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A Limat Theorem for Solutions of Some Functional

Stochastic Difference Equations

By Takashi KATO

Abstract. In this paper, we study a limit theorem for solutions
of some functional stochastic difference equations under strong mixing
conditions and some dimensional conditions. This work is an extension
of the work of Hisao Watanabe.

1. Introduction and Main Results

Diffusion approximations for certain stochastic difference equations or
stochastic ordinary differential equations have been discussed in several pa-
pers. [9] [15], [16] and [17] treated such problem and derived the weak limit
of appropriately scaled and interpolated process, which was given by the so-
lution of a stochastic difference equation as a diffusion process. Concerning
this, [5], [6], [10], [11] and many other papers dealt with weak convergence
of the solution of a stochastic ordinary differential equation.

In this paper, we study a limit theorem for stochastic processes X{' given
by the following functional stochastic difference equations

1 1
(1.1) Xlkerym = Xiym = EFI?(XTZ’W) + o GR(XT, W)
and by linear interpolation as
(1.2) X{=(1—-nt+ k)X,?/n + (nt — k‘)X&H)/n
for k/n <t < (k+1)/n, and
(1.3) X' =1z € RY

Here FJ* and G¥ are d dimensional random functions on C([0, 00); RY), the
space of continuous functions from [0, co) to R%, such that F » has mean zero.
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234 Takashi KATO

Under certain assumptions for Fj and G}, we show that the distribution of
X" converges weakly to the solution of a martingale problem corresponding
to functional coefficients.

The methods of the proof are based on [5] and [16]. However, we cannot
use mixing inequalities in these papers, since the dimension of parameter
space C([0, 00); RY) is infinite.

We show another version of mixing inequalities by assuming certain
dimensional conditions for the set of random variables F{'(w) and G} (w),
which may look artificial but we give sufficient conditions for this assumption
later.

The author thanks Professor Shigeo Kusuoka for a lot of precious advice
and discussions.

Let (", F",P"), n € N={1,2,3,... }, be complete probability spaces.
Let F'(w,w) = (F:’l(w,w))glzl and G (w,w) = (GZ’Z(w,w))?:l : C([0, 00);
Rd) xO —RY keZ, = {0,1,2,...}, be random functions. Let B; be
the o-algebra of C([0,00); RY) given by B; = o(w(s) ; s < t).

We introduce the following conditions.
[A1] F,;” and GZ’i are measurable with respect to By, @ F".

By [A1], we can regard F}"' and G} as random functions defined on
the Banach space C([0, k/n]; RY).

[A2] F} " (w,w) (respectively, GZ’i(w,w)) is twice (respectively, once) con-
tinuously Fréchet differentiable in w for P"-almost surely w.

We denote by LT the space of real valued continuous m-multilinear
operators on C([0,T]; R?) and denote by | - |z its norm. Then the m-th
Fréchet derivative VmF,?’i(w) D (wry e W) VmF;:’i(w;wl, cee sy Wy)
is regarded as the element of L;’,, for each w (and so is VmGZ’i(w)). For
m =0, LY =R and VOF,?’i(w) = Flm(w)

Let pg > 3 and vy > 0. We assume the moment conditions with respect
to pp and the dimensional conditions with respect to 7o as [A3] and [A4].
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[A3] For each M > 0, there exists a constant C'(M) > 0 such that

2
n m n,t po
(1.4) mZOE LwilEM‘v ' (w )L@n] < C(M)
and
1
n m Nt Po
(1.5) ZOE Lw's;lgM VG (w )LZL/R] < C(M)

for any n € N and k € Z4, where E"[-] denotes the expectation under the
probability measure P" and |w|so = sup |w(t)].
>0

Let C¢; denote the set of w € C([0, 00); R?) such that |w|., < M. For a
random function U : C([0,00); RY) x Q" — R and € > 0, let N, (g, M;U)

be the smallest integer m such that there exist sets S1, ... , Sy, which satisfy
m

= U S; and
i=1

1/p
E”[ max sup |U(z)—Ul(y)° <
z:l,...,mm’yesi

[A4]
(1.6) supsupaVONn(s,M;F,?’i) < 00,
n,k >0
(1.7) supsupsupe'YONn(s,M;VF,?’i(- i 1%e;)) < oo,
n,k 1<k >0
(1.8) sullg)lsugk Sg}g&”ONn(e,M;Vng’i(- iIlej, Ine,)) < oo,
n,k I,m<k e
(1.9) supsup e’ N, (e, M; Gzl) < 00
n,k >0
and
(1.10) sugiggiggsyoNn(e,M;VGZ’i(- i 1'ej)) < o0
n7 —

for each M > 0 and i, j,v = 1,...d, where ¢; € R? denotes the unit vector

J
along the j-th axis, i.e. e; = (0,...,0,1,0,...,0), and the function I}
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[0,00) — R is given by

0 if0§1t<i

n
" l I+1
I't) =14 nt—1 1f—§t<L

n n
1
1 ift_L
n

[A5] Let
m=o(Fpi(w),Gpi(w) 5 i=1,...,d, k<m <1, we C([0, 00); RY))
and

oy, = supsupsup{|P"(AN B) — P"(A)P"(B)| ; A€ Fy;, B € Fili1 oo}
no1

Then
(@)
(1.11) D af < oo,
k=1
bo
where g9 = ——— and sg = .
2o 259 + 4o 0 po— 3

[A6] E"[F (w)] = 0.

We denote by K% the family of a compact set K of C([0,00); R?) such

that sup |w|e < c0.
weK

[A7] Let
I (kyw) = BOFR (w)FP (w)],
by (k,w) = E"GY(w)),
aiw) = SB[ (w(AE)) ],

=1

BYi(kw) = Y B" [VF,jjl (w( : /\%) : Igej)F,jJ (w)]
=1



Limits of Functional Stochastic Difference Equations 237

for k € Z, and w € C([0,00);RY), where a A b = min{a, b}. The following
limits exist uniformly on any K € K¢ for each ¢t > 0 :

(1.12) af (t,w) = lim ag™([nt], w),
(1.13) b(t,w) = lim 057 ([nt], w),
(1.14) A (tw) = lim A" ([nt], w),
(1.15) BY(t,w) = lim B™"([nt],w),

n—oo

where [z] denotes the greatest integer less than or equal to z.
[A8] Define a(t,w) = (aij(t,w))g’jzl and b(t,w) = (b(t,w))L, by
a”(t,w) = agf (t,w) + AV (t,w) + A7 (¢, w)

and
d

b (t,w) = b (t, w) + Z B (t,w).

For each T' > 0, there exists a positive constant C'(T") such that

(1.16) @ (t,w)] < C(T)(1+ sup [w(s)?)
0<s<t

and

(1.17) b (¢, w)| gc<:r)(1+ sup \w(s)\)
0<s<t

for t € [0,7] and w € C([0, c0); RY).

[A9] Let

1 <& 82 L B
Ef(t,w) = 3 ’Z 0 (t,w) 5oz f(w(t)) + Zb’(t,w)@f(w(t))

1,j=1 =1

for f € C?(R%). The martingale problem associated with the generator £
and initial value zy has a unique solution @ on C([0, o0); RY).
We will introduce the sufficient conditions for [44] and [A9] in Section 5.
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Define the stochastic process X;' = (Xf’i)f:1 by (1.1), (1.2) and (1.3).
Let Q™ be the probability measure induced by X™ on C([0, c0); R%).

THEOREM 1. Assume [Al] —[A9]. Then Q" converges weakly to Q on
C([0,00);R).

Let us give some remarks on Theorem 1.
(i) In fact, using the arguments in [16], we can prove Theorem 1 without
assuming the condition (1.10).
(ii) We can replace the assumption [A5] with
[A5'] For each M >0

(1.18) Zak(M)QO < 00,
k=1

where
FR(M) =o(FL(w),Grl(w) s i=1,...,d, k<m <1, [wle < M)
and
o(M) = sup Sup sup{|P"(AN B) — P"(A)P"(B)| ;
A€ Fgy(M), B e Tl (M)}

The proof needs no change.
(iii) Assuming the following uniform mixing condition [A5”] instead of [A5],
we can remove the dimensional condition [A4] :

[A5"] Tt holds that
(1.19) D 9P < o0,
k=1

Po — 2
2po

where g0 = and

P"(AN B)
pPr(A)
A€ FJ, B € Fyp oo PM(A) > o}.

¢k=supsupsup{‘ — P"(B)| ;
n l
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Next we provide another version of Theorem 1. We introduce the following
conditions.

[B4] For some 1 > 0, (1.6)—(1.10) hold with log IV, instead of N,,.

1
[B5] Let aj be as in [A5]. Then there exists g1 € (O, 2—) such that
"

(1.20) 3 (myl < .

k=1

THEOREM 2. Assume [Al] — [A3], [B4], [B5] and [A6] — [A9]. Then
Q" converges weakly to Q on C([0,00); R%).

2. Mixing Inequalities

In this section we prepare some inequalities for strong mixing coefficients.
Let (Q,F, P) be a probability space and A, B,C C F be sub o-algebras.
Define (A, B) by

a(A,B) =sup{ |[P(ANB)— P(A)P(B)|; Ac A, BeB}.

The following lemma is shown in the proof of Theorem 17.2.2 in [4].

1 1 1
LEMMA 1. Let1l <p,q,7r < oo be such that — + -+ - =1, X be an
r

A-measurable random variable and Y be a B-measurable random variable.
Then

(2.1) |E[XY] - E[X]E[Y]] < SE[X[P)MPE[Y]1)9a(A, B)".

Let (S, d) be a metric space, €,p > 0 and U : §x§ — R be a continuous
random function. We say that a family of sets (S;)i%; is an (g, p, U)-net of

Sif § = U S; and
=1
1/p

E [ max sup |U(z)—U(y)P <e.
i=1,...,m z,yES;
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We denote the minimum of cardinals of (g, p, U)-nets by N(e,p;U).

1 1
LEMMA 2. Letl <p,q < oo besuchthat—+-<1landU :S5xQ —

P 4q
R be a continuous random function such that U(x) is A-measurable and
E[U(z)] =0 for eachz € S, and X : @ — S, V : Q@ — R be B-measurable
random variables. Then for any € > 0

(22)  [BUV] < 8(Elbup U@/ +1)

< B[|[V|))Y4{e + """ N(e,p;U)a(A,B)},

1 1
where — =1 — — — —.
r

p q

PROOF. We may assume that the right-hand side of (2.2) is finite and
a(A,B) > 0. Set N. = N(e,p;U) and U* = sup |U(z)|. Let 6 = p/r, 6 =
€S
q/r, ]
I =Bl Pre e, g = BV e
and
Ur(z) = U(x)lqu+<ny, Vi=Vigvi<sy

Then we have

(2.3) f==r—1

| =
| =

Let (Si)f\[:f1 be an (g,p,U)-net. We may assume that all S; are disjoint
and not empty. Take any z; € 5;, and define the random variable X : Q —
S by

Ne
X(w) = Z zilg, (w)v
i=1
where Q; = {X € S;}. Then it follows that

(24) [EUX)V]] < [EUX) - UE)V]|+ [E(UE) - Ur(X)V]]

+ EUX)(V = V))l| + | E[U(X)VJ]].
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By the definition of X, we have

(2.5) |E[(U(X) - UX)V]]

< E [ max _ sup |U(z) —U(y)|- ‘V|]
i=1,...,Ne z,Yy€S;

1/
< E[ max  sup |U($)—U(y)‘p} pEHV|q]1/q
=1,... ,NE x,yesi

< eE[VI9Ye.

By the Chebyshev inequality and the Holder inequality, we have
l E [‘U*‘1+6|VH

Ié
q pu—

1
< S E(UPIEOP RV = BIUT PPV e,

(2.6) |E[(U(X) - Ur(X)V]| <

Similarly we obtain
(2.7) |BUX)(V =Vl < EIUPIVPE[V]]Y %e.
Set Ur(z) = E[U;(z)] and Uy(z) = Ur(z) — Ur(x). Then it follows that

(2.8) |E[U/(X)VJ]| < |EU(X)Vi]|+]|EU(X)Vy]|

IN

i=1
Since E[U(z)] = 0, we have

1

SB[V = U] Pe.

(2.9) |Ur(x)] = |E[Ur(z) — U(z)]| <

By Lemma 1 and (2.3), we get

Ne

(2.10) D | E[U1(z:)Vila)]
i=1

< 8N.IJa(A,B)

= SE[UPIVPB[IV|]V' T Nea A, B).

By (2.4)-(2.10), we obtain the assertion. [J

Ne
sup Ur(2) | E[VIIY+ > B[O (2:)Vila,]].
xre

241
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1 1
LEMMA 3. Letl <p,q < oo be such that —+— <1 andU : S xQ —

b q
R be a continuous random function such that U(x) is A-measurable and
E[U(z)] =0 for eachxz € S, and X : Q — S, V : Q — R be B-measurable
random variables. Suppose that there exist positive constants Cy and 7y such
that

(2.11) supe?’N(e,p;U) < Cy.
e>0

Then it holds that

(212)  [EUX)V]| < 16(Co+ 1)(Elsup |U(x)["]'/? +1)
zeS
x B[|IV]4"1a(A, B)?,
where o = and1:1_1_1.
Ty r P q

Proor. By Lemma 2, we get
[EUX)V]] < 8(Co+ 1)(E[i}£ U (@)P]V/P + 1)
< B[VITfe + £ Na(A, B)).
The assertion now follows by taking ¢ = a(A, B)?. O
We denote by A V B the smallest o-algebra which includes both A and

B. The following lemma is obtained by Lemma 3 and the arguments in the
proof of Lemma 2 in [5].

T 1 1
LEMMA 4. Let 1 < p,q,r < oo be such that — + — + — < 1. Let
p q r

UV :SxQ — R be continuous random functions such that U(x) and
V(z) are A and B-measurable respectively and E[U(x)] = 0 for each x € S,
and X : Q) — S, Z:Q — R be C-measurable random variables. Suppose
that there exist positive constants Co,u”,v* and v such that

(2.13) supe”{N(s,p; U)+ N(e, g V)} < Cy,

e>0

(2.14) Elsup |U(z)[P]"/? < u*
€S



Limits of Functional Stochastic Difference Equations 243

and

(2.15) Elsup |V (x)|9Y9 < v*.
eSS

Then there exists a constant C > 0 depending only on Co,u*,v™ and v such
that

(2.16) |BE[E(X)Z]] < CE[Z]"]V"a(AV B,C)? a(A, BV (),

1 1 1 1
=(z) = -F = —=1--—-_Z .
where Z(x) = U(z)V (z)—E[U(x)V(x)], 0 51 and . PR
- € 1 1 1
PrROOF. Set § = —— . Let ¢t > 1 be such that — = — + —. Then
2(u* + v*) t p q
we have
(2.17) N(e, t,E) < N(EpU)N(E ¢; V).

Indeed, if we let (Si)éi(f’p’m and (Sj);y:(f’q’v) be (¢, p, U)-net and (£, p, U)-net

respectively, then the Holder inequality implies

_ Wt
E[max swp [E(@)-2)]
©J I,yESiﬁSj

< of B[sup U@ max sup V(@) - vl]”

zeS J x,yeé‘j

1/t
+E | max sup [U(2) — U(y)| sup|V(@)|'] " |
v xy€eS; €S

< 2{u*E [max sup |[V(z) —V(y)[*
x,y€Ss;

v [ sup 10 -VF] )

< 2uf4vM)E=e.

]1/q

Thus (SZ N Sj)i:l
(2.17).
So we get

N(Ep;U),j=1,... ,N(&,q;V) is an (a,t,E)—net. This 1mphes

geery

(2.18) N(e, ;=) < 227 (u* +0*)PCie™ 2.
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Then, using Lemma 3 with = substituted for U, we have

(2.19) |EE(X)Z]| < Cl(E[igg]E(x)P]l/tnL1)E[]Z|T]1/Ta(A\/B,C)9”

< 20, (v v* + 1) E[Z]" V" a(AV B,C)%*

for some C7 > 0 depending only on Cy, u*,v* and v > 0.
On the other hand, using Lemma 3 with V(X)Z substituted for V', we
have

Ca(u” + 1) E[[V(X)Z|"]" a(A,B v €)Y
< Cy(u* 4+ D" E)Z]"]Y a(A, BV C)%.

(2.20) |E[UX)V(X)Z]|

IN

1 1 1
for some C9 > 0 depending only on Cy and v > 0, where — = 5 + . and

t/
"o 1
s+
Set W(z) = E[U(x)V(z)]. By Lemma 1, we see

(W (z)] < 8u*v*a(A,B)' "V < 8u*v*a(A, BV C)*
for each x € S. Thus
(2.21) |E[W(X)Z]| < 8u*v* E[|Z]"]""a(A, BV C)*.
By (2.19), (2.20) and (2.21), it follows that

|EEX) 2] BEX) 2]

< C3E[Z"Y"a(AV B,C)? a(A,BVC)Y

|EE(X)Z]|

for some C3 > 0 depending only on Cp,u*,v* and v > 0. This implies the
assertion. [

3. Proof of Theorem 1
Let ¢ € C®(R%R) be such that 0 < ¢y < 1,

{1l =2
PMEI= 0 if || > M,
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and the gradient of ¢y/(z) is bounded uniformly in z € R? and M > 1.
Define the truncated functions F,:L’M(w) = (F;:’M’Z(w))?:l and GZ’M(U)) =
(G (w))izy by

F (w) = par(w(k/n)) Fi (w), G (w) = oar(w(k/n)GR(w).

We also define the stochastic process Xt"’M = (th’M’i)f:l by (1.1) and (1.2)
for which FJ* and G¥ are replaced by F;"" and G}

To make notations simple, we set H"Ml(w) = M) +

1 . .
TGZ’M’Z("LU). Then X" satisfies the following equation
n
n,M,i n,Myi _ 1 n,M  yn,M
(3.1) Xiitym = Xijn " = \/—ﬁHk (X™M).

PROPOSITION 1. For each w € Q°, if |X/"M(w)] < M, then
XM (w)| < M for any s € [0,1].

PROOF. We prove the contraposition of the assertion. Suppose that
|X™M| > M holds for some s € [0,t]. Let k = [ns]. If |X”M| > M, we

have |X"M| = | XM | > M obviously. So we may suppose |X M < M.
(k+1)/n’ > M. Indeed, if | X2 (ht1)/ W <M, then |xmM) <

M holds by the convexity of the set {z € R%;|z| < M }, and this contradicts
the supposition. So Xn’M is in {uX™M + (1 — u)X&ﬁ)/ 0 <u<1}C
{fux™M (1 - u)Xk/ > 1} Since | X, M) < M and |X™M| > M hold,

we have [uX™M + (1 —u)X k/n M|'> M for each u > 1. Thus |X”M| > M
holds and we obtain the assertion. O

Then we see | X

By Proposition 1, the assumption [A3] and the definition of X/’ M we see
that X" M s Fo [nﬂ—measurable and that there exists a constant C' (M) > 0
such that

(3'2) ZEn[vanMZ(XnM) iom i| SC(M)

k/n
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and
1 .
(3.3) S E" UV’”GZ’M’Z(X”M) ’;m/} < O(M)
m=0
formeNand k € Z,.
Let
M _ M M M
Vi (u,t) = X;\(k/n) + U(Xg\((k-i-l)/n) - th/\(k/n))’ ue0,1].
Easily we have
k
xpM if t<—
n
k kE+1
3.4 v M) = x™M if — <t<
(3-4) p () k/ntu(t—k/m) Lo STS
n,M . k + 1
X m if —— <t

By Lemma 3 and Lemma 4, we obtain the following two propositions.

1 1 1
PROPOSITION 2. Let 1 < q < oo be such that — < 3 (1 + —), and let
q Po

U : C([0,00);RY) x Q" — R be such that U(w) is Fli.oo-measurable and
E"U(w)] = 0 for each w € CY;, and V : Q" — R be an Fo-measurable
random variable. Suppose that there exists a constant Cy = Co(M) > 0
such that

(3.5) supe” Ny (e, M;U) < Cy.
e>0

Then there exists a constant C' > 0 depending only on M and Cy such that
for alll <k,ue[0,1] and B = (8,...,8%) € Z¢ with |8] = B +---+ 3 <
2

(3.6) | E"UY (v (u, )V

< CE"[ sup [Uw)[™]/7 + )E"[[V|]V %5,
[wloo <M

Bl
where Ué\/l(w) = DB@M(U)(IC/”))U(“)) and D’ = Ozt ... 9Pt
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PrROOF. Define ¥ (u,t) and V by

A y M if X7 <M
B My = T X
0 otherw1se

and

7 it [ X( | <M
0 otherwise.

By (3.4) and Proposition 1, we see that [¥;"" (u,t)] < M for all t > 0
almost surely and

(38) BWH 7 @)V = U ) DRou (X )T
Using Lemma 3, we see that
[E" 0 () D on (X )V
< 16(Co+1)(E"[ sup [U(w)P]7 4 1)

[wloo <M

E nHDﬂSDM(XZi\i)/n)V’ ]1/qa£° 2

1 1 1
where o) = —— and — = 1—— ——. Since s, < 25 holds, which implies
q

So Ty 50 Po
0y > 200, and DA wum is bounded uniformly in x, we have our assertion. []

PROPOSITION 3. Let U,V : C([0,00);R%) x Q" — R be such that
U(w) and V(w) are Fy'y, and F|;-measurable respectively and E"[U(w)] =0
for eachw € C&;, and Z : Q" — R be an Fo.m-measurable random variable.
Suppose that there exists Cy = Co(M) > 0 such that

(3.9) sup €7 { Ny, (e, M;U) + "Ny (e, M;V)} < Co,
e>0

1/

(3.10) B[ sup [U(w)] e
|wloo <M
and
1/po

(3.11) E"[ sup |V(w)|po} < Cy.

[wloo <M
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Then there exists a constant C' > 0 depending only on M and Cy such that
for allm <1<k, uc[0,1] and 3,3 € ZL with |8 + |3'| < 2

|E"ERs (Yo (u,)Z]] < CEM|ZPP)™af 0,

where E%ﬁ,(w) = Doy (w(k/n)D? opr(w(l/n))E(w), Z(w) =
Uw)V(w) = E"U(w)V (w)].

PROOF. Define Z by

2:{ z i XM <M
0 otherwise.
Then we have
(3.12) E"[EY (Y (u,))Z)
— EMEERY () D e (XM D en (XM 2,

where Y (u,t) is given by (3.7). Using Lemma 4, we see that there exists
C1 > 0 depending only on M and Cj such that

| E" B0 (u, ))on (XN )2 2|
< GiE" HDBSOM(X(m+u)/n)D SOM(X(TAJFU)/H)Z’IJO] 1/po ap’ o,

Then we have our assertion. [J

Let Q™™ be the probability measure induced by X™™ on C([0, 00); R%).

PROPOSITION 4. The family of measures (Q™™),, is tight for each fized
M > |$0|

-3
Po—2

Proor. Takeany T >0. Let 0<s<t<u<T, 0<dy<

and set

Jp = EMIXpME— XM X

].

By the argument in [1], [5] and [16], it suffices to show that there exists a
constant Cp = Co(M,T) > 0 which is independent of s, ¢, u and n such that

(3.13) JI < Colu — 5|1/,
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where gy = Po__
1+ 69
First we consider the case of u — s < 1/n. In this case, it follows that
[ns] + 1 = [nt] = [nu] or [ns] = [nt] = [nu] — 1.

If [ns] 4+ 1 = [nt] = [nu], by assumption [A3] and Proposition 1, we have

(814) Jp = B"[|Vau-nH (M)

x| %(nt — nt]) B (M)

(]
1 T'L,M ’I’L,M 1+50
o= (= ms + [ns) H (X )\ ]
— (\/ﬁ)l—éo|u o 8|2 EnHH[TLn,tJ]W,Z<Xn,M){2
x{(nt — [ Hyg ™ (X ™M)

H(L s+ o HE ]

[ns]

< (V)T sP{ BT Hp (XA o] 0o

B[ Hppg (X o2/

X EM[|H[y " (XM |po) (60l /oy
< O (vn) T®lu — s)? < Chlu — s|BT80)/2 < Oy|u — 5|1 H/ 90
for some C; = C1(M) > 0 and Cy = Co(M,T) > 0.

If [ns] = [nt] = [nu] — 1, the similar calculation gives us the following
estimation

JI < Calu — st/

for some C3 = C3(M,T) > 0. So the inequality (3.13) holds when u — s <
1/n.

Next we consider the case of u—s > 1/n. We will show that there exists
a constant Cy = Cy(M,T) > 0 such that

(315)  BXPM - XPMURR] < Clu - s B [9%)©

for each r,v € [s,u] with r < v and each f&([nr}_l)vo—measurable non-
negative random variable ®.
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Since we have

|Xn,M,i _ Xn,M,i‘2
v T
’M7' 7M7' 2 7M7‘ 7M7. 2
< B{IX[A e — XM XM X
[nv] o [NT
X ) n,M,i
+‘ Z k+1)/n B Xk/n ) }
k=[nr]

and the following equality
(3.16) (Z ) Z$l+22$1 x1+ -+, T1,...,75 €R,

=1

it follows that

E"[| XA — XAMA2P] < 6(J7 4 Ty + JY + TP+ TP,
where
n,M,i i
H= B Gl — X,
Bo= BUXPME - X2,
[nv]
n 1 n i n 2
5= 3wl el
k=[nr]
1 M, M M. M,i
Jz? = %kz[]|En[Fk7 7 (Xn’ )(X k/n _X[n’r]/n)q)] ’
[nv]
n an n,M n,M,i n,M,i
=[nr]
Since 2 + 1 < 1, we have
Po Q9o
1
(3.17) J{l < E([nv] +1— ’0)2 EnHH[TTL“Z)\]/IZ(Xn M)‘PO]Q/PO En[(I)qo]l/QO
1
(3.18) < Osx —E"[@%]/® < Cslu — s| E"[%]"/
n
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for some C5 = C5(M) > 0. Similarly we have
(3.19) JI < Cglu — s| E™[@%]/90
for some Cg = Cg(M) > 0. We also have

[nv] — [nr] + 1

2
C7<‘1) - 7“| + E) En[q)qo]l/qo < 307\u — $| En[q)qo]l/qo

(3.20) J» < Cr- E " [®Po]l/Po

N

for some C7 = C7(M) > 0.
To estimate Jg', using Taylor’s theorem (Theorem 1.43 in [12]), we have

En[F£7M’Z(Xn’M)(XZ/’f\f’Z . XE:L,i\]/[/,;)(I)]
k-1
n n,M,i n,M n,M,i n,M,i
= {E [E (X Ny ) (K m — X ) @]
I=[nr]
n n,M,i n,M
+E"[(F T (XN ey m)
n,M i n,M n,M,i n,M,i
_Fk: ( /\(l/n)))(Xl/n _X[nr]/n)q)]}
L ) (2) (3)
= = (A + a0 + A,
\/ﬁl:[nr]
where
(1) n n,M .1 n,M n,M,i n,M
A’ = B e (X0 ) B (X (G ) H (X @,
n,(2) L. M -
N = 3 [ B a0 k) 07 )
j=1

7Ma' ,M 9M»' 7M9‘
X H" (X )(Xﬁn 1_X[’:w]/;)q>]du,

d 1
n,(3 n n, e vl n
AR = 3 /O B [ (V" (u, /) VER (M (u,); I'e)
7j=1

7M7' TL,M aM>‘ 7M7‘
x HPMI () (XM~ XM ]
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1 1 1
Let ry be such that — = — + —. Since
To Po q0
1 1 1 pg—3—26
3.21 —(1+—)——:—>0,
(3:21) 2 Do 0o 2po

using Proposition 2 with U = F,?’i, V= Hln’M’i(X"’M) and v = 1, we have

(322) A < Gs(BM swp F ()] 4 1)
[wloo <M

n n,M,i vy n, r T
E"[[HM (XM e

< C E”[‘qu}l/qoaﬁo_l.

for some Cg, Cy > 0 depending only on M.
Also we see

(323)  EMHPM XX XpEapre) e

l/n [nr]/n

_ EnHQDM( ZT}ZLW)HTLJ(XTLM)(XZ}%Z7Xan)(I)|m]1/m

[nr]/n

n nM n,j n r r
ME H‘PM( I/n )Hl j(X 7M)(I>‘ 0]1/ 0

ME"HHln M,j (XmM)‘po]l/po En[q)qo]l/qo_

IN

IN

Then, using Proposition 2 again, we have

n,(2 n,(3 n
(3.24) AR 2L A < BT @m) e,
for some C19 = C1o(M) > 0. Thus

[nv] k-1
(3.25) Jz? < Ci1 X — Z Z E™ (I)‘JO 1/q0a90
k [nr] I=[nr]

< 3011<§: ai“) lu — s| E " [@0] /90
k=1

for some C11 = C11(M) > 0.
By the similar calculation of (3.23), we have

(3.26) J§ < Cralu — s| E"[®%] /0
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for some C1g = C12(M) > 0. Then the inequality (3.15) holds. '
Using (3.15) with v = w,r = ¢ and ® = ’th,Mﬂ _
X;L’M’Z|1+6O1{\X”’M|[m]/n\§M}’ we get

(3:27) T < Culu—s|E"[|X7M - XML, /a0,

n,M
‘X[nt /n|<M}

Using (3.15) again with v = [nt]/n,r = s and ® = 1, we get

n,M,i n i
(3.28) B X m — X M12) < Cylu — .

Thus

n,M,i M
BPIXy " = X P o 1 <any]

M,
Cra{ B [IX[0 — XoMiy

IN

fxm <o)

[nt]/n
7M)‘ 7M7‘
e T

Cra{ MP =2 B |X[) 0 — XM

X <}

[nt]/n

IN

1 T, M5 7, Po
g (0t = ) ETHA (e )

015(|u —s|+

IN

S 2015”& - S‘

1
)
for some C13, C14,C15 > 0 depending only on M. Thus the inequality (3.13)
holds also when u — s > 1/n. This completes the proof of Proposition 4. [J

By Proposition 4, for any subsequence (ny)x, there is a further subse-
quence (ny,); such that Q™M converges weakly to some probability mea-
sure @M on C([0,00); R?) as I — oo for each fixed M > 1 4 |xo|.

ProposiTION 5. QM (C4)) =1.

ProOOF. For each T > 0, it follows that

(3.29) QM( sup |w(t)| > M)
0<t<T
= lim QM ( sup |w(t)| > M +¢)
e\o 0<t<T

IN

lim lim inf P™i ( sup |X"M|> M +¢).
eN\0 n—oo 0<t<T
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Here we see

P*( sup |X{"M| > M +e)
0<t<T

< PPN < ML |+ ) > 0 e
for some k=0,...,[nT])
[nT] . Ao 1
< kZ:OP (HEH X)) 2 evin) < Co x5
for some Cy = Cyo(M,T') > 0. Thus
(3.30) QM ( sup |w(t)| > M) =0, T >0.

0<t<T

This implies the assertion. []
Next we define functions a*% (¢, w) and b™*(t,w) by

M (tw) = pu(w(t)?a” (t,w)
d

Ptw) = o) w) + D {en(w(0)BI(,w)
j=1
Fon(w(®) s on(w(®) A7 (1)
and let

d
0*
M Mij
< E a th 2907 w(t))—l—izgl

Jl

o (1)

for f € C*(RY).

PROPOSITION 6. QM is a solution of the martingale problem associated
with the generator M and starting at xg.

By Proposition 5, in order to prove Proposition 6, it suffices to show

that
(3.31) EQY[(f(w(t) — f(w(s)@(w(s1), ... w(sy))]

[(f
- EQM[/ M f(u, w)dud (w(sy), - .. ,w(sy))]
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for any C™ function f : R — R with compact support, integer N, real

numbers 0 < 51 < ... < sy < s < t and bounded continuous function
D . (RN)m — R. Until Proposition 14, we omit the M in XZL’M and
Yk”’M(u, t) as long as there is no misunderstanding, and simply denote (ny,)

by (n).
Since f and ® are bounded, it follows that

(332)  ECV[(f(w(®) — fw(s))(w(s1), .. ,w(sw))]
— B (f(w(t)) - fw(s))®(w(s1),... ,w(sn))).

On the other hand, Taylor’s theorem implies

(3.33) B (f(w(t)) — Fw(s))@(w(s)),... ,w(sy))]
1 1 1
= K{+ Ky + K + K + S K5 + K§ + S K7 + S Ky,
where
K =E"[(f(X]) = f( X[y ) R(XE, - XS
K3 = E"[(f(X[hgn) — F(XIR(XS, -, XJ0)],
1 d [nt]—1 o "
ng—nz Z E”[@f(XZ/n)F;?’ HXMR(XE, ., X))
=1 k=[ns]
1 d [nt]-1 8 M
i1=1 k=[ns]
1 d [nt]-1 o2
K3 =020 2 By (Xim)
4,j=1 k=[ns]
x FpMxm) FRMI (XM (XL XE )],
1 d [nt]—1 o2
Kg =——= Z > B g f (X
J=1k=[ns]

x EPMHxmy Gt (xmexn L, xR )],

817 SN
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d [nt]-1 o2
lek%s]E i Ond F(XE/m)
x G XM GEM (XM (XD, X)),
d [nt]— (93 .
Kg \/— ngk%ﬂ/ Wf(yk (u,k/n))
x HPM (xm B (X HEPYY (XM e(XE, ..., XE)]du.

PROPOSITION 7. K — 0 asn— o0, j=1,2,6,7,8.

Proor. By (3.2) and (3.3), we have
1 [nt]—1

o< — —
gl < nﬁk;]amm) 0

for some constant C'(M, f, ®) > 0. Similarly we get K7 — 0 and Kg — 0.
Taylor’s theorem implies

el

1
< const. x — — 0.

N

Similar arguments give us K3 — 0. Then we obtain the assertion. [

KT

IN

(Y () (nt — () HSH (307) <1>H

To treat the convergent of K3, K} and Kg', we will show the following
three propositions.

PROPOSITION 8. Let U : C([0,00); RY) x Q" — R be a continuously
Fréchet differentiable random function such that U (w) is F} ., -measurable
and E"[UP(w)] = 0 for each w € C¥;, and V" : Q" — R be an F o ns]

measurable random variable. Suppose that there exists a constant Cy =
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Co(M) > 0 such that

(3.34) supe’ N, (e, M; U}) < Cy,

e>0

supsupe’ Ny (e, M; VU (- I]'ej)) < Co,

1<k >0

1

3.35 E™| sup |V, < C
e Zo [leoo<M’ ew) ’“/] ’
and
(3.36) E"[|[V"F/?] < Cy

foranyj=1,...,d,neNand k € Z. Then it holds that

[nt
(3.37) - Z E" (D oum (X, ) UR(X™V"] — 0, n — oo
k [ns]

for B € 74 with |B| < 1.
ProoF. By Taylor’s theorem, we have

E"[D%on (X)) U (XY
k-1

= > E"{D em(X (i1 ) UE (X (1) m)
I=[ns]

— D on (X[ ) UR (X (1)) 3V
E" D ori (X7 /) UR (X () m)) V"]

1dk1
)

1=1 I=[ns]

_I_

B e D ona (77 )

3

XU (V" () HP M (X V]
+E"DPon (VM (u, k/n))
xVUP (Y M (u,-); e H M (XM V] }du
+E" Dot (XPy g ) UE (XN (fnsl ) V")

257
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By Proposition 2, we see that

O D8 g (V7™M (a1, b ) U2 (VM (at, ) HP M (X))

(3.38)  |E"[ o

(3.39)  |E"[DPon ("M (u, k/n))VURY ™M (u, ); IPes) H M (X ™) V™|

and

(3.40) | B (D ot (X{rg) ) UR (X N sy ) V| < Cref g
for some C7 > 0 depending only on M and Cy. Thus
| I
- Z |E"[D%oum (X}, UR (X™)V™]

nt] 1

2C’1d>< - Z { Z —a l—}—ozi(i[ns}}

k [ns] 1= [ns

IN

IN

2Cld<§a§°>(t+1)x% — 0, n— 0.

Then we obtain the assertion. [

PROPOSITION 9. Let U, Vi* : C(]0,00); RY) x Q" — R be such that
Uy (w) and Vi'(w) are Fi-measurable and continuously Fréchet differen-
tiable random functions such that E™[UR(w)] = 0 for each w € C$;, and
Z" Q" — R be an F&[ns]—measumble random variable. Suppose that there
exists a constant Cy = Co(M) > 0 such that

(3.41) supe?{Nn(e, M;U) + Nyp(e, M; V") } < Co,
e>0
(3.42) supsup e { Ny (e, M; VU (:; I]¢;))
1<k >0
+Na(e, M; VV(5 I1es)) } < Co,
1
3.43 " [VTUR (w) [
24 %E {wEEEM H) L'f/"}

IN

Co, ZE [ sup |V"ViH(w) IL’O]T/“] < Cy

|w]oo <M
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and
(3.44) E"[|Z"[*] < Co
foranyj=1,...,dn €N and k € Zy. Then it holds that

[nt] 1
(3.45) (1) Z E "D on (X7),) D onr (X, ) B (X™) 27 — 0,

[nt] 1 k-1

(3.46)  (ii) Z > E"Dom(X]),)

k: [ns] I=[ns]
x D opr (X}, ) ER (X k1 my) 2] — O

asn — oo for B, 3 € Z% with |B|+|6'| < 1, where Z(w) = Up(w)V;" (w) —
E" U (w)V" (w)].

ProoF. By Taylor’s theorem, we have
E”[l?ﬁ<f7A4(XZ}n)Dﬁ oar (X7 Zk0 (XN aym) ) 2]

= Z E"{DPorn (X7 1)m) D7 ona(X0or 1)) B (X (g 1))

m=(ns]

E"[DPorr (X7 ) D7 00 (X7 i) Ze (XA (tms)y /) 27
-1

- Ly Y [l

1=1 m=[ns]

+

M

+DPonr

D% o (00 1)
XEp (VM (u, ) M (X 27
+ B [DP o (Ve (u, 1) D oy (Ve (u,1/m))
XVER (VM ); e Hp M (X™) 2] du

+E"[D%ou (X7 ) D% orr (X P ) ER (X () ) Z7)-
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Since

(3.47) VEL(w; 1) e;)
= VU (w;Ie)V" (w) — E"[VU (w; Ie) V)" (w)]
+U (w)VV (w; Inei) — E" UL (w)VV)" (w; I;,e5)]

holds, using Proposition 3, we get

(3.48) |lE" D%M(Xl%)Dﬂ/@M(Xﬁn)EZz(Xﬁ(z/n))Z"]}
{ Z aio lal m li):o—la‘lgg[ns}}

for some Cy > 0 depending only on M and Cjy. In particular it follows that

(3.49) |E" DﬂSOM(Xl?/n)DIB/SOM(XI?/n)EZk(Xn)Zn]’

{ Z o’ +al [ns}}

m=[ns]

Thus we have

[nt]—1
1 n n
— Z |E"[D oM (Xg /) D7 on (Xi) En(X™) Z 1|
k=[ns]
< 2C’1<§):ozl,€0)(t—i—1)><L — 0, n— o0
pa vn
and
1 [nt]-1 k-1
- | E" D% onr(X[5,) D7 onr (X5, (X 1my) 27|
k=[ns] l=[ns]
< 2Cl<ia,€°) (t—|—1)><L — 0, n— o0
= v

Then we obtain the assertion. [J

PROPOSITION 10. Let ¢ : R — R be a continuously differentiable
function such that (x) = 0 for any z € R with |x| > M and g"
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Zy x C([0,00);RY) — R, g : [0,00) x C([0,00); RY) — R be function-
als. Suppose that g" (k,-) is By jn-measurable and continuous, and that there
exists a constant Cy = Co(M) > 0 such that

(3.50) sup |g"(k,w)| < Co
|wloo <M

for eachn € N and k € Z,. Moreover suppose

weK

for each K € K% and t > 0. Then it holds that

[nt]—1
(3:52)  — > E"(Xp,)g" (k XMO(XT, . XE)]
k=[ns]

—s [ B [(w(w)g(u, w)®(w(s1), ... ,w(sy))]du, n— oo

s

PROOF. Denote the left-hand side of (3.52) by K". Define L™ and S"
by

L" = /StE"[i/}(X,?/n)g”([nu],X”)@(X?l, L XE)]du
and
5" = [ B g0 XKL X
Then we have

[K" — L")

IN

Co / B {[(X1) — f;:u]/nn ®/]du

const . X—Z//

X (nu — [nu])H[” X

IN

} dvdu

1
< const. x — — 0.

vn
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Next we will show
(3.53) L"— 8" —0.

Take any € > 0. Then, by Proposition 4, there exists a compact set K C
C([0,00); RY) such that

(3.54) inf Q"M(K)>1—e¢.

Set Ky =KnN Cﬂ. Then, by Proposition 1, we have

| E" (X0 (9" ([nu], X™) — g(u, X™))®]|

< const. x { sup |¢"([nu],w) — g(u,w)|
’U]GK]\/[

+ B (X)) (" ([nu], X™) — g(u, X")); X" ¢ K]}

< const. x { sup |¢"([nu],w) — g(u, w)|
weK g

+ sup {lg" (fnul,w)| + [g(u, w)| e}
|w]oo <M

for each u € [s,t]. Since K); € K% holds, by (3.50), we have

(3.55) limsup |E"[¥(X])(g"([nu], X™) — g(u, X™))®]| < const . x e.

n—oo

Thus
(3.56) lim |E"[(X;)(g" ([nu], X™) — g(u, X™))®]| = 0

n—oo

for each u € [s,t]. By (3.50) again and the bounded convergence theorem,
we get

(3.57) L — 57|

< / | B [(X7) (g" (], X™) — glu, X™)®]|du — 0.

Since

F(w) :/ Y(w(w))g(u, w)®(w(sy),... ,w(sy))du



Limits of Functional Stochastic Difference Equations 263

is continuous and Proposition 1 implies
(3.58) QVM(|F(w)| < C1) =
for each n € N, where

Cy=Colt —s| sup [¢(z)]  sup  |®(y1,...,yn)l,
|z|<M Y1, yN ERE

using the continuous mapping theorem, we get

5" — [ B W gtu w)b(w(sn). . wlsw)ldu
This completes the proof of Proposition 10. [
By Proposition 8, 9(i) and 10, we have the following.
PROPOSITION 11.

d o
() 53— [ B [ w)en(ww)
i=1"*%

b (1, w) @ (w(s1), . . . ,w(sN))} du,

W K Y [ B9 [ )y

,5=1

xagj (u, w)P(w(sy),. .. ,w(sN))] du

as n — 0.

Next we calculate the limit of K3'. Using Taylor’s theorem, we have
K3 = K31+ K3y + K3g + K3y + K35 + K3'g + K37 + Kj's,

where

d [nt]—
K - E nsnSDMannFnﬂX-nnan)’
51 f;k%;s] az )M (Xfng) ) F (X7 s ym) ) @)
d [nt]-1 k-1

K2 30 37 5 Bl (alon (X

1,7=1 k=[ns] I=[ns

x By Z(X.?(z/n))ﬂn’j(Xn)‘I’],
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n__
K3,3 -

L —
K3,4 -

n __
K35 =

n o __
K3 =

n_ __
K37_

)

and

Takashi KATO
d
—Z E [Wf(Xl/n)@M(Xl/n)
X (X 1) G (X)),
d
1 0
EZ E [8 Zf(Xz/n)SOM(Xl/n)
0 nz n "] n
X 57 S 5oM (X)) E (XN ) B (XT) @],
d
1 np 0
— Z E [(%Zf(Xz/n)SOM(Xz/n)
0 n.j(yn
(9 ]SOM(Xz/n)F ( /\(l/n))G (X™)e],

1 & B
n n n \2
E.Z E [%f(Xl/n)@M(Xl/n)

1 & 0
= 2 2 B (K en (X))
X VFI:L’Z(X?\(Z/TL)?Ilnej)G?J(Xn)(I)]?
1
/0 (1= w) B[ (¥ ()

x H"MI (X HPMY (X)) du

nkl’M’j (w) = mf(w(l/n))Fk’M’ (w)
82 an TN
b fw (/) VER M s I,

O )V EP M ey
oz OxY Wit €

Fw(/n)VEEPM (w; ITe;, ITe,).

+ ozt
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ProroSITION 12. K:?,j —0asn—o00, j=1,3,5,7,8.

PrROOF. Applying Proposition 2 with U = F,?Z and V =
9 iyn
%f( [ns}/n)(p, we have
1 [nt]—1 ) 1
|K34| < const. x — Z ai‘i[ns] < const . X (Zaif))_ — 0.
\/ﬁ k=[ns] k=0 \/ﬁ
Applying Proposition 2 again with U = F ,? and Vo=
82 n n m,J n
mf(Xl/n)(pM(Xl/n)Gl J (X )(I), we have
|K33| < const . x Z Z o’ , < const. X (Zai())— — 0.
n\/ﬁ k=[ns] I=[ns] k=0 \/ﬁ
Similarly we have K35 — 0 and K37 — 0. Since nZl’M’i‘jV(w) is the finite

sum of the following terms

D f(w(l/n)) D™ o (w(k/n)U (w)

with 8,8 € Z¢ and U(w) = F'(w), VE (w; I'ej) or V2E[ (w; I'e;,
Ij*e,), by Proposition 2, it follows that K3y — 0. Then we obtain the
assertion. [J

For K3y, K, and K3, we will show the following proposition.

PROPOSITION 13. Let ¢ : R — R be a continuously differentiable
function such that (z) = 0 for any = € R with |x| > M, and S
C’([O,oo);]Rd) — R, k,l € Z4, Z:]0,00) X C([O,oo);Rd) — R be func-
tionals. Suppose that f,?,l is By jn-measurable and continuous, and that there
exists a constant Co = Co(M) > 0 such that

(3.59) Y sup sup |&f(w)| < Co
k=1 l€Z+ |w]oo <M
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for each n € N. Moreover suppose

3.60 su ) ) —E(t,w)| — 0, n — 0
( ) wEE)( ng[nt )

for each K € K% and t > 0. Then it holds that

[nt -1 k-1
(3.61) Z Z E" Un )i (X R(XE - X))
=[ns] I=[ns]
— / EQM u))Z2(u, w)P(w(s1),... ,w(sy))|du, n — oco.

PROOF. Denote the left-hand side of (3.61) by U™ and set

[nt

Z ZE V(X )G (X)X, X))

=[ns] k=1
Since Fubini’s theorem implies

nt] 2 [nt]—1-1

(3.62) U" Z Z [ (X ) Eea (X)X, XS],
l [ns] k=1

we have

(3.63) ;U™ —v"|

t o0
< a0re (i[> swp s (g (w)du)

k=[nt] — [u] €2+ [Wloo <M

for some Cy(M,,®) > 0. By (3.59), the integrand in the right-hand side
of (3.63) is bounded and converges to zero as n — oo for u € [s,t). Thus,
using the bounded convergence theorem, we have

(3.64) U" — V" — 0.

Since Proposition 10 implies

(3.65) V" —>/ EQM[@Z)(w(u))E(u,w)@(w(sl),... ,w(sy))]du,
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we have our assertion. D
PROPOSITION 14.
Lo, P
O S L e
X A (u, w)®(w(s1),... ,w(sy))|du,
) g, — Z R o)
X A9 (u, w)®(w(s1),... ,w(sy))|du,
i) K — 3 [ B s fw e ons(wla)

,7=1

X BY (u, w)®(w(s1), ... ,w(sy))]du

as n — o0.

PROOF. Define &7 by

- [t o D))
By assumption [A7], we have

3.66 sup‘ 5"” A"”tw‘—>0 n — 0o
( ) weK Z k[nt

for any K € K¢ and t > 0.
By Proposition 9, it follows that

(367) KQQ—KQQJ —)O, n—oo

where

d [nt]-1 k-1

K3, = —Z > ZE (X{7n) e (X]),)?

1,5=1 k=[ns] I=[ns]
Zzgl( )q)(X?lv 7X.;ZN)]

Since Lemma 1 implies

n,tJ n,1 n,J 1/3
&7 (w)| < SEM|FL )PV EF (w)P) ey,

267
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we have
o o
ij 1/3
(3.68) Z sup sup |77 (w)] < Cy Z ak/
h=1 (€L [wloo<M k=1

for some Cy = Cy(M) > 0. Then, applying Proposition 13, we get

d t 2
369 Kip — > [ B fww)en(ew)?
i,j=1"¢%

X A9 (u, w)®(w(s1),. .., w(sy))|du.

Then we obtain the assertion (i).
The assertions (ii) and (iii) follow by the same way. [

By Proposition 7, 11, 12 and 14, it follows that
(3.70) EC" [(f(w(t) = f(w(s)®(w(s1),. . ,w(sy))]
— EQM[/ §£Mf(u,w)du<13(w(sl), —ow(sy))]

The equality (3.31) now follows by (3.32) and (3.70). This completes the
proof of Proposition 6.

PROPOSITION 15. The family of measures (QM)M>1+|9EO‘ is tight on
C([0,00): RY).

PROOF. We define the matrix o™ (t,w) = (cM¥(t, w))gjzl by
oM (t,w) = o (w(t))a'/?(t, w), where a'/?(t, w) is the square root matrix of
a(t,w). By Proposition 6, there exists the weak solution (M, FM (FM),,
PM (BM), (XM),) of the following stochastic differential equation

(3.71) { dx M = oM (t, XM)dBM + oM (t, XM )dt

X(])\/[:.To

such that the distribution of X under PM is equal to Q™.
Let T' > 0. We will show that there exists a constant Cy(T") > 0 such
that

(3.72) EM[ sup |XM["] < Co(T)
0<t<T
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Fix any R > 0 and define the stopping time 7z and the function mg(t) by
mr = inf{t € Ry ; | XM| > R}.

and

mp(t) =B Sup. | X oAral
0<s<

where EM denotes the expectation under PM.

By the continuity of X we see that 7 — o0 as R — 0o almost
surely under PM. By the assumption [AS8], the Hélder inequality and the
Burkholder-Davis-Gundy inequality, we have

SATR
mp(t) < Cl{E Oiugt‘/ oM (u, XxM)aB}

+EM sup ‘/SATR (u XM)du‘ ]}

0<s<t

IN

C’l{tEM[/O 1{S§TR}\UM(S,XM)|4ds}
P EM [/t Laermy 0™ (s, XM)\“ds} }

< emp] [ ooy (L sup X)) s

< Cg(T){l—l—/O mR(s)ds}

for each ¢t < T and for some constants C1,C2(T"),C3(T) > 0. Applying the
Gronwall inequality, we see

(3.73) sup mp(t) < Cy(T)
0<t<T

for some Cy(T) > 0. Letting R — oo, we get (3.72) by Fatou’s lemma.
Then, using the Holder inequality and the Burkholder-Davis-Gundy in-
equality again, we have

M
BOIX - X

<C'1 ‘/ 1{u>s}0 (u XM)d

|

+uY| ’/ bM(u,XM)du‘ 1}
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<arfit— sl BM [ I, X
sl PR [0 ) )

< G5(D)t s / (L+EM sup |XM4)du < Co(T)C5(T)]t - 52

0<v<u

for some C5(T) > 0. Obviously QM (w € C([0,00); RY);w(0) = zp) = 1
holds for all M. Then, using theorem 2.3 in [13], we obtain the tightness of
(QM)M>1+|:1:0|' O

PRrROOF OF THEOREM 1. Proposition 15 implies that for any subse-
quence (Mjy)y, there exists a further subsequence (Mj,); such that QMr
converges to some probability measure Q* on C([0, c0); R%).

Take My large enough so that the support of f is contained in {z €
R% || < My/2}. Since $M f = £f holds for M > My, by (3.31), it follows
that

(3.74) EQ M [(f(w(t) — f(w(s)®(w(s1), .. ,w(sn))]
_ e [/ B (u, w)du®(w(s1), . w(sw))]

for My, > My. Letting | — oo, we see that Q" is a solution of the martingale
problem associated with the generator . Moreover, by the assumption
[A10], Q" equals to @ and is independent of a subsequence (Mp,);. Then it
follows that Q™ converges weakly to @ on C([0,00); R?) as M — oc.

Finally, repeating the arguments in [5] p.119-120, we show that Q™ con-
verges weakly to @ on C(]0, oo);]Rd). This completes the proof of Theo-
rem 1. [

4. Proof of Theorem 2

To prove Theorem 2, we will show two lemmas below. Let (€2, F, P) be
a probability space and (S, d) be a metric space.

1 1
LEMMA 5. Letl <p,q < oo besuchthat—+-<1landU :SxQ —

R be a continuous random function such that U(x) is A-measurable and
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E[U(z)] =0 for eachz € S, and X : @ — S, V : Q@ — R be B-measurable
random variables. Suppose that there exist positive constants Cy and vy such
that

(4.1) supe”log N(e,p; U) < Cp.
e>0

Then for each o € (0,1/v) there exists a constant C > 0 depending only on
D,q,7, 0 and Cy such that

(4.2) |E[U(X)V]|
su 2)|P1/P aife( 1 )¢
< O(Ebup[U@)PT/? + 1) B[V (1og(1/a<A,B))>‘

PROOF. We may assume that the right-hand side of (4.2) is finite. Set
1

$ = Tog(1/a(A, B))

. Using Lemma 2 with e = £9, we have

4.3) |EUX)V]] < 8(E[sgg|U<:c>|”]1/P+1)
x B[[V]1"(e2 + ¢ exp(Cog 0 — €71)),

1 1 1
where — =1 — — — —. Since ¢y € (0,1) and £ € (0,1), there is a constant

r p q
C1 > 0 which depends only on p, q,~, 0 and Cy such that
(4.4) g1 exp(Coe™9 — 1) < Cy¢2.

By (4.3) and (4.4), we obtain our assertion. [

1 1 1
LEMMA 6. Let 1 < p,q,r < oo be such that — + — + — < 1. Let
q

UV :SxQ — R be continuous random functions such that U(x) and
V(z) are A and B-measurable respectively and E[U(x)] =0 for each x € S,
and X : QQ — S, Z :Q — R be C-measurable random variables. Suppose
that there exist positive constants Cg,u*,v* > 0 and v such that

(4.5) supe? {log N (e, p; U) +log N(e,q; V) } < Co,
e>0



272 Takashi KATO

(4.6) E[sup |U(z)[P]'/? < u*
x€S

and

(4.7) Elsup |V ()] < v*.
€S

1

Then for each o' € <O, 2—) there exists a constant C > 0 depending only
8

on p,q,r,7,0,u*,v* and Cy such that

(4.8) |E[E(X)Z]]

< Cﬂzm”%bﬁﬂﬂivBﬁMY(MQUM;ﬁVC»Y’

where Z(x) = U(z)V (z) — E[U(z)V (z)].

PrROOF. By (2.17), we have

(4.9) supe”log N(e, p; ) < 27 Cy(u* + v*)7.
e>0

Then, by Lemma 5, we see that

/

(4.10) |EE(X)Z]| < G EHZMI/T(log(l/a(./l‘l Vv B,C))>29

for some C; = Cy(p,q,r,7,0,u*,v*,Cy) > 0. By Lemma 1 and Lemma 5,
we have

(411) |E[E(X)Z]|

< 0 E[’Z|r]l/r{a(,4, BV C)l—l/P—l/q + (1og(1/a(«14, Bv c)))zgl}

for some Cy = Cs(p,q,7,7,0,u*,v*,Cy) > 0. Since there is C3 =
Cs(p,q,0) > 0 such that

/

2
(412) tkwqmﬁ@Q%ém>g

for all t € (0,1/4], we get

(4.13)  |E[EX)Z]| < Ca(Cs+ 1)E[’Z|r]1/T(log(1/Oz(Jl4 BvC))>2g/'
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By (4.10) and (4.13), we obtain the assertion. [J

By Lemma 5, Lemma 6 and the same arguments in the proof of Theo-
rem 1, we obtain Theorem 2.

5. Appendix

5.1. Sufficient conditions for [A9]

Let a(t,w) = (aij(t,w))gj:l and b(t,w) = (b'(t,w))L, be as in [AS],
and let o(t,w) = (aij(t,w))gszl = a?(t,w). It is well-known that if we
assume the Lipschitz condition of ¢% (t,w) and b*(¢,w), then the condition
[A9] holds. In fact, the local Lipschitz continuity of b’(t,w) is obtained by
[A3] and [A5]. In this section we introduce the sufficient condition under

which ¢ (¢, w) is Lipschitz continuous.

[A10] a"(t,w) is twice continuously Fréchet differentiable in w for each
t > 0, and for each T' > 0 there exists a positive constant C'(7") > 0 such
that

(5.1) Vaa (t,w)] 2 < O(T)

for each ¢t € [0,7] and w € C([0,00); R?), where V2 a%(t,w) denotes the
second Fréchet derivative of a¥ (¢, w) with respect to w.

Here we remark that since a/(t, ) is measurable with respect to By, we
can regard V2a% (t,w) as the element of L? for each fixed ¢ > 0.

THEOREM 3. Assume [Al] — [A8] and [A10]. Then the conclusion of
Theorem 1 holds.

PROOF. Let o(t,w) = a'/?(t,w). To check the condition [A9], it suf-
fices to show that for each M > 0 and T > 0 there exists a constant
Co = Co(M,T) > 0 such that

(5:2) o (t,w) — o (t, )| < Co sup. [w(s) —w'(s)],
(5.3) b (t,w) — b'(t,w')| < Cp sup |w(s) —w'(s)]

0<s<t
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for any ¢ € [0, 7] and w,w’ € C.

By [A3], we have
(64) Vubp (hw)lyy, < BV Wy, | < Cr, k€ Zas we
for some C1 = C1(M) > 0. Moreover, by [A3], [A5] and Lemma 1, we have
(5:5) [VuB™ 7 (k,w)lyy
S {mr e rn(e( o), | A PP

=1 k/n

{ igfz( ( /\E)) 31 }1/3En[VF’ZL,j(w)E}C/n]l/?,}all/?,

Li/n
< CQZall/?’, kelZy, well

3

IN

for some Cy = Co(M) > 0. By (5.4) and (5.5), we get (5.3).
To see (5.2), we introduce the following theorem (Theorem 5.2.3 in [14]).

THEOREM 4. Let f(t,z) = (f7(t,2))¢;—; : [0,T] x R — R? ® R
be a symmetric non-negative definite matriz-valued function. Suppose that
fij(t,a:) s twice continuously differentiable in x for each t > 0 and that
there is a positive constant C(T) such that

(5.6) fi(t,@)| < o)

Pl

for eacht € [0,T], z € R andi,j =1,...,d. Then it holds that
(5.7) 97 (t,2) — g7 (t, y)] < d/2C(T)|z —y

for each t € [0,T] and x,y € R, where g(t,x) = fY/2(t, z).

For each fixed T > 0 and w,w’ € C([0,00); R%), define the functions
£,9:[0,T] xR — RT@ R by f(t,z) = a(t,w' + z(w — w')) and g(t,z) =
f 1/ 2(t,z). By [A10], f(t,z) is twice continuously differentiable in x for each
t and

f”tx)‘ = |V2d7(t,w +x(w—w);w—w,w—w)

< Cy sup |w(s) —w'(s)’, t€[0,T], z€R
0<s<t

) i



Limits of Functional Stochastic Difference Equations 275

for some Cy(T") > 0. Then Theorem 4 implies

|0 (8, w) — o (t, w')| = [g7(t,1) = ¢ (t,0)| < dv/2C} Sup w(s) —w'(s)].
<s<t

This implies (5.2). Then the condition [A9] holds and we obtain the con-
clusion. [J

5.2. Sufficient conditions for [A4] and [B4]

In this section we provide sufficient conditions under which [A4] and
[B4] are filled.

Let € > 0, (S,d) be a metric space and A be a totally bounded subset

of S. We say that a family of sets (4;)%; is an e-net of A if A C U A;
i=1
and sup d(z,y) < ¢ for each i = 1,... ,m. We denote by N(a;A, d) the
wzyeA'i
minimum of cardinals of e-nets of A in the metric d.

THEOREM 5. Let (Q,F, P) be a probability space, p > 1, (S,d) be a
metric space, (B,||-||B) be a Banach space and A be a totally bounded subset
of B. Let f : B x Q — R be a continuously Fréchet differentiable random
function and v : S — B be a continuous function such that u(x) € A for
any x € S. Suppose that there exists a positive constant Cy such that

(5.9) Efsup ||V f(y)[[5.]'/7 < Co,
yeEA

where A is a convex hull of A and

va(y)HB*Z sup M

y € B.
z€B,z#0 HZHB ’

Then for any e > 0

(5.10) N(e,p;U) < N(e/Co; A, dp),

where U(z,w) = f(u(x),w) and dp(y,y') = lly = ¥'lls, v,y € B.
PROOF. Let (4;)i%; be an e-net of A. We define S; C S by

Si={x €S ; ulx) e A;}.
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Then we have
(5.11) s=Js
and for each z,z’ € S;

U(z) = U(2)]

IN

1
/0 IV£(tu(z) + (1 = yu(2))|| - dt||u(z) — u(z')]]5

sup ||V f(y)||B+ x e.
yeA

IA

Then we have

(5.12) E[ max sup |U(z)—U(z)[P]"/? < Cpe.

1=1,....m z,2'€S;

By (5.11) and (5.12), we see that (5;)i%; is an (Coe, p,U)-net of S. Then
we obtain the assertion. [

Let B be a Banach space and B(B) be a Borel field of B. By Theorem
5, under suitable conditions, we can check conditions [A4] and [B4] when
F;"" and G}"" are represented in the following form

(5.13) F'(w,w) = ' (u(k/n,w),w), GP'(w,w) =g (v(k/n,w),w),

where f]"'(z,w), g (z,w) : BXxQ" — R be B(B)®F"-measurable random
functions and u(t, w), v(t, w) : [0,00) x C([0, 00); RY) — B be (B;)-adapted
(i.e. u(t,-) and v(t,-) are Bi-measurable for each ¢t > 0) deterministic func-
tions.

We also have the condition [A4] when the image spaces of F} * and GZ’i
are finite dimensional in L”°(Q"). Let p > 1, (Q,F, P) be a probability
space, (S, d) be a metric space and U : S x ) — R be a continuous random
function which satisfies E[|U(z)[] < oo for any = € S. We define the metric
space (Sp(U), dp) by

5,(U) = {Ulx) € IX(Q) 5 z € S}

and d,(X,Y) = E[| X — Y|P]/7.
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THEOREM 6. Suppose that there are constants v € (0,p/2), Cy > 0
and Cy > 0 such that

(5.14) sup eYN(e;8,(U),d,) < Cy
e>
and
(5.15) E[sup |U(z)P] < C;.
xeS

p—2v

Then for each A € (O,
only on p,v, A, Co and C1 such that

) there exists a constant C' > 0 which depends

(5.16) supe?”/*N(e,p;U) < C.
e>0

PRrROOF. Define F' : S§p(U) x @ — R by F(X,w) = X(w). Then we
have

(5.17) E[|F(X) - F(Y)[P] = E[[X = Y] = dp(X, Y)”

for any X,Y € S,(U). By (5.14), (5.17) and the similar arguments in
the proof of Theorem 1.4.1 in [7], we see that there exist a continuous
modification F of F and a constant Cy > 0 depending only on p,~v, A and
Cy such that

(5.18) E sup M

p
< (.
XY eS, (U),0<dy(X,y)<1 | dp(X,Y)A H

Define the random variable K by

= sup |F(X)—F(AY)|‘
xyes,),x2y  G(X,Y)

Then it holds that

(5.19) E[|K|P] < 2P71Cy + Cs.
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Thus, for each subsets Si,... Sy, C Sp(U), we have
E[ max sup [U(z)—U(y)[]"/?
i=1,....m z,y€S;

= El_max suwp [F(U(x)) = FUW)I"

7,:1, ,m $7yesl

< E[|K|p]1/p. max sup dp(U(w),U(y)))‘
Z:L"'vmx,yesi
< C3 max sup E[|U(z)— Uy,

—1,..,,m x7y€5’l
where C3 = (2p_1C’1 + Cz)l/p. So we get
(5.20) N(e,p;U) < N("/7/C3;.8,(U), dp)
for any € > 0. Then we have

(5.21) sup YAN(e,p;U) < CF sup YN (g;S,(U), d,) < CJCo.
e> e>

This implies our assertion. []

By Theorem 6, we can check [A4] under the following condition [A4'].

[A4'] For some o € (0,pp/2), (1.6)—(1.10) hold with ~5 and N, (e, M;U)

instead of vy and N, (¢, M;U), where N, (g, M;U) is the smallest integer m
m
such that there exist sets S1,... ,.S, which satisfy Cj'\lJ = U S; and
i=1
sup E"[|U(x) — U(y)["]"/™ <&
T,YyeS;

foreachi=1,...,m.

5.3. Examples
In this section, we give two examples of Theorem 2. Let (2, F, P) be
mi

a complete probability space and let & = (£)), k € Z4, be an mj-
dimensional stationary Gaussian process.

(a) Let f(z) = (f'(2))iy : R™ — RY w(t,a,y) = (u'(ta,y)
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[0,00) x RY x R™ — R™ and t(z) = (¢*(x))[4 : R™ — R™ be Borel
measurable functions. Let ¥(t,w,y) = (V'(t,w,y)){25 and h(t,w,y) =
(Ri(t,w,y))%; be such that

Wt w,y) = /0 (s, w(t — 5),1(y))ds

and ' ‘
W't w,y) = f(¥(Ew,y))-
We define F,i”(w) and GZ’i(w) by

(5.22) G (w) = B[R (k/n,w, &)
and
(5.23) FV(w) = Bi(k/n,w, &) — G (w).

We introduce the following conditions.
[C1] f%(x) is three times continuously differentiable in zz. Moreover u(t, z, y)

is three times continuously differentiable in x and y, and all derivatives are
continuous in {.

[C2] It holds that

(5.24) Z sup ’Dﬁfz(xﬂ < oo,
‘5|S39€€Rm2
00 o
(5.25) Z / sup !D;ng Wt y)|dt < oo
18]+|8/|<2”0  zeRIyeR™s
and
zeR™1
for each i = 17 7daj: 17 , 9 andy:l,... , 3.

[C3] Let Gry=o0(&, ;i=1,...,d, k<v<I) and

B = 51l1p sup{|P(ANB) — P(A)P(B)| ; A€ Gy, B € G100}
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Then for some g4 € (0,1/2)

[e.e]

(5.27) D <m)g < .

Define b'(t,w) and 7 (t,w) by
(5.28) bi(t,w) = B[k (t, w,&)]
and
(5.29) my! (8, w) = B[R (t,w, &) (¢, w, &0)] — B (¢, w)b (¢, w),
and a% (t,w) by
(5.30) a (t,w) = n (t,w +Z{n (t,w) + ' (t,w)}.
Let

. 1L 52 d 9

(5.31) Lf(t,w) =35 P 0% (8, w) 5 flw(t) + ;bz(t,w)@f(w(t))

for f € C*(RY).

THEOREM 7. Assume [C1] — [C3]. Then the conclusion of Theorem 1
holds replacing &£ with £.

PrOOF. We will check that F}' " and GZ’i satisfy the assumptions of
Theorem 2. [Al] — [A3], [B5] and [A6] are obvious.

PROPOSITION 16. The condition [B4] holds with , = 1.

PrOOF. Let U(w,w) = hi(t,w,é‘k(w)); We define g(v,w) : Cg x  —
R by g(v,w) = fl(v(?/)(fk(W)))), where Cp = C(Kp;R™), Kp = {z €

; || < R} and R = Z sup [pi(z)]. We also define W(t,w,y) =

i—1 € Rm1

(‘Ilj(twy)) . [0,00) x C¢; x Kr — R™ by

i’j(t,w,y) = /0 u (s, w(t — s),y)ds.
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Then it follows that

(5.32) U(w,w) = g(¥(t, w,),w).

By [C2], we see that there is a constant Cy > 0 such that
ma2

(5.33) Y DLWt w,y)| < Co, weCH, yE Kg.
J=18|<1

Then we have

(5.34) U(t,w,-) € Ag, weCl,
where
Arp = {v eCr ; v is continuously differentiable and
mo

>3 swp [P (y)] < Co .
i=1|g1<1 WISH

[C2] also implies

ma
(5.35) [Vg(v,w;0)| < Cy Z sup [/(y)], v,0 € Ap, w e Q
j=1 IR

for some C7 > 0. Then, by Theorem 5, we get

(5-36) N(e,p, M;U) < N(e/C1; A, doo)

for each M > 0 and p > 1, where doo(v,v') = sup |v(y) — v'(y)| and
yeKRr

N(e,p, M;U) is the minimum of cardinals of (g, p, U)-nets of Cj‘\l/[.
Moreover, by Theorem XIII in [8], we have

(5.37) logN(E/Cl;AR,dOO) < C1 0!
for some Cs > 0 depending only on R and Cy. Then we get
(5.38) log N(e,p, M;U) < Cze™t

for some C3 > 0 with U(w,w) = h'(t, w, & (w)).
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Similarly we see that (5.38) holds with U(w,w) = Vuwh'(t,w, & (w); I'e;)
and U(w,w) = VZR'(t,w,&(w); I['ej, Il'e,). Then we obtain the asser-
tion. U

To check the condition [A7], we will show the following proposition.
PROPOSITION 17. For each K € K¢, t >0 and k € Z, it holds that

().

(5.39) sup
weK,yeRm™1

—\I/i(t,w,y)’ — 0, n— oo.

PrROOF. Let

ér(s;w) = sup{jw(r) —w()|; 0 < rr' <T, |r —1'| < s},
s, T >0, we C([0,0);R).

Then we have

L nt] + k [nt] -
U A -
st [ O e (A50) ) — ¥t w)
([nt]+k)/n ,
< / sup |[u'(s, z,y)|ds
t m7y

4.t 0
(2
+ E /0 Swllp’—axju (&x,y)’
7=1 Y

X sup ‘w7(<w —s> A M) —wj(t—s))ds

weK n n
(Int]+k)/n )
< [ sup (s, . y)|ds
t T,y
e 3 [ s [t o s sop (L)
sup |=—u'(s,x,y)|ds sup O sw’ ).
Since K is compact, we see that
kK+1
(5.40) sup 6t< :; ;w7> —0, n— o0, k€Z,.

weK



Limits of Functional Stochastic Difference Equations 283
Then we have the assertion. [
Define af™ (k, w), by (k, w), A (k,w) and B (k,w) as in [AT].

PROPOSITION 18. It holds that

(i) sup lag™ ([nt], w) — ng! (£, w)| — 0,
(i) sup [bg: "(Int], w) = b (t,w)] — 0,
(iii) 32?{!14” I([nt], w) — A7 (t,w)| — 0,
(iv) 322\3" J([nt), w)] — 0

o
for each t >0 and K € K¢, whereA]tw 277]
k=1

Proor. By Proposition 17, we get

E[sup |h'([nt]/n,w, &) — h'(t,w, &)]

weK
< Y|
<ol g [ (e (A5 ) - v v o

weK,yeRm1

as n — 00. Then we have the assertion (ii). Moreover this implies

sup |ag™ ([nt], w) — ng (¢, w)|
weK

< 2{ Sup |f ()] E[Slel% |1 ([nt] /n, w, &) — B (8w, &)]

+sup | ()] E[Sgg{ R ([nt] /0, w, &) — B (t,w, &[]} — 0, n — cc.

Then the assertion (i) holds.
Since & is stationary, we have

[e.9]

(5.41) A™( Z At (
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where

R T

e (S r) ) e )]

By Proposition 17, we have

sup [ ([nt], w) — 1 (£, w)|
weK
< o3 s |2 L ) sup )
v=1
wr (PR AR ) ()

n

X sup
weK,ycRm2

+sup | ()| Blsup |W ([nt] /n, w, &) — hj(t,w@o)l]}
T weK

—0, n— o0

for each k € Z, and t > 0. Moreover, using Lemma 1, we have

(5.42) sup |1 [ (Int), w) = n (¢, w)| < 165up |f* ()| sup | f7 ()| By

and [C3] implies

(5.43) D B < o
k=1
Thus the dominated convergence theorem implies
(5.44) sup [A™ ([nt],w) — A (t,w)]
weK

< Zsup i ([nt], w) — ) (¢, w)| — 0, n — oo.
e le
This implies the assertion (iii).
Since

thi(w,w( . /\[n_nt]),y; Iﬁt]%)

n

=3 oot (1M () 0)



Limits of Functional Stochastic Difference Equations 285

) /Ok/n %uy<[nt]n+ k7w(([nt]n+ ko 8) N h:l_ﬂ)ay)fﬁt]

X (M — S)dS,

n
we have
g 2 o . A
(5.45)  sup |B™Y([nt],w)| < SZsup‘—Vf’(x) sup |f7(x)]
weK —1 Z Oz x
X Z/o smugl!) ‘%u (s, z,y)|dsP.
k=1 :

Then, [C2], (5.43) and the dominated convergence theorem imply the asser-
tion (iv). O

By Proposition 18, we see that [A7] holds. Obviously @ and b’ satisfies
the condition [A8] and [A10]. Then, using Theorem 3, we obtain Theo-
rem 7. [

(b) Let fl) = (Pl : B™ — BY, wu(tiry) = (u(ta.y)
[0,00) x R™ x R™ — R™, and ¢(t,x) = (¢'(¢,2));25 : [0, 00) X R —
R™ be Borel measurable functions. Let ¥(t,w,y) = (V'(t,w,y));"% and
h(t,w,y) = (hi(t,w,y))%, be such that

Tl (t,w,y) = /Ot ! (s,/std)(r,w(r))dr, y)ds

and
hi(t,w,y) = fi(\lf(t,w,y)).

We define F,?Z(w) and GZ’i(w) by (5.22) and (5.23). We introduce the fol-

lowing conditions.

[D1] f%(x) is three times continuously differentiable in z. Moreover u(t, x, y)
(respectively, 1'(t,x)) is three times (respectively, twice) continuously dif-
ferentiable in z, and all derivatives are continuous in t.
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[D2] Tt holds that

(5.46) Z sup |DPfi(z)] < oo,
m|<3zeRm2
(5.47) 3 / sup | DPui(t, 3, y)|dt < oo
1Bl<2 zeRm3 yeR™

and

(5.48) Z / sup |DP2yY (t, x)|dt < oo
|ﬂ|<2 x€Rd

foreachi=1,...,d,j=1,... , meand v =1,... ,;ms.

THEOREM 8. Assume [D1],[D2] and [C3]. Then the conclusion of
Theorem 1 holds replacing £ with £ which is defined by (5.28)-(5.31).

Theorem 8 is obtained by the similar arguments in the proof of Theorem
7. So we will check only the condition [B4].

PROPOSITION 19. The condition [B4] holds with y, = 1.
PROOF. Let U(w,w) = hi(t,w,&(w)) and C; = C([0,1];R™). We

define p(w) = (gpj(w));”jl : C([0,00);RY) — C; and g(v,w) : G x Q@ — R
by

and

Then it follows that

(5.49) U(w,w) = g(p(w),w).

Set

Co = Z Z / sup | DB (s, z)|ds.

J=118|<1
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By [D2], we see that Cj is finite and

(5.50) o(w) € A, w e C([0,00); RY),
where
flt = {v € ét ; v is continuously differentiable and
3 . d .
Z( sup [v/(s)| + sup —vJ(S)D < CO}.
I Nossst o<s<t 1 ds

Moreover we have

m3

(5.51) IVg(v,w;0)| < Cy Z sup | (s)], v,0€Cp, weN
. 0<s<t
J=1"="=

for some C7 > 0. Then we have the assertion by the same arguments in the
proof of Proposition 16. [
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