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Uniqueness of Crapper’s Pure Capillary Waves

of Permanent Shape

By Hisashi Okamoto∗

Abstract. Two-dimensional water-waves of permanent shape
with constant propagation speed are considered under the assump-
tion that the gravity is neglected and only the surface tension is taken
into account. Crapper’s solutions, which are exact solutions of the gov-
erning equations, are proved to be unique among those which satisfy
a certain positivity property.

1. Introduction

We consider two-dimensional water-waves on the surface of irrotational

flow of incompressible inviscid fluid. Only waves of permanent shape with

constant propagation speed are considered. In the present paper, the surface

tension is the only force acting on the fluid, hence in particular, the gravity

is neglected.

The shape of a water-wave is determined by solving a free boundary

problem for the Laplace equation with a nonlinear boundary condition which

is derived from Bernoulli’s theorem. The problem is then transformed, by

a certain change of variables, to a nonlinear boundary value problem for an

analytic function defined in the unit disk in the complex plane ( see, for

instance, [3] or [6] ). It is well-known that Crapper [4] found a family of

exact solutions represented in terms of elementary functions. The purpose

of the present paper is to prove, under a certain positivity condition, that

there does not exist a solution other than Crapper’s solutions.

The nonlinear boundary value problem for analytic functions can further

be re-written ( see [6] ) as a problem to look for a 2π-periodic function θ

1991 Mathematics Subject Classification. Primary 76B45; Secondary 34B15.
Key words: Crapper’s wave, uniqueness, positivity.
∗Partly supported by the Grant-in-Aid for Scientific Research from JSPS

No. 14204007. He expresses his gratitude to Michio Yamada for his encouraging advice.

67



68 Hisashi Okamoto

θ
θ

σ=π σ=−π

σ=0

Fig. 1. θ represents the angle between the tangent and the horizontal line. σ is a
Lagrange variable along the wave profile.

satisfying
∫ +π
−π θ(σ)dσ = 0 and

q
dθ

dσ
= − sinh(Hθ) ( −π ≤ σ ≤ π ).(1)

Here H is the Hilbert transform ( or can be called the conjugate operator;

its concrete form will be given in the next section ) and q is a nondimen-

sionalized surface tension coefficient. See [6] for more detail. The unknown

θ represents the angle between the tangent at the free boundary and the

horizontal line. See Fig. 1. σ is a Lagrange variable along the free boundary.

Once θ(σ) is known by (1), we can determine the wave profile

(x(σ), y(σ)) (−π ≤ σ ≤ π). In fact it is known ( [6] ) that

dx

dσ
= − L

2π
e−τ(σ) cos θ(σ),

dy

dσ
= − L

2π
e−τ(σ) sin θ(σ),(2)

where L denotes the wave length and τ = Hθ. The right hand sides are

known once θ is known. Thus, after integrating in σ, we have a parametric

representation of the free boundary { (x(σ), y(σ)) ; −π ≤ σ ≤ π }. Conse-

quently what remains to be done is to solve the equation (1). Wave profiles

of Crapper’s waves can be found in [3, 4, 6].

Crapper [4] found a family of exact solutions, which in our notation are

written as follows ( see [6] ): the solutions are parameterized by A ∈ (−1, 1),

and (q, θ) is represented as

q =
1 +A2

1 −A2
,(3)
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θ(σ) = −2 arctan

(
2A sinσ

1 −A2

)
(4)

= −4

(
A sinσ +

A3

3
sin 3σ +

A5

5
sin 5σ + · · ·

)
.

The Hilbert transform of this θ is given by

Hθ(σ) = log
1 +A2 + 2A cosσ

1 +A2 − 2A cosσ
(5)

= 4

(
A cosσ +

A3

3
cos 3σ +

A5

5
cos 5σ + · · ·

)
.

Other solutions are obtained by replacing q and θ(σ) by q/n and θ(nσ),

respectively, where n is a positive integer. These are solutions to (1), as

is verified in an elementary way ([6]). A solution given by (3) and (4)

was called in [6] Crapper’s solution of mode one. A solution of the form

(q/n, θ(nσ)) was called Crapper’s solution of mode n. These solutions are

plotted in Fig. 2. As the graph shows, Crapper’s waves bifurcate from the

trivial solution θ ≡ 0.

Henceforth Hθ is denoted by τ :

τ = Hθ.

It was conjectured in [6] that these were the only possible solutions of

(1) and no other solution of (1) would exist. Numerical computation in

q
11/2

τ(0)

....
1/3

Fig. 2. The bifurcation diagram of Crapper’s waves. Solutions of mode n bifurcate at
q = 1/n.
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[6] seems to support this conjecture but, as far as the author knows, no

mathematical proof seems to have been published up until now. Our aim

in the present paper is to prove the uniqueness under a certain positivity

assumption.

The contents of the present paper is as follows. In section 2, we re-

call some facts about Crapper’s solutions. The main theorem is stated and

proved in section 3. Some comments on the general case are given in sec-

tion 4.

2. Preliminary Results

We recall some mathematical facts, all of which can be found with proof

in [6].

R1 H is explicitly written as

Hf(σ) =
1

2π

∫ π

−π
cot

(
σ − s

2

)
f(s) ds,

where Cauchy’s principal value is taken. This transform is also char-

acterized as

H

( ∞∑
n=1

(
an sinnσ + bn cosnσ

))
=

∞∑
n=1

(
− an cosnσ + bn sinnσ

)
,

where an’s and bn’s are real constants. Note finally that H2 = −I,
where I is an identity operator.

R2 Any solution θ(σ) of (1), hence τ(σ), too, are infinitely many times

differentiable in σ.

R3 (H d
dσ )−1 is an integral operator. More specifically, if H d

dσf = g for odd

functions f and g, then we have

f(σ) =

∫ π

0
G(σ, s)g(s)ds (0 ≤ σ ≤ π)(6)

where

G(σ, s) =
1

π
log

∣∣∣∣sin σ+s
2

sin σ−s
2

∣∣∣∣(7)

=
2

π

∞∑
n=1

sin(nσ) sin(ns)

n
(0 ≤ σ, s ≤ π).
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It can be proved that G is positive for all 0 < σ, s < π.

In what follows, we assume that θ is odd in σ. This assumption implies

that the wave profile is symmetric with respect to the crest, see [6].

We now prove that dτ
dσ and sin θ are eigenfunctions of a certain eigenvalue

problem. We differentiate (1) to obtain

q
d2θ

dσ2
= −dτ

dσ
coshτ.

This, together with H2 = −I, implies that f = dτ
dσ is a solution to the

following equation:

H
d

dσ
f =

1

q
(cosh τ) f.(8)

We next show that sin θ, too, satisfies the same equation. To this end,

we note that

H
d

dσ
sin θ = H

(
cos θ

dθ

dσ

)
= −1

q
H (cos θsinh τ) .(9)

Note that H sends the real part of an analytic function to the imaginary

part. Then, since sin(θ+iτ) = sin θ cosh τ+i cos θ sinh τ is analytic, we have

cos θ sinh τ = H (sin θ cosh τ) .

It therefore follows from (9) that

H
d

dσ
sin θ =

1

q
cosh τ sin θ.(10)

Since both sin θ and dτ
dσ are odd functions of σ, (8) and (10) imply that they

are solutions of

qf(σ) =

∫ π

0
G(σ, s)cosh(τ(s))f(s)ds.(11)

Let us define an operator L by

Lf(σ) =

∫ π

0
G(σ, s)cosh(τ(s))f(s)ds.(12)

( Here the function τ is fixed. ) Then both dτ
dσ and sin θ are eigenfunctions

of L with q the eigenvalue.
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3. Proof of Uniqueness

We now recall an important tool in functional analysis. Let E be the

Banach space

E = {f ∈ C[0, π] ; f(0) = f(π) = 0 }

with the usual maximum norm ‖f‖ = max0≤σ≤π |f(σ)|. Further, let K be

defined by

K = {f ∈ E ; f(σ) ≥ 0 (0 ≤ σ ≤ π ) }.

K is called the positive cone. With this setting, we make the following

definition:

Definition 1. Let w0 be an element of K \ {0}. A bounded linear

operator L : E → E is called w0-positive if for every u ∈ K \ {0} a positive

integer n and positive numbers α, β can be chosen in such a way that αw0 ≤
Lnu ≤ βw0 everywhere in [0, π].

Theorem 1. Let L : E → E be a compact linear operator. Suppose

that Lf ∈ K for all f ∈ K. Suppose also that there exists w0 ∈ K \{0} such

that L is w0-positive. We finally assume that L has a positive eigenvalue λ0

with an eigenvector f ∈ K \ {0}. Then the eigenvalue λ0 is simple.

This theorem is a special case of Theorem 2.10 of [5, page 76].

We now use Theorem 1 to prove the uniqueness of Crapper’s waves

under one of the following assumptions:

A1 0 ≤ θ(σ) ≤ π everywhere in 0 ≤ σ ≤ π;

A2 dτ
dσ (σ) ≥ 0 everywhere in 0 ≤ σ ≤ π.

Of course, A1 implies that sin θ(σ) ≥ 0 everywhere in 0 ≤ σ ≤ π. Note

that Crapper’s solutions of mode one with A < 0 satisfy both A1 and A2.

Theorem 2. Suppose that a solution θ of (1) satisfies either A1 or

A2. Then it is given by (3) and (4) with an appropriate A ∈ (−1, 0].

Proof. L in (12) satisfies the assumptions in Theorem 1, verification

of which is easy except for the w0-positivity. To prove w0-positivity, we set

w0(σ) = sinσ. We note that Lu(σ) > 0 for all σ ∈ (0, π) and Lu(0) =
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Lu(π) = 0 if u ∈ K \ {0}. If Lu is of C1-class and dLu
dσ (0) > 0, dLu

dσ (π) < 0

are satisfied, then it is easy to prove that Lu ≥ α sinσ for some α > 0.

However, Lu is not necessarily of C1-class if u is merely continuous. We can

nevertheless prove the sinσ-positivity by considering L2u. We note that

Lu =
(
H d

dσ

)−1
(cosh(τ)u) is Hölder continuous with any exponent < 1.

This implies, in particular, that L2u ∈ C1[0, π]. Note also that, if v is

Hölder continuous, v(0) = 0, and v ∈ K \ {0}, then we have by (7)

dLv

dσ

∣∣∣∣
σ=0

=
1

π

∫ π

0
cot
(s

2

)
cosh(τ(s)) v(s)ds > 0.

Similarly we have dLv
dσ

∣∣∣∣
σ=π

< 0. With these in mind, it is not difficult to

verify that, for all u ∈ K \ {0}, L2u ≥ α sinσ with some α > 0. The proof

of L2u ≤ β sinσ is elementary.

Since, by the assumption, sin θ or dτ/dσ is nonnegative everywhere, q is

a simple eigenvalue by Theorem 1. Consequently there exists a constant

k such that

dτ

dσ
= k sin θ,(13)

which is nothing but the bifurcation problem considered in section 3 of

Toland [7]. In the paper he considered the nonlinear equation H df
dσ = sin f

and showed that all the solutions were concretely written. Specifically, any

solution f of H df
dσ = sin f was shown to be either the following f1 or f2:

f1(σ) = ±2 tan−1(σ + a) + 2πn,(14)

where a is a real constant and n is an integer;

f2(σ) = 2 tan−1
(
γ−1 tan δσ

)
− 2 tan−1 (γ tan δσ) ,(15)

where γ and δ are real constants.

Note that f2 can be rewritten as

f2(σ) = 2 tan−1

(
1

2
(γ−1 − γ) sin 2δσ

)
.

f1 is not periodic and does not suit our solutions; we have accordingly

θ(σ) = 2 tan−1

(
1

2
(γ−1 − γ) sin 2δkσ

)
.
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Since θ is 2π-periodic, 2δk must be an integer. Let it be denoted by n. We

then obtain

θ(σ) = −2 tan−1

(
1

2
(γ − γ−1) sinnσ

)
.

Note, on the other hand, that sin θ ≥ 0 for all σ ∈ [0, π]. ( This follows from

the assumptions A1, A2 and (13). ) We must therefore have n = ±1. We

consider the case of n = 1, since the other case is proved in the same way.

Note that 2A/(1 − A2) runs monotonically from −∞ to ∞ as A runs from

−1 to 1. Accordingly there is exactly one A ∈ (−1, 1) such that

1

2

(
γ − 1

γ

)
=

2A

1 −A2
.

Since we have assumed that θ ≥ 0, it holds that γ−γ−1 < 0. Consequently,

we have A = (γ−1)/(γ+1) if 0 < γ < 1 and A = (1+γ)/(1−γ) if γ < −1.

We have thus get to Crapper’s solution. This ends the proof. �

4. Comments on the General Case

If all the eigenvalues of L are simple, we can prove the uniqueness with-

out assuming that sin θ ≥ 0. However, the general theory does not seem to

guarantee the simpleness of the eigenvalues other than the one correspond-

ing to a positive eigenfunction.

Toland [7] made the following interesting discovery. Consider

H
df

dσ
= sin f,(16)

which was called in [7] the Peierls-Nabarro equation. Then he showed that

there are two solutions, say g1 and g2, of

H
dg

dσ
= −g + g2(17)

such that df
dσ = g1 − g2. On the other hand, the complete set of solutions of

(17) are known in [1, 2]. This leads him to have the formula (14) and (15).

Since the difference between (16) and (1) is just a difference of sin and sinh,

it it natural to imagine that Toland’s method with a possible modification

enables us to write any solution of (1) by those of (17). We tried this but
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could not derive a necessary formula. This is why we employed a somewhat

clumsy approach in the previous sections. Thus it was necessary for us

to assume A1 or A2. Although we could not prove, we believe that the

uniqueness holds true without assuming such a positivity assumption.
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