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Scattering Theory for the Coupled

Klein-Gordon-Schrödinger Equations

in Two Space Dimensions

By Akihiro Shimomura

Abstract. We study the scattering theory for the coupled Klein-
Gordon-Schrödinger equation with the Yukawa type interaction in two
space dimensions. The scattering problem for this equation belongs to
the borderline between the short range case and the long range one.
We show the existence of the wave operators to this equation without
any size restriction on the Klein-Gordon component of the final state.

1. Introduction

We study the scattering theory for the coupled Klein-Gordon-

Schrödinger equation with the Yukawa type interaction in two space di-

mensions: 
i∂tu +

1

2
∆u = uv,

∂2
t v − ∆v + v = −|u|2.

(KGS)

Here u and v are complex and real valued unknown functions of (t, x) ∈
R × R

2, respectively. In the present paper, we prove the existence of the

wave operators to the equation (KGS) without any size restriction on the

Klein-Gordon component of the final state.

A large amount of work has been devoted to the asymptotic behavior of

solutions for the nonlinear Schrödinger equation and for the nonlinear Klein-

Gordon equation. We consider the scattering theory for systems centering

on the Schrödinger equation, in particular, the Klein-Gordon-Schrödinger,

the Wave-Schrödinger and the Maxwell-Schrödinger equations. In the scat-

tering theory for the linear Schrödinger equation, (ordinary) wave operators
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are defined as follows. Assume that for a solution of the free Schrödinger

equation with given initial data φ, there exists a unique time global solu-

tion u for the perturbed Schrödinger equation such that u behaves like the

given free solution as t → ∞. (This case is called the short range case, and

otherwise we call the long range case). Then we define a wave operator

W+ by the mapping from φ to u|t=0. In the long range case, ordinary wave

operators do not exist and we have to construct modified wave operators

including a suitable phase correction in their definition. For the nonlinear

Schrödinger equation, the nonlinear wave equation and systems centering on

the Schrödinger equation, we can define the wave operators and introduce

the modified wave operators in the same way. According to linear scattering

theory, it seems that the equation (KGS) in two space dimensions belongs

to the borderline between the short range case and the long range one, be-

cause the equation (KGS) has quadratic nonlinearities, and the solutions of

the free Schrödinger equation and the free Klein-Gordon equation decay as

t−1 in L∞ as t → ∞ in two space dimensions. The Maxwell-Schrödinger

equation and the Wave-Schrödinger equation in three space dimensions also

belong to the same case.

There are some results of the long range scattering for nonlinear equa-

tions and systems. Ozawa [14] and Ginibre and Ozawa [4] proved the ex-

istence of modified wave operators in the borderline case for the nonlinear

Schrödinger equation in one space dimension and in two and three space

dimensions, respectively. Their methods were applied to the Klein-Gordon-

Schrödinger equation in two space dimensions by Ozawa and Tsutsumi [15]

and to the Maxwell-Schrödinger equation under the Coulomb gauge condi-

tion in three space dimensions by Tsutsumi [20]. In all results mentioned

above, the restriction on the size of the final state is assumed. Further-

more in [15], the support of the Fourier transform of the Schrödinger data

is restricted outside the unit disk in order to use the difference between the

propagation property of the Schrödinger wave and the Klein-Gordon wave

and to obtain additional time decay estimates for the nonlinear term. (See

(1.4) below). In [20], the Fourier transform of the Schrödinger data vanishes

in a neighborhood of the unit sphere by the same reason.

Recently Ginibre and Velo [5, 6, 7] have proved the existence of the

modified wave operators for the Hartree equations with long range potentials

with no restriction on the size of the final state. They decomposed the
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unknown function u into the complex amplitude w and the real phase ϕ, and

solved the system for w and ϕ. Constructing the modified wave operators for

those equations such that the domain and the range of them are same space,

Nakanishi [12, 13] extended their results. Using the methods in [5, 6, 7],

Ginibre and Velo showed the existence of modified wave operators for the

Wave-Schrödinger equation ([8]) and for the Maxwell-Schrödinger equation

under the Coulomb gauge condition ([9]) in three space dimensions with no

restriction on the size of the final state. (The restriction on the support of

the Fourier transform of the final state mentioned above is assumed in [8],

and the vanishing asymptotic magnetic field is considered in [9]).

On the other hand, recently, the author has proved the existence of

wave operators for the two dimensional Klein-Gordon-Schrödinger equa-

tion in [17], and the modified wave operators to the three dimensional

Wave-Schrödinger equation in [16] and to the three dimensional Maxwell-

Schrödinger equations under the Coulomb and the Lorentz gauge conditions

in [18] for small scattered states without any restrictions on the support of

the Fourier transform of them. Furthermore combining idea of [8] with that

of [16], Ginibre and Velo [10] have proved the existence of modified wave

operators for the three dimensional Wave-Schrödinger equation with restric-

tions on neither size of the scattered states nor the support of the Fourier

transform of them.

In the present paper, we prove the existence of the wave operators for

the equation (KGS) without any size restriction on the Klein-Gordon com-

ponent of the final state. The proof is mainly based on choice of a suit-

able asymptotic profile and construction a solution for the equation (KGS)

which approaches the asymptotic profile under no size restriction on the

Klein-Gordon component of the final state. By using the energy method,

for a given asymptotic profile satisfying suitable conditions, we solve the

final value problem to the equation (KGS) such that the difference between

the exact solution for that equation and the asymptotic profile decay more

rapidly than the derivatives of it as in [19] (see Proposition 2.1). That dif-

ference decays as O(t−k) (1 < k < 2) as t → ∞ in L2, though the decay

rate of that difference is order t−1 in [15, 17]. Because of this difficulty, the

support of the Fourier transform of the Schrödinger data is restricted out-

side the unit disk as in [15] (see (1.4) below). To find a suitable asymptotic

profile, we choose a second correction term for the Schrödinger component
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and the third one for the Klein-Gordon component. Furthermore for the

Schrödinger component, the method of phase correction is applied to handle

slowly decaying terms caused by the second correction terms.

Before stating our main result, we introduce some notations.

Notations. We use the following symbols:

∂0 = ∂t =
∂

∂t
, ∂j =

∂

∂xj
for j = 1, 2,

∂α = ∂α
x = ∂α1

1 ∂α2
2 for a multi-index α = (α1, α2),

∇ = (∂1, ∂2), ∆ = ∂2
1 + ∂2

2 ,

for t ∈ R and x = (x1, x2) ∈ R
2.

Let

Lq ≡ Lq(R2) =

{
ψ : ‖ψ‖Lq =

(∫
R2

|ψ(x)|q dx
)1/q

< ∞
}

for 1 ≤ q < ∞,

L∞ ≡ L∞(R2) = {ψ : ‖ψ‖L∞ = ess. supx∈R2 |ψ(x)| < ∞} .

We use the L2-scalar product

(ϕ,ψ) ≡
∫
R2

ϕ(x)ψ(x) dx.

S denotes the set of rapidly decreasing functions on R
2. Let S ′ be the

set of tempered distributions on R
2. For w ∈ S ′, we denote the Fourier

transform of w by ŵ. For w ∈ L1(Rn), ŵ is represented as

ŵ(ξ) = (2π)−n/2

∫
Rn

w(x)e−ix·ξ dx.

For s,m ∈ R, we introduce the weighted Sobolev spaces Hs,m corre-

sponding to the Lebesgue space L2 as follows:

Hs,m ≡ {ψ ∈ S ′ : ‖ψ‖Hs,m ≡ ‖(1 + |x|2)m/2(1 − ∆)s/2ψ‖L2 < ∞}.

Hs denotes Hs,0. For 1 ≤ p ≤ ∞ and a positive integer k, we define the

Sobolev space W k
p corresponding to the Lebesgue space Lp by

W k
p ≡


ψ ∈ Lp : ‖ψ‖Wk

p
≡

∑
|α|≤k

‖∂αψ‖Lp < ∞


 .
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Note that for a positive integer k, Hk = W k
2 and the norms ‖ · ‖Hk and

‖ · ‖Wk
2

are equivalent.

For s > 0, we define the homogeneous Sobolev spaces Ḣs by the com-

pletion of S with respect to the norm

‖w‖Ḣs ≡ ‖(−∆)s/2w‖L2 .(1.1)

Ḣs is a Banach space with the norm (1.1) for s > 0.

Let Y and Z be two Banach spaces with the norms ‖ · ‖Y and ‖ · ‖Z ,

respectively. We define

‖w‖Y ∩Z ≡ ‖w‖Y + ‖w‖Z ,

for w ∈ Y ∩ Z. Then Y ∩ Z is a Banach space with the norm ‖ · ‖Y ∩Z . We

use the following notation:

[z;Y, k](t) ≡ sup
τ≥t

(τk‖z(τ)‖Y ),

for a Y -valued function z of t ∈ R.

We set for t ∈ R,

U(t) ≡ e
it
2

∆, Ω ≡ (1 − ∆)1/2, ω ≡ (−∆)1/2

K(t) ≡ Ω−1 sin Ωt, K̇(t) ≡ cos Ωt,

L ≡ i∂t +
1

2
∆, K ≡ ∂2

t − ∆ + 1, � ≡ ∂2
t − ∆.

C denotes various constants, and they may differ from line to line, when

it does not cause any confusion.

Let (u+, v+, v̇+) be a final state. u+ and (v+, v̇+) are the Schrödinger

and the Klein-Gordon components, respectively. We introduce the following

asymptotic profiles:

ua = u0 + u1,(1.2)

va = v0 + v1 + v2,(1.3)
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where

u0(t, x) =(U(t)e−i|·|2/2te−iS(t,−i∇)u+)(x)

=
1

it
ei|x|

2/2t−iS(t,x/t)û+

(x

t

)
u1(t, x) =

(
U(t)e−i|·|2/2te−iS(t,−i∇) i| · |2

2t
u+

)
(x)

= − 1

it
ei|x|

2/2t−iS(t,x/t) i

2t
∆û+

(x

t

)
S(t, x) =

1

t
|û+(x)|2,

v0(t, x) = (K̇(t)v+)(x) + (K(t)v̇+)(x),

v1(t, x) = − 1

t2

∣∣∣û+

(x

t

)∣∣∣2 ,
v2(t, x) = − 1

t3
Im

(
û+

(x

t

)
∆u+

(x

t

))
.

The functions u0 and v0 are principal terms of the asymptotic profiles

ua and va, respectively. Note that u0 is an approximate solution for the

free Schrödinger equation and v0 is the solution for the free Klein-Gordon-

equation.

Throughout this paper, we assume that the space dimension is two.

The main result is as follows.

Theorem. Let u+ ∈ H2,8, v+ ∈ H4,3 and v̇+ ∈ H3,3. Assume that

supp û+ ⊂ {ξ ∈ R
2; |ξ| ≥ 1 + a}(1.4)

for some a > 0, and that ‖u+‖H2,8 is sufficiently small. Let 1 < k < 2.

Then the equation (KGS) has a unique solution (u, v) satisfying

u ∈ C(R;H2), v ∈ C(R;H2) ∩ C1(R;H1),

sup
t≥2

(tk‖u(t) − ua(t)‖L2 + t‖u(t) − ua(t)‖Ḣ2) < ∞,

sup
t≥2

[tk(‖v(t) − va(t)‖H1 + ‖∂tv(t) − ∂tva(t)‖L2)

+ t(‖v(t) − va(t)‖Ḣ1∩Ḣ2 + ‖∂tv(t) − ∂tva(t)‖Ḣ1)] < ∞.
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In particular,

‖u(t) − U(t)u+‖H2 + ‖v(t) − v0(t)‖H2

+ ‖∂tv(t) − ∂tv0(t)‖H1 → 0,

as t → +∞.

Furthermore for the equation (KGS), the wave operator

W+ : (u+, v+, v̇+) �→ (u(0), v(0), ∂tv(0))

is well-defined.

A similar result holds for negative time.

Remark 1.1. In Theorem, no size restriction on the Klein-Gordon

component (v+, v̇+) of the final state is assumed. On the other hand, we

restrict the size of the Schrödinger component u+ of the final state and the

support of the Fourier transform û+ of it.

Remark 1.2. It is well-known that the equation (KGS) is globally

well-posed in C(R;H2) ⊕ [C(R;H2) ∩ C1(R;H1)] (see Bachelot [1], Baillon

and Chadam [2], Fukuda and Tsutsumi [3] and Hayashi and von Wahl [11]).

Remark 1.3. The restriction on the size of ‖u+‖H2,8 is independent

of a > 0 introduced in (1.4), because we construct a solution (u, v) for the

equation (KGS) on the time interval [T,∞) for sufficiently large T > 0,

which depends on a > 0 and suitable norms of the final state, and extend it

to R by the global well-posedness for the equation (KGS). (Note that the

size of the final state depends on a in Ozawa and Tsutsumi [15]).

We briefly explain how to construct the approximate solution (ua, va) =

(u0 + u1, v0 + v1 + v2) for large time to the equation (KGS). (We explain

the details in Section 3). In order to construct a solution (u, v) which

approaches the profile (ua, va) as t → ∞ without any size restrictions on

the Klein-Gordon component (v+, v̇+) of the final state, we have to find a

profile (ua, va) such that the functions Lua − uava and Kva + |ua|2, which

are the errors of the approximation (ua, va) for the equation (KGS), decay

as t−3 in H2 and H1, respectively. (See Proposition 2.1 below). We can
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calculate

Lua − uava = −uav0 + (Lua − uav1) − uav2.(1.5)

Kva + |ua|2 =Kv0 + (Kv1 + |u0|2)
+ (Kv2 + 2 Re(ū0u1)) + |u1|2.

(1.6)

We define the principal term v0 of va by the free solution for the Klein-

Gordon equation. Then the first term in the right hand side of (1.6) van-

ishes. We define ua = u0+u1 by the asymptotics of the free solution U(t)u+

for the Schrödinger equation with a phase correction. We do not determine

a phase function S explicitly in this step. The first term uav0 in the right

hand side of (1.5) decays as t−1 in L2. To overcome this difficulty, assuming

the support restriction (1.4) for û+ as in [15], we use the difference between

the propagation property of the waves ua and v0 and we obtain additional

time decay rate O(t−3) in H2 of this term. We consider the second and the

third terms in the right hand side of (1.6). Since |u0|2 and ū0u1 decay as

t−1 and t−2 in L2, we construct the second correction term v1 and the third

one v2 of va such that Kv1 + |u0|2 and Kv2 + 2 Re(ū0u1) decay as t−3 in

H1. We consider the second term in the right hand side of (1.5). We note

that the function uav1 in the right hand side of (1.5) decays as t−2 in L2.

Because v1 is the product of t−2 and a function of x/t, we regard v1 as a

potential. Therefore we can apply the phase correction method to uav1, and

we determine the phase function S explicitly such that Lua − uav1 decays

as t−3 (faster than uav1) in H2. The other terms in the right hand sides of

(1.5) and (1.6) decay as t−3 in H2 and H1, respectively.

The outline of this paper is as follows. In Section 2, we solve the final

value problem for the equation (KGS) for the asymptotic profile satisfying

suitable conditions (see Proposition 2.1). In Section 3, we determine an

asymptotic profile satisfying the assumptions of above final value problem.

2. The Final Value Problem

In this section, we solve the final value problem, that is, the Cauchy

problem at infinity, for the equation (KGS) of general form. Namely, for

an asymptotic profile (A,B) satisfying suitable assumptions, we construct

a unique solution (u, v) which approaches (A,B) as t → ∞.
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Let (A,B) be an asymptotic profile. Here A and B are complex and

real valued, respectively. We introduce the following functions:

R1[A,B] = LA−AB,(2.1)

R2[A,B] = KB + |A|2.(2.2)

Proposition 2.1. Assume that there exist positive constants δ, L0, L1

and L2 such that for t ≥ 1,

‖A(t)‖W 2∞ ≤ δt−1,

‖B(t)‖W 2∞ ≤ L0t
−1,

‖R1[A,B](t)‖H2 ≤ L1t
−3,

‖R2[A,B](t)‖H1 ≤ L2t
−3,

and assume that δ > 0 is sufficiently small. Let 1 < k < 2. Then there

exists a constant T ≥ 1, depending only on δ, L0, L1 and L2, such that the

equation (KGS) has a unique solution (u, v) satisfying

u ∈ C([T,∞);H2), v ∈ C([T,∞);H2) ∩ C1([T,∞);H1),(2.3)

sup
t≥T

(tk‖u(t) −A(t)‖L2 + t‖u(t) −A(t)‖Ḣ2) < ∞,(2.4)

sup
t≥T

[tk(‖v(t) −B(t)‖H1 + ‖∂tv(t) − ∂tB(t)‖L2)

+ t(‖v(t) −B(t)‖Ḣ1∩Ḣ2 + ‖∂tv(t) − ∂tB(t)‖Ḣ1)] < ∞.
(2.5)

Remark 2.1. In Proposition 2.1, the asymptotic profile (A,B) is not

determined explicitly. In Section 3, we construct the asymptotic profile

satisfying the assumptions of Proposition 2.1.

Remark 2.2. In Proposition 2.1, we do not restrict the size of the

positive constants L0, L1 and L2, though the smallness on the size of the

constant δ > 0 is assumed.

Remark 2.3. By the global well-posedness of the equation (KGS), the

solution (u, v) on the time interval [T,∞) for the equation (KGS) obtained

in Proposition 2.1 can be extended all times.
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We consider the following final value problem:
i∂tw +

1

2
∆w = wz + wB + Az −R1[A,B],

∂2
t z − ∆z + z = −|w|2 − 2 Re(wĀ) −R2[A,B]

(2.6)

with the condition{
‖w(t)‖H2 → 0, as t → ∞,

‖z(t)‖H2 + ‖∂tz(t)‖H1 → 0, as t → ∞.
(2.7)

Remark 2.4. If we put w = u − A and z = v − B, then the system

(KGS) is equivalent to the system (2.6). Hence we solve the equation (2.6)

instead of the equation (KGS).

Let T > 0. We introduce the following function space:

XT = {(w, z); w ∈ C([T,∞);H2), z ∈ C([T,∞);H2),

∂tz ∈ C([T,∞);H1),

[w;L2, k](T ) + [∆w;L2, 1](T )

+ [z;H1, k](T ) + [∂tz;L
2, k](T )

+ [∇z;H1, 1](T ) + [∇∂tz;L
2, 1](T ) < ∞}.

We solve the equation (2.6) in the space XT . The proof of the exis-

tence argument in Proposition 2.1 is based on the energy estimates for the

equation (2.6) and the compactness argument. The proof of the uniqueness

argument is rather easy.

Proof of Proposition 2.1. To solve the final value problem (2.6)–

(2.7), we consider the final value problem of the following regularized equa-

tion: 


i∂twa,b +
1

2
∆wa,b =(1 + bt)−5ρa ∗ [(ρa ∗ wa,b)(ρa ∗ za,b)

+ (ρa ∗ wa,b)(ρa ∗B) + (ρa ∗A)(ρa ∗ za,b)

− ρa ∗R1[A,B]],

∂2
t za,b − ∆za,b + za,b

= − (1 + bt)−5ρa ∗ [|ρa ∗ wa,b|2

− 2Re((ρa ∗ wa,b)(ρa ∗A)) − ρa ∗R2[A,B]]

(2.8)
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with the condition{
‖wa,b(t)‖H2 → 0, as t → ∞,

‖za,b(t)‖H2 + ‖∂tza,b(t)‖H1 → 0, as t → ∞
(2.9)

for 0 < a < 1 and 0 < b < 1. Here ρa(x) = a−3ρ(x/a) for ρ ∈ C∞
0 (R2) such

that ‖ρ‖L1 = 1 and ρ(x) = ρ(−x).

Using the contraction mapping principle, we easily see that for any 0 <

a, b < 1, there exists a constant T̃a,b > 0 such that the equation (2.8) has a

unique solution (wa,b, za,b) satisfying

wa,b ∈
∞⋂
j=1

C2([T̃a,b,∞);Hj),(2.10)

za,b ∈
∞⋂
j=1

C2([T̃a,b,∞);Hj),(2.11)

sup
t≥T̃a,b


(1 + bt)4

∑
|α|+j≤2

‖∂α
x ∂

j
twa,b(t)‖L2


 < ∞,(2.12)

sup
t≥T̃a,b


(1 + bt)4

∑
|α|+j≤2

‖∂α
x ∂

j
t za,b(t)‖L2


 < ∞.(2.13)

Since the initial value problem of the equation (2.8) is time globally solvable,

we can extend the above solution (wa,b, za,b) to the time interval [0,∞). We

note that we do not assume the smallness of δ, L0, L1 and L2 here.

We set

Fa,b(t) ≡[wa,b;L
2, k](t) + [∆wa,b;L

2, 1](t)

+ [za,b;H
1, k](t) + [∂tza,b;L

2, k](t)

+ [∇za,b;H
1, 1](t) + [∇∂tza,b;L

2, 1](t)

(2.14)

In order to estimate Fa,b independent of a and b, we have to derive the

various a priori estimates of wa,b and za,b independent of a and b. Since

the detailed proof for the equation (2.8) is rather complicated and the reg-

ularizing factors ρa∗ and (1 + bt)−5 cause no trouble, we describe only the

formal calculations for the equation (2.6) as in [19].
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Let T ≥ 1 be a constant determined later, and let (w, z) be the solution

for the equation (2.6) on [T,∞), which are smooth and decay rapidly enough

as t → ∞. For t ≥ T , we put

F (t) ≡[w;L2, k](t) + [∆w;L2, 1](t) + [z;H1, k](t)

+ [∂tz;L
2, k](t) + [∇z;H1, 1](t) + [∇∂tz;L

2, 1](t)

To estimate F (T ), we derive the various a priori estimates for w and z.

Throughout the proof of this proposition, we set

L = max{L0, L1, L2}.

We first evaluate w and ∆w. Let t ≥ T . From the equality

−1

2

d

dt
‖w(t)‖2

L2 = − Im(A(t)z(t) + R1[A,B](t), w(t)),

we obtain

− d

dt
‖w(t)‖L2 ≤‖A(t)‖L∞‖z(t)‖L2 + ‖R1[A,B](t)‖L2

≤δt−k−1[z;L2, k](T ) + Lt−3.

Integrating over the interval [t,∞), we see

‖w(t)‖ ≤ δt−k[z;L2, k](T ) + Lt−2,

and hence we have

[w;L2, k](T ) ≤δ[z;L2, k](T ) + LT−(2−k)

≤δF (T ) + LT−(2−k).
(2.15)

By operating ∆ both side of the first equation in the system (2.6), we have

−1

2

d

dt
‖∆w(t)‖2

L2 = − Re(∂t∆w(t),∆w(t))

= − Im(2∇w(t) · ∇(z(t) + B(t)) + w(t)∆(z(t) + B(t))

+ ∆(A(t)z(t)) − ∆R1[A,B](t),∆w(t)).
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By the above equality, Hölder’s inequality and the Sobolev embedding the-

orem, we see

− d

dt
‖∆w(t)‖L2

≤C(‖∇w(t)‖L4‖∇z(t)‖L4 + ‖w(t)‖L∞‖∆z(t)‖L2

+ ‖∇w(t)‖L2‖∇B(t)‖L∞ + ‖w(t)‖L2‖∆B(t)‖L∞

+ ‖A(t)‖W 2∞‖z(t)‖H2 + ‖∆R1[A,B](t)‖L2)

≤C(‖ω3/2w(t)‖L2‖ω3/2z(t)‖L2 + ‖w(t)‖H3/2‖∆z(t)‖L2

+ ‖∇w(t)‖L2‖∇B(t)‖L∞ + ‖w(t)‖L2‖∆B(t)‖L∞

+ ‖A(t)‖W 2∞‖z(t)‖H2 + ‖∆R1[A,B](t)‖L2)

≤C([w;L2, k](T )1/4[∆w;L2, 1](T )3/4

× [z;H1, k](T )1/2[∇z;H1, 1](T )1/2t−3k/4−5/4

+ ([w;L2, k](T ) + [w;L2, k](T )1/4[∆w;L2, 1](T )3/4)

× [∇z;H1, 1](T )t−k/4−9/4

+ L([w;L2, k](T ) + [w;L2, k](T )1/2[∆w;L2, 1](T )1/2)t−k/2−3/2

+ δ([z;H1, k](T ) + [∇z;H1, 1](T ))t−2 + Lt−3).

Integrating over the interval [t,∞), we have

‖∆w(t)‖L2 ≤C(F (T )2(t−3k/4−1/4 + t−k/4−5/4)

+ F (T )(Lt−k/2−1/2 + δt−1) + Lt−2).

Noting 1 < k < 2, we obtain

[∆w;L2, 1](T ) ≤C(F (T )2T−(k−1)/4

+ F (T )(LT−(k−1)/2 + δ) + LT−1).
(2.16)

We next estimate z and ∇z. Let t ≥ T . By the energy estimate, Hölder’s

inequality and the Sobolev embedding theorem, we see

‖z(t)‖H1 + ‖∂tz(t)‖L2

≤C

∫ ∞

t
‖|w(s)|2 + 2 Re(w(s)A(s)) + R2[A,B](s)‖L2 ds
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≤C

∫ ∞

t
(‖w(s)‖2

L4 + ‖w(s)‖L2‖A(s)‖L∞ + ‖R2[A,B](s)‖L2) ds

≤C

∫ ∞

t
(‖ω1/2w(s)‖2

L2 + ‖w(s)‖L2‖A(s)‖L∞ + ‖R2[A,B](s)‖L2) ds

≤C

∫ ∞

t
([w;L2, k](T )3/2[∆w;L2, 1](T )1/2s−3k/2−1/2

+ δ[w;L2, k](T )s−k−1 + Ls−3) ds

≤C([w;L2, k](T )3/2[∆w;L2, 1](T )1/2t−(3k/2−1/2)

+ δ[w;L2, k](T )t−k + Lt−2).

Therefore

[z;H1,k](T ) + [∂tz;L
2, k](T )

≤C([w;L2, k](T )3/2[∆w;L2, 1](T )1/2T−(k−1)/2

+ δ[w;L2, k](T ) + LT−(2−k))

≤C(F (T )2T−(k−1)/2 + δF (T ) + LT−(2−k)).

(2.17)

In the same way as above, we have

‖∇z(t)‖H1 + ‖∇∂tz(t)‖L2

≤C([w;L2, k](T )[∆w;L2, 1](T )t−k + δ([w;L2, k](T )

+ [w;L2, k](T )1/2[∆w;L2, 1](T )1/2)t−(k+1)/2 + Lt−2).

Therefore

[∇z;H1,1](T ) + [∇∂tz;L
2, 1](T )

≤C(F (T )2T−(k−1) + δF (T ) + LT−1).
(2.18)

From the estimates (2.15)–(2.18), we see

F (T ) ≤C((1 + L)T−(k−1)/4 + LT−(2−k) + δ)

× (F (T )2 + F (T ) + 1).
(2.19)

The above proof of (2.19) is rather formal. But exactly in the same way

as above, we can show that there exists a constant C > 0 independent of a

and b such that

Fa,b(T ) ≤C((1 + L)T−(k−1)/4 + LT−(2−k) + δ)

× (Fa,b(T )2 + Fa,b(T ) + 1).
(2.20)
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where Fa,b is defined by (2.14). Note the behavior of the positive function

f(p) = p/(p2 + p + 1) for p ≥ 0. In particular, f has the maximum 1/3

at p = 1. We also remark that according to (2.10)–(2.13), Fa,b(t) → 0 as

t → ∞. Therefore recalling 1 < k < 2, we see that if δ > 0 is sufficiently

small and T ≥ 1, depending only on δ and L, is sufficiently large such that

C((1 + L)T−(k−1)/4 + LT−(2−k) + δ) ≤ 1

3
,

where the constant C appears in the estimate (2.20), then

Fa,b(T ) ≤ 1.(2.21)

Here we note that the estimate (2.21) is independent of a and b. If a → 0 and

b → 0, then the estimate (2.21) and the standard compactness argument

show that there exists a solution (w, z) ∈ XT for the equation (2.6) for

sufficiently small δ > 0 and sufficiently large T ≥ 1.

It remains to prove the uniqueness. Let δ > 0 be sufficiently small and

let T ≥ 1 be sufficiently large as above. Let (w1, z1) and (w2, z2) be solutions

for the equation (2.6) in XT . They satisfy the equation




i∂t(w1 − w2) +
1

2
∆(w1 − w2) =(w1 − w2)z1 + (w1 − w2)B

+ w2(z1 − z2) + A(z1 − z2),

∂2
t (z1−z2) − ∆(z1 − z2) + (z1 − z2)

= − (|w1| + |w2|)(|w1| − |w2|) − 2 Re((w1 − w2)Ā).

(2.22)

Let t ≥ T .

In the same way as in the estimate (2.15), we have

− d

dt
‖w1(t) − w2(t)‖L2

≤‖(w2(t) + A(t))(z1(t) − z2(t))‖L2

≤(‖w2(t)‖L∞ + ‖A(t)‖L∞)‖z1(t) − z2(t)‖L2

≤C(‖w2(t)‖H3/2 + ‖A(t)‖L∞)‖z1(t) − z2(t)‖L2

≤C([w2;L
2, k](T ) + [w2;L

2, k](T )1/4[∆w2;L
2, 1](T )3/4)

× [z1 − z2;H
1, k](T )t−5k/4−3/4 + δ[z1 − z2;H

1, k](T )t−k−1.
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Integrating above inequality over the interval [t,∞), we obtain

‖w1(t) − w2(t)‖L2

≤C{([w2;L
2, k](T ) + [w2;L

2, k](T )1/4[∆w2;L
2, 1](T )3/4)t−(5k/4−1/4)

+ δt−k}[z1 − z2;H
1, k](T ).

This implies

[w1 − w2;L
2, k](T )

≤C{([w2;L
2, k](T ) + [w2;L

2, k](T )1/4[∆w2;L
2, 1](T )3/4)

× T−(k−1)/4 + δ}[z1 − z2;H
1, k](T ).

(2.23)

In the same way as in the estimate (2.17), we see

‖z1(t) − z2(t)‖H1

≤C

∫ ∞

t
(‖w1(s)‖L∞ + ‖w2(s)‖L∞ + ‖A(s)‖L∞)

× ‖w1(s) − w2(s)‖L2 ds

≤C

∫ ∞

t
(‖w1(s)‖H3/2 + ‖w2(s)‖H3/2 + ‖A(s)‖L∞)

× ‖w1(s) − w2(s)‖L2 ds

≤C

∫ ∞

t
{([w1;L

2, k](T ) + [w1;L
2, k](T )1/4[∆w1;L

2, 1](T )3/4

+ [w2;L
2, k](T ) + [w2;L

2, k](T )1/4[∆w2;L
2, 1](T )3/4)s−5k/4−3/4

+ δt−k−1}[w1 − w2;L
2, k](T ) ds

≤C{([w1;L
2, k](T ) + [w1;L

2, k](T )1/4[∆w1;L
2, 1](T )3/4

+ [w2;L
2, k](T ) + [w2;L

2, k](T )1/4[∆w2;L
2, 1](T )3/4)t−(5k/4−1/4)

+ δt−k}[w1 − w2;L
2, k](T ).
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This implies

[z1 − z2;H
1, k](T )

≤C{([w1;L
2, k](T ) + [w1;L

2, k](T )1/4[∆w1;L
2, 1](T )3/4

+ [w2;L
2, k](T ) + [w2;L

2, k](T )1/4[∆w2;L
2, 1](T )3/4)

× T−(k−1)/4 + δ}[w1 − w2;L
2, k](T ).

(2.24)

The estimates (2.23) and (2.24) yield

[w1 − w2;L
2, k](T ) + [z1 − z2;H

1, k](T )

≤C{([w1;L
2, k](T ) + [w1;L

2, k](T )1/4[∆w1;L
2, 1](T )3/4

+ [w2;L
2, k](T ) + [w2;L

2, k](T )1/4[∆w2;L
2, 1](T )3/4)T−(k−1)/4

+ δ}([w1 − w2;L
2, k](T ) + [z1 − z2;H

1, k](T )).

Since 1 < k < 2 and since [wj ;L
2, k](T ) and [∆wj ;L

2, 1](T ) (j = 1, 2) do

not increase with respect to T , if δ > 0 is sufficiently small and T ≥ 1 is

sufficiently large, then

[w1 − w2;L
2, k](T ) + [z1 − z2;H

1, k](T ) ≤ 0.

From this, we see that (w1, z1) = (w2, z2). Therefore if δ > 0 is sufficiently

small and T ≥ 1 is sufficiently large, then the solution for the equation (2.6)

is unique in XT .

Recalling Remark 2.4, we see that if δ > 0 is sufficiently small and

T ≥ 1, which depends only on δ and L, is sufficiently large, then there exists

a unique solution (u, v) for the equation (KGS) satisfying the conditions

(2.3)–(2.5). This completes the proof of this proposition. �

3. Asymptotics and Proof of Theorem

In this section, by constructing an asymptotic profile (ua, va) satisfying

the assumptions of Proposition 2.1 under suitable conditions on the final

state, we prove Theorem. Let (u+, v+, v̇+) be a final state.

We find an asymptotic profile of the form (ua, va) = (u0+u1, v0+v1+v2).

u0 and v0 are the principal terms of ua and va, respectively. (u0 � u1,
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v0 � v1 � v2). It is natural to expect that (u0, v0) is the free profile or

the modified free profile. Let R1 and R2 be defined by (2.1) and (2.2),

respectively. Then

R1[ua, va] =Lua − uava

= − uav0 + (Lua − uav1) − uav2.
(3.1)

R2[ua, va] =Kva + |ua|2

=Kv0 + (Kv1 + |u0|2)
+ (Kv2 + 2 Re(ū0u1)) + |u1|2.

(3.2)

We set

v0(t, x) = (K̇(t)v+)(x) + (K(t)v̇+)(x).

v0 is a solution of the free Klein-Gordon equation with initial data (v+, v̇+).

Namely, the first term Kv0 in the right hand side of the equation (3.2)

vanishes. The time decay estimates of v0 (Lemmas 3.1 and 3.2 below) are

well-known. (See, e.g., Lemmas 2.2 and 2.3 in Ozawa and Tsutsumi [15]).

Lemma 3.1. There exists a constant C > 0 such that for t ≥ 1,

‖v0(t)‖H2 ≤ ‖v+‖H2 + ‖v̇+‖H1 ,

‖v0(t)‖W 2∞ ≤ C(‖v+‖H4,2 + ‖v̇+‖H3,2)t−1.

Lemma 3.2. Let a > 0. There exists a constant M ′
a depending on a

such that for t ≥ 1,∑
|α|≤2

‖∂αv0(t)‖L∞(|x|≥(1+a)t) ≤ M ′
a(‖v+‖H4,3 + ‖v̇+‖H3,3)t−3.

Remark 3.1. According to Lemma 3.2, we see that v0 decays more

rapidly with respect to t outside the light cone.

We consider the second term Kv1 + |u0|2 in the right hand side of the

equation (3.2). Because u0 is the modified free profile for the Schrödinger

equation, we may consider that |u0|2 behaves like t−2|û+(x/t)|2, and
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‖|u0(t)|2‖L2 decays as O(t−1). This is not sufficient to satisfy the assump-

tion on R2 of Proposition 2.1. In order to obtain improved time decay

estimates of R2, we choose the second correction term v1 of va such that

Kv1 + t−2|û+(x/t)|2 decays faster than t−2|û+(x/t)|2. We put

v1(t, x) = − 1

t2

∣∣∣û+

(x

t

)∣∣∣2 ,
Then

Kv1(t, x) +
1

t2

∣∣∣û+

(x

t

)∣∣∣2 = −�

(
1

t2

∣∣∣û+

(x

t

)∣∣∣2) .

By a direct calculation, we have the following lemma.

Lemma 3.3. Let k = 0, 1, 2. There exists a constant C > 0 such that

for t ≥ 1,

‖ωkv1(t)‖L2 ≤ C‖u+‖2
H0,2t

−k−1,∑
|α|=k

‖∂αv1(t)‖L∞ ≤ C‖u+‖2
H0,4t

−k−2

∥∥∥∥Kv1(t) +
1

t2

∣∣∣û+

( ·
t

)∣∣∣2
∥∥∥∥
H1

≤ C‖u+‖2
H2,4t

−3.

We next consider the second term Lua − uav1 in the right hand side

of (3.1). Because u0 is the modified free profile for the Schrödinger equa-

tion, ‖u0(t)v1(t)‖L2 decays as O(t−2). This is not sufficient to satisfy the

assumption on R1 of Proposition 2.1. In order to obtain improved time

decay estimates of R1, we choose the Schrödinger part ua = u0 + u1 of the

asymptotic profile such that Lua − uav1 decays faster than uav1. We use

the method of phase correction. We write

ua = MDe−iSWa = MDe−iS(W0 + W1),

where Wa = W0 +W1 is a complex amplitude, S is a real phase and M and

D are the following operators:

(Mf)(t, x) = ei|x|
2/2tf(x), (Dg)(t, x) =

1

it
g
(
t,
x

t

)
.
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It is well-known that

U(t) = M(t)D(t)FM(t).(3.3)

By a direct calculation,

Lua − uav1

=MDe−iS

[
i∂tW0 +

(
i∂tW1 +

1

2t2
∆W0

)

+ (∂tS − (D−1
0 v1))Wa +

1

2t2
∆W1

− i

2t2
(2∇S · ∇Wa + Wa∆S) − 1

2t2
|∇S|2Wa

]
,

(3.4)

where D0 and D−1
0 are the following operators:

(D0g)(t, x) = g
(
t,
x

t

)
, (D−1

0 g)(t, x) = g(t, tx).

In view of the relation (3.3), we put

W0(t, x) = û+(x).

Since W0 is independent of t, the first term in [. . . ] of the right hand side

in the equality (3.4) vanishes.

Next we set

S(t, x) =
1

t
|û+(x)|2

so that

∂tS(t, x) = (D−1
0 v1)(t, x) = − 1

t2
|û+(x)|2.

Therefore the third term in [. . . ] of the right hand side in the equality (3.4)

vanishes.

We consider the second in [. . . ] of the right hand side in the equality

(3.4). Since the L2-norms of (2t)−2∆W0 decays as O(t−2), this term does

not satisfy the assumptions on R1 in Proposition 2.1. We determine

W1(t, x) = − i

2t
∆û+(x)
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so that

i∂tW1 +
1

2t2
∆W0 = 0.

Namely the second in [. . . ] of the right hand side in the equality (3.4) van-

ishes.

Finally we determine

u0 = MDe−iSW0 =
1

it
ei|x|

2/2t−iS(t,x/t)û+

(x

t

)
,

u1 = MDe−iSW1 = − 1

it
ei|x|

2/2t−iS(t,x/t) i

2t
∆û+

(x

t

)
,

ua = u0 + u1.

Then we have

Lua − uav1

=MDe−iS

[
1

2t2
∆W1 −

i

2t2
(2∇S · ∇Wa + Wa∆S)

− 1

2t2
|∇S|2Wa

]
.

(3.5)

By the definitions of the functions W0, W1 and S, the equality (3.5)

and Hölder’s inequality and the Sobolev embedding theorem, we have the

following.

Lemma 3.4. Assume that ‖u+‖H2,8 ≤ 1. There exists a constant C > 0

such that for t ≥ 1,

‖u0(t)‖H2 ≤ C‖u+‖H2,4 ,

‖u0(t)‖W 2∞ ≤ C‖u+‖H2,6t−1,

‖u1(t)‖H2 ≤ C‖u+‖H2,6t−1,

‖u1(t)‖W 2∞ ≤ C‖u+‖H2,8t−2,

‖Lua(t) − ua(t)v1(t)‖H2 ≤ C‖u+‖H2,8t−3

We consider the third term Kv2+2 Re(ū0u1) in the right hand side of the

equation (3.2). By the definitions of u0 and u1, ‖ū0u1‖L2 decays as O(t−2).
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This is not sufficient to satisfy the assumption on R2 of Proposition 2.1.

In order to obtain improved time decay estimates of R2, we choose the

third correction term v2 of va such that Kv2 +2 Re(ū0u1) decays faster than

2 Re(ū0u1). We put

v2(t, x) = −2 Re(ū0u1) = − 1

t3
Im

(
û+

(x

t

)
∆û+

(x

t

))
.

Then

Kv2(t, x) + 2 Re(ū0u1) = −�

[
1

t3
Im

(
û+

(x

t

)
∆û+

(x

t

))]
.

By a direct calculation, we have the following lemma.

Lemma 3.5. Let k = 0, 1, 2. There exists a constant C > 0 such that

for t ≥ 1,

‖ωkv2(t)‖L2 ≤ C‖u+‖2
H0,4t

−k−2,∑
|α|=k

‖∂αv2(t)‖L∞ ≤ C‖u+‖2
H0,4t

−k−3

‖Kv2(t) + 2 Re(u0(t)u1(t))‖H1 ≤ C‖u+‖2
H2,6t

−3.

Finally we consider the first term uav0 in the right hand side of the

equality (3.1). From Lemmas 3.1 and 3.4, ‖ua(t)v0(t)‖L2 decays as O(t−1)

generally. Since this is not sufficient to satisfy the assumptions on R1 of

Proposition 2.1, we have to obtain additional time decay estimate for uav0.

Under the assumption (1.4) on the support of the Fourier transform û+ of

the Schrödinger data u+ as in [15], the improved time decay estimate follows

from Lemma 3.2.

Lemma 3.6. Let a > 0. Assume that the condition (1.4) is satisfied.

Then there exists a constant Ma > 0 depending on a such that for t ≥ 1,

‖ua(t)v0(t)‖H2 ≤ Ma‖u+‖H2,6(‖v+‖H4,3 + ‖v̇+‖H3,3)t−3.
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From Lemmas 3.1, 3.3, 3.4, 3.5 and 3.6, we have time decay estimates

for the functions (ua, va), R1[ua, va] and R2[ua, va].

Lemma 3.7. Let a > 0 and let Ma be the constant introduced in Lemma

3.6. Assume that the condition (1.4) is satisfied and that ‖u+‖H2,8 ≤ 1.

Then there exists a constant C > 0 such that for t ≥ 1,

‖ua(t)‖W 2∞ ≤ C‖u+‖H2,8t−1,

‖va(t)‖W 2∞ ≤ C(‖u+‖H2,8 + ‖v+‖H4,2 + ‖v̇+‖H3,2)t−1,

‖R1[ua, va](t)‖H2 ≤ C(1 + Ma)(‖u+‖H2,8 + ‖v+‖H4,3 + ‖v̇+‖H3,3)t−3,

‖R2[ua, va](t)‖H1 ≤ C‖u+‖H2,8t−3.

Proof of Theorem. We assume that all the assumptions of Theorem

are satisfied. If we put

(A,B) = (ua, va),

δ = C‖u+‖H2,8 ,

L0 = C(‖u+‖H2,8 + ‖v+‖H4,2 + ‖v̇+‖H3,2),

L1 = C(1 + Ma)(‖u+‖H2,8 + ‖v+‖H4,3 + ‖v̇+‖H3,3),

L2 = C‖u+‖H2,8 ,

where C > 0 and Ma are the constants introduced in Lemma 3.7, then the

assumptions in Proposition 2.1 are satisfied. By Proposition 2.1, if ‖u+‖H2,8

is sufficiently small and if T ≥ 1, which depends on a > 0, ‖u+‖H2,8 ,

‖v+‖H4,3 and ‖v̇+‖H3,3 , is sufficiently large, then there exists a unique solu-

tion (u, v) satisfying

u ∈ C([T,∞);H2), v ∈ C([T,∞);H2) ∩ C1([T,∞);H1),

sup
t≥T

(tk‖u(t) − ua(t)‖L2 + t‖u(t) − ua(t)‖Ḣ2) < ∞,

sup
t≥T

[tk(‖v(t) − va(t)‖H1 + ‖∂tv(t) − ∂tva(t)‖L2)

+ t(‖v(t) − va(t)‖Ḣ1∩Ḣ2 + ‖∂tv(t) − ∂tva(t)‖Ḣ1)] < ∞.

Since the equation (KGS) is globally well-posed in C(R;H2)⊕ [C(R;H2)∩
C1(R;H1)] (see Bachelot [1], Baillon and Chadam [2], Fukuda and Tsutsumi
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[3] and Hayashi and von Wahl [11]), the unique solution (u, v) on the time

interval [T,∞), which is obtained above, can be extended to all times. This

completes the proof of Theorem. �
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[7] Ginibre, J. and G. Velo, Long range scattering and modified wave operators
for some Hartree type equations III, Gevrey spaces and low dimensions, J.
Differential Equations 175 (2001), 415–501.

[8] Ginibre, J. and G. Velo, Long range scattering and modified wave operators
for the Wave-Schrödinger system, Ann. Henri Poincaré 3 (2002), 537–612.
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