J. Math. Sci. Univ. Tokyo
12 (2005), 349-397.

Application of Stochastic Flows
to Optimal Portfolio Strategies

By Ryuji Fukaya

Abstract. The author proposes a new algorithm using a stochas-
tic flow technique to solve an optimal portfolio and consumption prob-
lem for a single-agent in a Markovian security market setting. In that
class, optimal feedback portfolio strategies are computed by the sys-
tem of stochastic differential equations, which are induced by applying
the differential rule of a composite function to stochastic flows. Suffi-
cient conditions for the existence of feedback solutions are stated using
integrability of stochastic processes. In the case of power and logarith-
mic utility functions, more straightforward conditions are given and
the continuity of optimal strategies is proved.

1. Introduction

We consider a single-agent optimal portfolio and consumption problem
in a continuous-time. Optimal portfolio and consumption choice in multi-
period or in continuous-time settings were first investigated by Samuel-
son [15] and Merton [10] [11]. By assuming a model with constant co-
efficients and solving the relevant Hamilton-Jacobi-Bellman equation, [10]
shows solutions when the utility function is a member of the HARA (Hy-
perbolic Absolute Risk Aversion) family. The “separating mutual fund the-
orem” in a constant coefficients environment is given in [11] . Another
separating mutual fund theorem in a Markovian stochastic interest rate
environment is given in [12]. These results have great impact on the invest-
ment industry. Since these seminal papers appeared, “the optimal portfolio
strategy” and “the separating mutual fund theorem” have been studied
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extensively by many authors for more general settings. Especially Cvitanic-
Karatzas [2] gives optimal solutions to constrained portfolio optimization
problem with general settings.

However for many financial problems which practitioners tackle in daily
business, it is difficult to obtain tractable solutions which are analytical and
optimal, even though we have the general formula for optimal solutions such
as [2]. The difficulty requires us to apply the numerical methods especially
when the economy’s state variables are stochastic such as in stochastic in-
terest rate models, stochastic volatility models, bond portfolio strategies,
bond-equity mix problems and so on. Recently some advanced stochastic
methods using Malliavin calculus are applied extensively to obtain optimal
portfolio strategies numerically. Detemple-Garcia-Rindisbacher [3] applied
Malliavin calculus and the generalized Clark formula and obtained numer-
ical results. Kunitomo-Takahashi [8] and Takahashi-Yoshida [16] used the
combination of Malliavin Calculus and the asymptotic expansion approach.

In this paper, starting with the convex duality approach (see e.g. Cox-
Huang [1], and Karatzas-Lehoczky-Shreve [5]), a new algorithm using
stochastic flows is proposed for the determination of coefficients of the sepa-
rating mutual fund theorem. A class of security market models is specified,
where a wide range of financial problems are covered. Within this class,
solutions are given by transition semigroups using stochastic flows.

Let (2, F,P) be a complete probability space. {B(t) = (Bi(t),---,
By(t)); t € [0,T]} be a d-dimensional standard Brownian motion. The
time interval is [0, T]. Let (F¢):c(0,r) be the augmented Brownian filtration.
We have the investment horizon Ty, where Ty < T. The economy’s state
variable vector X (t;s,z) at time ¢, starting from x € R™ at time s, is given
by the following R™-valued continuous stochastic process.

X(t;s,x) = (X1(t;8,2), - Xp(t; s, ),

satisfying the following stochastic differential equation:

(1) X(t;s,2) = :U—i—/ p (v, X (v; s, 2))dv

+ / o (v, X (v;s,2))dB(v).

pX :[0,T] x R* — R™ and oX : [0,7] x R®* — R" @ R? are good con-
tinuous functions satisfying Condition (S1) in Section 2. From Kunita [7]
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Theorem 4.6.5, we may assume that X (¢;s,x) is a stochastic flow of C°-
diffeomorphisms. At time ¢ = 0, we choose a starting point zg € R™ and fix
it. We denote X (¢;0,z¢) by X (¢).

The risk free rate at time ¢ is denoted by 74, and is given by a function
of state variables.

re =1(t, X(t)).

We define the money account Sy(t) by

So(t) = exp {/Otr(v,X(v))dv} |

The price processes of d given securities, S;(t), i = 1,--- ,d, are solutions of
stochastic differential equations.

(2) Si(t) = Sio —|—/0 wi(v, X (v))S;(v)dv
d  rt
+; /O 0i.(v, X (v))S;(v)dB;(v),

foralli,j =1,---d. Let S(t) = (S1(t), -+, S4(t)). Under assumptions (S3),
(S4), (S5), and (S6) in Section 2, our security market model is a standard
financial market in the sense of Karatzas-Shreve [6] and is complete.

We expand Karatzas-Shreve’s setting of the single-agent optimal portfo-
lio and consumption framework. Let us define a state-dependent investor’s
utility function as follows:

To
V(C,Z)=E" [/0 u(C(v),v,w)dv+U(Z,w)|,

where u : (0,00) x [0,7p] x 2 — R, and U : (0,00) x  — R are measurable
functions satisfying Condition (U1) and (U2).
Our optimal portfolio and consumption problem is stated as follows:

(3) JW,z0) =  sup  V(C,WWEe(Ty)),
(C,Z,p)e A(W)
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where W is an initial endowment, ¢ is a trading strategy, and (C, Z, ¢) is
an admissible strategy whose definition is given in Section 2. WW:¢:#(t) is
given as follows:

WW-Ce (1)

t
v
0

d
WL (v) (Z () (1 (0, X (v; 7))
j=1

— (X (v;2))) + (X (v; l’))) = C(v) |dv

d d

=305 [ W)y ()00, X (1) AB ).

j=1i=1

We will show in Theorem 2.5 that the optimal portfolio strategy ¢(t) is
given as a rational expression of expected values of Markovian-type diffusion
processes. These diffusion processes are solutions of stochastic differential
equations which are induced by applying the differential rule of a composite
function to stochastic flows and multiplicative functionals. Theorem 2.5
gives a fundamental framework for numerical calculations of ¢(t) without
using Malliavin derivatives. We can directly apply stochastic simulation
methods such as Monte Carlo methods and quasi-Monte Carlo methods to
this framework.

More advanced numerical scheme such as Kusuoka approximation [9]
are expected to improve the effectiveness of the calculation, as reported
in Ninomiya [13] for pricing derivatives, because our formula of optimal
strategies are essentially identical to pricing formulas of derivatives.

In this paper, investors’ utility functions are allowed to be state-depen-

3

dent in some special form. We can cover, for example, “a present value of
utility when interest rate is stochastic” and “a numeraire of utility functions
is some traded security”. Even in these cases, we show that optimal portfolio
strategies are given as linear combinations of “mean-variance portfolios”
and “hedging portfolios with respect to economy’s state variables.” This
result is a generalization of Ocone-Karatzas [14], Cvitanic-Karatzas [2], and
Takahashi-Yoshida [16].

The remainder of this paper is structured as follows. We give the main
theorem in Section 2. In Section 3, assumptions and preliminary propo-
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sitions are stated formally. Stochastic flow techniques are proposed and
coefficients of optimal portfolios are given using transition semigroups. Sec-
tion 4 gives proof of a main theorem. In Section 5, we show that in the
case of power and logarithmic utility functions, alternative straightforward
assumptions are enough for the main result and optimal strategies are con-
tinuous. We give some numerical examples in Section 6 and concluding
remarks in Section 7.

2. Main Theorem

Throughout this paper we assume the following setting: Let (Q, F, P)
be a complete probability space. Let {B(t) = (Bi(t), -, Bq4(t));t € [0,T]}
be a d-dimensional standard Brownian motion. The time interval is [0, T,
where T' > 0. Let (F¢)icpo,r] be the augmented Brownian filtration. We
have the investment horizon Ty, where 0 < Ty < T

DEFINITION 2.1. We say that a function f : [0,7] x R™ — R, where
m € N, is a member of a class C’S{DOO(Rm), if the following conditions are
satisfied:

1. f(t,z) is continuous in ¢,z, and smooth in x for all ¢.
2. There exists a constant C' > 0, such that

|f(t,z)| < C(1+ |z|), forallte[0,7] and x € R™.

3. For any multi-index & = (a1, -+ , ayy, ), there exists a constant depend-
ing on a, Cy > 0, such that

|DSf(t,z)] < Cq, foralltel0,T] and z € R™.
An economy’s state variable vector X (t) is given by R"-valued continu-
ous stochastic process X (t) = (X1(t),- -+, Xn(t)). We assume the following:

(S1): Coefficient functions uX (¢, z), Ufj(t,w),i =1,---,n,j=1,---,d
of X (t) are in CO>°(R™).
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We assume that X (¢) is a unique solution to the following stochastic dif-
ferential equation in the sense of It6 and a stochastic process with spacial
parameters (see, e.g., Kunita [7]).

X(t;s,x)—x—i—/ ,uX(v,X(v;s,x))dv+/ o~ (v, X (v;s,))dB(v),

where = (x1,--- ,2,) € R". Let ¥ be an R"-valued function x~ : [0, 7] x
R" — R" and 0% be an R®"®@R%valued function o : [0, T] x R* — R*@R4
by the following:

N{((tvx) O-fl(ta .’E) e de(t’x)
pX(t, @) = .|, and of(ta) = : :
iy (t, ) o (t,z) - ap(t,x)

We may assume that X (¢;x) is a forward stochastic flow of C°°-diffeo-
morphisms (see Kunita [7] Theorem 4.6.5). We denote this stochastic
flow by X(t;s,x2) for 0 < s < ¢t < T and for x € R™ At time t = 0,
choose a starting point zp € R", and fix it. Let X (¢) = X (¢;0,20). Then
X(t) = X(t;5,X(s)).

Let r be a function 7 : [0,7] x R™ — R satisfying the following:

(S2): r(t,x) is in CH°(R™).

We define 7, = r(t, X (t)) and consider 7, as the risk free rate at time ¢. Let

So(t) = exp {/Otr(v,X(v))dv} |

So(t) is the money account.
Let p; be a function p; : [0,7] x R™ — R and o;; be a function o; ; :
[0,7] x R™ — R satisfying the following:

(S3): Nz(ta 33), Ui,j(tax))iaj =1,---,darein CSBOO(RTL)

Let us introduce d individual securities, S;(t), ¢ = 1,--- ,d, where each S;(t)
is an R-valued stochastic process and a unique solution of the following
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stochastic differential equation:

(4) Si(t) =Sio + /0 13(v, X (0))S(v)do
d o
;/O%UX ))Si(0)dB; ()
i1=1,---,d

Let S(t) = (S1(t),---,Sa(t)), and

/Ll(ta $) Ul,l(tv IL') T Ul,d(tv $)
utoy=| o |, and o(ta)=| :
pa(t, ) oia(t,z) - oq4(t,x)

We assume the following condition.

(S4): The volatility matrix o (¢, x) is invertible for all ¢ € [0, 7] and for
all z € R™.

Then we can define an R%-valued function A : [0, 7] x R" — R? as follows:
Atw) = a(t,2) ™ (ut2) = r(t,2)T).

where T = (1,---,1) € R%. We denote the j-th element of (¢, z) by \;(t,z).
We assume the following:

(S85): Aj(t,z),j=1,---,d, arein CSI’DOO(R”).
Let

t
(5) 1I(t; 5, z) _eXp{_/ r(v, X (v;s,x))dv
d
_Z/ AJ(U’X(mSaI))dBj(U)
=Js
“/ ZA v, X (v; s x>)2du}

ogsgth, z € R".
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Let II(t) = II(¢; 0, 20). Then we see that
II(t) = II(s)IL(t; s, X (s5)),

for any 0 < s <t < T. We see that II(¢; s, x) is {Fst}o< s <t <7-measurable,
where

Fsp=0(X(s))Vo(Bj(r)—Bj(s):j=1,---,d,s <r<t).

II(t) is the state price density process (see Duffie [4] and Karatzas-
Shreve [6]). For each j = 1,--- ,n, we define the following stochastic pro-
cesses:

(6) mi(t;s,x) = —/ Z or (v, X (v;s x))%—i?(v;s,x)dv

d t n .
_Z/Za/\ (v, X(vsx))aafk(vsm)dB()
178 !

i= = Yk
/ ZZ)\ v, X (v;s x))%(U,X(v;s,x))
i=1 k=1 O
0X},
X a—xj(v,s,a:)dv,
j: 17 7n

d t
™) =) = exp{—z RGO

We assume the following condition:
(S6): The local martingale =(t) is a martingale.

Let gO(th)v 1( )a' e >gd(t .CC) and hO(t ﬂl’) hl(t .7}), ahd(t7$) be
functions from [0,7] x R™ to R satisfying the following.
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(S7): gi(t,x), i = 0,1,---,d, and h;(t,x), ¢ = 0,1,---,d are in
Ch2(R™).

We introduce the following stochastic processes with spacial parameters; for
0 < s<t< Ty, and for all z € R™,

(8) Aty s,x) = exp{/ go(v, X (v; s, z))dv

d o
-I—Z/ gj(v,X(v;s,x))dBj(v)},
j=17s

3

t 890 an
. t- — - X . __ N .
© st - | D v X s G i
d t n
Z/ (v, X(v;s x))%(v;s,x)dBi(v),
oJs 4 j
forj=1,---,d,

(10) E(t;s,z) = exp{/ ho(v, X (v;s,z))dv

d t
+3 / hj@,X(U;S,x))dBj(v)},
j=1"%

(11) i(t;s,x) / 8h0 (v X(v;s,m))%(v;s,x)dv
s Lj

for j=1,---,d.

The following equations hold as for II(¢; s, x): Let us define A(t) and E(t)
by

(12) A(t) = A(t;0,z9), E(t) = E(t;0,x0).
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Then
At) = A(s)A(t; s, X(s)), E(t) = E(s)E(t; s, X(s)),

forall 0 < s <t < Tp. We see that A(t;s,x) and E(t;s,z) are Fgy-
measurable.

Let Up : (wp,00) — R and ug : (co,00) x [0,Tp] — R, where wy > 0 and
co = 0 are functions satisfying the following conditions:

(U1): Up : (wp,0) — R is a C3-function such that
1. Uj(w) > 0 for all w € (wp, o0), and

lim U)(w) =0, lim Uj(w) = +o0,

wW—00 w—wo

2. U (w) < 0 for all w € (wp, ),
3. U{'(w) > 0 for all w € (wp, 00).

(U2): ugp : (cp,00) x [0,7p] — R is a continuous function in w € (¢, 00)
and t € [0,Tp], and for all ¢t € [0, Tp], ug(w,t) is a C3-function in w
such that for all ¢ € [0, Tp],

1. %(w,t) > 0 for all w € (¢p, 00), and

lim —(w,t) =0, lim %(w,t) = 400,

w—oo Jw w—co oW
2. %uo(w,t) < 0 for all w € (¢g, 00),
3. aa—l;uo(w,t) > 0 for all w € (cg, 00).

Let us define U : (wp,0) X 2 — R and u : (¢, 00) X [0, Tp] x Q@ — R by

u(w, t,w) =
Let us define V: D — R by

To
V(C,Z)=E" [/0 u(C(v),v,w)dv +U(Z,w)|,
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where D is given in Definition 2.3 Since U and 0,,uq are continuous, convex,
positive, and strictly decreasing functions, there exist I; : (0,00) x [0, Tp] —
(co,00) and I : (0,00) — (wp, 00) such that

0
8_wu0 (Il(uu t)at) =u, uc (0700)7 U(,) (IQ(U)) =u, uc (0,00)
Then I (u,t) and Iz(u) are C'-functions in u.

DEFINITION 2.2. We say that (¢o(t),¢(t)) is a portfolio process if
wo(t) is an (Fi)-progressively measurable, R-valued process and ¢(t) =
(01(t), -+ ,pa(t)) is an (F;)-progressively measurable R?-valued process and
the followings are satisfied:

1. @o(t) +e1(t) + - + palt) =1, for all ¢.

2. f P 4 |ei(v)2dv < oo, P-as.

From 1. of Definition 2.2, ¢y(t) is determined by ¢(t).

DEFINITION 2.3. We say a triplet (C, Z, ¢) is an admissible strategy at
x > 0, if C(t) is an (F;)-progressively measurable, non-negative stochastic
process and Z is an Fr,-measurable, non-negative random variable, and
(po(t),¢(t)) is a portfolio process and the following conditions are satisfied:

1f v)dv < 0o, P-a.s.

2. Let Wx’o’@(t) be a stochastic process of a solution of the following
stochastic differential equation:

d
200 () — o L i (WP (v) o Clorde
W2 (t) +J§%/O 5 0) ds;(v) /0 C(v)dv.

We assume that

WCe () >0,  forallte[0,Ty], P-as.

3. Z =30 o wi(T)W"P(Tp).
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4. B” fOTO U(C(U),U,w)_dU—I—U(Z,w)_ < o0.!

A(z) and D denote the set of admissible strategies at x and denote the
space of pair (C, Z) respectively.

Let us define a function Y : (0,00) — R by

To
Y(z) = EF /0 II(v)1; (zI1(v)E(v),v) dv + I(Tp) I (xI1(To) A(Tp)) | -

We assume the following condition.

ASSUMPTION 2.4. For given W > 0,

lin%) Y(x)>W, and Iirf V(z) < W.

Therefore, there exists A > 0 satisfying the following equation:
(13) V() =w.

Let © = (0,00) x R™ x (0,00) x (0,00) x [0,7p]. We define functions
H:0-5R G:0 >R, and X; : © - R, i =1,---,d as follows: For
(fax7C7V7t) 667

H(& 2, ¢ v,t)
To
= EF {/t H(U;t,x)QE(U;t,$)% (Xﬁuﬂ(v;t,x)E(v;t,:c),v) dv] :
G(§7 x? C? V7 t)
= EF [H(To;t,xyA(To;t,w)% (XfCH(TO;t,x)A(TO;t,x))] :
Fori=1,--- n,
To
(e m o) = €| [ O sty (Aevniuit,a)B(vit.z).v) do
¢ Oz
oIl .
* or (Tost,x) I (ASCH(TO;t,a:)A(TO;t,x))]

!4~ denotes the negative part of the real number z: 2~ = —z V0.
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To
[ st (51 it 0Bt + Mt 0) 37 (vst.0))
t i

A2 EP
+ Xv oz,

X %(Xﬁyﬂ(v;t,x)E(v;t,x),U)dv
u

o (Tt 0) (T ) + T1(Ths ) = (Toit,2) )
;

. 0
2 P .

I (5. ¢, 1), g—ﬁ(s;t,x), and g—g(s;t, x), for i =1,--- n, in the above equa-

ox;
tions are given by applying the differential rule of a composite function to

II(s;t,s), A(s;t,x) and E(s;t,x). See Section 3.
Also we define functions, F': © — R, F¢ : © — R, F, : © — R, and

F¢: © — R as follows:

To X
/ M(v;t,z) (Aqu(v;t,x)E(v;t,x),v) dv
t

F(&,2,¢ v t) = EET

Fg(é’? x? C? I/’ t) = %F(é'? x? C? I/’ t) + 5\£VH(§7 :L‘7 C? 1/7 t) + S\‘SCG(ga x? C7 V? t)7

F(&x, ¢ t) = NE2H(E, 2, v, 1),

Fe(&,m,¢v,t) = AEPG(E 2, ¢, t).

We consider the following conditions:

(A1l): For any compact set K C R",

To
(14) sup E¥ [/ II(v; 0, z)dv + II(Tp; 0, z) | < oo.
zeEK 0
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(A2): For any compact set K C R, y € R, and ¢ € [0, Tp], the following
equations hold:

(15)

(16)

(17)

T n
sup B | [ 14 3 (i 050.2)] + 1oy (030,)) | (030,
reK 0 j=1
X Il(yH(v;O,J;)E(U;O,x),v)dv] < 00
sup sup ET (1 - Z(]Wj(To;t,ac)\ + |6j(T0;t,x)])>
e K t€[0,To] j=1
II(Ty; t, z) Lo (yII(To; ¢, x)A(To;t,x))] < 00,
sup EF / <1—|—Z |7 (v;0,2)| + |nj(v; 0 m)\))
zeK j=1
x I(v; 0, 2)2E(v; 0, z)
I
X a—ul(yH(U;O,JJ)E(’U;O,J?),U) dv] < 00,
sup sup ET ( Z |7 (Tos t, )| + 165 (To; ¢, :z)|)>
IEKtE[O,To] _
x II(Ty; t, x)*
dly
x A(Tost, x) a(yH(To;taz)A(To;t, z))|| < oo,
pl ™ -
sup B | [ (14 3 (13030, 9)] + [y (030,))

x II(v; 0, 2)2E(v; 0, z)

X Il(yH(v;O,x)E(v;O,m),v)dv] < 00,
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(20) sup sup EF
$€KtE[O,T0]

(1 + 3 (Imi(Tost, )] + [6;(Tos t, I)I))

j=1
x (Tp; t, x)*

X A(To; t, z) o (yI(To; t, 2) A(To; t, x))] < 0.

Then we have the following theorem:

THEOREM 2.5.  We assume Conditions (U1), (U2), (S1), (S2), (S3),
(S4), (S5), (S6), (S7), (A1), (A2), and Assumption 2.4. Then there
exists an optimal portfolio strategy ¢(t) of Equation (3). ¢(t) is given by
the following feedback form.:

@) g = (1 - —) (o1, X (1))~ "\, X (1)

x (A(t, X (1) — g(t, X (1))
1 1 ) — *
* W i X)) Ho X (t, X (1))

X (TI(t), X (¢), A(t), E(t),t)
2,(T1(8), X (1), A(t), E(2), 1

where W (t) = WW’C’@(t) and C(t) is an optimal consumption strategy.

REMARK 2.6. Confirming (S3) may not be feasible when bonds or
other derivative securities are included in tradable securities. In that case,
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using u~ (t,x) and o~ (¢, ), we calculate the following:

/J,l(t,il,’) 01,1(t7$) T Ul,d(tax)
/sz—n(t, $) 0d—n,1 (tv LL’) Od—n d(tv $)
t,x) = ,o0(t,x) = ’ ’ ,

D=1 [P0 = o ) o3 l1.2)

M?i((t7$) 0'7)51(75,3}) O-T)L(,d(tax)
r(t, x)
. 1] - t,x)

and A(t,z) =6(t,z)" ' | at,z) — 77“(, ,
(ta) = ot | tto) = | NG
fi (t,)
where ﬂJX(t,l‘), j =1,---,n are drift terms of X(¢) with respect to the

equivalent martingale measure ([4] and [6]). Then (S3) and (S5) will be
satisfied with these processes, and Theorem 2.5 also holds.

3. Preliminaries

We introduce the static optimal problem equivalent to Equation (3) as
follows:

(22) J(W,z0) = sup V(C,2),
(C,Z2)eD

with a constraint

To
BP / T(v)C(v)dv + TI(Ty)Z | = W
0

PROPOSITION 3.1.  The optimal solution of Equation (22) is given as
follows:
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Z =1 (AH(TO)A(TO)) :

where Ii(u,t), I2(u) are inverse functions of Oyuo(w) and Uj(w) respec-
tively, and X is the constant given in Equation (13). It also holds that,

EF < 0.

To . A
/0 u(C(v),v,w) " dv+U(Z,w)”

Proor. We prove the proposition using the same argument as that
in Cvitanic-Karatzas [2] Section 7. Regarding ug(w,t), from Lemma 4.3 in
Chapter 3 of [6], for any y,w > 0, ug({1(y,t),t) = up(w,t) +y(I1(y,t) — w).
Therefore,

wg(Iy(ATL(E)E(t), 1), 1) > uo(1,t) + ML) E(t) (I (AI(t)E(t),t) — 1), a.s.,

and

up(C(t),t) = up(1,t) + NI(H)E@#)(C(t) — 1), a.s.
Therefore,

w(C(t), t,w) > u(l,t,w) + AI()(C(t) — 1), as.
Similarly,

~ ~ A~

U(Z,w)>2U(l,w)+ A\I(TH)(Z — 1), as.

With Condition (A1), these yield
To R
/ u(C(v),v,w) dv+U(Z,w)”
0

To |UO(1,U)’
/o Bw)

[T Jug(1,0) Do) |
‘/o B B T

[Uop(1)]
A(To)

~ TO
+ EF +AEP / I (v)dv + TI(Tp)
0

/ P o 1+ (1) | < oo,
0
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Also, for any C(t) € F,
wo (11 (AIL(4)E(t), 1), t)

> ug(C(t),t) + AI(t)E(t) (Il(j\H(t)E(t),t) - C(t)>, a.s.,
and
w(C(t),t,w) = u(C(t),t,w) + MI(t)(C(t) — C(t)), as.
Similarly we have, for any Z € Fr,

U(Z,w) > U(Z,w) + \NU(To)(Z — Z), as

Therefore,
To . To
/ W(Cw),v,w)dv + U(Z,w) + / 11(0)C(v)dv + I(T) Z
0 0
To TO
2/ u(C(v),v,w)dv+ U(Z,w) + / (v)C(v)dv + I(TH) Z | aus.
0 0

This yields

To . N
fola [ /O W(C ), v,w)dv + U(Z,w)

To
QEP/ u(C(v),v,w)dv + U(Z,w)
0

+X{EP

/ P o) C(0)do 1 TI(T) 2
0

/ P NH0)Cw)do + T(Ty) 2
0

}

_EgP

To
—gP [/O w(C ), v,w)dv + U(Z,w)
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)

To
+A (W - EP / I1(v)C (v)dv + I(Tp) Z
0

>J1(W x0)7

and we have the conclusion. [
To calculate optimal strategies we use the following theorem.

THEOREM 3.2 (Karatzas-Shreve [6]). Let W > 0 be given, C(v), v €
[0,Tb] be a consumption process, and Z be a non-negative, Fr,-measurable
random variable such that

To
BP [/ T(0)C(v)dv + TI(T) Z| = W.
0
Then there exists a portfolio process (o(t), o(t)) such that (C, Z,¢) € A(W)

and Z = WO (Ty).
Also ¢(t) is given as

A0 = g o X OF) 00 + (0. X)) A X (1),

where (t) is a stochastic process given by the martingale representation
theorem:

To
M(t) = EF [/0 II(v)C(v)dv + II(T) Z ‘ ft]
d  rt
:W+Z/ ¢i(v)dBj(v),  0<t<T,
j=170

and W (t) = WWCe(1).

Using Proposition 3.1 and Theorem 3.2, we can show that Equation (3)
has the optimal solution which is given in Theorem 2.5.

Regarding 011/0xj, 0A/Ox, and OFE/0x, we have the following lemma.
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LEMMA 3.3.

1. For any 0 < s <t < T, and for any x € R™, we have

o1l 0A
a—l,](t S, x) - ﬂ-j(t7 S,H})H(t, S, x)? %(tv va) - 6j(t7 S,Hf)A(t, va)7
G (t.0) = y(t3,3) Bt .).

2. Also, for any compact set K in R™,

sup sup EF wj(t;O,:U)2 <oo, j=1,---,n,
€K t€[0,To]

sup sup EF 6j(t;0,x)2 <oo, j=1,---,n,
€K t€[0,Tp)

sup sup ET nj(t;O,m)2 <oo, j=1,---,n.
€K t€[0,Tp]

PrOOF. X(t;s,x) is a stochastic flow of diffeomorphisms. Therefore,
from the differential rule of composite function, the first part is proved. Re-
garding the second part, from (S1), X (¢) and 0X/0z; have finite moments
for any order. From (S1),(S2),(S3),(S5), and (S7), derivatives of r, \;, g;,
and h; are bounded. Therefore, we have the conclusion. [

LEMMA 3.4. Forj=1,---,d,

To d
/O (Aj(t, X))+ 0wt X(1))?
k=1

+ g5(t, X (1)) + hy(t, X(t))Q) dt] < o0.

EP

PrRoOOF. From (S1), X(¢) has finite moments for any order. From
(S3),(S5) and (S7), Aj,0k;,9;, and h; are linear growth order and the
statement is proved easily. [
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4. Proof of Theorem 2.5
1. From Proposition 3.1, we have

Ct) =1 (XH(t)E(t),t) . =1 (XH(TO)A(TO)) .

Therefore M (t) in Theorem 3.2 for the optimal solution is given by the
following equation:

(v)dv,

=
Il
=
+
c\ﬁ

=
=
(@)

To
N(t) = B / TH()TI(v: £, X (£))

x I (XH(t)H(U;t,X(t))E(t)E(u;t,X(t)),v) dv

+ II(6)I(Tos ¢, X (1)) I (XH(t)H(TO;t,X(t))A(t)A(TO;LX@))) ‘ ft]_

Note that II(t), X (t), E(t), and A(t) are Fy-measurable. Also II(s; ¢, X (¢)),
E(s;t, X(t)) and A(s;t, X (t)) are independent of F;. Therefore

Let J(z) be a function from R to R} and J(x) € C§°(R), such that J(x) = 0,
if 2 < —-lora>0,and [ J(z)dz = 0. For any h > 0, let us define a
mollifier J, : R — R by

Then the following are easily proved.

LEMMA 4.1. Suppose f(x) is a decreasing function. Then

f(z) = Jp* f(x) >0, forany x € (0,00).
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We define Iih) : (0,00) x [0,Tp] — R and IQ(h) : (0,00) — R as follows:

1 [ =
I{h)(u, s) = E/ J <u - y> I (y, s)dy, Ig(h)(u) = Jp x Ir(u).

—00

Then I{h) € C9((0,00) x [0,Tp]) and IQ(h) € C*((0,00)). Let us define
¢1(y) € CF(R) and é2(t)(y) € C=(R) by

0, y<1, L y<s3,
¢1(y)—{1’ y> 2. ¢z(y)—{07 ) >4

Then there exist constants C(1), C(2) > 0 such that

0 < ¢1(y) < Cpy, foranyyeR,

0 < —¢5(y) < Cg), foranyyeR.

We define IYL) : R x [0,7p] — R and Iéh) : R — R by the following
equation.

(23) 7 (u,5) = 1" (u, )61 (7 ) o),

(24) 7 (w) = 1" ()en (7 ) dalhu).

Then I{h) € CSO’O(R x [0, Tp]) and Iéh) € C°(R). From Lemma 4.1, we
have the following properties.

Ifh)(u, s) < I(u,s), forany u € (0,00),s € [0, Tp],

IQ(h) (u) < Ix(u), for any u € (0,00).
Also, for any u € (0,00), s € [0, Tp],

. h . h
1}1%11% )(u,s) = I(u,s), 1}3181'5 )(u) = Ir(u).
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We define FM) : @ — R by

Ty .
F® (g, 2,¢,,t) = ¢BF / M(v; t, 2) T (AevT(w:t, 2) E(v: t, 2), v)do
t

+ T(Ty: t, 2) 8" (AECTI(Tos £, 1) A(Tos t, ) |

By the monotone convergence theorem,

(25) 1}% FW(TI(8), X (), A(t), E(t),t) = F(II(t), X (t), A(t), E(t),t).

By 1t6’s formula,

+ | o T(v), X (v), A(v), E(v),v)dA(v)

t a7(h) t
+ [ 210, X (). A), B). 0dEW) + [ A w),
0 0

where A () is a process of bounded variation.

2. The following equation holds

(26) lim OF® &z, ¢ v, t) = Fe(§ 2, v t).
rlo  O&

In fact, by Fubini’s Theorem

oF ™)

(€ ) = %F(’” (&2, G t)+ f0 & Gty + £ (€ m, ¢,

f 1(7]11) and fl(,h2) are defined as
ff,?(&%(, v, t)

To
= EP /t é% (H(U;t,w)ffh)(j\fVH(Uéta x)E(”?tvI)ﬂ))) dv],
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and

113 (6,2, Cvt) = BT 8% (11(70: 1, 2) T8 (AT (T, 2) A(Ty: t,x»)] .

Regarding fl(,hQ) (&, x,(,v,t), we have the following.
LEMMA 4.2.

ggjﬂgﬁﬂxau¢>=X<G@¢mau¢>

PrOOF. We have the following decomposition:

fl(,h2)(£7 .I, <7 Vut) = fl(f;)71(€7$7 C) V: t) + f1(7hQ),2(€7$7 C? V? t) + fl(g)f,(g)xa Cu V7 t)?

(h)

1 dl.
EH(TO; t,z)Yo(To;t, ) dz (Yo(To;t,z))

x@<§gﬁiﬁ>@wnaha@4,

8 (& w oty = B

h

YQ(TO; t, :C)

L (YVa(Ts )

1(7h2),2(§7 €, C7 v, t) = EP

§H<To;t,x>

x%(ﬁg%59>@mnaanm4,

1(2),3(5) z, Ca v, t) - EP

1
EH(TO; t, $)hY2(T0; t, a:)Iéh) (B(T{); t, LU))

xm<§ﬁ%i@)%mnuhu@4,

YQ(S; t? LL’) = j\fCH(Sa t? I‘)A(S, t) ‘I)
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Note that

ar{"
du

_dn,
du

0< — (u) <

(u), for any u € (0,00).
Therefore, by the monotone convergence theorem,

lim [ (6,2, ¢, 8) = AG(, 2,1 ),

Regarding fl(g)g(f, z,(,v,t),

0< f, (6,2, ¢ 1)

200 p
§ TE [H(To;t,$)IQ(Y2(T0;t,$)),YQ(T0;t,$) < Qh] .

< E”

From (A2), we have E¥

(To;t, x)I2(Ya(Tos t, x))] < 00, and

%EP (Ty; t, ) 2 (Ya(Tos t, ), Ya(To; t, x) < 2h| = 0.

Therefore, limy fl(QQ(f,x,C, v,t) = 0. Similarly, limy o fl(f;)vg(g,x,g, v, t) =
0.0

Regarding fl(hl) (&, z,(,v,t), we have the following.

LEMMA 4.3.

lim [ (6,2, G t) = A H (€2, ).

PRrROOF. We have the following decomposition:

fl(,hl)(ga l’, Ca V’ t) = fl(,hl)J(faxa C? Vat) + fl(fll)g(fvx? C? Va t) + f1(7hl)73(£7$a Ca V’ t)?
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where
To (h)
M (et = BP| [ Aot o) Vit 2) 2B (Vi (s 1, 2), )
Y NS ou
<o () gunmi s as))dv] ,
To .
(e ¢ vt) = B / Ltos 6, 2) 1P (V1 (03, ), 0) L0 L2
” ¢ £ h
< & (M) Ga(hY (v: t, :c))dv] ,

() I e N O .
fiiséx (uvt)=E EH(v,t,x)Il (Y1 (v;t, z),v)hY1(v;t, x)
t

con () g :c))dv] ,

and
Yi(vst, ) = AvIl(s; t, ) E(s; t, 2).
From the similar argument as in Lemma 4.2, we have

%%f{ﬁ{l(&?l'vCaV?t) = j\VH(f,J),C,l/,t).

Regarding f1(7h1)72(§, z, (v, t),

0 < fl(ﬁ),2(£7x7 C? v, t)

To ) )
< | [t w0 g (HED ) g,
RS h h
2C To
< 5(1)EP/ H(v;t, z) 11 (Y1(v;t, x),v)dv, Boy, |,
t
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where

s€[t,To]

By, = {w; inf Yi(s;t,x) gh}.

From the similar arguments as in Lemma 4.2, (A2) yields limy, o fl(ﬁ),Q(g, x,
¢,v,t) = 0. Similarly, limy, o f{'} 3¢, 2, ¢, v,t) = 0. O

From the above arguments, we have

i oF (")
no  Of

= %F(f, 2, (v t) + MvH(E, 2, ¢, v, t) + ANCG(E 0, v, t).

(67 '1'" C? V’ t)

Also,we have the following equations.

(27) gag—?@,w, Cuit) = FW(E 2, (v, t)
L+ eBP /t st Vi (s, x)ag:) (Yi(v: t,2), v)
<o (M0 @(hw;t,x»dv]
BT /t " st )1 (o5, ), PRCULL
<o (P50 ¢2<hY1<v;t,m>>dv]

To
—I—pr/ H(U;t,x)I{h)(Yl(v;t,x),v)hYl(v;t,a:)
t

X ¢1 <M> ¢’2(hY1(U§t7fU))dU]

h
P "
+ B |I(To; t, v)Ya(To; t, @) 7u (Ya(To;t,2))

X ¢ <W> ¢2(hY2(T0;t,~T))]
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YQ(TDa ta 93)
h

< & <W> b2(hYa(To; t, x))]

+EBY | I(Ty; t, 2) I (Ya(Tps t, o))

+ ¢EP | TN(Tys t, 2) I (Ya(Tos t, ) Y (Tos £, @)

X b1 <W> ¢ (hYa(Tos t, 96))],

(28)  EFe(& G )

=F(&,¢,v,1) + EB7 T

To o6
/ (v t, z)Y1(v; t,2) — (Yi(v;t, x),v)dv
t

+ ¢EF

dl
II(To; t, 2)Ya(To; ¢, x)d—j(yz(To; t73?))] :

3. From similar arguments as in (2), the following equations hold.

. 9F®)
(29) liiﬁ)l Ov

(§,.’E,C,I/,t) :FV(§7x7C7V7t)'

oF )
VW(§7$7<7 v, t)
To (h)

ETL(vs £, ) Vi (0 £, ) S0 (Vi (v t, ), 0)
t au

X ¢1 (M> ¢>2(hY1(v;t,x))dv]

=E?

h

To .
€(us 1, 2) 1 (¥ (051, 2), )T
t

o (155) ¢2<hY1<v;t,x>>dv]

+ EP

h
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To
+ EF fﬂ(v;t,z)lfh)(Yl(v;t,x),v)hYl(v;t,x)

t

x@(yﬂj“”)¢xm«wux»wl

(31) vE, (&2, ¢ v t)

To
= EP[ t EM(v;t, )Yy (vt x)gj (Y1 (v;t, ), )dv].

IF ™)
(32) lf;lO aC (’57$ ¢, v, t) FC(£7x7C7V7t)'
OF(®)
(33) o€ Gt

(h)

dal
=BV €l(To;t, )Ya(Tos t, 7) =2

(YVQ(TO; ta IL’))
X@<§Q%i@)@wnuha@4

Yé(TOa t,l‘)
h

& <M> @(hlfg(To;t,w))]

+ EP |e1(To; t, ) I (Yo (To; t, 2))

h

ET(To; t, ) IS (Yo (Ty; t, ) ) hYa (To; t, )

s <w> ¢’2(hY2(To;t,:c))],

+ EF

h

(34)  (Fe(&a,(vt)=EBE"

fH(To;tSU)YQ(To;tJC)C(;—(%(To,t w))]~
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F(h)
88 (é.vx C?Vt) -(f,x,(,u,t), fOI'jzl,"',TL
zj

li
(35) im

8Fh

(36) (&Jf ¢ v t)

= ¢E?

To
/ Wk(v;t,x)H(v;t,x)ﬁh)(Yl(v;t,x),v)dv]
t

To
LEEP / (s t,2) + (v 8, 2)I1(v; 1, 2)Yi (v; £, )
t

(h) vit,
ol " (Y1(v;t,x),v)pq <%) ¢2(hY1(U§tvl'))d”]

To
+EP / (s £,) + (s £, ) T(ws £, 2) I (Vi (058, 2), )
t

lte) (i) @mw,x»dv]

To
+EP / (s £,) + (s £, ) T(ws £, 2) I (Vi (58, 2), )
t

<hY:(v:t, 7)1 <W> ¢’2(hY1(v;t,x))dU]
HEEP [mp(Tos t, ) T(Tos t, 1) IS (Ya (T t, )]

+EET | (mi(To; t, ) + 6k (Tos t, ) T(Tos t, ) Ya(To; t, )

() o
vl a))on (P2 qbz(hya(To;t,x))]

X

+EET | (mp(Tos t, ) +5k(T0;taI))H(T0;t,iU)Iéh)(Yz(To;t,w))

XYQ(T(;Z; t,:v)(b,l (Yz(T(;l;t,x)> ¢2(hy2(T0;t,:n))]
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HEEP | (mu(Toi t, ) + 8(Tos t, o)) TL(Tos t, ) I (Yo (T £, @)

<h¥a(Tit, a)on (220 ) ¢a<hY2<To;t,x>>]7

(37) Xk(£7x7C7V7 t)

To I
=¢Ef p k(v t,x) 1 (Y1(v;t,z),v)dv
t
- n
+¢EP gi:i (vit, z)Y1(v;t x)aai (Yi(v;t,x), )dv]
t

p| [To oI
+ &R N (vs t, ) (v; t, 2) Y1 (v; t, 2) =— (Y1 (v; t, x), v)dv
t

ou

+fEP gf (T(),t $)IQ(Y2(T0,t x))]

[ o11

dI
T z)Yo (T T
9xk( Oat ) 2( 07t )

EP
+¢£ T

2 (Ya(Tb; t, 7))

dI
+EB | 04(To: t, )1 (Tos £, ) Ya(Tos t,2) -

(Ya(Tos x))]

4. We define wj(.h) (t) and 4;(t) for j = 1,--- ,d, t € [0,Tp] as follows:

03/ (0) = —T1() 5= (10, X (1), A1), B(D), D)5 4, X (1)
" Rt
30 T W), X (0, A, B(1). )0 (. X (1)
oF®)
(1) =g (100, X (1), A(D), B (1), )91, X (1)
oF(h)

+ B(t)— — (1), X(£), A(t), B(t), )hy (¢, X (1)),
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Let us define N (¢) and N(t) as follows:
d ) d 1
N () =3 / W (W)aBi ), Nty=> / $;(v)dB; (v).
j=1"0 j=170

We claim that as a local martingale, N")(t) converges to N(t). To show
this claim, it is enough to show that for each j = 1,---,d, (N — N)TO
converges to 0 in probability. It is enough to show that foreach j =1,--- ,d,
limy, | o fOTO ||1Z)](~h) (v) — ’(ZJJ' (v)||*dv = 0 in probability. Let us define a sequence
of stopping times {Ty; N =1,2,---} as follows: 7y = inf{t € [0, Tp]; II(¢) +
| X ()] + A(t) + E(t) = N} A Tp, Using these stopping times, we define
stopped processes, wj(h)’TN (t) = wj(-h) (t A7N), and &;N (t) = ¢ (t ATN).

Let y € (0,00) and (&, z,(,v,t) € ©. Let us define functions Ll,Lg,j =
1,---,n,Ls, and L, as follows:

To
Ll (é’ :177 C? V’ t; y) = EP

£H(v;t,x)!h(yﬁvﬂ(v;t,:r)E(v;t,w),v)ldv]

o
|

+ EP

+ EF

To 9 oI
| wtentsea)) <uE<v;t,x»‘%(ysunw;t,x>E<v;t,x>,v>

y(E11(Tos t,2))* (CA(Tps t, ) (31]2

L%(fa z, Cv v, t7 y)

— gP

/ s (s, )€1 1, 0) s (0T 1, 2) B ), v)\dv]
t
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+EP !Wj(To;t,fE)IéTI(To;t,w)\fz(yﬁCH(To;t,x)A(To;t,x))l]

To
< BF| [ gl (st )l €10t 0) P 0B v . 0)

dU]

ylmi (Tos t, 2)|(E1L(Tos t, 2)) 2 (CA(To3 t, )

Jon
ou

(y&v(v;t, x)E(vit, z),v)

+ EF

dI
x| 2 (ECTI(Tos £, ) A(Thi 1, )

To
L EP / yln; (v: t,2)| (ETL(v: £, 2))*(VE (v £, 7))

dU]

y|6;(Tos t, 2)|(E1L(Tos t, 2)) 2 (CA(To; t, )

o6 ‘ ‘
x %(QSVH(Ua t, :L’)E(’U, t ﬂS‘), U)

+ EF

dI
x| 2 (ECTI(Tos £, ) A(Thi 1, )

To
L EP / yln; (s t,2)| (ETL(v: £, 2))*(VE v £, 7))

x | (yévIl(v; t, x) E(v; t, z),v)|dv

+ B |yl6;(Tos t, )| (EL(Tos t, 2)) > (CA(To3 1, )

X |Iz(y€CH(To;t,$)A(To;t,fE))!] ;
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L3(€7'I7<7V7t;y) = EP

|

Ell(v; t, ) [ I (yévl(vs t, o) E(v; t, ), v) Idv]

dv] |

+ EP | y(E11(To; t, )2 (CA(Tys t, @)

drf
x| o (ECTI(Tos £, ) A(Thi 1, )

To
L4(£7£7Ca Vat;y) = EP

t

To
LB / y(E(v;t, 2))2(vE (v 1, )

8_[1 . .
X %(yfyﬂ(va t, LE)E(’U, t I‘), U)

Also, we define the following processes.

0 (t) = Li(TL(E), X (£), A(t), B(t), t; ),
G(t) = LY(TI(t), X (1), A(t), E(t),t; ), j=1,---,n,
C3(t) = La(II(t), X (1), A(t), B(t),; M),

Ca(t) = La(T1(1), X (), A(t), B(1),1; A).

Then, for j = 1,---,n, from Equations (27), (28), (30), (31), (33), (34),
(36), and (37) there exits a constant C > 0 such that

[T () — T (1) 2

oF(h)
—H(t/\TN)< D€ (t/\TN)—Fg(t/\TN)))\j(t/\TN,X(t/\TN))

" [ oF®)
+Z (t/\TN)—Xk(t/\TN) O'kﬂ'(t/\TN,X(tATN))
k=1
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F ()
¢

oF )
—f-E(t/\TN)< o (tATN)—Fl,(t/\TN)> hj(tATN,X(t/\TN))

—f—A(t/\TN)( (t/\TN)—FC(t/\TN)>gj(t/\TN,X(t/\TN))

2

< Cl{)\j(t ATN, X((EATN))) 201 (E A TH)?

+ ZO’kd(t A TN,X(t A TN))ng(t A TN)2
k=1

—i—gj(t/\ TN,X(t/\TN))Qgg,(t /\’I‘N)2
+ hj(t /\TN,X(t/\TN))Q&L(t/\ TN)Q},

where F¢(t) means Fe(II(), X (¢), A(t), E(t),t) and the remaining terms are
defined similarly.
From (A2), there exits some function Cy such that

n

OEATN)? + ) EEATN)? + L3(t ATn)? + La(t A T)? < Co.
k=1

Also, there exists C3 > 0 such that

NEATN,XEATN))? + D o j(EA TN, X (EATN))
k=1
+gi(EATN, X(tEATN))? + hi(t ATa, X(EATN))? < Cs.

Therefore for some constant C' > 0, \wj(.h)’m (t) — @;N (t)|]> < C. From

limy, lo|1/1§h)’m (t) — &;N (t)|> = 0, and Lebesgue convergence theorem,

Ty 2
/ dv| =0.
0

t t
/ ¢j(.h)’TN (v)dv — / wj(h) (v)dv as a local martingale,
0 0

lim EX
hl0

YN (0) — DTV (v)

Also
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and
t t
/ PN (v)dv — / ;(v)dv as a local martingale.
0 0

Therefore

To .
lim |w(.h) (v) — ¥j(v)|*dv =0,  in probability.
r10 Jo J
5. From the above arguments,

PN, X(2), A1), E(t),t) = lim FW(IL(E), X (1), A1), E(), 1)

(T(v), X (v), A(v), E(v), v)dX}(v)

(I(v), X (v), A(v), E(v), v)dA(v)

+ 5 (H(v),X(v),A(v),E(v),v)dE(W}
0

d t d t
1> / o wazy(0) = 3 | o).

Therefore, ¥ (t) in Theorem 3.2 is given as

(t) = (1)
— WAL X()
— AL E()H(II(), X (), A(), B(t), £) (AL, X (1)) — h(t, X (1))
— ALt A GIL(E), X (£), A(t), B(t), ) (Mt X (8)) — g(t, X (1)
X (TI(1), X (), A(t), E(1), )
+ 0¥ (L X ()" ( ; ) ,
X (T1(0), X (1), A(t), E(1), 1)

and finally we have the conclusion.
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5. HARA Utility Functions

Our goal of this section is to show that in the case of some HARA utility
functions, (A1) and (A2) are replaced by more straightforward conditions
and optimal strategies are continuous.

5.1. Power utility functions

Let go(t,x),g1(t,x), - ,g4(t,x) and ho(t,x),h1(t,x), -+, hq(t,x) be in
CS{OOO (R™). Let us define A(t) and E(t) as Equations (8),(10), and (12). Let
Up : (wp,00) — R, wo = 0 and ug : (cp,00) x [0,Tp] — R, cg = 0 be given
by the following equations:

(w — wp)l ™
11—~

(w— co)t™7

Uo(w) = T

) Uo(wvt) :ﬁ

)

for some common 0 < v < 1 and 8 > 0. Let us define U : (wp,00) x Q2 — R,
u: (cg,00) x [0,Tp] x 2 — R by

U(w,w) = Uo(w) u(w, t,w) =

and V:D — Rby V(C,2) = EF OTO uw(C(v),v)dv + U(Z)|. Then, Con-

ditions (U1) and (U2) hold. We say that V is a utility function of power
type (77 57 wWo, CO)'

fTO coll(v)dv +

Let us define a stochastic process K (t) by K(t) = E7| [,

woll(Tp) | F¢|. We assume that W > K(0). Then Assumption 2.4 holds.

Regarding Conditions (A1) and (A2), we have alternative conditions
which are easily checked compared to the original conditions.

ASSUMPTION 5.1.  For any compact set K of R™ and any p € R\ {0},

sup sup EP
€K t€[0,T0]

I1(t;0,2)P | < o0, sup sup EF E(t;0,z)P| < oo,
zeK t€[0,T0]
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sup sup EP
Z‘EKtE[O,To]

A(t;O,x)p] < 00.

As a corollary of Theorem 2.5 we can show the following.

COROLLARY 5.2.

1. Let V' be a utility function of power type (v, 3,wo,co), and Assump-
tion 5.1 be satisfied. Then Conditions (A1) and (A2) hold. There-
fore, there exists an optimal strategy to Equation (3).

ft]7

2. Let us define following processes:

A(t) = BF /tTO ()7 E(v)” 3 dv

ft] |

For a utility function of power type (v, 3, wo, co),

W -K(0)
~ BY7AL(0) 4 Aa(0)

As(t) = EP |TI(Tp) 7 A(Ty)

2=

3. The optimal portfolio strategy ¢(t) is a continuous process and given

by
o0 =(1- (12 ) g ot X)) 2w X))
v ) 1(#) ’ ’
1 w 1 o
~ WO 374, 0) 1 Ag) X))
Dy (t)
<ot (X)) |
D, (t)
1 w 51#u41@) o
" WO 77 4,(0) + 4g(0) 74 )G X)
1 w As(t) o
WO 37 A, (0) + Ag(0) 7oA ) e X )
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_ l K(t) o *\—1
A e X)) A X (0)
. Ki(t)
+ W(U(taX(t))*)_lax(taX(t))* N
K (t)

where

1 To 1
Di(t) = (1—7)E” |85 / (03, X (0)T1(0)' 7 E(v) 7 dv

:

1 To 11
8 /t o (s X (O)TI(0) B ) do

+ e (Tos £, X (O)TL(To) ™7 A(Tp) ™

+ EF

+ 60(Tos £, X (0))(To) ™7 A(Ty) ™

Ft]vk::l?"' y 1,
and

Ki(t) = EF /tTO com(v;t, X (£)II(v)dv

+ womk (Tos t, X (¢))(To)

ft],kzl,---,n.

The optimal value function J(W,xq) of the portfolio problem is given
by

(W - K@)

J(W, o) = T

(Bl/VAl(O) + A2<0))7 .

PROOF. Statement 1 is shown by using Schwartz’s inequality. State-
ment 2 is shown from the definition of X. Using arguments of uniform
integrability, the continuity of optimal solutions is shown. The remaining
statements are shown easily. [
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5.2. Logarithmic utility functions

Let go(t,x),q1(t,x), -, ga(t,z) and ho(t,x), h1(t,x), -, hq(t,z) be in
C%*(R™). Let us define A(t) and E(t) as Equations (8),(10), and (12). Let
Up : (wg,00) — R, wy > 0 and wug : (co,00) x [0,Ty] — R, ¢g = 0 be given
by the following equations:

Up(w) = log(w — wp), wp(w,t) = Flog(w — cp),

for some 5 € Rsg. Let us define U : (wp,00) X 2 — R, w : (co, 00) X [0, Tp] x
Q — R by

andV:D —Rby V(C,Z)=EF OTO u(C(v),v)dv+U(Z)|. Then, Condi-

tions (U1) and (U2) hold. We say that V' is a utility function of logarith-
mic type (3, wp, o). Regarding stochastic processes, we assume Condition
(S1)—(S7).

fTO coll(v)dv +

Let us define a stochastic process K(t) by K(t) = E”| [,

woll(Ty) | Fi|, and we assume that W > K(0). Then Assumption 2.4 holds.

Let us define stochastic processes

To
Al(t):EP/ E) 'dv | Fi|, As(t)=EY|A(Ty)™! ]—“t],
To
Dy(t) = BV | 8 / me(vit, X (1) E(v) " dv
+ 60k (Tos t, X (1) A(Tp) ™! ft], k=1,---,n,
To
Ki(t) = EF /t com(v; t, X (¢)II(v)dv

+ wmrk(To; t, X(t))H(To)

ft], b=t
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Then as in the case of power utility functions, the following corollary holds.

COROLLARY 5.3.

1. LetV be a utility function of logarithmic type (3, wo, o), and Assump-
tion 5.1 be satisfied. Then Condition (A1) and (A2) hold. Therefore,
there exists an optimal strategy to Equation (3).

2. The following equation holds:

K(0)

A = T A0)

3. The optimal strategy ¢(t) is a continuous process and given by

P(t) = (o(t, X (1)) At X (1))

w 1 o
" W) BA0) + Az(0) X))
Dy (t)
x o X(t, X)) |
Dy (1)
W BAL(?) o
W) A1 0) + Ap(0) X OV A X (D)
w As(t) o
~ W) BA0) 1 Ay () B X O)) gt X ()
K(t) o
- W(U(t,X(t)) )TN, X (1))
K (t)
+ é(a(t X)) e, X))
W) ’ K.(t)

The optimal value function J(W,xg) of the portfolio problem is given
by

J(W,z0) = (8A1(0) + A2(0)) log (W — K(0)) -
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6. Numerical Examples

This section gives examples of optimal portfolio strategies. An investor
has an initial endowment W at time 0. Her utility function is of power type
(7,3,0,0). Also her utilities of consumptions are discounted by a proportion
of interest rate and utilities of terminal wealths are discounted by a linear
combination of interest rates and stock returns. In this setting, her terminal
wealth may be hedged partially against stock returns.

6.1. Settings and optimal portfolio strategies
The market is modeled as follows. Let d =2 and n = 1. Let X (¢) be

t t t
X(t) =z — a/ X(v)dv + b/ dB(v) = zge™ " + be_“t/ e®dBy (v),
0 0 0

where a > 0,b # 0. We set m; = zpe~%, V; = b*(1 — e~2%)/(2a), and thus

P(X(t) € dzx) = %Vtexp{—w}dx.

The short rate is modeled by r; = r(X(¢)) = ¢ (log (1 + 6X(t)))a , for some
a € (0,1) and ¢ > 0. Because 1 < log(1l+e%) < 1+a™, where z7 =2V 0,
we have 0 < (X()T)* <r(X(#) <1+ X(@)M)".

Money account Sp(t) is given by Sp(t) = exp{fg r(X(v))dv}. A stock,
Si(t), is traded in the market. Sy(t) = Sexp{(n — 2(p* + 0?))t + pBi(t) +
0Bs(t)}, where 0 > 0 and p # 0.

Let us introduce a zero bond S2(t) whose maturity is 7. Sa(t) =
E® {exp{— ftT r(X (v))dv}|.7-"t] , where @ is the equivalent martingale mea-
sure, which is supposed to be defined by the following market price of risk
processes (A1(t), Aa(t)):

A1(t, X(t)) = A = constant, Aa(t, X () = c1 — cor(X (1)),

where ¢; = (4 — pA\)/o and co = 1/0. Then, the state price deflator I1(¢; z)



Appl. of Stoch. Flows to Optimal Portfolio Strategies 391

is given by
II(t;z) = exp{—/o (X (v;z))dv — /0 AdBi(v)

t 1 t
- / (c1 — cor(X (v;x)))dBa(v) — 5/ A2+ (e1 — CQT(X(/U;,Z')))z)dU}.
0 0
Using 0X (t;x)/0x = e~ we have
m(tx) = — / {cico — 1 — (X (v;2)) } (X (v; 2) )e ™ dw
0
t
+ 02/0 (X (v;z))e”*dBs(v).

The volatility matrix of S;(¢) and Sa(¢) at time 0 is given by

o b 0S8
c0(0,x) = (UpZ 0) , where o9 = ma—;(o;x),

T
Sy(0;z2) = E9 exp{—/o T(X(v;x))dv}],
and
05 . _ T / . —av T X
%(0,$) E° {—/0 (X (v;x))e dv} exp{—/o T(X(U,x))dv}].

In this example, we assume that an investor has a utility function of
power type (7, (3,0,0), v € (0,1),8 > 0:
wi=r 1 w1

1—7E—t)’ U(w7w) =

u(w, t,w) =p

where for some 0 < (31, 32, 33,

E(t;x) = exp{ﬁl/o T(X(’U;ZL‘))dU},
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A(t;x) = exp{ﬁz/o T(X(v;x))dv}

X eXP{ﬁ:& ((M - %(PQ +0%)t + pBi(t) + 032(t)> }

Here, her utilities of consumption and terminal wealth are measured against
E(t;z) and A(Ty;x) respectively, to compensate prices and interest rates
increases.

A(t;x). Let h(t,z) = (0,0), g(t,x) = (B3p,830). In this case, we have

t t
o) = ﬁl/ r(X(v;2))e”*dv, and  6(t;2) = 52/ (X (v;z))e” " dv.
0 0

Let K be any compact set of R. Then the following lemma can be shown
using Jensen’s inequality.

LEMMA 6.1. For any p € R\ {0},

II(t; )P | < oo, sup sup EP[E(t; x)P] < o0,

reK t€[0,T0]

sup sup EP
e K t€[0,To]

sup sup ET[A(t;2)P] < co.
e K t€[0,To]

From Corollary 5.2, we have the following formula.

l(c1 — cor(xp)) — P342(0)
o) = (") =11, ° 171 41(0) + Ay(0
o0=(2)=21 2 “pter ety 5 O BGY |
02 002 o2 /7 A1(0) + Az(0)

where
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1

T )
D(O) = (1 - )E" | g1 /0 T (W)(0) 7 B(v) T d

6.2. Monte Carlo simulations

We apply Euler-Maruyama scheme for calculations of optimal strategies.
A base case of parameters is presented in Table 1. The time length of each
step At is 0.01.

1. Convergence of simulation: We check the convergence of simula-
tions. Cases of samples are 10, 102, 103, 10%, 10°, and 10°. Zero bond
yields(y) and o9 are reported in Table 2. Optimal holding ratios of
stock (¢s) and bond (¢y,) are reported in Table 3. Also, values of ob-
jective functions, J, are shown. For each case, 10 trials are performed.

It seems that convergence speed is proportional to an inverse of num-
ber of sample, if we see standard deviations of concerned terms. There-
fore, to guarantee precise holding ratios, we have to perform quite large
sample size Monte Carlo simulations. This is quite critical in terms of
optimal strategies. Even though errors of A;(0), A2(0) and so on are
small, errors of optimal strategies might be large, because these op-
timal strategies are ratios of these estimated numbers. Therefore, to

Table 1. Base case parameters.

o a b @ c 7 I o
1.0 1.0 2.0 0.9 0.01 0.08 -0.14 0.20

T To A\ Yy B Bl B2 B3
2 1 0165 090 20 01 005 0.05
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Table 2. Zero bond yields and volatilities.

No. samples  Ely] SDy] Elos] SD|o2]
10 0.00004 6.3247 x 10=2 -0.01513 1.3409 x 102
102 0.01080 1.8464 x 1072 -0.01285 4.1714 x 1073
10®  0.00885 6.4658 x 1073  -0.01196 1.3846 x 1073
10*  0.01294 2.1558 x 10~3 -0.01131 4.7085 x 10~*
10° 0.01185 6.6245 x 10~* -0.01145 1.7123 x 10~*
10°  0.01154 2.0531 x 10~* -0.01148 6.5880 x 10~°

Table 3. Values of objective functions and optimal portfolios.

No. samples E[J] SD[J] E[ps] SD[eps] Elpp) SD[pb]

10 28.20662 1.5253 x 10~ 1.208000 4.4472 x 10~° 0.64152 6.9523 x 10~1
102 28.21650 4.6766 x 10~2 1.208009 1.2867 x 10~° 1.08033 4.9412 x 10~1
103 28.20934 1.3629 x 10~2 1.208006 5.1640 x 10~6 1.03338 1.2854 x 10~1
104 28.21811 6.0493 x 10~3  1.208009 3.1622 x 10~6 1.08178 4.5354 x 10~2
10° 28.21646 1.0157 x 10~3  1.208010 1.4049 x 10~8 1.06623 1.6909 x 10~2
106 28.21551 5.9151 x 10~% 1.208010 0.0000 x 10° 1.06278 6.5457 x 10~3

apply our methods in more realistic financial problems, we need more
advanced simulation methods such as Kusuoka approximation([9]) or
an application of low discrepancy sequences.

. Sensitivities with respect to v: Table 4 shows values of objective

functions and the optimal portfolio for various v, 1, B2, 83. Regarding
these constants, we set the following relations,

Br=1—7v=208 =203,

which means that the investor’s consumptions are discounted by short
rates and the terminal wealth is discounted by the average of short
rates and returns of stocks to measure her utilities. Number of samples
is 106.

As v increases, holding ratios of stock and bond decrease. This is
quite reasonable because y represents a risk aversion tendency of this
investor. Also, it is quite interesting that as = increases, J, the value
of objective function increases.
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Table 4. Optimal portfolios for various ~.

Y IS B2 B3 J ©s ©b
0.10 0.90 045 0.45 2.89211 11.0289 50.1905
0.20 0.80 0.40 0.40 2.74641 5.4635 12.8109
0.30 0.70 0.35 0.35 3.08050 3.5770 6.0761
0.40 0.60 0.30 0.30 3.66091 2.6477 3.6999
0.50 0.50 0.25 0.25 4.55488 2.1074 2.5655
0.60 0.40 0.20 0.20 5.96267 1.7591 1.9263
0.70 0.30 0.15 0.15 8.37761 1.5180 1.5261
0.80 0.20 0.10 0.10 13.29610 1.3419 1.2565
0.90 0.10 0.05 0.05 28.21590 1.2080 1.0648

Table 5. Optimal portfolio for various xo.

ro  r(x0) Yy J Ps ©n

0.70 0.01092 0.01100 28.21800 1.25955 0.43429
0.80 0.01153 0.01124 28.21730 1.24279 0.63943
0.90 0.01215 0.01148 28.21660 1.22560 0.84947
1.00 0.01278 0.01172 28.21590 1.20801 1.06476
1.10 0.01343 0.01197 28.21520 1.19003 1.28567
1.20 0.01409 0.01222 28.21440 1.17171 1.51261
1.30 0.01476 0.01247 28.21370 1.15305 1.74598

3. Sensitivities with respect to zg: Table 5 shows values of objec-
tive functions and the optimal portfolio for various zg. Number of
samples is 10.

As xq increases, an initial short rate ry increases, and in our setting
this means that an expected return of bond increases. Therefore, the
holding ratio of bond increases. It is quite interesting that the holding
ratio of stock decreases as xg increases.

7. Concluding Remarks

This paper gives the mathematical validity of the stochastic flow tech-
nique for the calculation of optimal strategies when the market is modeled
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by a Markovian setting. When investors’ utility functions are of power
types and logarithmic types, we give straightforward conditions and the

continuous solution formula. A simple Cash-Bond-Equity problem is stud-
ied as a numerical example. Because optimal solutions are expressed by
rational equations of expected values of diffusion processes, efficient sim-

ulation methods such as Kusuoka approximation or an application of low
discrepancy sequences may improve the speed for calculating solutions. Us-
ing those methods we could expect more accurate optimal strategies for

realistic financial problems.
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