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Support Theorem for Mild Solutions of SDE’s in
Hilbert Spaces

By Toshiyuki NAKAYAMA™

Abstract. A support theorem is proven for the mild solution of
the stochastic differential equation in a Hilbert space of the form:

dX(t) = AX(t)dt + b(X (t))dt + (X (t))dB(t).

It is driven by a Hilbert space-valued Wiener process B, with the
infinitesimal generator A of a (Cj)-semigroup.

1. Introduction

Support theorem was first proved in Stroock and Varadhan [9] for SDE’s
in finite dimensional state spaces and with finite dimensional Wiener pro-
cesses. Another method for these equations are found in Aida, Kusuoka
and Stroock [2] and Millet and Sanz-Solé [6] which we use essentially. The
extension of support theorem for SDE’s in separable Hilbert spaces driven
by separable Hilbert space-valued Wiener processes without infinitesimal
generators was achieved in Aida [1] extending the method of Stroock and
Varadhan [9]. Because our mild solutions are not necessarily expressed as
strong solutions due to the existence of infinitesimal generators, our ap-
proach is different from Aida [1].

Let H be a separable Hilbert space endowed with an inner product
(-,-yg and with its induced norm | - |[z. We often abbreviate || - ||z to
|| -|| for simplicity. Let A be the infinitesimal generator of a (Cp)-semigroup
(S(t))t>0 of bounded linear operators on H.

Let us fix T' > 0. Let (2, F, P) be a complete probability space equipped
with a right-continuous nondecreasing family (F(t));e[o,r) of sub o-fields of
F such that each F(t) contains all P-null sets.

*The author is most grateful to Professor Kusuoka for his valuable advice and guid-
ance. Thanks also go out to the referee for his comments.
1991 Mathematics Subject Classification. 60E99, 60H15.
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Let U be a separable Hilbert space with an inner product (-, ). Let @
be a nuclear strictly positive operator on U. We define a separable Hilbert
space Uy by Uy = QY?(U) endowed with an inner product (u, VY, =
(Q Y?u,Q ' *v)y, u, v € Uy, and with its induced norm || - ||p,. Let
(B(t))iejo,r) be a Q-Wiener process in (€2, F, P) having values in U with re-
spect to (F(t))sec(o,7) in the sense of Da Prato and Zabcezyk [4]. (B(t))iepo,1]
can be characterized as a U-valued continuous (F(t));c(o,r-adapted stochas-
tic process such that

n
. j 2
g&qu—;wwm4=o
for allt € [0,T], where {g; ; j=1,2,...}is a complete orthonormal system
in Uy, and (B’ (t))tco,r)> J = 1,2,... are independent real-valued standard
(F(t))¢efo,r-Brownian motions.

Let 0: H — L)(Up; H) and b: H — H be Lipschitz continuous
bounded mappings, that is, there exists a constant C; > 0 such that

lo (@)l 1y i) < Cr (@) = oWl sy < Cullz — I
Ib@)| <€ and [|b(e) — by)|| < Cillz — y]

for all z,y € H, where L9 (Uo; H) is the set of Hilbert-Schmidt operators
from Uy to H and || - HL@)(UO;H) denotes its norm. We define mappings
oj: H—H,j=1,2,..., by

oj(x) = o(x)gj, x € H.

We assume that o, j = 1,2,..., are twice Fréchet differentiable and those
Fréchet derivatives up to second order, denoted by Doj; and D2O'j, are
bounded, i.e., sup{||Doj(z)h|; h € H,|h|| < 1,2 € H} < oo and
sup{||D%c;(x)(h1,h2)| ; h1,ha € H,||h1|| < 1,||he|]| < 1,2 € H} < oo.

For each positive integer n, we define a mapping p,: H — H by

(1.1) pn(z) =

N =

> Doj(x)o;(x)
j=1

for x € H. We assume that there exists a mapping p: H — H such that

lim {|pn(z) — p(z)] =0

n—oo
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for all x € H and there exists a constant Cy > 0 such that

lon () = pa()]l < Collz — yl|

for all z,y € H and all n > 1. Therefore, it also holds that

lim sup [|pn(z) = p(z)[| = 0

for each compact subset K C H.

Let o € H be fixed and (X(t))eo,rj be the H-valued continuous
(F(t))tejo,r-adapted stochastic process which is the unique mild solution
of the stochastic differential equation

(1.2) dX (t) = AX (t)dt + b(X (t))dt + o (X (t))dB(t),
' X(0) = zo,

that is, (X ()).ejo,r) satisfies the following stochastic integral equation

X(t) = S(t)xo + /0 S(t —s)b(X(s))ds
+ /t S(t—s)o(X(s))dB(s), t€[0,T], P-as.
0

Let h: [0,T] — Uy be a continuous mapping which is piecewise con-
tinuously differentiable and satisfies h(0) = 0. We denote by &( - ) =
(- ;h): [0,T] — H the unique mild solution of the following differential
equation

AE(t) + (b= p)(E(1) + o (£())A(t),

—N—
Mmooy,
—~~
°e =
1
8

o

£(t) = S(t)wo + /0 S(t — 5)(b— p)(E(s))ds

+/ S(t—s)o(€(s))h(s)ds,  te[0,T).
0
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Let

L=1{&(;h); h:[0,T] — Uy is continuous and
piecewise continuously differentiable, h(0) =0} c C([0,T]; H).

Our main theorem is the following.

THEOREM 1.1.

supp X (-) = L,

where L denotes the closure of £ in C([0,T]; H) and supp X (-) denotes the
support of the distribution Po X ~'. Here Po X~ is the image measure of
the mapping w — X (-,w) from Q to C([0,T]; H).

Bally, Millet and Sanz-Solé [3], Millet and Sanz-Solé [7] and [8] proved
support theorems for particular SPDE’s. Further research is needed to an-
swer the question of whether we can extend our support theorem to contain
their results.

Our SDE’s are motivated partly by SPDE’s in forward interest rate mod-
els called Heath-Jarrow-Morton (HJM) models in mathematical finance. If
we use our support theorem, we can prove an “invariance theorem”, which
is useful to determine “invariant manifolds” for HIM equations. This kind
of topics shall be discussed in forthcoming papers.

To prove our support theorem, we have to prove mainly two theorems.
First we prove “approximation theorem” in section 2. Secondly we prove
“convergence of parameterized SDE’s” from section 3 to 6. Using these two
theorems, we shall prove our support theorem in Section 7. As a notational
convention, constants denoted by C' which will appear may be different from
one part to another.

2. Approximation Theorem

In this Section, we consider the following situation. Let H be a separable
Hilbert space endowed with a inner product (-, ). We denote its norm by
| - lzz. We often abbreviate || - ||z to || - || for simplicity. Let A be the
infinitesimal generator of a (Cp)-semigroup (S(t))i>0 on H.

Let us fix T' > 0. Let (2, F, P) be a complete probability space equipped
with a right-continuous nondecreasing family (F(t));(o,) of sub o-fields of
F such that each F(t) contains all P-null sets.
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Let r be a positive integer and o;: H — H, 5 = 1,2,...,r, be twice
Fréchet differentiable mappings such that sup,cy ||oj(x)| < co. We as-
sume that those Fréchet derivatives up to second order Do; and Dzoj are
bounded. Let b: H — H be a Lipschitz continuous mapping.

For each m = 1,2,..., let 6,, = T'/m and

[t = ks [t = (K + 1)ém
if kbp <t < (k+1)8m, k > 0. Let (BY())cpor), 5 = 1,2,...,7, be in-

dependent real-valued standard (F ( ))tefo,r)-Brownian motions. We define
real-valued stochastic processes (B, (t Neepo,r), J=1,2,...,7, by

t— [ty

(2.1) B}, (t) = B'([t],) + (B7(thn) — B ([t]))

m

for t € [0,7] and m > 1.
Let (X (t))se(o,r) be the unique mild solution of the stochastic differential
equation
dX (t) = AX (t)dt + b(X (t))dt + = Z Doj(X(t))o;(X (t))dt
(22) + Z o (X (t)dBI(t),

X(O) = T.

Let us denote by &, ( - ) = &n( -, w): [0,T] — H the unique mild solution
of the following differential equation

Em(t) = A& (t) + b(&m(t) +ZUJ Em (1)) B, (1),
fm(()) = o

for each w.
We shall prove the following theorem in this section.

THEOREM 2.1. For anyp > 1,

lim E| sup [|én(t) - xX®)|*| =o.
m— 0<t<
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Before proving this theorem, we prepare some lemmas. For each m > 1,
let
Em(t) = S(t = [t]n)Em([t];n)

and

for t € [0,T]
LEMMA 2.2. For any p > 1, there exists a constant C' > 0 such that

B[ sup_len(t) ~En(0)]*] < Cot

0<t<

ProoF. Note that
gm(t) - gm(t)
(2.3) ! N
= S(t—s) ds+z S(t — 8)0;(Em(s))BI,(s)ds,

[tlm [tlm
and hence there exists a constant C' > 0 such that

(24) (&t — &Il < C(8m+ D IB([H5) - B (1))

J=1

for t € [0,T]. Since

B| sup |B([t]) = B ([t],)*]
0<t<T

._.

E[|BJ (k + 1)8m) — B (k6) || = (2p — WUTEE Y,
k=0

we obtain the lemma. [

REMARK 2.3. We shall use the following identity when arguments sim-
ilar to Chapter 5 in Da Prato and Zabczyk [4] are needed.

t
(2.5) /(t—u)a_l(u—s)_adu: - , 0<s<t 0<a<l.
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LEMMA 2.4. Letp > 1. Let (B(t))i>0 be a real-valued standard Brow-
nian motion and ((t))cjo,r) be an H-valued predictable stochastic process
that satisfies sup{||y(t,w)|| ; 0 <t < T, w € Q} < co. Then there exists a
constant C' > 0 such that

t

Bl suwp || [ S(t-s)y(s)dB(s)|*| < con.
0<t<T  J[t]m

Proor. We take a € (ﬁ, %) and fix it. By Equation (2.5) and the
stochastic Fubini theorem, we have

/[t S(t — $)y(s)dB(s)

Im

_ sinﬂwa /[: (t — u)afls(t — ) </[t ) (u—s)"*S(u— S)V(S)dB(S)>du.

Im

Im
So we have

t sin T«

[ S(t—s)v(s)dB(s)|| < sup_||S(u)|
[tIm T 0<u<T
/m (t—uw)* | [; (u—s)"*S(u— s)y(s)dB(s)||du.

By the Holder inequality, we have

| - S(t = s)v(s)dB(s)|*

t U
< o5 / u / (u— 5)S(u— s)y(s)dB(s)|| *du
[t]m [t]m

m—1
< Cppal Z /
k=0 7k

for all t € [0,T]. Therefore we get

(k+1)8m

b —8)7S(u — s)v¥(s $)12Pdu
||/k§m<u )= S(u — $)1(s)dB(s) | du.

6’"L

t
Bl suwp || [ St s5)y(s)dB(s)|¥]
0<i<T  J[t];m
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(k+1)é p
< cg2rat Z/ / (= 5) 2|5 — s)(s)|ds)] du
(k4+1)6m 61 2a
< Ot Z/

)pdu <cl O

LEMMA 2.5. For any p > 1, there exists a constant C' > 0 such that

B[ sup | X(t) - Xn(0)]?] < C857.
0<t<T

PRrROOF. Since we have

X(t) = Xm(t)
= - S(t—s)b(X(s))ds + % Z - S(t —s)Do;(X(s))oj(X(s))ds
tm PR

+Z/ S(t — s)o; (X (s))dB (),
= iz

it holds that

1X(®) = Xl < C(6m +Z|| " S(t— )0y (X(s))aB(s) )

t] m

for t € [0,T]. Furthermore we have

t .
Bl sup || [ S(t—s)o;(X()dB(s)|*] < Cspy!
0<t<T  J[tIm

from Lemma 2.4, and therefore the lemma holds. [
From Equation (2.3), we have

75 (Em (1)) = 05(Em(?)
/ Do (En(t) + (Em(t) = En(1))) (En(t) — En(t))dv
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(2.6) =) 4 (t +Zv t) + 77, 5(1)

for each j =1,2,...,r, where

7Ly(t) = Doy(En(®)) / S(t — u)oy(Em(u)) Bl (u)du,

[tlm
and

t

¥,3(t) = Doj(&m(t)) o S(t — w)b(Em(u))du

T _ 1 —
#32Pontt) [ st | Pt

+ 0 (Em(u) = &m(u)) (Em(u )—Em(U))dv)Bh(U)du

[ [ D03 (6n0)+ 2 (6nlt) ~ Enle)
(ém(t) - ém(t)v fm(t) - 5m(t))d'02-

LEMMA 2.6. For any p > 1, there exists a constant C' > 0 such that

[t]m . ..
Bl suwp || [ S(t—s)7, 5(s)Bi(s)ds|*| < Coh,.
0<t<T 0

PROOF. From the inequality (2.4), we have

sl < 0 m+§j / € () ~Eon ()11 B ) et [ (1) ~En (D]
< o+ Y (6 S IB () - B B () — B
=1 j=1

+ (6 =SB () - B()1) '}
j=1
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This inequality and the following one concludes the lemma.

[tlm . ..
Bl sup || [ St~ sy (0B (s)as|)
0<t<T 0

T , ' . 2
<082 [ B[l ) P (Bl = B (1)) ] s O

LEMMA 2.7.
(i)
lim B[ sup X (1)~ X(w)[P] =0
610 uy,ug €[0,T)
lur —u2|<é
for any p > 1.

()
lim sup |(S(u1) — S(uz))z|| =0
610wy upefo,1)

|u1 —uz| <8, zeK

for any compact subset K C H.

PrROOF. We have E[SUPogth HX(t)Hq] < oo for any ¢ > 2 from Sec-

tion 7 in Da Prato and Zabczyk [4]. Therefore, since X (+) is continuous a.s.,
(i) holds.

Since the function f: [0,7] x K — H defined by f(v,z) = S(v)x is
uniformly continuous, we obtain (ii). [J

LEMMA 2.8.  Let (Y(t))epo,r be a (F(t))-adapted stochastic process
with continuous paths a.s. Then there exists an mondecreasing sequence
of compact subsets K1 C Ko C --- C H such that

lim P(Y(t) € K,, forallt€[0,T]) =1.

n—~oo

PROOF. Let pu be the distribution of w — Y ( - ,w) on C([0,T]; H).

Since C([0,T]; H) is the Polish space, there exist compact subsets K; C

Ky C --- C C(]0,T]; H) such that lim,,_. p(K,) = 1. We define a con-
tinuous map f: [0,7] x C([0,T]; H) — H by f(t,w) = w(t) for (t,w) €
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[0,T] x C([0,T); H). Then if we set K, = f([0,T] x K,), K, is compact
subset in H. Finally we have

P(Y(t)€ K, forallte[0,T]) > pu(K,) —1, n— oo O

LEMMA 2.9. Let

. [t]m . . [t .
B0 = [ S0 =96 Bds = [ (= )y (X(9)aBs).

For any p > 1, there exist a constant C > 0 and a double sequence {Cp, p}
which satisfies limy, oo limy,—oo Crnn = 0 such that

[sup |12 (t |2p <C’/ sup [|&n(t) — (t)HQp]du—i—Cmyn

0<t<v O<t<u

for allv € [0,T)].

PrOOF. We take a € (zlp, 2) and fix it. By Equation (2.5) and the

stochastic Fubini theorem, we have

[tlm )
/0 S(t — s, 1 (5) B, (5)ds

[t/6m]—1

(k+1)6m _ .
S / S(t — 8)0; (Em(s)) B, (5)ds
k=0 /kom
_ 1 / 4B () / S(t — )0 (En(@))da

k=0
_ /0 M’”(é /[ []u]; S(t — a)aj(ém(a))da)dBj(u)

Ulm

_ sin:oz /O[t}m (/umm([t];] (s u)_ads)

X (i / [um St — a)aj(gm(a))da) dB’ (u)

om Jiulm

sina [[m
=S [ = 9 (e = 1)

™
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s . 1 [u]h R _ R ]
{[e=w(s /Mm S((sli — )0 (En(0))d) dB () b
Hence | oo ) y |
B = 2 [ i = S i),
where .
Vi) = [ (5= w e S(slf — )V (0B w)
0
and
. [ul _
mu):i S = 80 En ) SR, ~ )3 (X )

Therefore, by using the Holder inequality, we have

sin To

. op—1\?!
5,012 < ( )

2p
su S(u T2pa—1 (
e ISwll) 1
[tlm )
x / 1V ()] ?7ds.
0

Taking the expectation, we get

. [V]m .
B[ s 1@ <c [ B[V

0<t<v
<c /0 M’”E[( /0 (s — ) 2 ¥ ()| du ) | ds

c(fi;Z)pE [/OWL 194, ()Pdu, v e 0.7]

IN

Here we used Young’s inequality.
Now we have
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1 [luln

- S(lul” —a

s Sl
(058 — ) X (ful)) — 05(S i — ) X (w) ) di
[u]h

i S0 = ) (50 — (i) X () 03X (w) )i
[u]h,

b (Sl St~ w)oy(X )i

and so

Y5, ()| < Cliém([ulm) — X ([ul)ll + ClIX ([ul;,) — X (w)]
+C sup [[(S(@) = DXl +C sup (S(ur) = S(uz))os(X ()]

uq,ug€[0,T]

[u1 —u2|<ém
for u < T. From Lemma 2.8, we can choose an nondecreasing sequence of
compact subsets K; C Ko C --- C H such that lim,,_,. P(£2,) = 1, where

Q,={X(t)e K, foraltel0,T]}.

Noting that by the definition of Yy (u), there exists a constant C' > 0 such
that ||V, (u)|| < C, we have

E[n I ] = B[IV)% 5 Q0] + E[ITA @75 2\ Q0]

< C{E| sup [lén(s) = X(5)|| + B[ sup [ X(w) = X (ua) ]
0<s<u uq,ug€[0,7T]
[ur —uz|<ém

+ sup [|(S(@) — Da|*
0<a<ém
zeK,

+ sup 1S (u1) = S(uz))oj ()| + P(Q\ Qn )}

u1,ug€[0,T]
|U1 _u2|§6m7x€Kn

Therefore Lemma 2.7 completes the proof. [

The next lemma is an extension of Burkholder’s inequality to Hilbert
space-valued martingales.
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LEMMA 2.10. Let p > 1 and (Ap)n=o0,1,... be an nondecreasing family
of sub o-fields of F. For any H-valued (Ay)n=0,1,...-martingale (My)n=o1,...
with Mo = 0, there exists a constant C, > 0 depending only on p such that

1<k<n

B[ max [|My)7] < € E[(i 1M, — Mk_lw)p}
k=1

for allm > 1.

PrROOF. Let

f= (B s ]} b= (B[ 1 vne?) ]}
k=1

Letting n; = M; — M;_1, j =1,2,..., we have M}, = 22?21 n;j. Since

k k
IMel? =2 < Mj_y,m; >u + Y Ingll?
i=1 i=1

we have
i p i p
Il < 20723 < My >u o+ (3 Imil2)" )
j=1 i=1
Hence we get

max || My||*P < 2P~ 1{2p max
1<k<n 1<k<n

n
p
§j<MJ vy =]+ (3 Inil2)"}
j=1

From Burkholder’s inequality for real-valued martingales, there exists a con-
stant (), depending only on p such that

Z<MJ 1,7 >H’ } <CE[(Z<M] 1,7 >H)p/2}.

7=1

E[max
1<k<n

Therefore we have

1 < 2 {2, (S Ity )] + 1)

J=1
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n
p—1])9p P 112 p/2 2
<2 {2 Gy 1087 (3 I IP) ] + 73]
‘7:

< 2p71{2pCpI1]2 + 122}

This yields

I < P0Gl + (210G + 27113

_ (2(p—l)0p /2107002 + 2pf1>12. O

LEMMA 2.11. Letp>1, a € (%, %) and fix them. Then, there exist a
constant C' > 0 such that

o N
B[ sup | / S(t — 573 (5) B (5)ds
0<t<T 0

o [T s ape @ (]

[s]m

S(s = w)ory (€ (w))du ) ds|[*|
< 06%17201)‘
If j # 1, there exists a constant C > 0 such that
[tm

E{ sup || S(t— 8)7,{,;172(3)3%(5)613“21? < 051551—2a).
o<i<T Jo

PrROOF. Let

where

and

Kil(s) = {((BJ‘([sm = B([s])” ~ bm. j=1
(BI(sh) = B ([s1)) (B'([sJ) = B (1)), 5 # 1.
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Then it has to be shown that

B[ sup |1 1)|7] < 6702
0<t<

We immediately have
B||1K5 ()] < co¥.

By Equation (2.5) and the Fubini theorem,

. [t]m . .
12 ()1 < C5;14””/ S([th — 5) L () K3 (s)ds || >

m

< Cs| / o — W) LS ([, — w) Y (u)du| >

[t]m
< o5 / 1Y) |2 du,
0

where

m m

l(y) = uu_s—“ u— 8) LI KI(s)ds.
Y (u) /0< )8 (u— )L (s)KE ()d

Hence

T
E| sup |[IZX@®)12P| < s [ E||YI4(w)||??|du
| sup |15 " gl
0

0<t<T
Now we have
Vil (u) = YT‘lel(u) + Y,i’fg(u),
where

m

. [ulm ) )
Vi = [ e s Ss- 9Le) K(s)ds
0

and

Via(u) = /[ (=9 Sl = LK ()i,

From Lemma 2.10, we have

E[anfl(u)n?p}
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bl [m—1 — |
= K > ()] / (u— )75 (u~ S)L%@’I(S)dsw)p]
k=0 kbm

Since we have

(k+1)8m, ,
| (u—5)"*S(u— s) Ll (s)ds|
Kebum

(k4+1)6m, 1
< Cbp, / (u—s)"%s < C——827
k 11—«

m )
Om
it follows that

b’ fum—1
BlIvah@l*] < cs®p[( Y (K ken)?)']
k=0
Om
< COBE) (g ul, B[ (K3 (k6m))™ ] < Cono=2),

m

H
=
3]
|
A

Next we have

B[ I35 < céifE[(/ -

[ulm

(u— 5) |G ) |ds) |

u

gc&?g(/ (u—s)%i”lds)Zp_l/u B(|K3 )] ds

[ulm [ulm

< Cppsppi=e)=lgiptl = c2p(3a),

Therefore we get

sup || 17 < < .
E[ HIml(t)HQp} < 05;419(5%5—204) + 5%9(3—04)) < 0(5%1—204) 0
0<t<T

LEMMA 2.12. Let

) [tlm
13, (t) = /0 S(t— s)

(5-Dos(En(s)) [ (s~ wo(En(u))du — 3 Doy (X (3))o (X () ) ds.
m [s]m
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For any p > 1, there exist a constant C > 0 and a double sequence {Ch, r}
which satisfies limy, oo limy, oo Crnn = 0 such that

B[ sup [1,0)]*] < ¢ / ”E[sup l&m(t) = X&)% ] du + Cpn,n
0

0<t<v 0<t<u
for allv € [0,T].

Proor. Note that

(2.7) L, (8) = I,y (8) + I o (8) + I 5 (8) + I3, 4 (1),
where
| oF ) . )
Fu®) = 5 /O dsS(t — ) Do (ém(s) /[ (s —u)os(Enu)d
1 [t]m _ s B
- %/0 dsS(t — 8) Doy (Xom(s)) /[S]m S(s — w)or; (Xom () du,
| i ) . )
1 () = i /0 dsS(t — $) Doy (Xom(s)) /[ (s ) (Kn(a)
1 (lm B s -
g s Do X [ 8o~ (Xl
. [t]m s
Boat) = 5 [ St =Dy (X)) | 86 =iy (X
1 [tlm B B B B
- g/o (5 = [8lm)S(t = [s];)) Do (X ([s];,)) o (X ([s];,)ds
and
1 [Hm
Iot) = @/0 s — [8]m)S(t — [s]m) Do (X ([s],,)) 05 (X ([s];,))ds
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As for If;%l(t) we have

, [tlm _
7 @< 51 [ dsS(e = )0 (6ns)

S

S(s — u)(0;(Em(w)) — 0 (Xm(u)))dul

[S]TIL
1 [tlm
+—||/ dsS(t—s)
om ' Jo

(D0j(&m(s)) = Doj(Xm(s))) | S(s —u)oj(Xm(u))dull

[s]m

[tlm _ [t _ _
<oft [Tas /H [AOES AT M ACES ABIT:

[V]m [v]m
<0 [ enllshn) ~ X(ellds <€ [ sup [l (t) — X(6)du
0 0 0<t<u
for 0 <t <wv <T. Therefore we get
B[ sup 12, 01] <0 [ B[ sup () - X0 .
0< <u
From Lemma 2.8, we can choose an nondecreasing sequence of compact
subsets K1 C Ko C --- C H such that lim,,_,o, P(2,,) = 1, where
Q,={X(t) €K, foraltel0,T]}.

Since we have
[ i
119,50l < —H/ d55(t — 5)Do; (X (5))
/ " 8(s — ) (03 (Ko ()) — 03 (X ([s]5) du]

[s]m
[t 7
+Cp /0 dsS(t = ) (Doj(Xin(s)) = Doy (X ([s]n)

S(s = uw)oj (X ([sly)dul

[s]m

1 [Mm s B B
<0 [ s [0S bl DXl
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[tlm B B
[ = 1) = DX (sl)las).
it holds that

177, ,@) < C sup ||[(S(u) — Dz|l, te€0,T), we Q.
0<u<ém
reK,

Since there exists a constant C > 0 such that

sup |2 ,()|<C  as,

0<t<T
we get
B sup (|5, ,0] = B| sup 15,507 2]
0<t<T 0<t<T
+ B sup 113,575 2\ 2
0<t<T

<C( sup [[(S(w) = Dl + P2\ Q).

Ry
Since we have
112, 5(8)]
1 [tm B s B
<o /0 dsS(t — 5) Doy (X ([5];)) /[ (805 =) = Doy (X (7))

[t
+ LH / (5 = [s]m)(S(t —5) = S(t — [s]n))

X Daj(X([s];n))05 (X ([s]n))ds]|

G ) v]mdS/[s]_ (s = w) = Doy (X([s]) du

[v]m
e / S(t ) = S(t ~ [$])) Doy (X ([} (X (5]52)) s
it holds that

177, ()l SC( sup [[(S(u) = Doj(z)[|+ sup [|(S(u) —1)Do;(x) J(w’)H>

0<u<édm 0<u<édm
CL‘GKn $€Kn
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for all t € [0,7] and w € Q,. Since there exists a constant C' > 0 such that

sup 1,50 <C as.
0<t<T

we get

B[ sup |13, 5(0)]1]
0<t<T

:E[ sup Hfg%g(t)yy?p;szn} +E[ sup \\13;173@)\\212;9\94
0<t<T

0<t<T
SC( sup [|(S(u) = Noj(@)|* + sup [(S(u) = I)Doj(x)a;(x)|*
e Ry
P(Q\Qn)).
Finally we estimate Ifﬁ, 4(t). Since
[tlm
o [ = 1S~ [l D (Xl o (X T
g O nt ks,
. ;} /k(S (5 = kbm)dsS(t — kb)) Doj(X (kb6m)) o (X (kém))
O [Hlm—1

:%m S S(t = ki) Doy (X (k)75 (X (k)
k=0

[t
=3 [ st - D sk sl s

we have the following.

IIS—H/

(D (X ([s]n)) (X ([8],)) = Do (X (s))r; (X (s))) ds|

[t]m
—H/ S(t = [slm) = S(t = 8)) Doy (X (s))oj (X (s))ds]|

<o [ 1l - X(6)las
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(V]
[~ ) = (e = 9) Do (X ($))a; (X (5D ).
0
Therefore

1B 0l <c( s X () - X(w)]
u1,uz€[0,T]
|ur —u2|<ém

+ sup [[(S(u) ~ D)Do(@)a(x) )
e

for all t € [0,7] and w € Q,. Since there exists a constant C' > 0 such that

swp 19, (DI <C  as.
<t<T

0<
we get
B[ sup 15,40
= B[ suwp 11, (0175 @] + B| sup |5, ,(6)|%; 2\ 2]
0<t<T 0<t<T

< C(E[ sup || X (u1) —X(U2)HQP]
w1 ,ug€[0,T]
Jur—u2|<bm

+ suwp 1(S(u) — 1) Daj(x)a;(x)||* + P2\ Qn))'
zeKn

Thus the result follows from Lemma 2.7. [J

Combining Lemmas 2.6, 2.9, 2.11, 2.12 and Equation (2.6), we obtain
the following lemma.

LEMMA 2.13. For anyp > 1, there exist a constant C > 0 and a double
sequence {Cp, n} which satisfies limy, o limy, 00 Crm = 0 such that

[t

Bl sup | [ S(t—s)05(€n(s) Bj(s)ds
0<t<v 0

[ -
_ /0 S(t — s)o;(X(s))dBI (s)
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t]m
% /0 S(t — s)Doj(X(s))oj(X (5>)d5”2”]

<C [ B[ sup )~ X(OI]du+ .

0<t<u

From the Lipschitz continuity of b, we have the following lemma.

LEMMA 2.14. For any p > 1, there exists a constant C' > 0 such that

[t]m
Elsup || [ St 5)(bEm(s)) — b(X(s))ds]*]
0<t<v 0
<c /0 E[ sup 16 (t) = X ()] du
Note that

i .
Enlt) = Xu®) = [ 80— )46 () ~ HX(:))ds
r [tlm ..
([ 8 = a6 B
(2.8) =10
[t]m ;
_ /0 S(t — s)oj(X(s))dB (s)

[tlm
_ %/0 S(t = 5)Da; (X (s))o; (X (s))ds

for t € [0,T]. Therefore combining Lemmas 2.2, 2.5, 2.13 and 2.14 we obtain
the following lemma.

LEMMA 2.15. For anyp > 1, there exist a constant C' > 0 and a double
sequence {Cp, n} which satisfies limy, o limy, 00 Cry = 0 such that

(29) B[ sup [lén(t) = X(0)]¥ ]

0<t<v

< c/ov B[ sup [16n(t) ~ X ()] du + Cr .

0<t<u
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Applying the Gronwall inequality to Equation (2.9), we obtain

B sup [|gn(t) = X(1)*] < Cnne™
0<t<T

This proves Theorem 2.1.
3. A Parameterized SDE

In sections 3, 4, 5 and 6, we consider another situation. Let H and U
be separable Hilbert spaces endowed with inner products (-, -)g and (-, )y,
respectively. We denote their norms by || - ||z and || - || respectively. We
often abbreviate || - ||g to || - || for simplicity. Let A be the infinitesimal
generator of a (Cp)-semigroup (S(t))i>0 on H.

Let @ be a nuclear strictly positive operator on U. We define a separable
Hilbert space Uy by Uy = QY/?(U) endowed with a inner product (u,v)y, =
<Q_1/2u,Q_1/2v>U, u, v € Up, and with its induced norm | - ||y, Let us
fix T > 0. Let (2, F, P) be a complete probability space equipped with a
right-continuous nondecreasing family (F(t));c(o,1] of sub o-fields of F such
that each F(t) contains all P-null sets.

Letoj: H— H,j=1,2,...,r, be twice Fréchet differentiable mappings
such that sup,cp [|oj(x)| < co. We assume that its Fréchet derivatives up
to second order Do;j and D?c; are bounded. Let V: H — L(9)(Uo; H) and
b: H — H be Lipschitz continuous bounded mappings.

Let (B7(t))cpor)s § = 1,2,... ,r, be independent real-valued standard
(F(t))tejo,r-Brownian motions and set é,, = T'/m for positive integers m.

We define R-valued stochastic processes (Z,jn(t))te[oj], j=1,2,...,r, by

t— kom

m

Z},(t) = B (t) — B (kb)) — (B?((k +1)8m) — B (kém))

if t € [k, (k+ 1)6m], K =0,1,... ,m — 1. Then the processes

(Z3, () st (k+1)6m]

are pinned Brownian motions from 0 to 0 on each intervals [k, (k+ 1)),
k=0,1,2,...,m— 1.
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We note that (Zh(t)icjor, 4 = 1,2,...,7, are not (F(t))cor)-
adapted. Let (Gim(t))icjo,r) be a filtration defined by gm( ) = F(t) v
o{Bi(kbn) ; k = 1,2,...m, j = 1,2,...,r}. Then (Zj(t))ep1] are
(Gm(t))tefo,r-adapted processes.

For each y = (y1,¥2, ... ,ym) € R™, we define a mapping

em( - 5y): [0, T] - R

by

t — kbm,
om(tiy) =Yk + —5-

for t € [kbm, (k+ 1)6y], k=0,1,... ,m — 1, where we have set yo = 0.

Let (W(t))ieo,r] be a @Q-Wiener process in (£, F, P) having values
in U with respect to (F(t))te[O,T]~ We assume that (W (t))eo,m and
(B?(t)tecpor) J = 1,2,... ,7, are independent, and so (W (t))icp ] is also
(Gm(t))tefo,r)- Wiener process.

Let = (6%,...,0") be (R™)"-valued G,,(0)-measurable random variable
and xo € H be ﬁxed An H-valued (G, (t))se[o,r)-adapted stochastic process
(Xm(t;0))iepo,r) s said to be a mild solution of the stochastic differential
equation

(yk+1 - Z/k)

AX o (t:0) = AX (£ 0)dt + (X (t;0))dt + V (X (t:0))dW (t)
+ 30 0 (X (£.0))dZ (1)
+ 01 05(Xon (8 0)) @ (t; 67 ),

Xm(O; 9) = X9

(3.1)

if the following stochastic integral equation holds.
t
X (t;0) = S(t)xo +/ S(t— s)b(Xm(s;0))ds
0
t
+/ St —s)V(Xn(s;0))dW (s)
0
Tt
£ 37 [ (= 90X (502} (5
j=170
Tt
#3750 = 910, (X0 (536)) (537 s,
— /0

€[0,7], P-a.s.
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Here ¢, (- ; 67) denotes its derivative for the mapping t — o, (t; 67).
We shall prove following theorems.

THEOREM 3.1. The stochastic differential equation (3.1) has the
unique H-valued (G (t))iepo,r)-adapted mild solution, which has continuous
paths a.s.

THEOREM 3.2. Let 0, = (0%,...,07), 0 = (6',...,0") € (R™)" such
that limy,—,cc |0n, — 0| (mm)r = 0, where |- |rm)r means Euclidean norm. Then
the sequence

sSup HXm(t? en) - Xm(t; 9)”
0<t<T

converges to 0 in probability as n — oo.

Let h: [0,7] — R" be infinitely continuously differentiable functions
such that h(0) = 0. We denote X ( - ;0) by X( - ;h) for

0 = ((h'(8),h'(26),... ,KN(T)), ..., (h"(6),h"(26),... ,h"(T))),
where h/ denote j-th components of h. Let (1(t; h))ieo.7] be the H-valued

continuous (F(t))s>0-adapted stochastic process which is the unique mild
solution of the stochastic differential equation

dn(t; h) = An(t; h)dt + b(n(t; h))dt + V (n(t; h))dW (¢)
—% Z Daoj(n(t;h))oj(n(t; h))dt + Z oj(n(t; h))h (t)dt,
=1 =1
n(0; h) = zo.

We shall prove the following theorem.

THEOREM 3.3. For anyp > 1,

lim B[ sup |[X(t:h) = n(t; )]|*] = 0.
m—oo  Lo<¢<T
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4. Some Lemmas under the Situation in Section 3

In this section, we prepare some lemmas. The following lemma is due
to Chapter 7 in Da Prato and Zabczyk [4].

LEMMA 4.1. Let p > 1 and (y(t))cp be a Ly (Uo; H)-valued
(F(t))iejo,r -predictable process that satisfies

2y I, ] < .

Then

. T

_ | <
B[ sup 1 [ 50— W @l] < Coal[ | 111, ]
where
sin wa\ 2p TPt
C e St 4]17
pa = (T0) e ISl C=%a
2p—1

X(p(2p—1)>p< 2p >2P(P—1)

1 -2« 2p—1

for any constant o € (2p, é)

From the argument in Chapter IV in Ikeda and Watanabe [5], we have
the following lemma.

LEMMA 4.2. Foreachj=1,2,...,r, we define a real-valued stochastic
process (Bin(t))iepo, 1] bY

BI,(t) = 3, (k) + Z3,(2) + /k 5 #d

fort € (kbm, (k+ 1)op], k=0,1,... ,m — 1, with ﬁﬁn(O) = 0. This process

is a standard (Gm/(t)).c(o,r)-Brownian motion.

LEMMA 4.3.  Let p> 3. Let ((t))ico,1) be an H-valued (Gm(t))ic(o,1)-
predictable process such that

o[ ] < .
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(i) Letting a € <2ip, %) be fized, there exists a constant C' > 0 such that

Bll [ @5 - sz o]
<osp([ B[inen)as)”

fork=0,1,... , m—1andt € [kby,T], and

kém

t
|

Bl [ (=878t = s)1(s)dZ}()|¥

<o ([ Bline]as) "
kém

fork=0,1,... ,m—1 and t € [kby,, (k + 1)p].
(ii) There exists a constant C' > 0 such that

kém

B w1 [ su-snaze] <cst ([ (o))

kém <t<v kbém kbém,

fork=0,1,... ,m—1 and v € [kbm, (k+ 1)bm].

PrROOF. Under the notation of Lemmas 4.2, we have
t . .
/ (t— )" S(t — $)y(s)dZ0, (s) = . () = I, ,(8),
k6m ’ '

where

7Lt = /k (t— )OSt — s)y(s)dB (s)

Om

and

; ¢ o Zfﬁs
17 5(t) = /k (t — 5) S (t — s)y(s) 2m) gy

Sm (sl — s

where [s| = (k + 1)6, if k6, < 5 < (k+1)6m, k> 0.
From the Holder inequality, we have

Bit 0] < ce[( [ -9 hras)]
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sc(/ )6oas) (/ o) ieds) ¥

< Ot — k) 5=20(t — ks, %—1E/ (s H?Pds}

< Ot — kP20~ (/M B[ ()] ds)"”.

Let us fix € € (0, %) From the Holder inequality, we have

4p

E[H%’Q(t)uzp} = C(/}; ([s]h — 5)—%(%+e)ds)?

<m[{ [ -

!

Sim

Furthermore

E[{/k: (t — 5)7 3y (s)|? (H)fds}?}
< (/ 6ads / ()l ‘Zj_z e)ﬁds}g]

- Zi(s)|
1 - 6a) 5(t — k) F1-Wop )2 (—2m )Py
< (1—60) "k (t — ko) ¥ IAGC! (o) )
< (1—6a) 5 (t — k) 31720

[, (Elinn]) S ([s]|+Z ”i(sig-e)ﬂ ) s

m S

Since

7zl 4
E[(—‘ Wl )] < -1y s,
([slh —8)2~°
it holds that
t 4p
3

B[IE 1] <c ([ (slf - 52 9ds)
kém
(6= ko) s ([ m [l ]as) "
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Therefore we obtain (i). From Equation (2.5) and the stochastic Fubini
theorem, using the result (i), we also obtain (ii). [J

LEMMA 4.4. Letp> 3. Let (y(t))co,1) be an H-valued (Gm(t))icio.1)-
predictable process such that

2l /0 "] <o,
and set .
13,(t) = /0 S(t — 5)1(s)dZ0,(5).

Then there exists a constant C > 0 such that

. v 1/2
B[ sup [11,017] < oo (B[ [ Ins)vas]) L ve o,
0<t<v 0

PROOF. We take o € (ﬁ %) and fix it. By Equation (2.5) and the
stochastic Fubini theorem, we have

sin T«

I,(1) =

/ du(t — u)*1S(t — u) / = S (u — $)y(s)dZ (5),
0 0

™

and therefore
|, )| < oT?e / H / (u — 5)S(u — s)y(s)dZi (5)| P du.
0 0

Therefore, from Lemma 4.3 (i), we have

B sup |1,(0)]*]

0<t<wv
< o7 / E|| / (u— 5)""S(u — 5)v(s)dZi, (s % | du
0 0

< calsr / (2 [/u ||7(5)H4pd5D1/2du
0 0
< e (2] [ o)) "
0

This completes the proof. [
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PROPOSITION 4.5. Letp >3 and o € <2p, 6) be fived. Let ((t))ejo,m)

be an H-valued (G (t))ic(o,1)-predictable process.
(i) Assume that there exists a constant Cy > 0 such that

Eln0)*] < Cot2,  te0,T).

Let
) (k4+1)6m At ]
(4.1) Won(t) = / S(t — s)y(s)dZ,(s)
kb m At

fort € [0,T) and k =0,1,... ,m — 1. Then there exists a constant C' > 0
such that

,_.

m—

B[ sup | [0 1) | G (kb)) ) PP | < Cs31=2),
0<t<T k:O

(ii) Assume that y(t) is G (kdm)-measurable for t € [kbp, (k+ 1)6m), k =
0,1,.. — 1, and assume

E| suwp [y()*] < oo.
0<t<T

Then there exists a constant C > 0 such that

t v
Bl sup || [ St =911z (07| <€ [ B[ sup |0)]ds
0<t<v 0 0 <t<s
for all v € [0,T].

PROOF. Assume that (y(t)).cpo1] satisfies the condition of (i). Let

, (k+1)8m At A
() = /k (t— )78 (t — $)9(s)dZd, (s)

Om At

fort € [0,7] and k =0,1,... ,m — 1. By Equation (2.5) and the stochastic
Fubini theorem, we have

. t -
(1) = /0 S(t — 5)Ls, .1yl (9)7(5)dZE (5)
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sin T«

_ /t(t — )2l — )
0

([ = 70— 501 maer (69251023, 5)

. t )
_ sinma / (t—u)*S(t — Wi, , (u)du.
7T 0 b
Therefore

m—1
ST (i) = B 1 (D|Gin (k6)])
k=0

SIHT('O[ ¢ m-1

_ o /O(t—uo‘ 1St — u) Z T 4(0) = B[ o (0))Gon (610)] ) ot

From the Holder inequality, we have

,_.

m—

B[ sup | 0 4 (D1Gm (k8)]) 7]

0<t<T k:O
<c /0 B[1'3 (0000 — B (0160 85
k=0
By Lemma 2.10 and the Hoélder inequality, we obtain

B[S (%, 0) = B[ ()16 (k5,0)]) ]
k=0

-1

< O[3 10000 = £1 4019 68.0] 1)

3

k=0
m—1
< O B[ 1%, () = B[4 (0)| G ()] 7]
k=0
m—1
< Cnr '3 B[, 4 0)1].
k=0

Furthermore, from Lemma 4.3 (i), we have

(k+1)6m At

B[] < e ([ T plg1]as) "
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This completes the proof of (i).
Now let (v(t))iecjo,7) satisfy the condition of (ii). From the above argu-
ment, we have

t

Bl sup || [ 8¢ s)(s)azi,(s)|*] < C /0 [(mZ 15, ()112) ] du
k=0

0<t<v 0
Letting
(k+1)8mAt
drp(t) = / (t — 5)~2ds,
kém At
m—1 -2
at) = Y amat) = —5—,  te.7)
k=0
we have
p m—1 )
[(Z 1 @) ] < a@™ 3 ams (@) B[ 15, ()]
k=0
0 S a7 / (=82S (u — s)y(s) ds)’]
k=0 kbmAu

< q(T)E[ sup [v(®)]*].
0<t<u
This proves (ii). OJ
5. Proofs for Theorem 3.1 and 3.2

In this section we fix a positive integer m under the Situation in Sec-
tion 3. Let us fix a (R")"-valued G,,(0)-measurable random variable § =
(0',...,07). Let us fix € € (0, 3). For each R > 0, we define a (G ())rejo -
stopping time by

- inf{t €[0,T] ;Sup{ (s |+Zgi(3|5€ ;
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where we have set 71t = T if this set is empty and [s]} = (k + 1)6,, if
kom < s < (k+1)0m, k>0.

LEMMA 5.1. For a.e. w € Q, there exists a positive number Ry(w) such
that T8(w) = T for all R > Ro(w).

PROOF. By definition, we have

(k+1)6p — s

Zih() =

(B ((k+1)6m) — B (ké)) — (B ((k+1)8,) — B (s))

for s € [kbm, (k+ 1)bm], k=0,1,2,... ,m — 1. Therefore we have

D=

|Zin(s)] _ ((k‘+1)5m—8)’+6(

(kDo o BY((k +1)8) — B/ (kb))

=

BIi((k+1)6,,) — B’ (s)
((k+ D)8 — )27

Since the Brownian motion (B7(t)).c[o.7] has locally Holder-continuous path
a.s. with any exponent v € (0, %), we have the desired result. [

Let p > 3 and fix it in this section. Let £ be the set of H-valued
(Gm(t))tepo,r-adapted stochastic processes (X (t));e[o,r) such that

E| sup HX(t)HQp] < o0.
0<t<T

We define a mapping ¢: € — £ by
T(X)(t) = St ATHwo + ¢r(X) (8 ATT) + go(X) (¢ A TT)
+) HX)EATE +Z¢J )t ATE
j=1
for X € £, where ¢1, ¢a, (bé,qﬂ: & — & are defined by

61(X)(t) = /0 S(t — 5)b(X (5))ds.
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br(X)(1) = /0 S(t — )V (X (5))dW (s),

and

HX)(t) = /0 S(t — 5)o; (X (s))dZ2, (5)

GL(X)(1) = / S(t — 5)0; (X (5))pm(5: 67 ds.

0

This is well defined by virtue of the next lemma which comes from
Lemmas 4.1 and 4.4.

LEMMA 5.2. For X € &, it holds that

B[ sup [|l6"(X)(1)]*] < oo.
0<t<T

LEMMA 5.3.  Let (v(t))ico,r) be an H-valued (Gm(t))icpo,r)-predictable
process such that

B([ ] < o,
and set .
[it) = /O St — 8)y(s)dZ0. (s).

Then there exists a constant C > 0 such that
oATE
B[ sup [P(enrIPr] <cus B 2p] [T () s
0<t<v 0
forv e |[0,T.

‘ProOF. We use the real-valued (G (t))i>0-Brownian motion
(B (t))t>0 in lemma 4.2. Then

Pty =I(t) — 1),

where

) = /0 S(t — s)y(s)di (s)
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and . .

. ZJ

() = / S(t — s)y(s)2m8)_g,
0 [sm — s
From Lemma 4.1, we have
. oATR
B[ sup [H{(en et <CE[ [ ns)|Pras)
0<t<v 0

From, the Holder inequality, we have

B[ sup | B(tA )]
0<t<v

<crre|( /OMTR Iyl ([s]7, — 5)~3~<ds) 2p]

<orr( [ @i - ) B[ [ s ias

By observing

g 2
[t - L g (s
0

the proof is completed. [

LEMMA 5.4. There exists a constant C > 0 such that

B[ sup 670 (0) = 6" OI] < B[ [ 1) - X Pra

0<t<v
forve[0,T] and X, X' € E.

Proor. From the Holder inequality, we have

B[ sup [[61(X)(EAT) = 61 (X)) (¢ A 7)|% |
0<t<v

< CE[(/OW () ~ X'(s)]lds) "]

R

< CT2P—1E[ /O w 12X (s) — X/(S)H%ds]
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From Lemma 4.1, we have

E| sup [[¢2(X)(t A ) — ¢a(X")(t A TR)Ilzp}
0<t<v

<cr|[ V() - V()

R

VAT
<CE [/ 1X (s) — X/(s)||2pds].
0
By Lemma 5.3, we have

B sup [63(X)(t A7) = (X))t A 7)|% |
0<t<v

1X(s) = X'(s)[[**ds).

VAT

<C(1+ RQP(S;LP(HQE))E[/
0
Finally we have

B[ sup I6400) (A~ (X6 A )]

0<t<v
<c (%)2”];[( / " ) = X'(s)ds) |
< o7 (5)%[ /0 T X'(s)|%ds|. O

PrROOF OF THEOREM 3.1. We consider the sequence defined by

XE(t) = o,
o1 {Xﬁ _GR(XR), n=12....

From Lemma 5.4 and Lemma 5.2, there exist constants Cy > 0 and C; > 0
which are independent of n such that

B sup X (1) — X))
0<t<

(5.2) <Co/ dsn/ dsp_1 - / dle[\\Xf(81)—X§(81)‘\2p]
(CoT)

n!

<Cy
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From this we have

1
P( sup [IXH () - X)) > 5 )
0<t<T
(2PCoT)"

n!

<2%mB| swp | XF,(0) - XF0)|F] <
0<t<T

)

and hence

ZP( sup [|X00() —~ XE@) > ) < o

0<t< 2n
By applying the Borel-Cantelli Lemma, we get

1
P(1im { sup X2, (1) - XF@)) < o7 }) = 1.
n—oo \0<t<T 2

This implies that (X[*(-)),, is the Cauchy sequence in C([0, T]; H) a.s., there-
fore there exists a C([0,T]; H)-valued random variable X f(-) such that

lim sup || XE(@t) - XE@) =0 a.s.
=00 0<t<T

By applying the Holder inequality and from the inequality (5.2), we have

n—1

> (e[ s, 158510 - ¥t 1))

1=0 0<t<

|
—

n

n—1 . 2p—1 1
< (X rmm) T (2| s IXL 0 - XF@I7])
=0

=0 0<t<

2p—1

> !
<(Lr=m) 7
1=0
for all n > 1, and so we get

(5] sup Ixz1])*

0<t<

Ch l(; ) = (1-2%-T1)

ot (CleQC’oT) =

hE

N
Il
=}

n—1 1

< (B[ sup IXE@I]) + 30 (E] sup, 150 - xF)12])

=0 0<t<T
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2p—1

< |Jwoll + (1 — 2257_11)— % (Cle2CoT)$

Moreover, by the Fatou’s lemma, we have

B[ sup [ X7(1)|*] < lim E[ sup || X Ol
0<t<T n—o0
1

< (ool + (1 —25°7) % (Cre20oTy b )

Therefore we obtain

(5.3) lim E[ sup || XE(t) - XR<t)H2p] = 0.

n—00 0<t<T

From Lemma 5.4, Equation (5.3) and the inequality (5.2), it follows that

B[ sup (6™ (X®)() - X7(0)]*]

0<t<T
< lim B sup [|of(07)(0) - X))
n—oo 0<t<T
CoT')"
=t B swp X0 0 - XF0?] < 01t O o,
n—oo 0<t< n—oo n!

and therefore
"(XT)(1) = X (1)

for all t € [0,7] a.s.
Let positive numbers R and R’ satisfy R < R’. Then from Lemma 5.4,

E[ sup | XE(EATR) — XF (A TR)||2P}
0<t<v

—E [oi‘ii’ (X RY (A TP — oB(XT)(t A TR)IIQP}

< c/ B[IX (A7) — X7 (A )] dt
0
for v € [0, T]. Therefore, from the Gronwall inequality, we get

E[ sup || XT(t AT —XRl(t/\TR)HQP] =0
0<t<T
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and hence

(5.4) P( sup | XE() — X (1) > o) —0.
0<t<rR
Now we define the stochastic process (Xm(t;0))ieio,r] by Xm(t;0) =
XE(t) for t € [0,7F]. From Equation (5.4) and Lemma 5.1, this process is
well defined and is the unique H-valued (G, (t)):c(o,r-adapted mild solution

of the stochastic differential equation (3.1), which has continuous paths
a.s. U

PRrROOF OF THEOREM 3.2. We abbreviate X,,,( - ;0) to X( - ;6) in this
proof. Let R > 0. We have

X(tATE0,) — X(tATE6)

T T
=Na(t AT+ La(t AT+ H (™) +> 1 (AT,

=1 i=1
where .
Ln(t) = / S(t — ) (b(X (:0,)) — b(X(s: 0)))ds.
0
t
Balt) = [ 80— 9)(V(X(536,)) = V(X(5:0))dW (s),
Balt) = [ (= 5)(a,(X(s36,)) = 7,(X(s:6)))aZ, o
and
I,(t) :/0 St — 5)(05(X(5:0n)2m(s:6) — 05(X(5;0))pm(s:67))ds
for t € [0,T7.
We have from the Hoélder inequality
B[ sup It 7] < B[ [T 1X(si00) - X(s0)as]
and by using Lemma 4.1
E[Oggv |E2n(t ATR)*] < CE [/O 1 (55 6) — X (5:6))|2ds]
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From Lemma 5.3, we get

B[ sup | sn(t A 7)]]
0<t<v
R

VAT
< C(1+ R?6, /U2 E [ / 1X (53 6) — X (s; 0)\\21"15]
0
As for Iin(t A TR), we have

B| sup |11,,(t A7) ]
0<t<v

2p

<cr|( " o X300 03(X (5:0)) (53 69)1ds) .
Since we have

105 (X (5560))2m (55 65) — 05 (X (550))pm(s;67)]|
< loj (X (5560n))2m(s: 0 — 67)|| + || (05(X (5:00)) — 05(X (5:0))) m(s;67)
< 6, (100 — 0]+ 16][| X (s56n) — X (550)])),

it follows that

B sup [[1,,(t A7)
0<t<v

< C8 {716 — 0 + 1B | ( /0 X (s:0,) ~ X(s:0)]1ds) ]}
R

VAT
< 05,;2P{T2p|9n — 9+ T2P—1|9|2PE[/ 11X (51 0,) — X (s 9)||2pds} }
0
Therefore we have

E[ sup || X (s A TR; 0n) — X (s N TR; 0)”2”}
0<t<v

< C(l +R2p67;p(1+26) + 67;2p|9|2p>

% / E[IX (s A% 6,) — X (s A% 6)|P ds + C6,2716, — 0.
0
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By using the Gronwall inequality, we get

lim E| sup || X(tATT6,)— X(tATE0)|*]| =0.
n—ee Lo<i<T

Now we see
P( sup || X(t;0n) — X(t;0)] > 6)
0<t<T

< P( sup [|X(t AT 0,) — X (EA TR 0)| > e) + P(rR < T).
0<t<T

If we recall Lemma 5.1, the proof is completed. [
6. Proof for Theorem 3.3

In this section, we also use notation in Section 3.
We denote o, ( - 5 (h/(6),h7(26),... W (T))) by om( - ;b)) for j =
1,2,...,r. Let [t],, = kb if kb, <t < (k4 1)b, and

Xm(t;h) = S(t — [t],) Xm([t];;h), te€][0,T).
We shall first prove the following proposition.

PROPOSITION 6.1. For any p > 3, there exist a constant C > 0 and a
sequence {Cy,} which satisfies limy, oo Cp, = 0 such that

E[sup I [ S(t—s)
0<t<v 0
<Daj(Xm(s; n) [ S(s =)o (Xm(v; h))dzgl(v))dzgl(s)

[s]m

+ %/0 S(t—s)Daoj(n(s;h))o;(n(s; h))dSHQpi|

<c / B sup 1Xon(t:h) — nt: )7 ds + Con
0 0<t<s

for all v € [0,T].

To prove this proposition, we have to prove some lemmas.
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LEMMA 6.2. Let p > 3. There exists a constant C > 0 such that
B Xu(t:h) = Xu(t: )] < Co?
for all t € [0,T).
ProoOF. Note that

Xn(t) = Kt ) = [ (= )V (o )WV ()

30 [ St= 9o Xl )z o)
(6.1) s
4 [ S0t — $)b(Xom(s; h))ds
[t]m
#3° [ 80— )y (X)),
7j=1 [t}m

By the same argument as the proof of Lemma 2.4, we get
t

E[ sup || S(t—s)V(Xm(s;h))dW(s)H?ﬂ < oL,
o<t<T  Jm,

By using Lemma 4.3 (ii), we get

t

B sup || [ S(t=s)o;(Xon(s: 1))dZh(5)]]
0<t<T  J[t];m

m—1 t
|

< E[ sup
o EOmSt<(k+1)8m  Jkbm

el (k+1)8m
oSt ([ Bl n]as) < oot

S(t = )X (53 1)) dZ3, ()|

Obviously we have

t
E[ sup || S(t—s)b(Xm(s;h))dsHQp} < 087
0<t<T  Jt]m
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and
sup || [ S(t— 8)0;(Xon(s; ) (s3 b7 ds |2
()<t<T [t
<C sup [h@®)|IF 7. O
0<t<T
Let
, (k-+1)8m At
) = | S(t - s)
kbm At
s . .
{Doj(Xn(s:1)) /[ Sl =)oy (X312}, 0) iz )
fort € [0,7] and k =0,1,... ,m — 1.
LEMMA 6.3.
m—1
E[x), 1(0)|Gm (kbpm)]
k=0

S

= ——/ S(t — 8)Doj(Xm(s; h))( - S(s = v)oj (X (v; h))dv)ds
fort e [0,T].

'PrROOF. By using the real-valued (G, (t))i>0-Brownian motion
(B (t))t>0 in lemma 4.2, we can write

an,k(t) = Ian,k,l(t) + Iin,k,2(t) + I}]n,k,3(t)’
where

. (k+1)6m At ~
Boa® = [ 80— 9)Do (Xl 1)
kém At

" 8(s — )05 (Xon (v 1)) AZ0, (0) ) B ),
k

Om
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, (k41)mAL
D) = - /k Sl )Py (Xiu(si)
s Z3.(s)
(/Mm S(s — )i (X (v; b)) d3, (v ))m
and

. (k4+1)6mAt
Boa® = | S(t — ) Doy (Xn(5: )

dm Nt

s Z3(v) Zi(s)
(f Sts= o) (Entwi ) —do) )

5 (k+1)om

We immediately have

E[1}, 416G (k8m)| = 0.

As for IZH i2(t), it holds that

(k—&-l)&m/\t _
- _/k S(t—s)Doj(Xm(s;h))E

Sm At
s

(80 = )oy(win)as, o)

(o, T =) ontion)]

(k+1)8mAt _
_ / S(t — $)Doj (X (51 1))
kdm At

(/Mm S(s — 0); (Xom (05 h))Mﬁ)ds.

Finally for Ifn i3(t) we have

E [1;7 k3 |gm(k6m)]

s

(k+1)6m At B _
-/ S(t— ) Doy(Kn(s ) ([ S(s — )0y (Xn(v: )

Om Nt kém

289

ds
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dv ) ds
(k+1)bp —v/ (k4 1), — s

x B| 23,()Z4,(5)|Gm (ko)

(k4+1)6m At

= /k S(t — 8)Doj(Xm(s; b))

Sm Nt
s _ v — kb, dv
— )i (X (vs h ds.
(Mmsw ) (K03 1) =5 Gy ) ds

Hence the proof is completed. [

From Lemma 6.3, we have

m—1 1 ¢
B 1010 (k)] + 5 [ (¢~ 5)Dos (s )yt W)
k=0 0
— (T, 1 (8) + T o (8) + T3, (1),
where

. 1 t s
Toa®) = 5= || =) (Dontosh) [ Sts ey Zmtws e
~ Doy(X(si) |

[s]m

S(s — )0 (Xom(v; h))dv)ds,

/s ) (Do; (Xin(s:1) [?_ S(s — 0)0; (Xom(v: )l
- Djn(sit) [

[s)m

S(s —wv)o;(n(v; h))dv) ds

Toalt) = 5 [ st0=)(Drtatsi ) [ 8= vt i)
1

~ 3 | St =D n(ss et s

LEMMA 6.4. For any p > 3, there exists a constant C > 0 such that

B| sup |73, (0] < cont.
0<t<T ’
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Proor. We see that

172, 1 (2)]
<Oop / 1D0;(Xm(s:h) [ S5 — 0)o(Xm(vs b))
[s]m
— Doj(X. / (s —v)oj(Xm(v; h))dvl||ds
<of / (D03 (Xon(5: 1)) = Doy (Xon(s: 1))
/[j_ S(s — v)0; (X (v; b)) dol|ds
o [ IDe(Xu(sih)
/H S(s — ) (03 (Xm(v; b)) — 03 (X (v; b)) )do]lds

O [ Wt ) = X

1 t S _
+—/ ds/ K0 h) — Koo )] ).
bm Jo s

Hence, by the Hélder inequality, we get
T —
B[ sup 17, 017] < (| B[1Xutsih) = Xt ]
0<t<

+ —/ ds/ HX (B — X (v; h)H?P] dv).
S
Lemma 6.2 completes the proof. []

LEMMA 6.5. For any p > 3, there exists a constant C' > 0 such that

B[ sup [7,@)7] <€ [ B[ sup |Xon(tsh) (e )] ds
0<t<v 0

0<t<s

for all v € ]0,T].
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ProoOF. We see that

13, <

<C /||D0] ih)) . S(s—v)oj(Xm(v;h))dv
= Dot ) [ (o =)ot vl

<of / |(Dos(X(si b)) — Don(ss 1)

/[] S(s —v)oj(Xm(v; h))dv||ds

1 t
+ O [ 1Da (s )

~ S(s = v)(0j(Xm(v; b)) — oj(n(vs b)) dv]|ds

8
t
gc(/ 1 Xon(s: 1) — 1(s: ) Hds+—/ ds/ X, (01 1) — (o ) o)
0 [s]m
t
<C | sup || X (u;h) —n(u; h)lds.
0 0<u<s

Hence, by the Holder inequality, we obtain the lemma. []
LEMMA 6.6. For any p > 3,
lim 2| sup [1J3,5(0]*] = 0.
m—oo  Lo<i<
Proor. If we set
f(s,v) = Daj(n(s; ))S(s — v)aj(n(v; h)), 0<v<s<T,

then

Jj /St—s ) f(s,v)dv ds——/St—st(s s)ds
[

slm

Furthermore we can write as

Ty 3(t) =L 1 (t) + I, 5 (t) + I, 5(1),
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where

S

4 1 [t ,
F(®) = 5 /O st —s)( N (s, v)dv) ds

) i/ (5 = [s15m) S(t = [sTn) £ ([s]: 181 s,

j tys=lsln 1 o
Lnat) = /0 (5 = 5) S = [sa) (sl [l s
N /mm (% - %)d%’(t — [0 ([t [17)
and
Bl = [ S0P (s = 5 [ 8= 0)ds
As for Igm(t), we have
175, (0]
1 t s ; o ) )
< o )i (/[s}fn |S(t —s)f(s,v) = St —[s],,)f ([s]m) [S]m)||dv>ds
<T gl (1),
where

in(t) = sup{[|S(t — s1) f (s1,v1) — S(t = 52) (52, 02) | 5
0<vo1<s1<t0< v <82 <0< 51— 52 <6, 0 <01 — 02 < 6

We immediately get HIf;%Q(t)H < Cé,, for some constant C > 0 and
Hlfn?)(t)H < %gin(t) Therefore we have
j 3T
13O < =g () + Cém, ¢ € [0,T].
Hence it suffices to show

lim E| sup ¢/ (t)*| =0.
m—oo  Lo<<T
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From Lemma 2.8, there exists an nondecreasing sequence of compact
subsets K1 C Ko C --- C H such that lim,,_,o, P(2,) = 1, where

Qn = {n(t;h) € K, forallte|0,T]}.

We note that the set K,, defined by

Kn = {DO'J(yl)S(S—'U)O_](yg) ; 0 S v S S S T7 Y1, Y2 S Kn} cH

is compact. We have the following estimate.

15t = s1) f7 (51, 01) = S(t — 59) f7 (2, v2)|

< O(I(S(t = s1) = S(t = s2)) Daj(n(s1; h))S(s1 — v1)a;(n(vi; b))
+ [|1Daj(n(s1;h)) — Doj(n(s2; b))l

+[1(S(s1 —v1) = S(s2 — v2))aj(n(vi; h))|

+ lloj(n(vis h)) = oj(n(v2; b))

< C(sup [[(S(t—s1) = S(t —s2)) gl + In(s15h)) = n(sa; h)|

yeKy

- sup 1(S(s1 = v1) = S(s2 = v2)) o (W) + [In(v1; b)) = n(va; A)]))

for 0 <vp <51 <t,0< w3 <859<1,0< 81 —52< 6y, 0 <01 —p <
om and w € (2. Furthermore there exists a constant C' > 0 such that
supg<i<7 gin(t) < C. Therefore we have

E [0;1% 9%1(75)21’} =E [OiltlgT G (D ; Qn] +E [OiltlgT G (D)5 Q\ Qn}
< C’( sup{ || (S(u1) — S(ug))z?\l2p; ug,ug € [0, T], |ug — ug| < 6,y € Kn}
+ B|sup{|In(urs b)) = nluzi )% wr,uz € (0,7, fur — uzl < 6} ]
+sup{ || (S(u1) — S(u2)) o ()15 wr, us € [0,T], [ug — us| < 26,y € Ky}
+P(Q)\ Q) )

Since the stochastic process (1(t; h)).e[o,r) has continuous path a.s. and the
following holds

B sup [ln(t:)]|) < oc,
0<t<t
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from dominated convergence theorem, we have

sup B |sup{ [[n(ur; b)) = nua; 1)) |2
Uy, U2 € [OaT]a ’ul - UZ‘ < 6m}:| =

Furthermore if we recall Lemma 2.7 (ii), the proof is completed. O

Therefore, from Propositions 4.3 (ii), 4.5 (i), Lemma 6.4, 6.5 and 6.6,
we obtain Proposition 6.1.

From Equation (6.1), we have

Xm(s;h)) = 0(Xm(s1h))

/ Do (X5 1) + 0(X(si 1) — Xon(si 1))
(6.2) (Xm(s, h) — Xm(s; h))dv

gj

— Doy(Klsi ) [ Ss = vy (K03 0))dZEy (0)

[s]m

+ Y1 (8) + %2 (5) + 75 (s)

S

Ta(s) = D DUj(Xm(S;h))/ S(s = 0)o1( X (v; 1)) dZy, (v)

1<I<r, I#£] [slm

+Daj(X'm(s;h))/s (s — 0)V (Ko (v h))dW (0),
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s

7l 5(5) = Doy(Xom(s; 1) /  8(s — 0)b(Xon (05 1)),
[slm
V0 6(5) = Doj(Xm(s; h)) - Sto = VX k) gn (v h')dv,

fym7 / dvl/ D? O'J (s;h) + v2 (Xpn(s;h) — X (s; h)))
Xon(s;h) — Xon(s;h), X (s;h) — )_(m(s;h))dvz,

and

27 8) 4 1.4(5) + T 5(8 +Zv $) + Y (5)

for s € [0,T].

LEMMA 6.7. For any p > 3, there exists a constant C' > 0 such that
t

Bl sup || [ S(t=s)y,.(s)dZ], ()] < Ccspt=2e).
0<t<v 0

forv e [0,T].

PROOF. Since Zﬁn and Zﬂﬁ, [ # 7, are independent, and W and 73, are
also independent, we have

(k+1)6m At
e[ S(t — 57,1 (5)dZ3,(5) | G (kbm)| = 0.
kém At
Therefore, by using Proposition 4.5 (i), the proof is completed. [J
LEMMA 6.8. For any p > 3, there exists a constant C' > 0 and a double
sequence {Cp, n} which satisfies limy, oo limy, 00 Crm = 0 such that
t

Bl sup || [ St = )7, 5()4Z3, ()|
0<t<v 0

< c/ B[ sup |[Xon(t:h) — n(t: )] ds + G
0 0<t<s
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forv e [0,T].

Proor. Note that

JAEE TS
= [ (0= 903t ) = 03505 — [l (Il )25
#5055 ~ (T ) = o3 a1l m) a2

[t = )1 = 506 = b)) nlshas W)AZ4 )
+8(t = [tm)oy (n([t]m: 1)) Z5, ().
Since X, (s;h) and n([s],.; h) are G, ([s];,)-measurable for all s € [0, 7], we
can apply Proposition 4.5 (ii) to get

Bl sup | [ S(t - 5)3),2(5)d2], ()|
0<t<v 0

< CE[ [ sup X, (i) = n(ls )| ds

0<t<s

4 / " sup [1(S(— (1) — T)os (n([f5n: 1)) s
0

0<t<s

4 [ sup (1= (e~ W) astalits ) Pds] + Cop .
0

0<t<s

From Lemma 2.8, we can choose an nondecreasing sequence of compact
subsets K1 C Ko C --- C H such that lim,,,o, P(2,,) = 1, where

Qn = {n(t;h) € K, forallte|0,T]}.

Since o are bounded,

] /0 " sup (St~ (1) — T)org(n([ths ) |%7ds

0<t<s

T / " sup (1 - S(t — [17)) o ([ )]s

0<t<s
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< C( swp [(S() = Dos(@) + P\ ).
veKn

Thus the result follows from Lemma 2.7 (ii). O

LEMMA 6.9. For any p > 3, there exists a constant C' > 0 such that
¢

. . _1
B[ sup || [ S(t-s)3h )4z}, (%] < O 7.
0<t<T 0

PrROOF. From Lemma 4.4, there exists a constant C' > 0 such that
t

E[ s 1 [ s - spi(sazi o] < oo " B[hie)as) "

From Lemma 4.3 (ii), we have

B|lits(s)11 "]
<CE|| /[ ] S(s =) (03 (X (v3 1) = 73 (Ko (03 1)) )dZ (0¥

_1 _ 1/2 _1
< o (/ B[ X0 ) — X ) [ aw) " < 051272,
-

slm

S

From Lemma 6.2, we have

B a(s)11%

<CE[| [ 8(s = 0)(V(Xun(w5h)) = V(Xpn(v5 ) dW (0)]*]

[s]m

< CE[( [ 1ot~ StesnPar)

Slm

< 053,151/ B[ X5 ) — Ko 1)|#] v < 5187

[s]m

Bl 5()I*] < CE|| /H_ S(s = 0)b(Xm(v3 ))dv|[*] < Co7.
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S

B[Ihils()I*?) < CE|| /H S(s = 0)o1(Xn (v; 1)) (v; 1) ]| P
< C sup |hl(t)[* 6%,
0<t<T

From Lemma 6.2, we have

E[”’Y?Jﬂ'nj(S)Hle} < CE[HXm(S; h) — Xm(s; h)HSP] < 06%’_1, ]

Combining Equation (6.2), Proposition 6.1, Lemmas 6.7, 6.8 and 6.9,
we obtain the following Lemma.

LEMMA 6.10. For anyp > 3, there exist a constant C' > 0 and a double
sequence {Cp, n} which satisfies limy, oo limy, 00 Crpy = 0 such that

Bl sup || [ S(t = 5)0;(X(s; ))dZi, (s)

0<t<v 0
+ %/0 S(t — s)Daj(n(s; h))a;(n(s; h))ds||*

< c/ B[ sup |1 Xon(t: ) — (1) %) ds + o
0 0<t<s

forv e [0,T].
From Lemma 4.1, we get the following Lemma.

LEMMA 6.11. For any p > 3, there exists a constant C > 0 such that

B[ sup || [0 =) (V(Xn(5: 1)) = V (s 1)) AW ()]

<C [ E[IXn (i) = s ] s
forv e [0,T].

By the Lipschitz continuity of b, we have the following Lemma.
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LEMMA 6.12. For any p > 3, there exists a constant C > 0 such that

t

B[ sup || [ S(t = 5)(6(X(5:h)) = b(n(s: b)) ds||*]
0<t<v 0

< C | B[ Xin(s: ) = s I ds
forv e [0,T].
LEMMA 6.13. Let
(1) = /O (- $){ 05X (53 1)) @53 b7) = 5 (n(s3 1) () } s

fort € [0,T]. For any p > 3, there exist a constant C > 0 and a sequence
{C} which satisfies limy, o0 Cr, = 0 such that

B[ sup 120I] <€ [ B[1Xu(s:0) = n(si )7 ds + Cy

0<t<v

for v e [0,T].
PRrROOF. We see that
sup [1,0)] < / 103 (X (5: 1)) (52 1) — 05 1)) () s
< / (05 (Xom(5: 1)) — 05053 1)) frm(5: 1) s
0
+ / o3 (53 1)) (D53 1) — I (5)) | ds

<cf swp i \/ 1 X5 1) — (s; B)|ds

O<t<T

/0 I 9) — 9 (s) s . O
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Note that
Xon(t: 1) — (t: h) = /0 S(t — 5)(b(Xom(5: 1)) — b(n(s: h))) ds

+ /D S(t — 8)(V(Xom(s: 1)) — V(n(s: 1)) dW (s)

(6.3) +Z{/ﬂ S(t = 5)0;(Xm(s; h))dZ], (s)

Jj=1

w3 | St = Do sy (s
30 [ 80— {0 h)en(5309) = (s )i () .
j=1

From Lemmas 6.10, 6.11, 6.12 and 6.13, we get Theorem 3.3 by using the
Gronwall inequality.

7. Proof of Support Theorem
In this section we use the same notation as in Section 1. Let

Loo={&(h); h:[0,T] — Uy is
infinitely continuously differentiable, h(0) =0} c C([0,T]; H)

LEMMA 7.1.
Lo =L,
where Lo, and L mean the closure of Loo and L in C([0,T); H), respectively.

PROOF. Let h: [0,T] — Up be a continuous mapping which is piecewise
continuously differentiable and satisfies h(0) = 0. Then h has an extension
to R, say h; € C(R;U)), such that it is piecewise continuously differentiable
and its support is contained in the closed interval [0, + 1]. For € € (0,1),
we define a infinitely continuously differentiable mapping h): [0,T] — Uy
by

ho) = [ folt=ah(sds = [ fh(t = eudu,
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where f: R — R is a infinitely continuously differentiable non-negative
function with its support supp f C [—1,1] such that f_ll f(t)dt = 1, and
fio: R — R is defined by f()(t) = e 1f(e ). Then we have

o) =% [ (2 mieas =1 [ famte -
= /_11 f(u)hy(t — eu)du

therefore

h(e) / f hl t — eu) h( ))du

for t € [0,T]. Hence we get

[ i) = as < [ s [ ints = e - ho)as)an

Therefore, from dominated convergence theorem,

T

(7.1) lilnoa 1) (s) — R(s)]|ds = 0.
€ 0

Now we estimate
E(tshey) — & h) = /0 S(t—s)((b—p)(E(si b)) — (b—p)(E(s; h)))ds
" / S(t — 8)o(€(5: o)) (e (5) — h(s))ds
0
+ / S(t — 3)(0(E(s: ho)) — o (€(s: 1)) h(s)ds.
0

Therefore there exists a constant C' > 0 independent of € such that

sup [|€(t; heey) — & )|

0<t<v

< o1+ ess sup 0 / 1€(s: hiey) — &(s: 1) s

/0 o (s) — (o) ds
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for any v € [0, T]. Applying the Gronwall inequality, we get

sup (¢ ko)) — E(E; Al
0<t<T

. T
< CeCtesssupocicr IIh(t)IUO)T/ Hh(e)(s) — h(s)| ds.
0

Using Equation (7.1), we see

lim sup [[£(¢; () — &t h)|| =0. O
€l0 g<¢<T

Let 6y, = T'/m for m = 1,2,.... We define real-valued stochastic pro-
cesses (Bn(t))ieo,r)s J = 1, m > 1 by

t— kb,

m

(7.2)  BJ(t) = B/ (kby) + (B ((k + 1)6m) — B? (kém))

if kb, <t < (k+1)bp, k=0,1,... ,m—1. For each m > 1 and r > 1, let
(Bm.r(t))tefo,r] be the Up-valued stochastic process defined by

Bunr(t) = Bl,(t)g;
j=1

for t € [0,T].

For each r > 1, let (X,(t))ico) be the H-valued continuous
(F(t))teo,r-adapted stochastic process which is the unique mild solution
of the stochastic differential equation

dX,(t) = AX,(t)dt + (b — p+ p) (X, (2))dt
(7.3) + 301 0j(X(1))dB (2),
XT(O) = X9.

From theorem 2.1, we have the following proposition.

ProrosIiTION 7.2. For anyp > 1,

lim B[ sup [[€(t By) — X (0)]]7] =0
m—0oo 0<t<T
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forallr=1,2,....
ProrosITION 7.3. Foranyp>1,

lim F| sup || X,(t) —X(t)Hzp} = 0.
r—oo 0<t<T

Proor. We have

X (t)—X(t) = ler(t) + Jzﬂa(t) + J37r(t) + J4,T(t),

where
Tat)= [0 ) (6(X () ~ BX ().
Jar(t) = : S(t— s)(a(Xr(s)) — a(X(s)))PrdB(s),
Tor(t) == [ 8(t = 5)(o — pr)(X(s))ds,
Jur(t) = — ; S(t—s)o(X(s))(I — P)dB(s)
and P.: Uy — Uy is a orthogonal projection to the subspace spanned by
{91.92,--- . 9r}.

By the Lipschitz continuity of b, we have
E| sup |, 0)]%] < CB| / 1% (5) = X(s)|2ds] .
0<t<v 0

From Lemma 4.1, we have

E[Osggv HJQ,r(t)HZP} <CE [/OU lo(Xr(s)) — U<X(5))Hi[:2)(UO;H)dS]

< c/ov B[11X,(s) — X (5)|] ds.

From our assumption, there exists a constant C' > 0 which is indepen-
dent of k such that

1(b—p+ p)(@)]| < C(A+ [l



Support Theorem for Mild Solutions 305

for all K =1,2,... and all x € H. Therefore, from Section 7 in Da Prato
and Zabczyk [4], we have

sup E[ sup (| X5 (¢t )H4p] < 0.
k1,2,... lo<it<

From Lemma 2.8, we can choose an nondecreasing sequence of compact
subsets K1 C Ko C --- C H such that lim,,_,o, P(2,,) = 1, where

0, = {X(t) € K, foralltel0,T]}.

B[ sup 15,0)17] < OB / "o = X))

< C{ sup ||(p — pr) ()|

reKy,
+(E[([ 0 imnas) ) pe )

< C{ sup ||(p — Pr)(ff)”Qp

Z‘EKTL

+ (14 k:sng[O;ggT||Xk<t>||4p})” P\ 0,2,

We also have

B[ swp 14 @1] < B[ [ lo(XO) = B, ]

0<t<T

Hence Gronwall inequality completes the Proof. [J
Now we obtain the following proposition.
PROPOSITION 7.4. L D supp X (-)

ProoF. By Proposition 7.2 and Proposition 7.3, there exist sequences
(mg)g and (rg)x such that

sup |[€(t; By ) — X (@) — 0
0<t<T
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in probability as k — oco. Then we get

P(X(-) € L) > Tm poocPE( - ; Bmpp) €L) =1. O

For each y = (y1,92, ... ,ym) € R™, we define a mapping
em(-5y): [0,T] = R

by
t — kb,

om
for t € [kbm, (k+ 1)6y], k=0,1,... ,m — 1, where we have set yg = 0.
We define a mapping I,,,: C([0,T];R) — R™ by

om(t;y) =y + (Yk+1 — Yr)

Inf = (f((sm)a f(25m)7 s af(T))

for f € C([0,T]; R).
For j =1,2,...,r, we define a R-valued stochastic process (Zfﬁ(t))tzo
by
Zin(t) = B (t) = m(t; In B)

for t € [kbm, (kK + 1)6p], K =0,1,... ,m — 1. Then the processes

(Z3, () st (k+1)6m]

are pinned Brownian motions from 0 to 0 on each intervals [k, (k+1)6m],
k=0,1,2,...,m—1.

We note that (Z,(t))i>0, j = 1,2,... ,r, are not (F(t))o-adapted. If
we let (G, (t))e>0 be a filtration defined by G, (t) = F(t) V o{B(kéy,) ; k=
1,2,...m}. Then (Z,(t))i>0 are (Gm(t))>0-adapted processes.

Let

Wi(t) = B(t) = ) B(t)g;-
j=1

for t € [0,T].
Let 0 = (0',...,0") be (R™)"-valued G,,(0)-measurable random vari-

able. Let (Xo, ;(t;0)):e(o,r) be the H-valued continuous (G (t)):>0-adapted
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stochastic process which is the unique mild solution of the following stochas-
tic differential equation

AX 1 (t:0) = AX (15 0)dt 4 b( X, (t;0))dt

+U(Xm,r (t; 9))dWr (t)

(7.4) +3° 05 (K (£50)dZ5, (1) + ZT: 0 (Xim,r (£0))om (t; 67t
=1 =1
Xm,r(o; 0) = Zo-

REMARK 7.5. Since the mild solution (X(t))cjo,r) of Equation (1.2)
is (G (t))tepo,r-adapted, (X (t))icpo,1] is also the mild solution of Equation
(7.4) for § = (I,,B', I,,B?, ... ,I,,B"). Therefore, from the uniqueness, we
have

X(t) = Xppr(t; (ImBY, I,B%, ... | I,,B"))

for all t € [0,T] a.s.

PROPOSITION 7.6. For anym >1,r>1 and 6 € (R™)", it holds that

supp X, (- ;60) C supp X( - ).

Proor. Let w € C([0,T]; H) \ supp X (-). Then there exists an ¢ > 0
such that

P( sup [[X(t) ~w(t)] <€) =0

From the remark 7.5, the left-hand side is equals to

/ P(sup [[Xmn(t,0) — w(t)l| < ) P(InBY, InB>,... . InB") € df).
( ‘"L)' OStST

Therefore we have

P( sup || Xm(t,0) —w(t)]| <€) =0
0<t<T

for a.e. 6 € (R™)" with respect to the Lebesgue measure. For any 6 €
(R™)", there exists a sequence (6)ne(1,2,..1 in (R™)" such that
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and

P( sup HXmW(t,On) —w(t)|| <e)=0
0<t<T

for all n. Then by using Theorem 3.2,

P( sup || X r(t,0) — w(t)]| < e)
0<t<T

< lim P( sup || X, (t,0,) —w(t)]| <€) =0.
n—00 0<t<T

This means w & supp er( -;6). O

Let h: [0,T] — Uy, be infinitely continuously differentiable mapping
such that 7(0) = 0, which has an expansion h(t) = 352, h?(t)g;. Let
(nr(t; h))¢efo,r) be an H-valued continuous (F(t)):>0-adapted stochastic pro-
cess which is the unique mild solution of the stochastic differential equation

dne(t; h) = Any (t; h)dt + b(e (£ h))dt + o (1, (£ h))dW, ()
—pr(ne(t0)dE+ > o(ne (8 b)WY (t)dt,
j=1

nr(0; h) = xp.

Let
Xonr(t; h) = X (t; (Lnht, Lnh?, ... T,h"))

for t € [0,T].
From Theorem 3.3, we have the following proposition.

PROPOSITION 7.7. For any p > 1, we have

lim B[ sup || Xy, (t:h) = ne(t: 0)][*] = 0.
m—oo  Lo<¢<T

PROPOSITION 7.8.

supp (- ;h) Csupp X( - ).
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ProoF. From Propositions 7.6 and 7.7, we have

P(n( - 3h) €supp X( ) > lim oo P(Xinr( - 5h) €supp X(-)) = 1. O

ProrosiTiON 7.9. For any p > 1, we have

lim B[ sup_|ln,(t:h) — £(t: )] = 0.

Proor. We write
nr(t; h) - g(t; h) = Il,r<t) + I2,7‘(t) + I3,r(t) + I4,7‘(t)7

where
L (f) = /O S(t — ) (b (53 1)) — b(E(s: 1)) ds
- /0 S(t — ) (pr (53 1)) — pr(E(s: 1)) ds

3 / S(t — ) (05 (5: 1)) — 5 (€(s: 1)) (s)ds,
j=1"0

Br(t) = [ (=)0 = pr) €l )i,

L (1) :/O S(t — 8)o(n(s: 1)) (I — P)dB(s),

and
o0

Lot == [ S(t=5) 3 aletsshii(s)is.

j=r+1
Here P,: Uy — Uy is a orthogonal projection to the subspace spanned by

{917927 v 797‘}'
There exists a constant C' > 0 independent of r such that

B swp [I,07] < C(1+ sup [h®)v,)E| / I (55 1) — €(s: 1) [2ds
0<t<T 0

0<t<v
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We immediately have

T
Oig%nfz,r(t)n%sc(/ﬂ (o~ pr)(ECs:hDllds) " =0, 7 oo,

By Lemma 4.1, we have

E[OE?ETHI?,,T@)H%} < CE[/ ( Z lloj(n-(s; k)l > } r — 00.

j=r+1

It follows readily that

B[ swp 1, 0] < 0B[([ 1S ostetsimyivsylas) "]

j=r+1

— 0, 7r— o00.
Therefore, from the Gronwall inequality, we complete the proof. [J

ProPOSITION 7.10. We have

£( - 5h) €supp X (-).

ProOOF. From proposition 7.8 and proposition 7.9, we have

1 =1lim, oP(n( - ;h) € supp X(-)) < P(&( - ;h) € supp X (+)). O

Proposition 7.10 implies Lo, C supp X(+), and therefore, from Lemma
7.1, we get the following proposition.

PROPOSITION 7.11. £ C supp X (+).

From Proposition 7.4 and Proposition 7.11, we obtain Theorem 1.1.
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