

under suitable smoothness and decay (at infinity) conditions on V (cf. [26],

[27]). Here and hereafter we write ‖u‖p for ‖u‖Lp . If m = 2, the same

estimate (1.6) holds except at the end points p = 1 and p = ∞ under a

similar generic type condition ([28]). If m = 1, (1.6) holds without this
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condition for 1 < p < ∞ ([25], [3], [7]). The intertwining property (1.4) and

the estimate (1.6) then imply that for 1 ≤ p, q ≤ ∞ (or 1 < p, q < ∞ if

m = 1 or m = 2) and Borel functions f

‖f(H)Pac(H)‖B(Lp,Lq) ≤ Cpq‖f(H0)‖B(Lp,Lq),(1.7)

with constants Cpq which are independent of f . This provides a method for

estimating Lp-Lq bounds of functions f(H)Pac(H) of continuous part of H

by reducing them to those of the free Schrödinger operator f(H0) which is

the Fourier multiplier by rotationally invariant function f(ξ2). Note that

the point spectral part f(H)Pp is a finite rank operator
∑N

j=1 f(λj)φj ⊗
φj given in terms of the eigenvalues λj and the corresponding normalized

eigenfunctions φj of H, and its Lp continuity properties are easy to establish,

thanks to the well known smoothness and decay properties of φj (see e.g.

[2], [6]).

The purpose of this paper is to extend this result on wave operators to

the case when H does have threshold singularities and, at the same time,

to relax the conditions on V in the previous papers for generic case. As

even dimensional cases are slightly more complex, though the main idea is

similar, we exclusively deal with odd dimensional cases m ≥ 3 in this paper,

postponing the discussion on the former cases to the forthcoming paper [9].

Theorem 1.1. Let m ≥ 3 be odd and m∗ = m−1
m−2 . Assume that

F(〈x〉2σV ) ∈ Lm∗(Rm), for some σ > 1/m∗.(1.8)

Then we have the following statements:

(1) If V satisfies |V (x)| ≤ C〈x〉−(m+2+ε) for some ε > 0 in addition and

if H is of generic type, W± are bounded in Lp(Rm) for all 1 ≤ p ≤ ∞.

(2) If V satisfies |V (x)| ≤ C〈x〉−(m+3+ε) for some ε > 0 in addition and if

H is of exceptional type, W± are bounded in Lp(Rm) for m
m−2 < p < m

2

when m ≥ 5 and for 3
2 < p < 3 when m = 3.

Statement (1) improves the decay and the smoothness conditions on the

potential in the previous results ([26], [27]) for generic case. The condition

(1.8) requires some smoothness of V and such condition is vital, in addition
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to certain decay condition, for the Lp boundedness of W± for all 1 ≤ p ≤ ∞.

This has been pointed out by Golberg and Visan ([13]), who give an example

of compactly supported Cα, α < m−3
2 , potential V for which H is of generic

type and for which e−itHPc(H) violates (1.9) below for q = 1 and p = ∞.

One can check that this example nearly misses the condition (1.8). We

should also remark that it is long known from the local decay results of the

propagator e−itHPc(H) ([15], [22]) that W± cannot be bounded in Lp for p

outside the interval [m/(m− 2),m/2], however, we still do not know if this

is the case at the end points except for m = 3 (see below).

Applying estimate (1.7) for the family of functions f(λ) = e−itλ,−∞ <

t < ∞ we obtain the following Lp-Lq estimates for e−itHPc(H), the contin-

uous part of the propagator.

Theorem 1.2. Let V be as in Theorem 1.1 and let p ≥ q be dual

exponents of each other: 1
p + 1

q = 1. Then, the Lp-Lq estimates

‖e−itHPacu‖p ≤ Cpq|t|m
(

1
2
− 1

q

)
‖u‖q, t �= 0(1.9)

is satisfied for all 2 ≤ p ≤ ∞ if H is of generic type; and, if H is exceptional

type, for 2 ≤ p < m
2 when m ≥ 5 and for 2 ≤ p < 3 when m = 3.

When H is of generic type, estimate (1.9) is known for more general class

of potentials in lower dimensions 1 ≤ m ≤ 3 ([12], [11]), however, for higher

dimensions m ≥ 4, to the best knowledge of the author, Theorem 1.2 is so

far the best result with respect to both decay and smoothness conditions

on the potentials. When H is of exceptional type and m = 3, it is known

that (1.9) holds if and only if 3
2 < q ≤ 2 ≤ p < 3 with 1

p + 1
q = 1 and at the

end point

‖e−itHPcu‖L3,∞ ≤ Cpt
− 1

2 ‖u‖
L

3
2 ,1(1.10)

replaces (1.9), where Lp,q are Lorentz spaces([8], [29]). It follows that W±
are not bounded in Lp(R3) for p = 3

2 and 3
2 if H is of exceptional type.

We use the following notation and conventions. For u ∈ H−γ and v ∈ Hγ

〈u, v〉 =
∫
Rn u(x)v(x)dx is the standard coupling of functions; |u〉〈v| = u⊗v

will be interchangeably used to denote the rank 1 operator φ �→ 〈v, φ〉u. We

write R0(z) = (H0 − z)−1 and R(z) = (H− z)−1 for resolvents of H0 and H



Lp-Boundedness of Wave Operators 47

respectively; Σ = Sm−1 for the unit sphere in Rm. The upper half complex

plane is denoted by C+ = {z ∈ C : �z > 0} and C
+

= {z ∈ C : �z ≥ 0}.
We parametrize z ∈ C \ [0,∞) by z = λ2, λ ∈ C+, and define G0(λ) =

R0(λ
2) and G(λ) = R(λ2). For Banach spaces X and Y , B(X,Y ) (resp.

B∞(X,Y )) is the Banach space of bounded (resp. compact) operators from

X to Y , B(X) = B(X,X) (resp. B∞(X) = B∞(X,X)). The identity

operator is denoted by 1. The norm of Lp-spaces, 1 ≤ p ≤ ∞, is denoted

by ‖u‖p = ‖u‖Lp . We write S(Rm) for the space of rapidly decreasing

functions. The Fourier transform is defined by

û(ξ) = Fu(ξ) =
1

(2π)m/2

∫
Rm

e−ixξu(x)dx

and F∗u(ξ) = Fu(−ξ) is the conjugate Fourier transform. For functions f

on the line f (j) is the j-th derivative of f , j = 1, 2, . . . . For a ∈ R, a+ or

a− is an arbitrary number larger or smaller than a respectively; [a] is the

largest integer not larger than a.

The plan of this paper is as follows. Section 2 is a preparatory section

and we collect results on resolvents G0(λ) and G(λ) for real λ; we show, in

particular, that (1 + G0(λ)V )−1 has an expansion as λ → 0 in the form

(1 + G0(λ)V )−1 = 1 + A0(λ) + λ−1A−1 + λ−2P0V(1.11)

where P0 is the projection to the 0-eigenspace of H; A−1 a finite rank

operator if m = 3 or m = 5 and A−1 = 0 if m ≥ 7; and A0(λ) is a sufficiently

smooth function of λ including λ = 0 in suitable operator topologies (see

Theorem 2.12). If H is of generic type, the last two terms λ−1A−1+λ−2P0V

are absent and A0(λ) satisfies the same property under a weaker condition

|V (x)| ≤ C〈x〉−(m+2+ε). Most results of Section 2 are well known, however,

we shall sketch rather elementary proofs for readers’ convenience.

We prove Theorem 1.1 in Section 3. We prove it only for W−. The proof

for W+ is similar. As in [26] we write W = W− in terms of resolvents:

Wu = u− 1

πi

∫ ∞

0
G0(λ)V (1 + G0(λ)V )−1(G0(λ) −G0(−λ))λdλ;(1.12)

we split W into the low and high energy parts: W = WΦ2(H0) +

WΨ2(H0) ≡ W< + W>, by using cut-off functions Φ ∈ C∞
0 (R) and Ψ ∈
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C∞(R) such that Φ(λ)2 + Ψ(λ)2 ≡ 1 and such that, for a suitable con-

stant λ0 > 0, Φ(λ2) = 1 for |λ| ≤ λ0/2 and Φ(λ2) = 0 for |λ| ≥ λ0; and

we study W< and W> separately. We recall Φ(H0) and Φ(H) are integral

operators with integral kernels bounded by CN 〈x − y〉−N for N = 1, 2, . . .

(see Lemma 2.2 of [27]). By virtue of the intertwining property, we have

W> = Ψ(H)WΨ(H0) and W< = Φ(H)WΦ(H0). For studying the low en-

ergy part we insert the expansion formula (1.11) for (1 + G0(λ)V )−1 into

(1.12). This produces W< = Φ(H)(1 − (Wr,0 + Wr + Ws,1 + Ws,2))Φ(H0)

where

Wr,0 =
1

πi

∫ ∞

0
G0(λ)V (G0(λ) −G0(−λ))λdλ,(1.13)

Wr =
1

πi

∫ ∞

0
G0(λ)V A0(λ)(G0(λ) −G0(−λ))Φ̃(λ)λdλ,(1.14)

Ws,1 =
1

πi

∫ ∞

0
G0(λ)V A−1(G0(λ) −G0(−λ))Φ̃(λ)dλ,(1.15)

Ws,2 =
1

πi

∫ ∞

0
G0(λ)V P0V (G0(λ) −G0(−λ))Φ̃(λ)λ−1dλ,(1.16)

and Φ̃(λ) ∈ C∞
0 (R) is such that Φ̃(λ)Φ(λ2) = Φ(λ2). We have shown in [26]

that ‖Wr,0u‖p ≤ C‖F(〈x〉σV )‖Lm∗‖u‖p for any 1 ≤ p ≤ ∞ if σ > 1
m∗

. In

subsection 3.1, we prove that Φ(H)WrΦ(H0) is bounded in Lp(Rm) for any

1 ≤ p ≤ ∞ by showing that its integral kernel K(x, y) satisfies the condition

sup
x∈Rm

∫
Rm

|K(x, y)|dy + sup
y∈Rm

∫
Rm

|K(x, y)|dx < ∞(1.17)

by adapting the method of [26] to this situation. We study Ws,1 and Ws,2

in subsection 3.2. We study the case m = 3 in paragraph 3.2.1. Thanks

to the particularly simple structure of the integral kernel of G0(λ) in three

dimension,

G0(λ)u(x) =

∫
R3

eiλ|x−y|

4π|x− y|u(y)dy,

we may write Ws,1 as a linear combination of

Fjku(x) =

∫
R3

(V φj)(y)

4π|x− y|Tk(|x− y|)dy, j, k = 1, . . . , d.(1.18)
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Here φ1 is the canonical resonance and {φ2, . . . , φd} is the orthonormal basis

of 0-eigenspace of H; Tk(s) is defined by Tk(s) = 2−1(1 + H̃)(rMk)(s) by

using the Hilbert transform H̃ and the spherical average Mk(r) of (V φk)∗ ǔ,

ǔ(x) = u(−x):

Mk(r) =

∫
Σ
((V φk) ∗ ǔ)(rω)dω.(1.19)

It follows that, with a constant C > 0,

‖Ws,1u‖p ≤ C
∑
jk

‖V φj‖1

(∫ ∞

0
r2−p|Tk(r)|pdr

) 1
p

.(1.20)

It is well known that |r|a is an one dimensional (A)p weight if and only if

−1 < a < p − 1 and the Hilbert transform H̃ is bounded in Lp(R, w(r)dr)

if w is an (A)p weight ([24]). It follows that r2−p is (A)p weight if and only

if 3/2 < p < 3, and for these p’s the weighted inequality for H̃ implies that

‖Ws,1u‖p ≤ C
∑
jk

‖V φj‖1

(∫ ∞

−∞
|r|2|Mk(r)|pdr

) 1
p

≤ C
∑
jk

‖V φj‖1‖V φk ∗ ǔ‖p ≤ C
∑
jk

‖V φj‖1‖V φk‖1‖u‖p.
(1.21)

For studying Ws,2, we replace λ−1 by the operator |D|−1 by using that

〈V φj , (G0(λ) −G0(−λ))λ−1u〉 = 〈|D|−1V φj , (G0(λ) −G0(−λ))u〉.

Then, the computation used for Ws,1 implies that Ws,2u is a linear com-

bination of F̃jku, j, k = 2, . . . , d, which are given by the right side of

(1.18) with |D|−1V φk in place of V φk in the right of (1.19). We apply

to Ws,2u the estimates for Ws,1u upto the pre-final stage of (1.21), where

V φk∗ǔ is replaced by (|D|−1V φk)∗ǔ. Since eigenfunctions φ2, . . . , φd satisfy∫
V (x)φk(x)dx = 0,

|D|−1V φk(x) = C

∫
R3

(
1

|x− y|2 − 1

|x|2
)
V (y)φk(y)dy =

3∑
j=1

Cjxj
|x|4 + ρk(x)

with integrable ρk. Then ‖|D|−1(V φj) ∗ u‖p ≤ C‖u‖p by the Calderón-

Zygmund theorem and ‖Ws,2u‖p ≤ C‖u‖p. We study Ws,1 and Ws,2 in



50 K. Yajima

dimension m ≥ 5 in paragraph 3.2.2. Since the kernel of G0(λ) becomes

more complex as dimension m becomes larger, the argument becomes a

bit more complicated, however, the basic idea still works. At the end of

Section 3, we prove that W> is bounded in Lp for any 1 ≤ p ≤ ∞ if

|V (x)| ≤ C〈x〉−(m+2+ε). Because the high energy part W> is insensitive

to threshold singularities, basically the same argument as in [26] applies.

However, we improve some argument and substantially relax the decay and

smoothness conditions on V of [26] and [27].

2. Preliminaries

The resolvents G0(λ) = R0(λ
2) and G(λ) = R(λ2) are B(H) valued

analytic or meromorphic functions of λ ∈ C+. The limiting absorption

principle, LAP for short, says that they have continuous extension upto the

boundary R (or R \ {0}) when considered as, say, a B(Hσ,H−τ ) valued

function with σ, τ > 1/2. We denote such extensions again by G0(λ) and

G(λ). For studying W± we shall express them in terms of the boundary

values of G0(λ) and G(λ) on the reals and use mapping properties of these

operators and their derivatives. We shall also need some information on

the singularities of G(λ) at λ = 0 when H has threshold singularities. We

collect here some well known results on these matters. In what follows we

assume m = 2ν + 1 is odd.

2.1. Limiting absorption principle

In this subsection we assume |V (x)| ≤ C〈x〉−δ with δ > 2 unless other-

wise stated. It is well known that the Fourier transform F is an isomorphism

between L2
s(R

m) and Hs(Rm) and C∞
0 (Rm \ {0}) is dense in Hs(Rm) if

s < m
2 . Since ν = m−1

2 is an integer for odd m, it then follows by virtue

of Hardy’s inequality that the operator Γ̃0 : u �→ λν û(λω) is bounded from

L2
s(R

m) to Hs(R, L2(Σ)) for any s ≥ 0, hence, by the Sobolev embedding

theorem, to Cs− 1
2 (R, L2(Σ)) if s > 1/2. If follows that, if s > 1/2, the op-

erator valued function Γ(λ): Γ(λ)u(ω) = λ(m−1)/2û(λω) is a B(L2
s, L

2(Σ))-

valued, and therefore, Γ(λ)∗Γ(λ) is a B(L2
s, L

2
−s)-valued Cs− 1

2 function of

λ ∈ R which is bounded along with the derivatives upto the order s− 1/2.
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By using the polar coordinates we have for u, v ∈ S(Rm) that

(G0(λ)u, v) =

∫
Rm

û(ξ)v̂(ξ)

|ξ|2 − λ2
dξ =

∫ ∞

0

µm−1

µ2 − λ2

(∫
Σ
û(µω)v̂(µω)dω

)
dµ

=

∫ ∞

0

µm−1(û(µ·), v̂(µ·))L2(Σ)

µ2 − λ2
dµ, λ ∈ C+.

It follows that the free resolvent G0(λ), �λ > 0, may be written in the form

G0(λ) =

∫ ∞

0

Γ(µ)∗Γ(µ)

µ2 − λ2
dµ =

∫ ∞

0

µm−1A(µ)

µ2 − λ2
dµ(2.1)

where A(λ) is defined by the equation λ2νA(λ) = Γ(λ)∗Γ(λ), viz.

A(λ)u(x) =
1

(2π)m

∫
Σ

∫
Rm

eiλω(x−y)u(y)dydω.(2.2)

We define A(λ) for λ < 0 by the right side of (2.2). It is obvious that

A(λ)u(x) is smooth in λ for u ∈ S(Rm) and A(λ) = A(−λ). Thus, when m

is odd, Γ(λ)∗Γ(λ) is also a smooth even function of λ and we may rewrite

(2.1) in either of forms

G0(λ)u =
1

2λ

∫ ∞

−∞

Γ(µ)∗Γ(µ)u

µ− λ
dµ, λ ∈ C+,(2.3)

G0(λ)u =
1

2

∫ ∞

−∞

Γ(µ)∗Γ(µ)u

µ(µ− λ)
dµ. λ ∈ C+.(2.4)

It is well known that, if f ∈ Cs
0(R), 0 < s < ∞, then the Cauchy integral∫ ∞

−∞

f(y)

x− y
dy, �x > 0,

can be extended to the closed half plane C
+

as a function of class Cs−

(Privaloff’s theorem). The following is elementary.

Lemma 2.1. We have the following statements:

(1) Let σ, τ > 0 be non integral and let σ+τ > 1. Suppose that f ∈ Cσ(R),

g ∈ Cτ (R) and f(0) = g(0) = 0. Then, h(x) defined by

h(x) =

{
x−1f(x)g(x), x �= 0,

0, x = 0,

is of class Cρ(R) for ρ = min(σ, τ, σ + τ − 1).
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(2) Let s = k + σ, t = ; + τ , k, ; = 0, 1, . . . and σ, τ > 0 be non integral

such that σ + τ > 1. Suppose f ∈ Cs(R) and g ∈ Ct(R) are such

that f (j)(0) = 0 for 0 ≤ j ≤ k and g(j)(0) = 0 for 0 ≤ j ≤ ;. Then

f(x)g(x)/xk+!+1 is of class Cρ, ρ being as in (1).

Proof. (1) We may assume σ ≤ τ . Let 0 < σ, τ < 1 first. Then

0 < ρ = σ + τ − 1 < 1 and it suffices to show that |h(x)− h(y)| ≤ C|x− y|ρ
when 0 ≤ x < y < 1. If |x− y| ≥ y/2, we have

|h(x) − h(y)| ≤ |h(x) − h(0)| + |h(y) − h(0)|
≤ C(xρ + yρ) ≤ C|x− y|ρ.

(2.5)

If |x− y| < y/2, then y/2 < x < y, y−1 < x−1 < |x− y|−1 and |h(x)− h(y)|
is bounded by

|f(x)g(x)||x− y|
xy

+
|f(x) − f(y)||g(x)|

y
+

|f(y)||g(x) − g(y)|
y

≤
(
xσ+τ |x− y|

|x|2 +
|x− y|σ|x|τ

y
+

yσ|x− y|τ
y

)
≤ C|x− y|ρ.

(2.6)

Next suppose that 0 < σ < 1 < τ . Then ρ = σ and estimates (2.5) and

(2.6) with τ = 1 implies |h(x) − h(y)| ≤ C|x− y|ρ for this case. This show

that statement (1) holds if 0 < σ < 1. Next let 1 < σ ≤ τ . Then, ρ = σ

and on the right of

h′(x) = (f ′(x) − f ′(0))
g(x)

x
+

f(x)

x
(g′(x) − g(0))

−f(x) − xf ′(0)

x
· g(x) − xg′(0)

x
+ f ′(0)g′(0),

(2.7)

(f(x) − xf ′(0))/x, f ′(x) − f ′(0) and f(x)/x are of class Cσ−1, and (g(x) −
xg′(0))/x, g′(x)−g′(0) and g(x)/x are of class Cτ−1. Statement (1) follows.

(2) By Taylor’s formula f(x)/xk =
∫ 1
0 (1 − θ)k−1f (k)(θx)dθ/(k − 1)!, and

f(x)/xk is of class Cσ and vanishes at x = 0. Likewise g(x)/x! is of class

Cτ and vanishes at x = 0. Statement (2) follows from (1). �

Lemma 2.2. (1) Let σ > 1/2 and k = 0, 1, 2. Then, 〈x〉−σG0(λ)〈x〉−σ

is a B∞(Ht, Ht+k)-valued C(σ− 1
2)− function of λ ∈ C

+ \{0} for any t ∈ R.

For j = 0, 1, . . .

‖〈x〉−σ−j∂jλG0(λ)〈x〉−σ−j‖B(Ht,Ht+k) ≤ Cjt|λ|−1+k, |λ| ≥ 1.(2.8)
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(2) Let σ, τ > 1/2 and σ + τ > 2. Then, 〈x〉−σG0(λ)〈x〉−τ is a B∞(H)-

valued Cρ function of λ ∈ C
+

for any ρ such that ρ < min(τ + σ − 2, τ −
1/2, σ − 1/2). If ρ = j + κ, j = [ρ] and 0 ≤ κ < 1, we have

sup
λ∈C

+

‖〈x〉−σG
(j)
0 (λ)〈x〉−τ‖B + sup

λ	=µ

‖〈x〉−σ(G
(j)
0 (λ) −G

(j)
0 (µ))〈x〉−τ‖B

|λ− µ|κ ≤ C.

Proof. Without losing generality we may assume σ and τ are non

integral. Since 〈x〉σ〈p〉−τ 〈x〉−σ, p = −i∂/∂x being the momentum operator,

is bounded (or has a unique bounded extension) in H for any τ ≥ 0 and

σ ∈ R and since −∆ commutes with ∂x, the first statement for k = 0 follows

immediately from (2.3) by using Privaloff’s theorem. We have (−∆)G0(λ) =

λ2G0(λ) + 1 and the statement for k = 1, 2 follows from that for k = 0 and

interpolation. The second statement follows from (2.4) and Lemma 2.1 if

we notice Γ̃0L
2
σ(R

m) ⊂ Hσ
0 (R\{0}) for σ < m/2, and, therefore, Γ(0)u = 0

for any u ∈ L2
σ(R

m) if σ > 1/2. �

Corollary 2.3. Let 1/2 < γ < δ − 1/2. Then, 〈x〉−γG0(λ)V 〈x〉+γ is

a B∞(H)-valued Cρ function of C
+

for any ρ < min(γ− 1
2 , δ−γ− 1

2 , δ−2).

The operator valued function 〈x〉+γV G0(λ)〈x〉−γ satisfies the same property.

If |V (x)| ≤ C〈x〉−δ for δ > 2, H = −∆ + V has no positive eigenvalues

(see [17]) and the point spectral subspace Hp(H) for H is finite dimen-

sional. Thus G(λ) = (H − λ2)−1 is a B(H)-valued meromorphic function

of λ ∈ C+ with possible poles iκ1, . . . , iκn on the imaginary axis such that

−κ2
1, . . . ,−κ2

n are eigenvalues of H. It follows by the resolvent equation

that 1 + G0(λ)V is invertible in B(H) for λ ∈ C+ outside the poles and

G(λ) = (1 + G0(λ)V )−1G0(λ).(2.9)

Here G0(λ)V extends to λ ∈ C
+

as a B∞(H−γ)-valued continuous function

if 1/2 < γ < δ − 1/2 by virtue of Corollary 2.3 and, for λ > 0, −1 ∈
σ(G0(λ)V ) if and only if λ2 is an eigenvalue of H (see [1]). Hence, the

formentioned absence of positive eigenvalues implies that G(λ) considered

as a B(Hγ ,H−γ) valued function is continuous in C
+

except possibly at

λ = 0 and the resolvent equation (2.9) is satisfies for all λ ∈ R \ {0}.
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At λ = 0, the situation is different([14]). We set

N = {φ ∈ H−γ : (1 + G0(0)V )φ = 0} .(2.10)

The space N is finite dimensional and is independent of 1/2 < γ < δ− 1/2;

all φ ∈ N satisfy the stationary Schrödinger equation

−∆φ(x) + V (x)φ(x) = 0(2.11)

and, conversely, any function φ ∈ H−m
2

which satisfies (2.11) belongs to N ;

the eigenspace E of H with eigenvalue 0 is therefore a subspace of N .

Lemma 2.4. (1) Sesquilinear form −(u, V v) is an inner product in N .

If φ1, . . . , φn is an orthnormal basis of N with respect to this inner product,

then the spectral projection Q for G0(0)V with eigenvalue −1 may be given

with sufficiently small ε > 0 by

Q = − 1

2πi

∫
|z+1|=ε

(−z + G0(0)V )−1dz = −
n∑

j=1

φj ⊗ (V φj).(2.12)

(2) Let m ≥ 3 and let φ ∈ N . Then, |φ(x)| ≤ C〈x〉2−m. If m = 3,

φ ∈ E, the eigenspace of H with zero eigenvalue if and only if 〈V, φ〉 = 0

and codimNE ≤ 1. In this case |φ(x)| ≤ C〈x〉−2.

Proof. The proof of statement (1) and that of (2) for m = 3 may be

found in [29]. We show (2) for m ≥ 4. By Hardy’s inequality we have for

s ≥ 2, ∥∥∥∥u(ξ)

|ξ|2
∥∥∥∥
Hs−2

≤ C‖u‖Hs , u ∈ C∞
0 (Rm \ {0}).(2.13)

Since C∞
0 (Rm \ {0}) is dense in Hs(Rm) if s < m/2, the standard density,

duality and interpolation arguments imply that (2.13) extends for all u ∈
Hs(Rm) when 2 − m

2 < s < m
2 . We have φ̂(ξ) = −F(V φ)(ξ)/|ξ|2 and

V φ ∈ H(δ−1/2)− by the assumption. It follows φ ∈ Hσ for any σ < min(δ −
5/2, (m − 4)/2). Since δ > 2, the application of this argument several

times yields that φ ∈ Hσ, which with the well known elliptic estimate (cf.

Theorem 5.1 of [2]) implies |φ(x)| ≤ C〈x〉−σ for any σ < (m− 4)/2. Hence

|φ(x)| ≤ C

∫
Rm

|V (y)φ(y)|dy
|x− y|m−2

≤ C〈x〉−min(σ+δ−2,m−2),(2.14)
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and, iterating (2.14), we obtain |φ(x)| ≤ C〈x〉2−m. �

Following [14], we define as follows:

Definition 2.5. We say H is of generic type if N = {0} and is of

exceptional type otherwise. If m = 3, H is of exceptional type of the first

kind if N �= {0} and E = 0; of the second kind if E = N �= {0}; and of

the third kind if {0} ⊂ E ⊂ N with strict inclusions. A function φ ∈ N \ E
is called resonance of H. We denote by P0 the orthogonal projection in H
onto E .

When m = 3 and H is of exceptional type, we shall consider only the

case of the third kind as other cases may be considered as special cases. The

following is Lemma 2.3 of [29].

Lemma 2.6. For 1/2 < σ, τ < δ − 1
2 , 〈x〉−σG(λ)〈x〉−τ , as a B∞(H)-

valued function of λ ∈ {λ ∈ R : |λ| > ε}, ε > 0, satisfies the same smooth-

ness and decay properties as 〈x〉−σG0(λ)〈x〉−τ as stated in Lemma 2.2. If

σ, τ satisfy σ + τ > 2 in addition and H is of generic type, this is true on

the whole line λ ∈ R.

We write Q = 1 −Q and define L00(λ) = Q(1 + G0(λ)V )Q. We remark

that, for γ > 1
2 and u ∈ H−δ+( 1

2
)+

, Qu ∈ QH−γ is equivalent to u ∈ H−γ

because we always have Qu ∈ H−( 1
2
)+

.

Lemma 2.7. There exists λ0 > 0 such that the following statements

are satisfied for |λ| < λ0:

(1) For 1
2 < γ < δ− 1

2 , L00(λ) has a bounded inverse F (λ) ≡ L00(λ)−1 in

QH−γ. As a B(QH−γ) valued function, F (λ) is of class Cβ for any

β < min(γ − 1
2 , δ − γ − 1

2).

(2) Let 1/2 < γ, τ < δ − 1/2 be such that γ + τ > 2. The difference

B(λ) = F (λ)−Q may be extended to a bounded operator from QH−δ+γ

to QH−τ . As a B(QH−δ+γ , QH−τ )-valued function, B(λ) is of class

Cρ− for ρ < min(γ − 1/2, τ − 1/2, τ + γ − 2). The same hold for

F (λ) − 1.
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Proof. (1) Since L00(λ)− 1 ∈ B∞(QH−γ) is continuous with respect

to λ and L00(0) is invertible by virtue of the theorem on separation of

spectrum for compact operators ([18]), L00(λ) is also invertible for small

|λ| < λ0. The proof of Lemma 2.6 implies that F (λ) has the same smooth-

ness property as G0(λ)V (see also the proof of (2) below).

(2) If we write B(λ) = −QG0(λ)V QF (λ), it is easy to see from statement

(1) that B(λ) ∈ B(QH−δ+γ , QH−τ ). Let 0 ≤ ρ < 1 first. Since V φ ∈
H

δ+
(m−4)−

2

and γ, τ < δ − 1
2 , it follows from Lemma 2.2 and statement (1)

that

‖〈x〉−τ (B(λ) −B(µ))〈x〉δ−γ‖B(H) ≤ ‖〈x〉−τF (µ)〈x〉τ‖
×‖〈x〉−τQ(G0(µ) −G0(λ))V Q〈x〉δ−γ‖‖〈x〉−δ+γF (λ)〈x〉δ−γ‖ ≤ C|µ− λ|ρ.

We next let 1 ≤ ρ be an integer. We k ≤ ρ times formally differ-

entiate 〈x〉−τB(λ)〈x〉δ−γ with respect to λ by using F ′(λ) =

−F (λ)QG′
0(λ)V QF (λ). The result is a linear combination of

〈x〉−τFQG
(k1)
0 V QFQG

(k2)
0 V QF · · ·FQG

(k	)
0 V QF 〈x〉δ−γ(2.15)

where k1, . . . , k! ≥ 1 satisfy k1 + · · · + k! = k. Take k′j , not necessarily

integers, sufficiently close to kj + 1
2 , j = 1, . . . , ;, so that

min(γ, τ) > k′j > kj +
1

2
and k′j−1 + k′j < δ, j = 1, . . . , ;,

where we set k′0 = 0. This is possible since ρ < δ − 1. Considering as

QG
(kj)
0 V Q = 〈x〉k′j [〈x〉−k′jQG

(kj)
0 V Q〈x〉(δ−k′j)]〈x〉−(δ−k′j),

we write (2.15) in the form

〈x〉−τF 〈x〉k′1 [〈x〉−k′1QG
(k1)
0 V Q〈x〉(δ−k′1)]

×〈x〉−(δ−k′1)F 〈x〉k′2 [〈x〉−k′2QG
(k2)
0 V Q〈x〉(δ−k′2)] × · · ·

· · · × 〈x〉−(δ−k′	−1)F 〈x〉k′	 [〈x〉−k′	QG
(k	)
0 V Q〈x〉(δ−k′	)]〈x〉−(δ−k′	)F 〈x〉δ−γ

By virtue of the choice of k′j ’s, all factors 〈x〉−τF 〈x〉k′1 , 〈x〉−(δ−k′	)F 〈x〉δ−γ ,

〈x〉−(δ−k′j)F 〈x〉k′j+1 , j = 1, . . . , ; − 1, and 〈x〉−k′jQG
(kj)
0 V Q〈x〉(δ−k′j) are

B(H)-valued continuous functions. By taking difference quotients instead
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of derivatives and proceeding by the induction argument with respect to the

order of differentiation, this formal computation can be easily justified and

the statement (2) is satisfied for integral ρ. When ρ = k + ε, 0 < ε < 1,

we further apply difference operator ∆ε to (2.15) and proceed similarly. We

omit the details. The statement for A0(λ) is obvious. �

2.2. Threshold expansion for free Schrödinger operator

Suppose σ > 3
2 and k = 0, 1, . . . satisfies k < σ − 1

2 . Then, Lemma 2.2

implies that, as a B(Hσ,H−σ)-valued function, G0(λ) is of class C(σ− 1
2
)−

on R and

Jk(λ) =
1

λk


G0(λ) −

k−1∑
j=0

λj

j!
G

(j)
0 (0)


(2.16)

is of class C(σ−k−1/2)− . Outside λ = 0, Jk(λ) is of course C(σ− 1
2
)− . If m ≥ 5,

this regularity result may be improved. We define for λ ∈ C+,

H(λ)u(x) =
i

4(2π)m−1

∫
Σ

∫
Rm

eiλ|ω(x−y)|u(y)dydω.

At least formally H(λ) is an entire function of λ and it has the expansion

H(λ) =

∞∑
n=0

λnHn, Hnu(x) =
in+1

4(2π)m−1n!

∫
Rm

(∫
Σ
|ω(x− y)|ndω

)
u(y)dy.

Lemma 2.8. Let m = 2ν + 1 ≥ 3 be odd and σ > m/2. Then, the

B(Hσ,H−σ)-valued function H(λ) is analytic on the upper half plane C+

and it can be continued to C
+

as a function of class C(σ−m
2 )−. For n =

0, 1, . . . , Hn ∈ B(H(m
2

+n)
+

,H−(m
2

+n)
+

). The integral kernel of Hn is given

by Cn|x− y|n. In particular, H2n are of finite rank. We have

G0(λ)u =
ν−1∑
j=0

λ2j(−∆)−j−1u + λ2ν−1H(λ)u, λ ∈ C
+
.(2.17)
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Proof. Schwarz inequality implies the first statement. To prove

(2.17), we write µ2ν = (µ2 − λ2)(µ2(ν−1) + λ2µ2(ν−2) + · · · + λ2(ν−1)) + λ2ν

in (2.1). Since A(µ) is even with respect to µ, we have for λ ∈ C+ that

G0(λ)u =
ν−1∑
j=0

λ2j

∫ ∞

0
µ2(ν−j−1)A(µ)udµ +

λ2ν

2

∫ ∞

−∞

A(µ)u

µ2 − λ2
dµ.

The first memeber on the right produces the corresponding one in (2.17).

The change of order of integrations yields

∫ ∞

−∞

A(µ)u

µ2 − λ2
dµ =

1

(2π)m

∫
Rm

{∫
Σ

(∫ ∞

−∞

eiµω(x−y)

µ2 − λ2
dµ

)
dω

}
u(y)dy.

The inner most integral is easily computed by using∫ ∞

−∞

eiaµ

µ2 − λ2
dµ = πi

ei|a|λ

λ
, �λ > 0, a ∈ R.

The equation (2.17) follows for λ ∈ C+ and by continuity also for λ ∈ C
+
. �

By virtue of (2.17), we have, for j = 1, . . . ,

Jk(λ) =
1

λk


G0(λ) −

k−1∑
j=0

λjDj




where Dj = 0 for j = 1, 3, . . . ,m− 4 and

Dj =

{
(−∆)−1− j

2 , for j = 0, 2, . . . ,m− 3;

Hj−m+2, for j = m− 2, . . . .
(2.18)

Lemma 2.9. We have the following statements:

(1a) Let 0 ≤ k ≤ m−2 be odd and σ > k
2 +1. Then, Jk(λ) is a B(Hσ,H−σ)-

valued function of λ ∈ R of class Cρ−, ρ = σ − k+2
2 .

(1b) Let 0 ≤ k ≤ m− 2 be even and σ, τ > k+1
2 be such that σ + τ > k + 2.

Then, Jk(λ) is a B(Hσ,H−τ )-valued function of λ ∈ R of class Cρ−,

ρ = min(σ − k+1
2 , τ − k+1

2 , σ + τ − k − 2).
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(2) Let k ≥ m− 2, σ > k − m
2 + 2 and ρ = σ + m

2 − (k + 2). Then Jk(λ)

is of class Cρ− as a B(Hσ,H−σ)-valued function of λ ∈ R.

Proof. If k = 0, statement (1) is contained in Lemma 2.2 (2). Let

0 < k ≤ m− 2. We have from (2.3) that

G0(λ) −
k−1∑
j=0

λjDj = λk
∫ ∞

−∞

Γ(µ)∗Γ(µ)

µk+1(µ− λ)
dµ, �λ > 0.

If u ∈ Hσ, we have (Γu)(λ)u ∈ Hσ(R,Λ2(Σ))∩Hmin(σ,(m
2

)−)

0 (R\{0}, L2(Σ)).

If k = 2; − 1 is odd, then ; < m/2 and λ−!Γ(λ)u ∈ Hσ−!(R,Λ2(Σ))

by Hardy’s inequality. It follows, by the Sobolev embedding theorem, that

λ−!Γ(λ) is a B(Hσ, L
2(Σ)) valued, hence λ−(k+1)Γ(λ)∗Γ(λ) is a B(Hσ,H−σ)

valued function of class Cσ− k+2
2 . If k = 2; is even, then, λ−!Γ(λ) is a

B(Hσ, L
2(Σ)) valued of class Cσ−!−1/2 which vanishes at the origin. Since

σ + τ − 2; − 1 > 1 by the assumption, it follows by Lemma 2.1 that

λ−k−1Γ(λ)∗Γ(λ) is a B(Hσ,H−τ ) valued function of class ρ. Statements

(1a) and (1b) follow by Privaloff’s theorem. The second statement is obvi-

ous from Lemma 2.8. �

Recall that Dj , j = 0, 1, . . . are given by (2.18) and they should not be

confused with the derivatives ∂/∂xj .

Lemma 2.10. Let m = 3 and σ > 2 and u ∈ Hσ satisfy
∫
u(x)dx = 0.

Then, for 1 ≤ k < σ− 1
2 , Dku ∈ H−(k−1/2)+ and Jk(λ)u is an H−σ+1 valued

function of λ of order C(σ−k− 1
2
)−.

Proof. We have û ∈ Hσ and û(0) = 0. It follows that û(ξ) =∑m
j=1 ξj v̂j(ξ) with v̂j ∈ Hσ−1 and ‖v̂j‖Hσ−1 ≤ C‖û‖Hσ . This means

u(x) =
m∑
j=1

∂vj
i∂xj

, vj ∈ Hσ−1.

It follows by integration by parts that

Γ(λ)∗Γ(λ)u(x) =
m∑
j=1

λm−1

∫
Σ
dω

∫
Rm

eiλ(x−y)ω ∂vj
i∂yj

(y)dy

= −
m∑
j=1

λm
∫

Σ
dω

∫
Rm

ωje
i(x−y)ωvj(y)dy = −λ

m∑
j=1

Γ(λ)∗ωjΓ(λ)vj(x),
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where the last ωj is the bounded operator on L2(Σ) defined by the multi-

plication with the coordinate variable ωj . It follows from (2.4) that

G0(λ)u = −1

2

m∑
j=1

∫ ∞

−∞

Γ(µ)∗ωjΓ(µ)vj
µ− λ

dµ

= −1

2

m∑
j=1

(∫ ∞

−∞
µ−1Γ(µ)∗ωjΓ(µ)vjdµ + λ

∫ ∞

−∞

µ−1Γ(µ)∗ωjΓ(µ)vj
µ− λ

dµ

)
.

Here the first term on the right is independent of λ and is an element of

H−τ for any τ > 1/2 such that τ + σ − 1 > 2. In particular it is in H−σ+1.

The second is of the same form as (2.4) except that it has an extra λ factor

and that Γ(λ)∗Γ(λ) is replaced by Γ(µ)∗ωjΓ(µ). The latter is no worse than

the former as far as the smoothness as a B(Hσ,H−σ)-valued function is

concerned. Thus, we have the same result as in Lemma 2.9 (2) with σ − 1

and k − 1 in place of σ and k, The lemma follows. �

In what follows, we use the following well known expression of the con-

volution kernel of G0(λ):

G0(λ, x) =

m−3
2∑

j=0

Cjλ
jeiλ|x||x|2+j−m(2.19)

2.3. Low energy asymptotics

In this subsection, we study the singularities of the resolvent G(λ) at

λ = 0 when H is of exceptional type (recall that, if m = 3, we assume H is

of exceptional type of the third kind). There is an extensive literature on

the subject and apart from the condition on the potentials and smoothness

properties of the remainder the following theorem is well known (cf. [14],

[22] and references therein). We define

S(λ) =




P0V

λ2
− P0V D3V P0V

λ
− a

λ
(ϕ⊗ ϕ)V, m = 3;

P0V

λ2
− c0

λ
(ϕ⊗ ϕ)V, m = 5;

P0V

λ2
, m ≥ 7.

(2.20)

Here ϕ is the canonical resonance to be defined below and a = 4πi|〈V, ϕ〉|−2

when m = 3; ϕ = P0V , V being considered as a function, and c0 = i/(24π)2
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when m = 5. The following two theorems are the main results of this

subsection.

Theorem 2.11. Let |V (x)| ≤ C〈x〉−δ for some δ > 2 and H be of

generic type. Then, the following statements are satisfied:

(1) Let 1
2 < σ < δ− 1

2 . Then, (1+G0(λ)V )−1 is a B(H−σ)-valued function

of class Cs for any s < min(σ − 1
2 , δ − σ − 1

2).

(2) Let 1
2 < σ, τ < δ − 1

2 be such that σ + τ > 2. Then, L(λ) = (I +

G0(λ)V )−1 − I extends to a bounded operator from H−δ+σ to H−τ

and and 〈x〉−τL(λ)〈x〉δ−σ is a B(H)-valued function of class Cs for

any s < min(σ − 1
2 , τ − 1

2 , σ + τ − 2).

Theorem 2.12. Let |V (x)| ≤ C〈x〉−δ for some δ > 3 and H be of

exceptional type. Let 0 ≤ σ < δ − 3. Then, there exists λ0 > 0 such that

(I + G0(λ)V )−1 may be written as follows:

(I + G0(λ)V )−1 = I + S(λ) + A0(λ), λ ∈ (−λ0, λ0).(2.21)

Here S(λ) be given by (2.20); A0(λ) is a B(H−δ+σ+ 3
2
,H−σ− 3

2
)-valued func-

tion of λ ∈ (−λ0, λ0) of class Cs for any s < σ and A0(λ) − L00(λ)−1 is of

finite rank.

Theorem 2.11 is contained in Lemma 2.7 and we prove Theorem 2.12

by a series of lemmas. The argument is more complex in lower dimensions

and we focus mainly on the case m = 3, being sketchy for other cases.

The discussion is vitually a repetition of that of section 4 of [29], however,

we slightly improve some results therein. We use the following elementary

lemma.

Lemma 2.13. Let X = X0+̇X1 be a direct sum decomposition of a vec-

tor space X . Suppose that a linear operator L in X is written in the form

L =

(
L00 L01

L10 L11

)

in this decomposition and that L−1
00 exists. Set C = L11−L10L

−1
00 L01. Then,

L−1 exists if and only if C−1 exists. In this case

L−1 =

(
L−1

00 + L−1
00 L01C

−1L10L
−1
00 −L−1

00 L01C
−1

−C−1L10L
−1
00 C−1

)
.(2.22)
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We write M(λ) = 1 + G0(λ)V . With respect to the direct sum decom-

position H−γ = QH−γ+̇N , we decompose

M(λ) =

(
QM(λ)Q QM(λ)Q

QM(λ)Q QM(λ)Q

)
≡
(
L00(λ) L01(λ)

L10(λ) L11(λ)

)
,(2.23)

where the right side is the definition. We already studied L00(λ)−1 in Lemma

2.7. In what follows in this subsection we irrespectively denote by E(λ) var-

ious operator valued functions of λ in the space N or between its subspaces

which are of class C(δ−3)− in a neighborhood of λ = 0. We also irrespec-

tively denote by λ0 > 0 various constants which are chosen small enough to

meet requirements at various stages.

Lemma 2.14. The operator L11(λ) is an isomorphism of N for any

0 < |λ| < λ0 and L11(λ)−1 is given by the following formulae, where ϕ, a

and c0 are as in Theorem 2.12:


λ−2P0V − λ−1P0V D3V P0V − aλ−1|ϕ〉〈ϕ|V + E(λ), m = 3;

λ−2P0V − c0λ
−1(ϕ⊗ V ϕ) + E(λ), m = 5;

λ−2P0V + E(λ), m ≥ 7.

(2.24)

Proof. Let m = 3 first. We take an orthonormal basis {φ1, . . . , φd}
of N with respect to the inner product −(u, V u) in such a way that

{φ2, . . . , φd} is the basis of E = P0H and that 〈φ1, V 〉 > 0. The func-

tion φ1 is uniquely determined by these conditions. Let π1 = −|φ1〉〈V φ1|
and π2 = −

∑d
j=2 |φj〉〈V φj | and define

Q0 = Q = 1 −Q, Q1 = Qπ1Q, Q2 = Qπ2Q.

We have Q = Q1 +Q2, Q0 +Q1 +Q2 = I and QjQk = δjkQj (j, k = 0, 1, 2)

and as identities in H−γ :

(1 + D0V )Q1 = (1 + D0V )Q2 = 0.(2.25)

Q2D1V Q0 = 0, Q2D1V Q1 = 0, Q2D1V Q2 = 0,(2.26)

Q0D1V Q2 = 0, Q1D1V Q2 = 0.(2.27)

In the decomposition N = Q1N +̇Q2N , we write

L11(λ) =

(
Q1M(λ)Q1 Q1M(λ)Q2

Q2M(λ)Q1 Q2M(λ)Q2

)
≡
(
M11(λ) M12(λ)

M21(λ) M22(λ)

)
.(2.28)
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Let c(λ) = −〈V φ1,M(λ)φ1〉 so that M11(λ) = c(λ)Q1. Since V φ1 ∈
H(δ− 1

2)−
, (1 + D0V )φ1 = 0 and D1 = −(4πi)−1(1 ⊗ 1), c(λ) is of class

C(δ−1)− and with a C(δ−3)− function c1(λ)

c(λ) = −〈V φ1|(G0(λ) −D0)|V φ1〉 = (4πi)−1λ|〈V, φ1〉|2 + λ2c1(λ).

Since 〈V, φ1〉 �= 0, it follows that M11(λ) is invertible for 0 < |λ| < λ0 and,

with a = 4πi|〈V, φ1〉|−2,

M−1
11 (λ) = (λ−1a + d(λ))Q1, d ∈ C(δ−3)− .(2.29)

By virtue of Lemma 2.4 we have V φj(x) ∈ H(δ+ 1
2)−

and
∫
V φjdx = 0 for

j = 2, . . . , d. Hence Q2D1V = D1V Q2 = 0 and by virtue of Lemma 2.10,

M12(λ) = λ2Q1(D2V + λE(λ))Q2, M21(λ) = λ2Q2(D2V + λE(λ))Q1.

Combining this with (2.29), we have

M21(λ)M−1
11 (λ)M12(λ) = λ3Q2(aD2V Q1D2V + λE(λ))Q2.(2.30)

Likewise we have

M22(λ) = λ2Q2(D2V + λD3V + λ2E(λ))Q2.

Simple algebraic manipulations show that Q2D2V Q2 is invertible in E and

(Q2D2V Q2)
−1 = P0V and P0V Q2 = P0V (see page 499 of [29], however,

we remark the discrepancy of the definitions of Dj , Dj here is ijDj in [29]).

It follows that M22(λ) is invertible when 0 < |λ| < λ0 and

M22(λ)−1 = λ−2P0V − λ−1P0V D3V P0V + P0V E(λ)Q2.(2.31)

Hence, M−1
22 M21M

−1
11 M12 = aλP0V D2V Q1D2V P0V + λ2E(λ) and

C22(λ) ≡ M22(λ) −M21(λ)M−1
11 (λ)M12(λ)

= M22(λ)(1 −M22(λ)−1M21(λ)M−1
11 (λ)M12(λ))

is invertible for 0 < |λ| < λ0 and

C−1
22 (λ) = λ−2P0V − λ−1P0V D3V P0V

+aλ−1P0V D2V Q1D2V P0V + P0V E(λ)P0V.
(2.32)
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If we set φ̃1 = P0V D2V φ1 ∈ P0H, then P0V D2V Q1D2V P0V = −|φ̃1〉〈φ̃1|V
and the right side of (2.32) may be written in the form

λ−2P0V − λ−1P0V D3V P0V − λ−1a|φ̃1〉〈φ̃1|V + P0V E(λ)P0V.(2.33)

Using (2.29), (2.30), (2.32) and the definition of φ̃1, we may write

−M−1
11 (λ)M12(λ)C−1

22 (λ) = −aλ−1|φ1〉〈φ̃1|V + E(λ).

−C−1
22 (λ)M21(λ)M−1

11 (λ) = −aλ−1|φ̃1〉〈φ1|V + E(λ).

M−1
11 (λ)M12(λ)C−1

22 (λ)M21(λ)M−1
11 (λ) = E(λ).

(2.34)

Combining (2.29), (2.33) and (2.34) and applying Lemma 2.13, we see that

L11(λ) is invertible in N when 0 < |λ| < λ0 and L11(λ)−1 is the sum of(
−aλ−1|φ1〉〈V φ1| −aλ−1|φ1〉〈V φ̃1|
−aλ−1|φ̃1〉〈V φ1| λ−2P0V − λ−1P0V D3V P0V − λ−1a|φ̃1〉〈V φ̃1|

)
(2.35)

and an E(λ). Thus, defining the canonical resonance by ϕ = φ1 + φ̃1 we

have proven the lemma for m = 3.

Let m = 5 next. Since (1+D0V )Q = 0 and N ⊂ H( 1
2
)− , Lemma 2.9 (2)

with m = 5, σ =
(
δ + 1

2

)
− and k = 4 implies

L11(λ) = Q(λ2(−∆)−2 + c0λ
3(1 ⊗ 1) + λ4E(λ))V Q,(2.36)

where c0 = i/(24π2) and E(λ) is of class Cρ− , ρ = (δ − 3)−. In the basis

{φj} of N , we have

Q(−∆)−2V Q =
∑

〈D0V φj , D0V φk〉|φj〉〈V φk| =
∑

〈φj , φk〉|φj〉〈φk|V,

and, exactly as in the case m = 3, we have

(Q(−∆)−2V Q)−1 = P0V, V QP0 = V P0, P0V Q = P0V.(2.37)

It follows for small |λ| < λ0 that

L11(λ)−1 = λ−2P0V (1 + c0λQ(1 ⊗ 1)V P0V + λ2E(λ)V P0V )−1

= λ−2P0V − c0λ
−1P0V (1 ⊗ 1)V P0V + E(λ).

Defining ϕ = P0V , we obtain (2.24) for m = 5.
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Finally let m ≥ 7. We have L11(λ) = Q(λ2(−∆)−2)Q + λ4QJ4(λ)V Q.

Since N ⊂ H(m−4
2 )−

, Lemma 2.9 (1) with σ = δ + (m−4
2 )− and k = 4

implies QJ4(λ)V Q is of class Cρ− , ρ = (δ + m−9
4 )− > δ − 3. As previously,

(Q(−∆)−2V Q)−1 satisfies (2.37). It follows

L11(λ)−1 = λ−2P0V + P0V E(λ)P0V.(2.38)

This completes the proof of the lemma. �

Lemma 2.15. (1) If m = 3, then in the decomposition N = Q1N +

Q2N ,

L10(λ)L−1
00 (λ)L01(λ) =

(
λ2E11(λ) λ3E12(λ)

λ3E21(λ) λ4E22(λ)

)
,(2.39)

where for i, j = 1, 2, Eij(λ) are of class C(δ−3)−.

(2) If m ≥ 5, then L10(λ)L−1
00 (λ)L01(λ) = λ4E(λ) with E(λ) of class

C(δ−3)−.

Proof. We let {φ1, φ2, . . . , φd} be the basis of N used in the proof of

Lemma 2.14. We first prove that E22(λ) is of class Cs for any s < δ − 3.

We assume s is an integer since extension to the non-integral case is imme-

diate. We write F (λ) = QL−1
00 (λ)Q (this is consistent with the definition

as F (λ) = L−1
00 (λ) acts in QH−γ). We have (1 + D0V + λD1V )Q2 = 0

and (1 + G0(λ)V )Q2 = λ2J2(λ)V Q2. It follows that E22(λ) =

λ4Q2J2(λ)V F (λ)J2(λ)V Q2 and in terms of the basis

E22(λ) =
d∑

i,j=2

〈J2(−λ)V φj , V F (λ)J2(λ)V φi〉|φj〉〈V φi|.

Formally differentiating k ≤ s times by using Leibniz’ formula, we have

(d/dλ)k〈J2(−λ)V φj , V F (λ)J2(λ)V φi〉

=
∑

α+β+γ=k

k!

α!β!γ!
〈J (α)

2 (−λ)V φj , V F (β)(λ)J
(γ)
2 (λ)V φi〉

Choosing α′ > α and γ′ > γ close enough to α and γ respectively so that

γ′ + 3
2 < δ − (α′ + 3

2), δ − α′ − 3
2 > β + 1

2 and γ′ + 3
2 < δ − β − 1

2 , we write

the inner product on the right side in the form

〈〈x〉−(α′+ 3
2
)J

(α)
2 (−λ)V φj , 〈x〉α

′+ 3
2V F (β)(λ)〈x〉γ′+ 3

2 · 〈x〉−(γ′+ 3
2
)J

(γ)
2 (λ)V φi〉.
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By virtue of Lemma 2.10, 〈x〉−(α′+ 3
2
)J

(α)
2 (λ)V φj and 〈x〉−(γ′+ 3

2
)J

(γ)
2 (λ)V φj

are H-valued continuous; the B(H)-valued function 〈x〉α′+ 3
2VF (β)(λ)〈x〉γ′+ 3

2

is continuous by virtue of Lemma 2.7 (2). Thus, E22(λ) is of class Cs. To

prove the same property for other Eij we proceed similarly. However, we

have (1 + G0(λ)V )Q1 = λJ1(λ)V Q1 and we apply Lemma 2.9 (1a) instead

of Lemma 2.10 for J1(±λ)V φ1.

If m ≥ 5, we have L10(λ)L00(λ)−1L01 = λ4QJ2(λ)V F (λ)J2(λ)V Q ≡
λ4E∗(λ). As previously we write in terms of the basis

E(λ) =

d∑
i,j=1

〈J2(−λ)V φj , V F (λ)J2(λ)V φi〉|φj〉〈V φi|

and proceed as in (1). However, for the derivatives we apply Lemma 2.9

(1b) instead of Lemma 2.10, remarking that V φj ∈ Hδ+(m−4
2

)−
. We omit

repetitious details. �

Lemma 2.16. The operator C(λ) = L11(λ) − L10(λ)L−1
00 (λ)L01(λ) is

invertible in N for 0 < |λ| < λ0 and C(λ)−1 may be written in the form

(2.24).

Proof. If m = 3, (2.35) and (2.39) imply

N(λ) ≡ L−1
11 (λ)L10(λ)L−1

00 (λ)L01(λ) =

(
λE(λ) λ2E(λ)

λE(λ) λ2E(λ)

)
.

Hence C(λ) = L11(λ)(1 −N(λ)) is invertible for small 0 < |λ| < λ0

C−1(λ) = L−1
11 (λ) + (1 −N(λ))−1N(λ)L−1

11 (λ) = L−1
11 (λ) + E(λ).

The proof for m ≥ 5 is simpler and we may safely omit it. �

Lemma 2.17. Let 0 ≤ σ < δ − 3. Then, for |λ| < λ0,

(1) F (λ)L01(λ)C(λ)−1 is B(N ,H−(σ+ 1
2
)+

)–valued function of class Cσ.

(2) C−1(λ)L10(λ)F (λ) is B(H−(δ−σ− 1
2
)− ,N )-valued function of class Cσ.

(3) F (λ)L01(λ)C(λ)−1L10(λ)F (λ) is B(H−(δ−σ− 1
2
)− ,H−(σ+ 1

2
)+

)-valued

function of class Cσ.
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Proof. We prove the lemma for m = 3 when σ is an integer. Exten-

sion to non-integral σ is immediate and the proof for m ≥ 5 is similar. We

have

L01(λ) = QM(λ)Q1 + QM(λ)Q2 = λQJ1(λ)V Q1 + λ2QJ2(λ)V Q2

By virtue of Lemma 2.16, C(λ)−1 is of the form

(
λ−1E(λ) λ−1E(λ)

λ−1E(λ) λ−2E(λ)

)
. It

follows that

L00(λ)−1L01(λ)C−1(λ) = F (λ)QJ1(λ)V Q1E(λ) + F (λ)QJ2(λ)V Q2E(λ).

We write F (λ) = Q+B(λ). As was seen previously, Jj(λ)V Qjφ, φ ∈ N , j =

1, 2, are H−(σ+ 3
2
)+

–valued Cσ functions for any 0 < σ < δ− 2, hence, so are

QJj(λ)V Qjφ. And B(λ)QJj(λ)V Qjφ are H−(σ+ 1
2
)+

–valued Cσ functions

for any 0 < σ < δ − 2. Indeed, if σ = α + β, then for α′ > α and β′ > β

such that α′ + 1
2 < δ − β′ − 3

2 ,

〈x〉−(α′+ 1
2
)B(α)(λ)Q〈x〉β′+ 3

2 〈x〉−(β′+ 3
2
)J

(β)
i (λ)V Qjφ

is an H-valued continuous functions by virtue of Lemma 2.7. Since E(λ) is

of class C(δ−3)− , this proves (1).

By a simple computation, we have

L10F (λ)u = λ〈J1(−λ)V φ1, V F (λ)u〉φ1 +

d∑
j=2

λ2〈J2(−λ)V φj , V F (λ)u〉φj .

The argument in (1) shows that, for u ∈ H−(δ−σ− 3
2
)− , λ〈J1(−λ)V φ1,

V F (λ)u〉 and 〈J2(−λ)V φj , V F (λ)u〉 are Cσ function of λ. This proves (2).

The proof for (3) is similar and we omit the details. �

Completion of the proof of Theorem 2.12. The first part of the

theorem follows by combing the lemmas. By virtue of (2.22) and (2.23) and

thanks to Lemma 2.16, A0(λ) − L−1
00 (λ) may be written as

L−1
00 L01C

−1L10L
−1
00 − L−1

00 L01C
−1 − C−1L10L

−1
00 + E,

and, therefore, it is of finite rank. This completes the proof of Theorem

2.12.
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3. Proof of Main Theorem

We prove the theorem only for W−. The proof for W+ is similar. We

write W = W− for simplicity. We express W− in terms of the boundary

values of resolvents in the following form where the right hand sides converge

strongly in H ([20]):

W = 1 − lim
ε↓0

1

2πi

∫
R
R(k + ε)V (R0(k + iε) −R0(k − ε))dk

= 1 − lim
ε↓0

1

πi

∫ ∞

ε
G(λ)V (G0(λ) −G0(−λ))λdλ.

(3.1)

We let λ0 > 0 be as in Theorem 2.12 and take Φ ∈ C∞
0 (R) and Ψ ∈ C∞(R)

as in the introduction: Φ(λ2) = 0 for |λ| > λ0, Φ(λ2) = 1 for |λ| < λ2
0/2

and Φ(λ)2 + Ψ(λ)2 ≡ 1. We define W< = WΦ(H0)
2 and W> = WΨ(H0)

2

so that W = W< + W>. We remark that for u, v ∈ S(Rm), we have

〈(G0(λ)u−G0(−λ))f(λ2)u, v〉 = 〈(G0(λ)u−G0(−λ))f(H0)u, v〉.(3.2)

We use the following lemma which is proved in Section 2 of [26]. Recall that

m∗ = m−1
m−2 . We define, for n = 1, 2, . . . ,

Ωnu =
1

πi

∫ ∞

0
(G0(λ)V )n(G0(λ) −G0(−λ))uλdλ.

Notice that Ω1 = Wr,0.

Lemma 3.1. Let σ > 1/m∗. Then there exists a constant C > 0 such

that

‖Ω1u‖p ≤ C‖F〈x〉σV ‖m∗‖u‖p,(3.3)

‖Ωnu‖p ≤ Cn‖F〈x〉2σV ‖nm∗‖u‖p, n = 2, . . .(3.4)

for any 1 ≤ p ≤ ∞, u ∈ Lp(Rm) ∩ L2(Rm).

3.1. Low energy estimate I, Regular Part

By virtue of the intertwining property we have W< = Φ(H)WΦ(H0).

We write G(λ)V = G0(λ)V (1 +G0(λ)V )−1 in the right of (3.1) and replace

(1 +G0(λ)V )−1 by the right side of (2.21) of Theorem 2.12. Then, defining
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Wr,0, Wr, Ws,1 and Ws,2 as in the introduction by (1.13), (1.14), (1.15) and

(1.16) respectively, we have

W< = Φ(H)(1 − (Wr,0 + Wr + Ws,1 + Ws,2))Φ(H0),(3.5)

where the integrals are understood as strong limits lim
ε↓0

∫ ∞

ε
· · · dλ. It is well

known (cf. Lemma 2.4 of [27]) that the integral kernels Φ0(x, y) and Φ(x, y)

of Φ(H0) and Φ(H) are bounded by CN 〈x−y〉−N for any N and Φ(H0) and

Φ(H) are bounded in Lp for all 1 ≤ p ≤ ∞. Lemma 3.1 then implies that

Φ(H)Wr,0Φ(H0) is bounded in Lp for all 1 ≤ p ≤ ∞.

In this subsection we prove that Wr is bounded in Lp for all 1 ≤ p ≤ ∞.

Definition 3.2. We say that the integral kernel K(x, y) is admissible

if it satisfies the condition (1.17):

sup
x

∫
Rm

|K(x, y)|dy + sup
y

∫
Rm

|K(x, y)|dx < ∞.

It is well known that the integral operator with an admissible integral

kernel is bounded in Lp for any 1 ≤ p ≤ ∞.

Lemma 3.3. The integral kernel Wr(x, y) of Wr is admissible.

If δx denotes the Dirac mass placed at x, then Wr(x, y) is given by

〈Wrδy, δx〉, which we may write in the form

1

πi

∫ ∞

0
〈V A0(λ)(G0(λ) −G0(−λ))Φ0(·, y), G0(−λ)Φ(·, x)〉λΦ̃(λ)dλ.(3.6)

Recall that Φ̃ ∈ C∞
0 (R) is such that Φ̃(λ)Φ(λ2) = Φ(λ2), λ ∈ R. Since

Φ0(z, y) and Φ(z, x) are bounded and rapidly decreasing in z, the integral

(3.6) is absolutely convergent and defines a bounded function of (x, y).

For j = 0, . . . , (m − 3)/2, let G0,j(λ) be the convolution operator with

the kernel eiλ|x||x|−(m−2−j) so that G0(λ) =
∑(m−3)/2

j=0 Cjλ
jG0,j(λ) by virtue

of (2.19). We insert this into the right of (3.6). Then, we have

Wr(x, y) =
1

πi

(m−3)/2∑
j,k=0

CjCk(−1)k(L+,j,k(x, y) − L−,j,k(x, y)),(3.7)
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where, with T±,j,k(λ, x, y)=〈V A0(λ)G0,j(±λ)Φ0(·, y),G0,k(−λ)Φ(·, x)〉Φ̃(λ),

L±,j,k(x, y) =
(±1)j

πi

∫ ∞

0
T±,j,k(λ, x, y)λ

j+k+1dλ.

Define, as in [26] and [27],

Xj(λ, z, x) =

∫
eiλ(|z−w|−|x|)

|z − w|m−2−j
Φ(w, x)dw = e−iλ|x|G0,j(λ)Φ(·, x),

Yj(λ, z, y) =

∫
eiλ(|z−w|−|y|)

|z − w|m−2−j
Φ0(w, y)dw = e−iλ|y|G0,j(λ)Φ0(·, y),

and denote by X
(!)
j (λ, x, y) and etc. for the ;-th derivatives of Xj and etc.

with respect to the variable λ. We have

L±,j,k(x, y) =
1

πi

∫ ∞

0
eiλ(|x|±|y|)T̃±,j,k(λ, x, y)λ

j+k+1dλ,

T̃±,j,k(λ, x, y) = 〈V A0(λ)Yj(±λ, ·, y), Xk(−λ, ·, x)〉Φ̃(λ).

(3.8)

Lemma 3.4. (1) For ; = 0, 1, 2, . . . and j = 0, . . . , (m− 3)/2,

∣∣∣X(!)
j (λ, z, x)

∣∣∣ ≤ C!〈z〉!
〈z − x〉m−2−j

,
∣∣∣Y (!)

j (λ, z, y)
∣∣∣ ≤ C!〈z〉!

〈z − y〉m−2−j
.

(2) Let νk = m − 2 − k if k = 0, . . . , (m − 5)/2 and νk = (m/2)+ if

k = (m− 3)/2. Then, for 0 ≤ j ≤ k, we have

‖〈z〉−(!+νk)X
(!)
j (λ, z, x)‖L2(Rm

z ) ≤ C〈x〉−(m−2−k),

‖〈z〉−(!+νk)Y
(!)
j (λ, z, y)‖L2(Rm

z ) ≤ C〈y〉−(m−2−k).
(3.9)

Moreover, if k = m−3
2 and j < k, then (3.9) remains to hold with the

exponent m− 2 − k on the right being replaced by min(νk,m− 2 − j).

Proof. We have ||z−w|− |x|| ≤ |z|+ |x−w| and |Φ(w, x)| ≤ CN 〈x−
w〉−N for arbitrarily large N . It follows that

∣∣∣X(!)
j (λ, z, x)

∣∣∣ ≤ ∫ C〈z〉!dw
|z − w|m−2−j〈w − x〉N−!

≤ C!〈z〉!
〈z − x〉m−2−j

.
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Then, the standard estimate implies that X
(!)
j (λ, z, x) satisfies (3.9). Esti-

mates for Y
(!)
j (λ, z, y) may be proved similarly. �

Lemma 3.5. Suppose either |V (x)| ≤ C〈x〉−(m+2+ε), ε > 0, and H is

of generic type or |V (x)| ≤ C〈x〉−(m+3+ε), ε > 0, and H is of exceptional

type. Let A0(λ) be as in Theorem 2.12. Then:

|〈V A
(α)
0 (λ)Y

(β)
j (±λ, ·, y), X(γ)

k (−λ, ·, x)〉|
≤ C〈x〉−(m−2−κ)〈y〉−(m−2−κ)

(3.10)

for j, k = 0, . . . , m−3
2 , κ = max(j, k) and (α, β, γ) with α + β + γ ≤ κ + 3.

If α = β = γ = 0, we have

|〈V A0(λ)Yj(±λ, ·, y), Xk(−λ, ·, x)〉| ≤ C〈x〉−(m−2−k)〈y〉−(m−2−j)(3.11)

for j, k = 0, . . . , m−3
2 .

Proof. We first prove (3.10). We may assume without loss of gener-

ality that j ≤ k so that κ = k. Let νk be as in the previous Lemma 3.4. By

virtue of (3.9), the left side of (3.10) is bounded by

C‖〈z〉νk+γV A
(α)
0 (λ)〈z〉νk+β‖B(H)〈x〉−(m−2−k)〈y〉−(m−2−k)

By virtue of Theorem 2.12, 〈z〉νk+γV A
(α)
0 (λ)〈z〉νk+β is a B(H)-valued con-

tinuous function of λ if

α < min(δ − (νk + β) − 3
2 , δ − (νk + γ) − 3

2 , δ − 3)(3.12)

when H is of exceptional case, and when H is of the generic case if

α < min(δ − (νk + β) − 1
2 , δ − (νk + γ) − 1

2 ,

2δ − (β + γ + 2νk) − 2, δ − 1).
(3.13)

The conditions (3.12) and (3.13) are satisfied if m + 3 < δ and m + 2 < δ

respectively and the estimate (3.10) follows. To prove (3.11), it suffices to

check that ‖〈z〉νkV A0(λ)〈z〉νj‖B(H) is bounded, which is, however, obvious.

This completes the proof. �
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Lemma 3.6. Let j = 0, 1, . . . , (m− 3)/2. Then:

sup
y

〈y〉−(m−2−j)
∫
Rm

〈x〉−(m−2−j)〈|x| ± |y|〉−(j+3)dx < ∞.(3.14)

The similar estimate holds when roles of variables x and y are interchanged.

Proof. It suffices to prove the case with 〈|x| − |y|〉−(j+3). Using polar

coordinates, we estimate the integral by(∫ |y|/2

0
+

∫ 2|y|

|y|/2
+

∫ ∞

2|y|

)
Crm−1dr

(1 + |r|)m−2−j(1 + |r − |y||)j+3

≤
∫ |y|/2

0

Crm−1dr

(1 + |r|)m+1
+

C|y|m−1

(1 + |y|)m−2−j
+

∫ ∞

2|y|

Crm−1dr

(1 + |r|)m+1
≤ C〈y〉1+j .

Estimate (3.14) follows because 1 + j ≤ m− 2 − j for j ≤ m−3
2 . �

By virtue of (3.10), we have for all j, k = 0, . . . , (m− 3)/2

|L±,j,k(x, y)| ≤ C〈x〉−(m−2−κ)〈y〉−(m−2−κ), κ = max(j, k).(3.15)

Since 2κ ≤ m − 3, this implies that χ(x, y)L±,j,k(x, y) are admissible if

χ(x, y) is the characteristic function of {(x, y) : ||x| − |y|| ≤ 1}. In what

follows we thus consider L±,j,k(x, y) for ||x| − |y|| > 1 only.

We apply integration by parts κ + 3 times, κ = max(j, k), in the right

side of

(±1)j(i(|x| ± |y|))κ+3L±,j,k(x, y)

=

∫ ∞

0

(
∂

∂λ

)κ+3

ei(|x|±|y|)λ · T̃±,j,k(λ, x, y)λ
j+k+1dλ.

(3.16)

If j + k + 1 ≥ κ + 3, then no boundary terms appear and

(3.16) = (−1)κ+3

×
∫ ∞

0
ei(|x|±|y|)λ

(
∂

∂λ

)κ+3

(T̃±,j,k(λ, x, y)λ
j+k+1)dλ.

(3.17)

It follows from (3.10) that

|L±,j,k(x, y)| ≤ C〈y〉−(m−2−κ)〈x〉−(m−2−κ)〈1 + ||x| ± |y||〉−(κ+3)(3.18)
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and, by virtue of Lemma 3.6, L±,j,k(x, y) are admissible. If j+k+1 = κ+2,

then a boundary term appears:

(3.16) = (3.17) + (−1)κ+3(κ + 2)!T̃±,j,k(0, x, y).(3.19)

Then, (3.10) again implies (3.18) and L±,j,k(x, y) are admissible. We finally

consider the case that j + k + 1 = κ + 1, viz. j = 0 and/or k = 0.

Lemma 3.7. Let 0 ≤ j, k ≤ m−3
2 and let j = 0 and/or k = 0. Then,

L+,j,k(x, y) − L−,j,k(x, y) is admissible.

Proof. We have j + k + 1 = κ + 1 and

(3.16) = (−1)κ+1

∫ ∞

0

(
∂

∂λ

)2

ei(|x|±|y|)λ ·
(

∂

∂λ

)κ+1

(T̃±,j,k(λ, x, y)λ
κ+1)dλ

= i(−1)κ+2(κ + 1)!(|x| ± |y|)T̃±,j,k(0, x, y) + (−1)κ+1(κ + 2)!T̃
(1)
±,j,k(0, x, y)

+(−1)κ+3

∫ ∞

0
ei(|x|±|y|)λ

(
∂

∂λ

)κ+3

(T̃±,j,k(λ, x, y)λ
j+k+1)dλ,

where T̃
(1)
±,j,k(λ, x, y) is the derivative of T̃±,j,k(λ, x, y) with respect to λ. The

argument above shows that modulo admissible terms

(±1)jL±,j,k(x, y) ≡ (−1)κ+2(κ + 1)!
T̃±,j,k(0, x, y)

(i(|x| ± |y|))κ+2
.(3.20)

We recall T̃+,j,k(0, x, y) = 〈V A0(0)Yj(0, ·, y), V Xk(0, ·, x)〉 = T̃−,j,k(0, x, y).

Then, by virtue of (3.11), modulo admissible terms, |L+,j,k(x, y) −
L±,j,k(x, y)| is bounded by a constant times

C

〈x〉m−2−k〈y〉m−2−j

∣∣∣∣ 1

(|x| + |y|)κ+2
− (−1)j

(|x| − |y|)κ+2

∣∣∣∣(3.21)

Elementary computation shows that for ||x| − |y|| > 1, this is bounded by a

constant times∑
a+b=j+1

〈y〉2+j−m〈x〉3−m

〈|x| + |y|〉j+2−a〈|x| − |y|〉j+2−b
, if k = 0, 1 ≤ j ≤ m−3

2 ;(3.22)

∑
a+b=k+1

〈y〉3−m〈x〉2+k−m

〈|x| + |y|〉k+2−a〈|x| − |y|〉k+2−b
, if j = 0, 1 ≤ k ≤ m−3

2 ;(3.23)

2|x||y|
〈x〉m−2〈y〉m−2〈|x| + |y|〉2〈|x| − |y|〉2

, if j = k = 0.(3.24)
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The integrals with respect to y of summands of (3.22) may be computed by

using polar coordinates and we estimate them by constants times

∫ ∞

0

(1 + r)j+2−mrm−1dr

(1 + r + |x|)j+2−a(1 + |r − |x||)j+2−b

≤
(∫ |x|

2

0
+

∫ 2|x|

|x|
2

+

∫ ∞

2|x|

)
rj+1dr

(1 + r + |x|)j+2−a(1 + |r − |x||)j+2−b

≤ C

〈x〉j+3

∫ |x|
2

0
rj+1dr +

1

〈x〉1−a

∫ 2|x|

|x|
2

Cdr

(1 + |r − |x||)j+2−b
+

∫ ∞

2|x|

Cdr

r2
.

The first and the last terms on the right are bounded by C〈x〉−1. The

second is bounded by C〈x〉−1 log(1 + |x|) ≤ C if a = 0 and b = j + 1; if

otherwise by C〈x〉a−1 ≤ C〈x〉m−3 since a− 1 ≤ j ≤ (m− 3)/2. Thus,

sup
x∈Rm

∫
Rm

|(3.22)|dy ≤ C.

We likewise estimate the integrals with respect to dx by constants times

∫ ∞

0

(1 + r)3−mrm−1dr

(1 + r + |y|)j+2−a(1 + |r − |y||)j+2−b

≤ C

〈y〉j+3

∫ |y|
2

0
r2dr +

1

〈y〉j−a

∫ 2|y|

|y|
2

Cdr

(1 + |r − |y||)j+2−b
+

∫ ∞

2|y|

Cdr

(1 + r)j+1
.

The first and the third terms are bounded by C〈y〉−j ≤ C〈y〉−1. The second

is bounded by a constant unless a = j + 1. If a = j + 1, then it is bounded

by C〈y〉 ≤ C〈y〉m−2−j since j ≤ (m− 3)/2. Thus, we have seen that (3.22)

is admissible. Since (3.23) is obtained from (3.22) by replacing the variable

x and y, (3.23) is also admissible. Similar estimate shows that (3.24) is also

admissible. This completes the proof. �

3.2. Low energy estimate II, Singular part

In this subsection, we show that Φ(H)Ws,jΦ(H0), j = 1, 2, are bounded

in Lp(Rm) for m
m−2 < p < m

2 if m ≥ 5 and for 3
2 < p < 3 if m = 3. Recall
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that Ws,j , j = 1, 2 are defined by (1.15) and (1.16) respectively:

Ws,1 =
1

πi

∫ ∞

0
G0(λ)V A−1(G0(λ) −G0(−λ))Φ̃(λ)dλ,

Ws,2 =
1

πi

∫ ∞

0
G0(λ)V P0V (G0(λ) −G0(−λ))Φ̃(λ)λ−1dλ,

and A−1 is given by virtue of Theorem 2.12 by

A−1 =




−P0V D3V P0V − a(ϕ⊗ ϕ)V, m = 3;

−c0(ϕ⊗ ϕ), m = 5;

0, m ≥ 7.

We use the following two lemmas. The first is well known (cf. [24], p.218).

Lemma 3.8. Let 1 < p < ∞. Then, the function |r|a on R is one

dimensional (A)p weight if and only if −1 < a < p − 1. The Hilbert trans-

form H̃ and the Hardy-Littlewood maximal operator M are bounded in the

weighted Lp-space Lp(R, w(r)dr) with (A)p weights w(r).

Lemma 3.9. Let m ≥ 3 be odd. Let ψ ∈ L1(Rm) and u ∈ S(Rm). Let

cj = |Σ|Cj where Cj are the constants in (2.19). Then

〈ψ, (G0(λ) −G0(−λ))u〉 =

(m−3)/2∑
j=0

cjλ
j

∫
R
eiλrr1+jM(r, ψ ∗ ǔ)dr

where ǔ(x) = u(−x) and M(r, f) is the spherical average of f :

M(r, f) =
1

|Σ|

∫
Σ
f(rω)dω, r ∈ R.(3.25)

Proof. Applying Fubini’s theorem and using polar coordinates, we

obtain

〈ψ,G0(λ)u〉 =

(m−3)/2∑
j=0

Cj

∫
Rm

ψ(x)

(∫
Rm

λjeiλ|y|u(x− y)

|y|m−2−j
dy

)
dx

=

(m−3)/2∑
j=0

Cj

∫
Rm

λjeiλ|y|(ψ ∗ ǔ)(y)

|y|m−2−j
dy

=

(m−3)/2∑
j=0

cj

∫ ∞

0
λjeiλrr1+jM(r, ψ ∗ ǔ)dr
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Note that M(r) = M(r, ψ ∗ ǔ) is smooth and rm−1M(r) is integrable. Since

M(r) is an even function of r, by changing the variable r to −r, we also

have

−〈ψ,G0(−λ)u〉 =

(m−3)/2∑
j=0

cj

∫ 0

−∞
λjeiλrr1+jM(r, ψ ∗ ǔ)dr

Adding last two equations sides by sides, we obtain the lemma. �

3.2.1 The case m = 3

We study the case m = 3 separately as the argument for this case is

slightly different from that for other cases.

Proposition 3.10. The operator Ws1 is bounded in Lp(R3) for 3/2 <

p < 3.

Proof. We write ϕ = φ1 and we let {φ2, . . . , φd} be an orthonor-

mal basis of E . Define a11 = −a, a1j = 0 for 2 ≤ j ≤ d and ajk =

−〈φj |V D3V |φk〉 for 2 ≤ j, k ≤ d. Then, we have Ws,1 =
∑d

j,k=1 Fjk where

Fjk are defined by

Fjku(x) =
ajk
πi

∫ ∞

0
G0(λ)V φj〉〈V φk|(G0(λ) −G0(−λ))Φ̃(|D|)u〉dλ.(3.26)

It suffices to show that all Fjk satisfy the property of the lemma. Since

Φ̃(|D|) is bounded in Lp for all 1 ≤ p ≤ ∞, we may and do ignore it.

We have |V (x)φj(x)| ≤ C〈x〉−δ−1 for all j. Lemma 3.9 yields that for

u ∈ C∞
0 (R3)

Lk(λ) ≡ 〈V φk, (G0(λ) −G0(−λ))u〉 =

∫
R
eirλrM(r, V φk ∗ ǔ)dr.(3.27)

Here Mk(r) ≡ M(r, V φk∗ǔ) is smooth, even and satisfies the decay estimates

|∂!Mk(ρ)| ≤ C!(1 + r)−δ−1 for ; = 0, 2, . . . . Hence, Lk(λ) is a rapidly

decaying Cδ−-function. We insert (3.27) in the right of (3.26):

Fjku(x) = ajk

∫ ∞

0

(∫
R3

e−iλ|x−y|(V φj)(y)

4π2i|x− y| dy

)
Lk(λ)dλ

= ajk

∫
R3

V φj(y)

4π2i|x− y|

{∫ ∞

0
e−iλ|x−y|Lk(λ)dλ

}
dy.
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We denote the function inside the brace by Tk(ρ), ρ = |x− y| so that

Fjku(x) = ajk

∫
R3

Tk(|x− y|)(V φj)(y)

4π2i|x− y| dy.

Since Lk(λ) is the Fourier transform of rMk(r), Tk(ρ) =

π(1 + H̃)[rMk(r)](|x − y|) where H̃ is the Hilbert transform. Applying

Hausdorff-Young’s inequality and using polar coordinates, we have

‖Fjku‖p ≤ cp‖V φj‖1

(∫
R
|Tk(r)|p|r|2−pdr

)1/p

, cp = (4π)
1
p |ajk|/(4π2).

By virtue of Lemma 3.8, |r|2−p is an one dimensional (A)p weight if and

only if 3/2 < p < 3 and for these p’s we have

(∫
R
|Tk(r)|p|r|2−pdr

)1/p

≤ Cp

(∫
|Mk(r)|pr2dr

)1/p

.(3.28)

Since Mk(r)
p ≤ |Σ|−1

∫
Σ |V φk ∗ ǔ(rω)|pdω by Hölder’s inequality, the right

side of (3.28) is bounded by

Cp‖V φj ∗ ǔ‖p ≤ Cp‖V φj‖1‖u‖p.(3.29)

This proves the proposition. �

Proposition 3.11. The operator Ws,2 is bounded in Lp(R3) for 3/2 <

p < 3.

Proof. As in the proof of previous Proposition 3.10 we ignore the

cut-off function Φ̃(λ). It suffices to show the lemma for the summands in

W2,su =
1

πi

d∑
j=2

∫ ∞

0
G0(λ)(V φj) ⊗ (V φj)(G0(λ) −G0(−λ))λ−1dλ · u.

We let |D|−1 be the Fourier multiplier by |ξ|−1, which is the convolution

with C|x|−2. Then, via Fourier transform, we have

〈V φj , λ
−1(G0(λ) −G0(−λ))u〉 = 〈|D|−1V φj , (G0(λ) −G0(−λ))u〉.
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Write ψj(x) = |D|−1(V φj). Recall that φj are eigenfunctions of H and

they satisfy |V (x)φj(x)| ≤ C〈x〉−δ−2 and
∫
V φjdx = 0. It follows that, as

|x| → ∞,

ψj(x) = C

∫ (
1

|x− y|2 − 1

|x2|

)
(V φj)(y)dy

= C

∫
2x · y − |y|2
|x|2|x− y|2 (V φj)(y)dy =

3∑
k=1

Cjkxk
|x|4 + O(|x|−4),

and the convolution with ψj(x) is bounded in Lp for any 1 < p < ∞:

‖ψj ∗ u‖p ≤ C‖u‖p, 1 < p < ∞(3.30)

([24], pp. 30-36). We then repeat the proof of Proposition 3.10 and, at

the final step we substitute this estimate (3.30) for Hausdorff-Young’s in-

equality (3.29) and conclude that ‖W2su‖p ≤ Cp‖u‖p for 3/2 < p < 3. This

completes the proof of Proposition 3.11. �

3.2.2 The case m ≥ 5

By virtue of (2.20), we have Ws1 = 0 if m ≥ 7 and, if m = 5,

Ws,1 =
−c0
πi

∫ ∞

0
G0(λ)(V ϕ) ⊗ (V ϕ)(G0(λ) −G0(−λ))Φ̃(λ)dλ

with ϕ = P0V , V being considered as a vector; for any m ≥ 5

Ws,2 =
1

πi

∫ ∞

0
G0(λ)V P0V (G0(λ) −G0(−λ))Φ̃(λ)λ−1dλ.

Proposition 3.12. Let m ≥ 5, |V (x)| ≤ C〈x〉−δ with δ > m + 3 and
m

m−2 < p < m
2 . Then, there exists a constant Cp such that ‖Ws,ju‖p ≤

Cp‖u‖p for all u ∈ C∞
0 (Rm), j = 1, 2.

We take an orthonormal basis {φ1, . . . , φd} of E and write W2,s in the

form W2,s =
∑d

j=1(1/πi)Zj , where

Zj =

∫ ∞

0
G0(λ)(V φj) ⊗ (V φj)(G0(λ) −G0(−λ))Φ̃(λ)λ−1dλ.



Lp-Boundedness of Wave Operators 79

We shall prove that Zj , j = 1, . . . , d, all satisfy the estimate of the propo-

sition by a series of lemma. The proof will then imply the same for Ws,1

because Ws,1 is obtained from Zj by replacing Φ̃ and φj by λΦ̃(λ) and ϕ

respectively and because the only properties of the former functions which

are used in the proof for Zj are that Φ̃ ∈ C∞
0 (R) and that φj ∈ E which

are as well satisfied by the latters . In the sequel we omit suffices j from φj
and Zj for brevity.

Denoting M(r, (V φ) ∗ ǔ) = M(r), we define for 0 ≤ j, k ≤ (m− 3)/2:

Kjk(ρ) =
1

2π

∫ ∞

0
e−iλρλk+j−1

(∫
R
eiλrr1+jM(r)dr

)
Φ̃(λ)dλ.(3.31)

Since |φ(x)| ≤ C〈x〉2−m, M(r) is smooth and |∂!M(r)| ≤ C!〈r〉2−m−δ

for ; = 0, 1, . . . . It follows that the functions inside the parenthesis are

at least of oder Cδ and decay rapidly at infinity. Moreover, it satisfies∫∞
−∞ rM(r)dr = 0 because M(r) is even. It follows that (3.31) is well de-

fined for all j, k. Lemma 3.9 and the change of the order of integrations

imply

Zu(x) = − 2

π

(m−3)/2∑
j,k=0

cjCk

∫
Rm

(V φ)(y)Kjk(|x− y|)
|x− y|m−2−k

dy(3.32)

where cj and Ck are the constants in Lemma 3.9 and (2.19) respectively. In

what follows we show that all integral operators on the right of (3.32),

Wjku(x) ≡
∫
Rm

(V φ)(y)Kjk(|x− y|)
|x− y|m−2−k

dy,(3.33)

are bounded in Lp(Rm) when m ≥ 5 and m/(m − 2) < p < m/2. By

interpolation, we have only to show this for p = m/(m − 2 − ε) and for

p = m/(2 + ε) with arbitrarily small ε > 0. We use the following lemma

which is obvious because |V (x)φ(x)| ≤ C〈x〉−(m−2+δ), δ > m + 3.

Lemma 3.13. Let p = m/(m− 2− ε) or p = m/(2 + ε), 0 < ε < 1 and

q be its dual exponent. Suppose b < m. Then

∫
Rm

(∫
|x−y|<1

|V (y)φ(y)|pdy
|x− y|b

) q
p

dx ≤ C < ∞
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In what follows we write H = (1+ H̃)/2, H̃ being the Hilbert transform.

By virtue of Lemma 3.8, |r|m−1−pθ is a one dimensional (A)p weight if and

only if 0 < m
p − θ < 1, or,

m− 3 − ε < θ < m− 2 − ε if p = m/(m− 2 − ε);(3.34)

1 + ε < θ < 2 + ε if p = m/(2 + ε).(3.35)

In what follows we take θ = m − 3 if p = m/(m − 2 − ε) and θ = 2 if

p = m/(2 + ε), 0 < ε < 1 being a small number. It is well known that for

f ∈ S there exists a constant C > 0 such that

|(f ∗ u)(t)| ≤ C(Mu)(t), t ∈ R,(3.36)

where M is the Hardy-Littlewood maximal operator ([24], p. 57).

(i) The case j + k = 1 and p = m/(m− 2 − ε). If j + k = 1, we have

Kjk(ρ) = H((FΦ̃) ∗ (r1+jM))(ρ).(3.37)

We split the integral (3.33) into |x− y| < 1 and |x− y| ≥ 1 and estimate

|Wjku(x)| ≤
(∫

|x−y|<1
+

∫
|x−y|>1

)
|(V φ)(y)Kjk(|x− y|)|

|x− y|m−2−k
dy

≡ I1(x) + I2(x)

(3.38)

For k = 0 and k = 1 and for |x−y| ≥ 1, we have |x−y|−(m−2−k) ≤ |x−y|−θ,

θ = m− 3, and Hausdorff-Young’s inequality implies

‖I2‖p ≤ ‖V φ‖1‖|x|−θKjk(|x|)‖p = ‖V φ‖1

(
|Σ|
∫ ∞

0
|Kjk(ρ)|pρm−1−pθdρ

) 1
p

.

Since ρm−1−pθ is a one dimensional (A)p weight, (3.36), (3.37) and Lemma

3.8 imply that the integral on the right is bounded by a constant times(∫ ∞

0
|r1+jM(r)|prm−1−pθdr

) 1
p

≤ C

(∫
Rm

|V φ ∗ ǔ(x)|p dx

|x|p(θ−1−j)

) 1
p

where we used Hölder’s inequality |M(r, f)|p ≤ |Σ|−1
∫
Σ |f(rω)|pdω in the

final step. Since 0 ≤ p(θ − 1 − j) < m for j = 0, 1, the right is bounded by

C

(∫
|x|≥1

|V φ ∗ ǔ(x)|pdx
) 1

p

+ C‖V φ ∗ ǔ‖∞

(∫
|x|<1

dx

|x|p(θ−1−j)

) 1
p

≤ C(‖V φ‖1 + ‖V φ‖q)‖u‖p,
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where q = m/(2 + ε) is the dual exponent of p. Thus,

‖|x|3−mKjk(|x|)‖p ≤ C(‖V φ‖1 + ‖V φ‖q)‖u‖p(3.39)

and, therefore, ‖I2‖p ≤ Cp,V ‖u‖p. By Hölder’s inequality and (3.39)

|I1(x)| ≤
(∫

|x−y|<1

(
Kjk(|x− y|)
|x− y|m−3

)p

dy

) 1
p

·
(∫

|x−y|<1

∣∣∣∣ (V φ)(y)

|x− y|1−k

∣∣∣∣
q

dy

) 1
q

≤ C(‖V φ‖1 + ‖V φ‖q)‖u‖p ·
(∫

|x−y|<1

∣∣∣∣ (V φ)(y)

|x− y|1−k

∣∣∣∣
q

dy

) 1
q

Since (1 − k)q < m, Lemma 3.13 implies ‖I1‖p ≤ CV,p‖u‖p. Thus, we have

proven ‖Wjku‖p ≤ ‖u‖p in this case.

(ii) The case j + k = 1 and p = m/(2 + ε). We estimate |Wjku(x)| ≤
I1(x) + I2(x) as in (3.38). Since m− 2 − k ≥ θ = 2, we have

|I2(x)| ≤
∫
|x−y|≥1

|(V φ)(y)Kjk(|x− y|)|
|x− y|θ dy

and ‖I2‖p ≤ ‖V φ‖1‖|x|−θKjk(|x|)‖p. Again |r|m−1−θp is a one dimensional

(A)p weight and 0 ≤ p(θ− 1− j) < m for j = 0, 1. Using (3.36) and (3.37),

applying the weighted inequality, and estimating the integral in the final

step by spliting it into the part on |x| < 1 and on |x| ≥ 1 as previously, we

obtain ∥∥∥∥Kjk(|x|)
|x|θ

∥∥∥∥
p

=

(∫ ∞

0
rm−1−θp|Kjk(r)|pdr

) 1
p

≤ C

(∫
R
|r|m−1−(θ−1−j)pM(r)pdr

) 1
p

≤ C

(∫
Rm

|V φ ∗ ǔ(x)|pdx
|x|p(θ−1−j)

) 1
p

≤ C(‖V φ‖1 + ‖V φ‖q)‖u‖p,

(3.40)
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where q = m/(m − 2 − ε). Hence, ‖I2‖p ≤ CV,p‖u‖p. For estimating I1(x)

we use Hölder’s inequality and then (3.40). We obtain

|I1(x)| ≤
(∫

|x−y|<1

∣∣∣∣ (V φ)(y)

|x− y|m−4−k

∣∣∣∣
q

dy

) 1
q

·
(∫

|x−y|<1

∣∣∣∣Kjk(|x− y|)
|x− y|2

∣∣∣∣
p

dy

) 1
p

≤ C(‖V φ‖1 + ‖V φ‖q)‖u‖p

(∫
|x−y|<1

∣∣∣∣ (V φ)(y)

|x− y|m−4−k

∣∣∣∣
q

dy

) 1
q

.

Since q(m − 4 − k) < m, Lemma 3.13 implies ‖I1‖p ≤ CV p‖u‖p. Estimate

‖Wjku‖p ≤ C‖u‖p holds if j + k = 1 and p = m/(2 + ε).

(iii) The case j, k ≥ 1 and p = m/(m− 2 − ε). We now write

Kjk(ρ) = L̃j+k ∗ (r1+jM)(ρ), L̃j+k(ρ) =
1

2π

∫ ∞

0
e−iρλλj+k−1Φ(λ)dλ.

Integration by parts implies |L̃j+k(ρ)| ≤ C〈ρ〉−(j+k). Hence,

ρk−1|Kjk(ρ)| ≤ C〈ρ〉k−1

∫
R
〈r − ρ〉−(k+j)rj+1|M(r)|dr

≤ C

∫
R
〈r − ρ〉−1−j〈r〉k−1rj+1|M(r)|dr

≤ CM(〈r〉k−1rj+1M)(ρ).

(3.41)

Define Qjk(ρ) = M(rj+1〈r〉k−1M)(ρ). Then, (3.41) yields

|Wjk(x)| ≤
∫
Rm

|(V φ)(y)|Qjk(|x− y|)dy
|x− y|θ , θ = m− 3,

and ‖Wjku‖p ≤ ‖V φ‖1‖|x|−θQjk(|x|)‖p. Since rm−1−pθ is a one dimensional

(A)p weight, we obtain, using also Hölder’s inequality, that∥∥∥∥Qjk(|x|)
|x|θ

∥∥∥∥
p

≤ C

(∫ ∞

0
rm−1−pθ(rj+1〈r〉k−1M(r))pdr

) 1
p

≤
(∫

Rm

|(V φ) ∗ ǔ)(x)|p〈x〉p(k−1)

|x|p(m−4−j)
dx

) 1
p

(3.42)
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Since 0 ≤ p(k − 1) ≤ p(m − 4 − j) < m, we may estimate the last integral

by C(‖(V φ) ∗ ǔ‖∞ + ‖(V φ) ∗ ǔ‖p) ≤ C‖u‖p as previously, by splitting the

domain of integration into {x : |x| < 1} and {x : |x| ≥ 1}. We have shown

that ‖Wjku‖p ≤ C‖u‖p for this case.

(iv) The case j, k ≥ 1 and p = m/(2 + ε). Trading the weight in Kjk =

L̃j+k ∗ (r1+jM) in the direction opposite to the one used in (3.41), we

estimate

〈ρ〉1−j |Kjk(ρ)| ≤
∫
R
〈r − ρ〉−(k+1)(〈ρ〉〈r − ρ〉)1−jrj+1M(r)dr

≤ C

∫
R
〈r − ρ〉−(k+1)〈r〉1−jrj+1M(r)dr ≤ CM(r2M)(ρ),

(3.43)

or |Kjk(ρ)| ≤ CM(r2M)(ρ)〈ρ〉j−1. We estimate |Wjku(x)| ≤ I1(x) + I2(x)

as in (3.38). Using (3.43) for ρ > 1 and remembering j + k ≤ m − 3, we

have

|I2(x)| ≤ C

∫
|x−y|>1

|(V φ)(y)|M(r2M)(|x− y|)〈x− y〉j−1

|x− y|m−2−k
dy

≤ C

∫
Rm

|(V φ)(y)|M(r2M)(|x− y|)
|x− y|θ dy, θ = 2,

and ‖I2‖p ≤ C‖V φ‖1‖M(r2M)/|x|2‖p. Since rm−1−2p is an (A)p weight,∥∥∥∥M(r2M)(|x|)
|x|2

∥∥∥∥
p

= C

(∫ ∞

0
ρm−1−2p{M(r2M)(ρ)}pdρ

) 1
p

≤ C

(∫ ∞

0
rm−1|M(r)|pdr

) 1
p

≤ C‖V φ ∗ ǔ‖p ≤ C‖V φ‖1‖u‖p.

(3.44)

Thus, ‖I2‖p ≤ C‖u‖p. Estimate (3.43), Hölder’s inequality and (3.44) imply

|I1(x)| ≤ C

∫
|x−y|<1

|V φ(y)|M(r2M)(|x− y|)dx
|x− y|m−2−k

≤
(∫

|x−y|<1

( |(V φ)(y)|
|x− y|m−4−k

)q

dy

) 1
q
∥∥∥∥M(r2M)(|x|)

|x|2
∥∥∥∥
p

≤ C‖V φ‖1‖u‖p

(∫
|x−y|<1

( |(V φ)(y)|
|x− y|m−4−k

)q

dy

) 1
q
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where q = m/(m − 2 + ε). Since q(m − 4 − k) < m, Lemma 3.13 implies

‖I1‖ ≤ C‖u‖p. We have obtained the desired ‖Wjku‖p ≤ C‖u‖p for this

case.

(v) The case 1 ≤ j ≤ (m− 3)/2, k = 0. We want to show

Wj0 ∈ B(Lp) for all m/(m− 2) < p < m/2.(3.45)

We have shown in (i) and (ii) that (3.45) is satisfied if j = 1. We prove

(3.45) for j ≥ 2 by induction on j. We assume that j ≥ 2 and that (3.45)

has already been proven for smaller values of j. By integration by parts

Kj0(ρ) =
−i

2π

∫ ∞

0
e−iλρλj−1Φ̃(λ)

d

dλ

(∫
R
eiλrrjM(r)dr

)
dλ

=
i

2π

∫ ∞

0

d

dλ

(
e−iλρλj−1Φ̃(λ)

)(∫
R
eiλrrjM(r)dr

)
dλ

= ρKj−1,1(ρ) + i(j − 1)Kj−1,0(ρ)

+
i

2π

∫ ∞

0
e−iλρλj−2λΦ̃′(λ)

(∫
R
eiλrrjM(r)dr

)
dλ

Note that the last integral is the same as Kj−1,0(ρ) if λΦ̃′(λ) is replaced

by Φ̃(λ) and that the former function plays no worse role than the latter.

Thus, we may ignore it by considering it being absorbed in Kj−1,0(ρ). If we

replace Kj0(ρ) by ρKj−1,1(ρ) or Kj−1,0(ρ) in the definition (3.33) of Wj,0u,

they respectively produce Wj−1,1u or Wj−1,0u. We have already shown that

Wj−1,1u ∈ B(Lp) for all m
m−2 < p < m

2 in steps (iii) and (iv) above, and

Wj−1,0u does so by the induction hypothesis. Estimate (3.45) holds for all

j ≤ (m− 3)/2 by induction.

(vi) The case j = 0 and 1 ≤ k ≤ (m− 3)/2. We want to show

W0k ∈ B(Lp) for all m/(m− 2) < p < m/2.(3.46)

We have already shown (3.46) for k = 1 in steps (i) and (ii) above and we

prove (3.46) for 2 ≤ k ≤ (m − 3)/2 by induction on k. We assume k ≥ 2

and that we have already proven (3.46) for smaller values of k. Integration



Lp-Boundedness of Wave Operators 85

by parts yields

K0k(ρ) =
1

2πiρ

∫ ∞

0

(
− d

dλ
e−iλρ

)
λk−1Φ̃(λ)

(∫
R
eiλrrM(r)dr

)
dλ

=
1

2πiρ

∫ ∞

0
e−iλρ

(
d

dλ

){
λk−1Φ̃(λ)

(∫
R
eiλrrM(r)dr

)}
dλ

= (iρ)−1(k − 1)K0,k−1(ρ) + ρ−1K1,k−1(ρ)

+
1

2πiρ

∫ ∞

0
e−iλρλk−2(λΦ̃′(λ))

(∫
R
eirλrM(r)dr

)
dλ.

Again λΦ̃′(λ) plays no worse role than Φ̃(λ) and we may ignore the last

term on the right, considering it being absorbed in ρ−1K0,k−1(ρ). If we

replace K0k(ρ) by ρ−1K0,k−1(ρ) and ρ−1K1,k−1(ρ) in the definition (3.33)

of W0k, they respectively produce W0,k−1 and W1,k−1. We have shown

W1,k−1 ∈ B(Lp) for all m
m−2 < p < m

2 in (iii) and (iv) and W0,k−1 does so by

the induction hypothesis. Thus, (3.46) is satisfied for all 1 ≤ k ≤ (m− 3)/2

by induction.

(vii) The case j = k = 0. Since
∫
R rM(r)dr = 0, we have

1

iλ

∫
R
eirλrM(r)dr =

∫
R

(
eirλ − 1

iλ

)
rM(r)dr =

∫
R

(∫ r

0
eiρλdρ

)
rM(r)dr

We change the order of integration on the right. The result is

∫
R
eiλρ

(∫
∆(ρ)

rM(r)dr

)
dρ =

∫
R
eiλρM̃(ρ)dρ

where ∆(ρ) = {r : ±r > ±ρ} for ±ρ > 0 and M̃(ρ) ≡
∫
∆(ρ) rM(r)dr. It

follows that

K00(ρ) =
1

2π

∫ ∞

0
e−iλρΦ̃(λ)

(
1

iλ

∫
R
eirλrM(r)dr

)
dλ

= ((FΦ̃) ∗ (HM̃))(ρ),

and we have |K00(ρ)| ≤ C(MHM̃)(ρ). We then proceed as in the case (i).
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First let p = m/(m−2−ε) and write θ = m−3. We estimate |W00u(x)| as

in (3.38). Since |x−y|−(m−2) ≤ |x−y|−θ for |x−y| ≥ 1, we have by applying

Hausdorff-Young’s inequality that ‖I2‖p ≤ C‖V φ‖1‖|x|−θK00(|x|)‖p. Since

rm−1−pθ is an (A)p weight and m − pθ > 0, Lemma 3.8 and then Hardy’s

inequality ([23], p. 274) imply

‖|x|−θK00(|x|)‖p ≤ C

(∫ ∞

0
ρm−1−pθ|(MHM̃)(ρ)|pdρ

) 1
p

≤ C

(∫
R
ρm−1−pθ|M̃(ρ)|pdρ

) 1
p

≤ C

(∫ ∞

0
ρm−1−pθρ2pM(ρ)pdρ

) 1
p

.

Since 0 ≤ p(θ − 2) = p(m − 5) < m, the right hand side is as previously

bounded by C(‖V φ‖1 + ‖V φ‖q)‖u‖p, q = m
2+ε , and

‖I2‖p ≤ C‖|x|−(m−3)K00(|x|)‖p ≤ C‖u‖p.(3.47)

By virtue of Hölder’s inequality and (3.47) we have

|I1(x)| ≤
(∫

|x−y|<1

∣∣∣∣(V φ)(y)

|x− y|

∣∣∣∣
q

dy

) 1
q

·
(∫

|x−y|<1

∣∣∣∣K00(|x− y|)
|x− y|m−3

∣∣∣∣
p

dy

)1/p

≤ C‖u‖p

(∫
|x−y|<1

∣∣∣∣(V φ)(y)

|x− y|

∣∣∣∣
q

dy

) 1
q

,

where q = m/(2+ε) < m. Lemma 3.13 implies ‖I1‖p ≤ C‖u‖p. This proves

‖W00u‖p ≤ C‖u‖p when p = m/(m− 2 − ε), 0 < ε < 1.

Next we let p = m/(2 + ε). We first estimate |W00(x)| by the right of

(3.38). Since m− 2 ≥ 2,

|I2(x)| ≤
∫
|x−y|>1

|(V φ)(y)K00(|x− y|)|dy
|x− y|2

and ‖I2‖p ≤ ‖V φ‖1‖|x|−2K00‖p. Since rm−1−2p is an (A)p weight and m−
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2p > 0, we may apply Lemma 3.8 and then Hardy’s inequality to obtain

‖|x|−2K00(|x|)‖p ≤ C

(∫ ∞

0
ρm−1−2p|(MHM̃)(ρ)|pdρ

) 1
p

≤ C

(∫ ∞

0
ρm−1−2p|M̃(ρ)|pdρ

) 1
p

≤ C

(∫ ∞

0
ρm−1M(ρ)pdρ

) 1
p

≤ C‖u‖p

Thus, ‖I2‖p ≤ C‖V φ‖1‖u‖p. If q = m/(m− 2 − ε) is the dual exponent of

p,

|I1u(x)| ≤
(∫

|x−y|<1

∣∣∣∣ (V φ)(y)

|x− y|m−4

∣∣∣∣
q

dy

) 1
q

·
(∫

|x−y|<1

∣∣∣∣K00(|x− y|)
|x− y|2

∣∣∣∣
p

dy

)1/p

.

The first factor is an Lp function of x ∈ Rm by virtue of Lemma 3.13 and

the second is bounded by ‖|x|−2K00(|x|)‖p ≤ C‖u‖p. Thus ‖I1‖p ≤ C‖u‖p.
This proves ‖W00u‖p ≤ C‖u‖p for the case p = m/(2 + ε), 0 < ε < 1. This

completes the proof of Proposition 3.12.

3.3. High energy estimate

We prove in this subsection that W> is bounded in Lp(Rm) for all 1 ≤
p ≤ ∞ if V satisfies |V (x)| ≤ C〈x〉−δ, δ > m + 2, in addition to (1.8),

viz. F(〈x〉2σV ) ∈ Lm∗(Rm) for σ > 1
m∗

. Since threshold singularities are

irrelevant to the high energy part W> = WΨ(H0)
2, we can (and do) follow

basically the same idea as in [26], however, we shall substantially relax the

regularity and the decay conditions on the potentials by improving some of

the arguments there.

We want to show that the integral kernel of W> is admissible by the

method used for the low energy case. However, in this way we shall en-

counter two difficulties: (1) The λ integral extends to non-compact interval

and the integral corresponding to (3.6) does not converge absolutely; (2) the

local singularities of the convolution kernel Cje
iλ|x||x|−(m−2−j) of G0,j(λ) are

strong and they are not locally in L2 except the case j = (m − 3)/2. To

overcome the first difficulty we shall exploit Lemma 2.2 that the resolvent
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decays as |λ| → ∞: ‖〈x〉−σG0(λ)〈x〉−τ‖B(H) ≤ Cλ−1 for σ, τ > 1/2. In

order to do this, we expand (1 + G0(λ)V )−1 and write W> in the following

form:

Ψ(H0)
2 − 1

π

∫ ∞

0
G0(λ)V (1 + G0(λ)V )−1(G0(λ) −G0(−λ))Ψ(H0)

2λdλ

= Ψ(H0)
2 +

2n∑
j=1

(−1)j

iπ

∫ ∞

0
(G0(λ)V )j(G0(λ) −G0(−λ))λdλΨ(H0)

2

− 1

iπ

∫ ∞

0
(G0(λ)V )nG(λ)V (G0(λ)V )n(G0(λ) −G0(−λ))λΨ(λ2)2dλ

= Ψ(H0)
2 +

2n∑
j=1

(−1)jΩjΨ(H0)
2 − Ω̃2n+1.

The operator Ψ(H0) is bounded in Lp for any 1 ≤ p ≤ ∞ and, by virtue of

Lemma 3.1, ‖Ωnu‖p ≤ Cn‖F(〈x〉2σV )‖nm∗‖u‖p for σ > 1/m∗.
In what follows we show that, if n is large enough, the integral kernel

Ω̃2n+1(x, y) =

∫ ∞

0
〈K̃n(λ)(G0(λ) −G0(−λ))δy, G0(−λ)δx〉λΨ2(λ2)dλ,

of Ω̃2n+1, where K̃n(λ) = (V G0(λ))n−1V G(λ)V (G0(λ)V )n, is admissible

by applying the argument similar to the one used for studying Wr(x, y).

However, we need modify it because of the difficulty (2) mentioned above.

We write the integral kernel of G0(λ) in the form

G0(λ, z, x) = eiλ|x|
m−3

2∑
j=0

Cjλ
j eiλ(|x−z|−|x|)

|x− z|m−2−j
≡ eiλ|x|G̃0(λ, z, x).

Note that we have now included the factor λj into G̃0(λ, z, x). For |λ| ≥ 1,

we have ∣∣∣∣∣
(

∂

∂λ

)j

G̃0(λ, z, x)

∣∣∣∣∣ ≤ Cλ
m−3

2

(
〈z〉j

|x− z|m−2
+

〈z〉j

|x− z|m−1
2

)
(3.48)

Define T±(λ, x, y) = 〈K̃n(λ)G̃0(±λ, ·, y), G̃0(−λ, ·, x)〉 so that

Ω̃2n+1(x, y)

=
1

πi

∫ ∞

0

(
eiλ(|x|+|y|)T+(λ, x, y) − eiλ(|x|−|y|)T−(λ, x, y)

)
Ψ̃(λ)dλ,
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where Ψ̃(λ) ≡ Ψ(λ2)2. Note that the smoothing factors Φ0(x, y) and Φ(x, y)

for the low energy case are absent here. For proceeding further we take a

partition of unity χ(z) + χ̃(z) ≡ 1 such that χ ∈ C∞
0 (Rm), χ(z) = 1 for

|z| ≤ 1 and χ(z) = 0 for |z| ≥ 2 and split G0(λ, x, y) and G̃0(λ, x, y) into

sums of compactly supported part and smooth part:

G0(λ, x, y) = χ(x− y)G0(λ, x, y) + χ̃(x− y)G0(λ, x, y),

G̃0(λ, x, y) = χ(x− y)G̃0(λ, x, y) + χ̃(x− y)G̃0(λ, x, y).

We set G0,<(λ, x, y) = χ(x−y)G0(λ, x, y), G0,>(λ, x, y) = χ̃(x−y)G0(λ, x, y)

and let G0,<(λ) and G0,>(λ) be the operators with the respectivel integral

kernels. We use similar notation for G̃0(λ, x, y).

Lemma 3.14. Let 0 ≤ s ≤ m+3
2 . For sufficiently large n, we have∣∣∣∣

(
∂

∂λ

)s

T±(λ, x, y)

∣∣∣∣ ≤ Cnsλ
−2〈x〉−

m−1
2 〈y〉−

m−1
2 .(3.49)

Proof. By using Leibniz’ formula we write
(
∂
∂λ

)s
T±(λ, x, y) as a linear

combination of

〈V G
(sn)
0 (λ)V · · ·G(s1)

0 (λ)V G̃
(s0)
0 (±λ, ·, y),

G(tn)(−λ)V G
(tn−1)
0 (−λ)V · · ·G(t1)

0 (−λ)V G̃
(t0)
0 (−λ, ·, x)〉

where s0 + · · · + sn + t0 + · · · + tn = s. If 1
2 < γ is sufficiently close to 1

2 so

that δ − (s0 + s1 + γ) > m
2 , then we have for the smooth part G̃

(s0)
0.> (λ, ·, y)

that

‖〈·〉s1+γV G̃
(s0)
0,> (λ, ·, y)‖2 ≤ Cλ

m−3
2 〈y〉−(m−1

2 ).(3.50)

We then obtain that for such γ > 1
2 and sn+1 = tn:

‖〈·〉sn+1+γV G
(sn)
0 V · · ·G(s1)

0 V G̃
(s0)
0,> (λ, ·, y)‖2 ≤ Cλ(−n+m−3

2 )〈y〉−
m−1

2

by considering the quantity inside the norm in the form

(

n∏
i=1

V 〈z〉si+si+1+2γ〈z〉−si−γG
(si)
0 (λ)〈z〉−si−γ)〈z〉s1+γV G̃

(s0)
0,> (λ, ·, y)
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and by applying Lemma 2.2. For the function produced by the singular part

G̃
(s0)
0,< (λ, ·, y), we further split

G
(s1)
0 (λ)V G̃

(s0)
0,< (λ, ·, y) = G

(s1)
0,> (λ)V G̃

(s0)
0,< (λ, ·, y) + G

(s1)
0,< (λ)V G̃

(s0)
0,< (λ, ·, y).

We may estimate S(λ, x, y) ≡ 〈x〉−s1−γ{G(s1)
0,> (λ)V G̃

(s0)
0,< (λ, ·, y)}(x) by

∫
Rm

Cλm−3|V (z)||χ(z − y)|〈z〉s0dz
〈x〉s1+γ〈x− z〉m−1

2
−s1 |z − y|m−2

≤ Cλ(m−3)

〈x〉s1+γ〈x− y〉m−1
2

−s1〈y〉δ−s0
.

Since γ > 1
2 and δ − s0 > (m− 1)/2, Hölder’s inequality implies

‖S(λ, ·, y)‖2 ≤ Cλm−3〈y〉−(δ−s0) ≤ Cλm−3〈y〉−
m−1

2 .

Thus, by the same argument as above we obtain

‖〈·〉sn+1+γV G
(sn)
0 V · · ·G(s2)

0 V G
(s1)
0,> V G̃

(s0)
0,< (λ, ·, y)‖ ≤ Cλm−n−2〈y〉−

m−1
2 .

Since |G(s1)
0,< (λ, z, x)| ≤ Cλ(m−3

2 )|x− z|−(m−2)χ(x− z), we have

∣∣∣∣
∫

G
(s1)
0,< (λ, x− z)V (z)G̃

(s0)
0,< (±λ, z, y)dz

∣∣∣∣ ≤ Cλm−3〈y〉−δ+s0

|x− y|m−4
χ

(
x− y

4

)
.

Notice that the singularity at x = y is tamed by the factor 2 at the cost of

increasing the factor λ
m−3

2 with respect to λ. If m ≤ 7, we then have

‖G(s1)
0,< (λ)V G̃

(s0)
0,< (λ, ·, y)‖2 ≤ Cλm−3〈y〉−

m−1
2 ,

hence, ‖〈·〉sn+1+γV G
(sn)
0 V · · ·G(s2)

0 V G
(s1)
0,< V G̃

(s0)
0,< (λ, ·, y)‖ ≤ Cλm−n−2 ×

〈y〉−
m−1

2 . Then, by summing up the estimates obtained so far, we conclude

that

‖〈·〉sn+1+γV G
(sn)
0 V · · ·G(s1)

0 V G̃
(s0)
0 (λ, ·, y)‖ ≤ Cλm−n−2〈y〉−

m−1
2 , |λ| > 1.

If m− 4 ≥ m/2, viz. m ≥ 8, however, |x− y|4−mχ((x− y)/4) is still not in

L2. We then further split

G
(s2)
0 (λ)V G

(s1)
0,< (λ)V G̃

(s0)
0,< (λ, ·, y)

= G
(s2)
0,< (λ)V G

(s1)
0,< (λ)V G̃

(s0)
0,< (λ, ·, y) + G

(s2)
0,> (λ)V G

(s1)
0,< (λ)V G̃

(s0)
0,< (λ, ·, y)
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and repeat the argument above. Then, after doing this ; = (m − 3)/2

times, the function produced by using singular kernels only also becomes

L2 function and

‖G(s	)
0,< (λ)V · · ·V G

(s1)
0,< (λ)V G̃

(s0)
0,< (λ, ·, y)‖L2 ≤ Cλ(!+1)(m−3)/2〈y〉−

m−1
2 .

We also have for any γ > 1
2 that

‖〈·〉−(s	+γ)G
(s	)
0,> (λ)V · · ·V G

(s1)
0,< (λ)V G̃

(s0)
0,< (λ, ·, y)‖L2

≤ Cλ(!+1)(m−3)/2〈y〉−
m−1

2 .

Summing up the estimates thus obtained, we conclude by taking n suffi-

ciently large that

‖〈·〉sn+1+γ
n∏
i=1

(V G
(si)
0 (λ))V G̃

(s0)
0 (λ, ·, y)‖ ≤ Cλ−1〈y〉−

m−1
2 .

Entirely similar argument implies

‖〈·〉sn+1+γ
n∏
i=1

(V G
(si)
0 (λ))V G̃

(s0)
0 (−λ, ·, y)‖ ≤ Cλ−1〈y〉−

m−1
2

and also that

‖〈x〉−tn−γG(tn)(−λ)V

n−1∏
i=1

(G
(ti)
0 (−λ)V )G̃

(t0)
0 (−λ, ·, x)‖ ≤ Cλ−1〈x〉−

m−1
2 .

Last two estimates imply the lemma. �

We now apply integration by parts (m + 3)/2 times to obtain∫ ∞

0
eiλ(|x|±|y|)T±(λ, x, y)Ψ̃(λ)dλ

=
1

(|x| ± |y|)m+3
2

∫ ∞

0
eiλ(|x|±|y|)

(
i
∂

∂λ

)m+3
2 (

T±(λ, x, y)Ψ̃(λ)
)
dλ

and estimate the right hand side by using (3.49). We obtain

|Ω̃n+1(x, y)| ≤ C〈|x| − |y|〉−m+3
2 〈x〉−

m−1
2 〈y〉−

m−1
2
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and Ω̃n+1(x, y) is admissible. This completes the proof of Theorem 1.1.
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