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Algebraic Property of Dilatation Constants of

Piecewise Linear Structures of Anosov Foliations

By Hiroyuki Minakawa

Abstract. Let φt be an orientable Anosov flow of a closed 3-
manifold and Fs, the stable foliation of the flow. If Fs has a λ-
piecewise linear structure, then we show that it is equivalent to the
one obtained by using a surface of section S of the flow. Then we
prove, for a positive integer p, λp is equal to the dilatation of the first
return mapping of S which is a pseudo-Anosov diffeomorphism of a
compact surface with boundary. Therefore, λ is a zero of a monic
reciprocal polynomial with integral coefficients. In particular, λ is not
transcendental and this gives a negative answer to the question raised
in [10]. We also comment on the Ghys inequality for the group PLλ(S1)
of all orientation preserving piecewise linear homeomorphisms whose
derivatives are integral powers of λ at each differentiable point.

§0. Introduction

Let Σg be a closed orientable surface of genus g ≥ 2 equipped with a

metric with the constant curvature −1. Since the universal covering of Σg

is the Poincaré disk, there is a holonomy homomorphism

π1(Σg) → PSL(2,R).

By identifying the circle at infinity of the Poincaré disk with S1 = R/Z, it

induces a homomorphism

Φg : π1(Σg) → PSL(2,R) ⊂ Diff∞
+ (S1).

For any λ > 1, let PLλ(S
1) be the group of all orientation preserving

piecewise linear homeomorphisms h of S1 such that h′(x) ∈ {λn | n ∈ Z} at

every differentiable point. If there exists λ > 1 and an orientation preserving

homeomorphism h of S1 such that, for any γ ∈ π1(Σg),

h ◦ Φg(γ) ◦ h−1 ∈ PLλ(S
1),
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then Φg is said to be λ-piecewise linearizable. For the following numbers

λ = λg, νg, Φg is λ-piecewise linearizable.

1)( [10],[13] ) λg is the largest eigen value of the matrix Ag, where

Ag =

(
2g2 − 1 2g2 + 2g

2g2 − 2g 2g2 − 1

)
.

2)( [4] ) νg is the largest eigen value of the matrix Bg, where

Bg =

(
4g2 − 2g − 1 2g2 − 2g

8g2 − 2 4g2 − 2g − 1

)
.

All these examples are constructed by using a surface of section (also called a

Birkhoff section) S of a geodesic flow on unit tangent bundles T1Σg. Indeed,

a surface of section S gives rise to a cross section Ŝ of the blow-up flow of

the geodesic flow along a finite number of closed orbits which are contained

in the boundary of the surface of section([8],[9]). Then the first return

map f of Ŝ is a pseudo-Anosov diffeomorphism of compact surface Ŝ with

boundary([7]). Then, for the dilatation λ of f , the stable foliation of the

geodesic flow has a transversely λ-piecewise linear structure (see §1). If a

λ-piecewise linearization of Φg is obtained in such a way, then the number

λ must be algebraic. Then we have the following natural question which

was first raised in [10].

Question. Is there a transcendental number λ such that Φg is λ-

piecewise linearizable for some integer g ≥ 2?

In this paper, we prove the following theorem which gives the negative

answer to Question. A polynomial P (x) of degree n is called reciprocal if

xnP ( 1
x) = P (x).

Theorem 0.1. Let Φg (g ≥ 2) be as above. If Φg is λ-piecewise lin-

earizable, then there exists a monic reciprocal polynomial P (x) with integral

coefficients such that λ is a zero of P (x). In particular, for any transcen-

dental or rational number λ, Φg is not λ-piecewise linearizable.

This theorem is a special case of the following theorem, because the

geodesic flow of a hyperbolic closed surface is an orientable transitive Anosov
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flow(see §1). An Anosov flow φt of a closed 3-manifold M is called orientable

if M , the stable foliation Fs, and the unstable foliation Fu are all orientable.

The flow φt is transitive if every leaf of the stable foliation Fs is dense in

M . It is known that every leaf of Fs is dense in M if it has a transversely

piecewise linear structure (see [18]). Then the flow φt is transitive in that

case.

Theorem 0.2. Let φt be an orientable Anosov flow of a closed 3-

manifold with the stable foliation Fs. If Fs has a transversely λ-piecwise

linear structure, λ is a zero of a monic reciprocal polynomial P (x) with

integral coefficients.

The author would like to thank the referee for his usuful comments and

advices.

§1. A Blowup Flow of an Anosov Flow

A smooth flow φt of a closed 3-manifold M is Anosov if there exists a

continuous splitting TM = E0 ⊕ Es ⊕ Eu of the tangent bundle TM of M

intoDφt invariant one dimensional subbundles with the following properties.

Given a Riemannian metric, there are constants a ≥ 1 and b > 0 such that

1) E0 is tangent to the flow,

2) ‖Dφt(v)‖ ≤ ae−bt‖v‖ for any v ∈ Es, t ≥ 0, and

3) ‖Dφ−t(v)‖ ≤ ae−bt‖v‖ for any v ∈ Eu, t ≥ 0.

Both subbundles E0⊕Es and E0⊕Eu are integrable, producing codimension

one foliations Fs and Fu which are called a stable foliation and an unstable

foliation of the flow ([1]). An Anosov flow is called orientable if M , E0,

Es,and Eu are all orientable.

Let φt be a smooth orientable Anosov flow of a closed 3-manifold M

and Fs (resp. Fu ) the stable ( unstable ) foliation of φt. Let γ be a closed

orbit of φt. A new flow φ̂t : M̂ → M̂ is defind as follows, which is called the

blowup flow of φt along γ ([6]). A compact manifold M̂ with boundary is

obtained by replacing each point x ∈ γ by the circle of normal directions

{TxM/Txγ − {0}}/R>0
∼= S1.

Then γ is replaced by a torus Tγ . The flow φ̂t is conjugate to φt on M − γ

and defined by Dφt on Tγ . On Tγ , φ̂t has four closed orbits, 2 attracting
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and 2 repelling. A foliation F̂ ε (ε = s, u) is defined by F̂ ε = F ε on M − γ

and Tγ is contained in a singular leaf of F̂ ε. The flow φ̂t is an example of

a pseudo-Anosov flow of a compact 3-manifold with boundary and has a

Markov partition. When φ̂t has a cross section S, a first cohomology class

uS is defined as follows. Suppose an oriented loop c intersects S trans-

versely. At any intersection point p, define δp = 1 ( resp. −1) if c passes

through S at p in the same (resp. opposite) direction of the flow, and put

uS(c) =
∑

p∈c∩S δp. Then uS determines a first cohomology class of M̂

denoted by the same symbol. Then we have the following theorem due to

D.Fried ([8]).

Theorem 1.1. For a cohomology class u ∈ H1(M̂,Z), there is a cross

section S of φ̂t such that u = uS, if and only if u([c]) > 0 for any closed

orbit c, where [c] is the first homology class represented by the closed orbit

c oriented in the flow direction.

We note that this theorem is true for any blow-up flow φ̂t of any ori-

entable transitive Anosov flow φt, because such flow φt has a surface of

section ([9]).

When φ̂t has a cross section S, the first return mapping f of S is a

pseudo-Anosov diffeomorphism of the compact surface with boundary ([7]).

That is, there exist measured foliations (F s, µs) (F u, µu) with common

prong singularities and a real number λ > 1 such that

1) F ε is preserved by f for ε = s, u,

2) F s is transverse to F u outside the singularities and the boundary of S,

3) f∗µs = λ−1µs, f∗µu = λµu.

Here, f∗µε(A) = µε(f−1(A)) for any transverse arc A of F ε (ε = s, u). In

the case above, we can take F ε = F̂ ε|S (ε = s, u) by a standard argument

constracting a Markov partition([5]). Then µε gives rise to a transversely

Euclidean structure of F ε. By the condition 3) above, this structure can be

extended to a transversely λ-affine structure of F̂ ε|(M̂ − ∂M̂) ([10]). Then

we obtain a transversely λ-piecewise linear structure of F ε by recollapsing

M̂ to M . See §2 for the transverse structure of foliations of codimension

one.

Note that all explained above is valid for a blowup flow of πt along the

union of a finite number of closed orbits.
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§2. Transversely Piecewise Linear Foliations

An orientation preserving homeomorphism g of R is called affine if there

are real numbers a > 0, b such that g(x) = ax+ b for any x ∈ R and called

λ-affine when we can chose a = λn for some λ ≥ 1 and integer n. An

orientation preserving homeomorphism g of R is called piecewise linear if

there exists a sequence {xi}∞i=−∞ of R such that

1) xi < xi+1 for any i,

2) xi → ±∞ if i → ±∞,

3) g|[xi, xi+1] is a restriction of an affine homeomorphism.

A piecewise linear homeomorphism g of R is called λ-piecewise linear if the

derivative g′(x) is an integral power of λ for any differentiable point x of g.

Recall that a codimension one foliation F on a 3-manifold M is a division

of M by codimension one immersed submanifolds, called leaves which is

defined by a family of local C0 submersions fi : Ui → R such that {Ui} is a

open covering of M and that, for any x ∈ Ui, f
−1
i (fi(x)) is contained in a

leaf of F , and a family of local homeomorphisms, called transition functions

gij : fj(Ui ∩ Uj) → fi(Ui ∩ Uj)

such that fi = gijfj on Ui ∩ Uj .

A codimension one foliation is said to have a transeversely affine ( resp.

λ-affine, piecewise linear, λ-piecewise linear) structure if we can choose each

transition function gij as the restrictions of an affine ( resp. λ-affine, piece-

wise linear, λ-piecewise linear ) homeomorphism of R. A transversely 1-

affine structure is usually called a transversely Euclidean structure. The

next lemma is remarked in [18, remark 2.1].

Lemma 2.1. Let F be a transversely piecewise linear foliation on a

closed manifold M . Then there exists a compact subset K contained in the

union of a finite number of leaves such that F|(M −K) is a transeversely

affine foliation.

The next theorem is the most important to prove Theorem 0.2.

Theorem 2.2. Let φt be an Anosov flow with the weak stable foliation

Fs. If Fs has a transversely piecewise (resp. λ-piecewise) linear structure,

then there exist a finite munber of closed orbits γ1, · · · , γn such that the
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restriction Fs|(M − Γ) ( Γ = ∪n
i=1γi ) has a transversely affine (resp. λ-

affine) structure.

Proof. We prove in a piecewise linear case, because the same proof

is valid for a λ- piecewise linear case. For a transversely piecewise linear

structure of F , take a compact set K as in Lemma 2.1 and fix it. Since we

consider in the orientable category, then every leaf of F is homeomorphic to

R2 or S1×R. Suppse L1, · · · , Ln are the leaves such that Li∩K �= ∅ for any

i and K ⊂ ∪n
i=1Li. If Li is homeomorphic to R2, then take an embedded

compact 2-disk Ki in L such that Li ∩K ⊂ intKi. If Li is homeomorphic

to S1 × R, then take an embedded compact annulus Ki in Li such that

Li ∩K ⊂ intKi and that the unique closed orbit of φt in Li is contained in

intKi. Put K ′ = ∪n
i=1Ki and let {γ1, · · · , γn} be the set of closed orbits of

φt contained in K ′. Then Fs|M−K ′ also has a transversely affine structure.

That is, there is a C0 devoloping submersion

D : M̃ −K ′ → R

and a holonomy homomorphism

h : π1(M −K ′) → Aff+(R)

satisfying the equivariant condition

D(γx) = h(γ)(D(x))

for any γ ∈ π1(M − K ′) and any x ∈ R ([14]). Here, the symbol tilder

means a universal covering space and Aff+(R) denotes the group of all

affine homeomorphisms of R. It is well known that to give a transversely

affine structure is equivalent to to give such pair (D, h) as above. Since the

inclusion map ι : M −K ′ → M − Γ ( Γ = ∪n
i=1γi ) induces an isomorphism

ι∗ : π1(M−K ′) → π1(M−Γ), then M̃ −K ′ is naturally included in M̃ − Γ.

Then we easily see that there exists a natural extension

DΓ : M̃ − Γ → R

of D which is constant on each leaf of the lifted foliation of Fs|M−Γ. Then

it turns out that the pair (DΓ, h ◦ ι−1
∗ ) is equivariant. This complete the

proof. �
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§3. Proof of Theorem 0.2

Let φt be a smooth orientable Anosov flow on a closed 3-manifold M and

Fs ( resp. Fu ) the stable ( unstable ) foliation of the flow. By Theorem 2.2,

there is a finite number of closed orbits γ1, · · · , γn of φt such that Fs|(M−Γ)

(Γ = ∪n
i=1γi) has an transversely λ-affine structure. That is, there exist

a developing map D : M̃ − Γ → R and a holonomy homomorphism h :

π1(M − Γ) → Affλ(R) satisfying the equivariant condition, where Affλ(R)

denotes the group of all λ-affine homeomorphisms of R. By taking the

blowup along Γ to the normal directions, we obtain a flow φ̂t : M̂ → M̂ ,

the stable foliation F̂s, and the unstable foliation F̂u of φ̂t. Here, we may

assume each γi is replaced by a torus Tγi . Define a homomorphism ĥ :

π1(M̂) → Affλ(R) as to be the composition of the inverse of an isomorphism

ι∗ : π1(M −Γ) → π1(M̂) and h, where ι : M −Γ → M̂ is the inclusion map.

Then define a homomorphism u : π1(M̂) → Z by u(α) = logλ ĥ(α)′(0) for

any α ∈ π1(M̂). For any closed orbit γ of φ̂t oriented by the flow direction,

u([γ]) is positive, since the leaf holonomy of Fs is expanding along any

closed orbit oriented in the flow direction, where [γ] denotes the first integral

homology class in H1(M̂,Z) represented by the oriented loop γ. Then there

exists a cross section Ŝ of φ̂t such that uŜ = u by Theorem 1.1. The first

return mapping f̂ of Ŝ is a pseudo-Anosov homeomorphism of the compact

surface with boundary whose invariant measured foliations are F̂s|Ŝ and

F̂u|Ŝ. Then there exist a transverse measure µ̂s of F̂s|Ŝ and the dilatation

λ0 > 1 such that µ(f̂(τ)) = λ0µ(τ) for any transversal τ of F̂s|Ŝ. On one

hand, since u([c]) = 0 for any oriented loop c in Ŝ, then the transversely

affine structure of F̂s induces a transversely Euclidean structure of F̂s|Ŝ.

So, this transversely Euclidean structure gives us a transverse measure ν of

it. Since F̂s|Ŝ is uniquely ergodic([7]), then there exists a positive constant

b such that µ = bν. Now fix a small transverse arc A of Fs|(Ŝ − ∂Ŝ). Then

we have

λ0 =
ν(f̂(A))

ν(A)
=

µ(f̂(A))

µ(A)
= λp

for some integer p, since ν is induced by the λ-affine structure of Fs|Ŝ.

Now, since everything is orientable, then the dilatation of f̂ is the maximal

modulous root of the characteristic polynomial Pf∗(x) of the induced ho-

momorphism f∗ on H1(S) ([20], [7]), where f : S → S is a pseudo-Anosov
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homeomorphism obtained from f̂ by collapsing each boundary of Ŝ to a

point. Then we have Pf∗(λ
p) = Pf∗(λ0) = 0, and Pf∗(x) is a monic recip-

rocal polynomial since the characteristic polynomial of a symplectic matrix

is monic and reciprocal. Thus, Pf∗(x
p) is the required polynomial and this

completes the proof. �

§4. Ghys Inequality for PLλ(S
1)

Let Σg be a closed oriented hyperbolic surface of genus g. let PL+(S1)

be the group of all orientation preserving piecewise linear homeomorphisms

of S1 = R/Z. Any homomorphism ϕ : π1(Σg) → PL+(S1) gives rise to

an S1-bundle Eϕ over Σg which is often called the suspension of ϕ. The

Euler number eu(ϕ) of ϕ is defined to be the Euler class of the associated

S1-bundle Eϕ evaluated on the fundamental class [Σg]. Any homomorphism

satisfies the following Milnor-Wood inequality ([16], [21]):

|eu(ϕ)| ≤ 2g − 2.

Conversely, for any integer m such that |m| ≤ 2g − 2, there exists a ho-

momorphism ϕ : π1(Σg) → PL+(S1) with eu(ϕ) = m ([17]). Now let

ϕ : π1(Σg) → PLλ(S
1) with |eu(ϕ)| = 2g − 2 (λ > 1). By changing the

orientation of Σg, we may assume that eu(ϕ) = 2 − 2g. Any ϕ(π1(Σg))-

orbit on S1 is dense in S1 ([18]). Then ϕ is conjugate to the holonomy

homomorphism Φg ([15]), that is, Φg is λ-piecewise linearizable. So, such a

number λ is restricted by Theorem 0.1.

Theorem 4.1. Suppose that λ > 1 can not be a zero of any monic

reciprocal polynomial with integral coefficients. Then, for any integer g ≥ 2

and any homomorphism ϕ : π1(Σg) → PLλ(S
1), the following inequality

holds:

|eu(ϕ)| < 2g − 2.

Let PL2,1(S
1) be the group of all element f in PL2(S

1) such that both

f([0]) and all the non-differentiable points of f are containd in {p2q | p, q ∈
Z} modulo Z. The theorem was already proved for PL2,1(S

1) essentially by

the results in [11] and [12]. The theorem above is a large extension of it and

the way of the proof is different from that of them.
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