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Systems of Renewal Equations on the Line

By M. S. Sgibnev

Abstract. Systems of integral equations of renewal type on the
whole line are considered. Using Banach-algebraic techniques, we study
the asymptotic properties of the solutions and give rather general esti-
mates of the rates of convergence.

1. Introduction

Consider the system of renewal equations

(1) zi(x) = gi(x) +
n∑

j=1

∫
R

zj(x− u)Fij(du), i = 1, . . . , n,

where gi ∈ L1(R), i = 1, . . . , n, and F = (Fij) is a matrix of nonnegative

finite measures on R. Denote by a = (a1, . . . , an)T the column vector with

coordinates a1, . . . , an. In matrix notation, the system (1) takes the form

(2) z(x) = g(x) + F ∗ z(x),

where, by definition, (F ∗ z(x))i is the sum on the right-hand side of (1).

The objectives of the present paper are (i) to obtain a Stone-type decom-

position for the matrix renewal measure on the whole line (see Definition 2

in Section 3) and (ii) to apply the resulting decomposition to the study

of the asymptotic properties of the solution to (2), deriving rather general

submultiplicative rates of convergence for z(x) as x → ±∞. The results

obtained will generalize those of [29], where the one-dimensional (n = 1)

case was considered. It should be noted that the proofs from the one-

dimensional case by no means automatically apply to the case of systems
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of renewal equations, and, as pointed out in [5, Chapter 8]: “ . . . new

and powerful methods are required to handle the questions of asymptotic

behavior of the solutions.”

Systems of renewal equations on the whole line do not seem to have been

considered previously. As far as results on the half-axis are concerned, the

reader is referred to [5, 8, 9, 3, 22, 23, 4, 10, 28].

2. Preliminaries

Let B be a square matrix of order n and let µ1, . . . , µn be its eigen-

values. The maximum of the |µj | is called the spectral radius of B. By

the Perron-Frobenius theorem [18, Theorem 9.2.1], every nonnegative ir-

reducible matrix B has a positive eigenvalue r of multiplicity 1, which is

equal to its spectral radius; moreover, there exist positive right and left

eigenvectors corresponding to r. If we drop the irreducibility condition,

then the following assertion holds [18, Theorem 9.3.1]: Every nonnegative

matrix B has a real eigenvalue r, equal to its spectral radius, and there

exists a normalized nonnegative right eigenvector corresponding to r.

We shall need some knowledge from the theory of Banach algebras of

measures. In what follows, a key role will be played by Banach algebras of

measures with submultiplicative weight functions.

Definition 1. A function ϕ(x), x ∈ R, is called submultiplicative if

ϕ(x) is finite, positive, Borel-measurable and ϕ(0) = 1, ϕ(x+y) ≤ ϕ(x)ϕ(y)

∀x, y ∈ R.

A few examples of such functions on R+ := [0,∞): ϕ(x) = (1 + x)r,

r > 0; ϕ(x) = exp(cxα) with c > 0 and α ∈ (0, 1); ϕ(x) = exp(rx) with

r ∈ R. Moreover, if R(x), x ∈ R+, is a positive, ultimately nondecreasing

regularly varying function at infinity with a nonnegative exponent α (i.e.,

R(tx)/R(x) → tα for t > 0 as x → ∞ [12, Section VIII.8]), then there exist

a nondecreasing submultiplicative function ϕ(x) and a point x0 ∈ (0,∞)

such that c1R(x) ≤ ϕ(x) ≤ c2R(x) for all x ≥ x0, where c1 and c2 are

some positive constants [25, Proposition]. The product of a finite number

of submultiplicative functions is again a submultiplicative function.
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It is well known [15, Section 7.6] that

(3) −∞ < r1 := lim
x→−∞

logϕ(x)

x
= sup

x<0

logϕ(x)

x

≤ inf
x>0

logϕ(x)

x
= lim

x→∞
logϕ(x)

x
=: r2 < ∞

and M(h) := sup|x|≤h ϕ(x) < ∞ ∀h > 0.

Consider the collection S(ϕ) of all complex-valued measures κ such that

‖κ‖ϕ :=
∫

R
ϕ(x) |κ|(dx) < ∞; here |κ| stands for the total variation of κ.

The collection S(ϕ) is a Banach algebra with norm ‖ · ‖ϕ by the usual

operations of addition and scalar multiplication of measures, the product

of two elements ν and κ of S(ϕ) is defined as their convolution ν ∗ κ [15,

Section 4.16]. The unit element of S(ϕ) is the Dirac measure δ, i.e., the

measure of unit mass concentrated at the origin.

Define the Laplace transform of a measure κ as κ̂(s) :=
∫

R
exp(sx)κ(dx).

Relation (3) implies that the Laplace transform of any κ ∈ S(ϕ) converges

absolutely with respect to |κ| for all s in the strip

Π(r1, r2) := {s ∈ C : r1 ≤ �s ≤ r2}.

Let ν be a finite complex-valued measure. Denote by Tν the σ-finite

measure with the density v(x; ν) := ν((x,∞)) for x ≥ 0 and v(x; ν) :=

−ν((−∞, x]) for x < 0. In case
∫

R
|x| |ν|(dx) < ∞, Tν is a finite measure

whose Laplace transform is given by (Tν)∧(s) = [ν̂(s) − ν̂(0)]/s, �s = 0,

the value (Tν)∧(0) being defined by continuity as
∫

R
x ν(dx) < ∞.

The absolutely continuous part of an arbitrary distribution F will be

denoted by Fc and its singular component, by Fs: Fs = F − Fc.

If F is a matrix of nonnegative measures, then Fs will denote the matrix

whose entries are the singular components of the corresponding elements of

F. Similar conventions will be tacitly made for integrals, inequalities and

the like, where matrices and vectors are involved.

3. A Stone-Type Decomposition

We first recall Stone’s decomposition of the renewal measure in the

one-dimensional case. Let F be a probability distribution on R with µ =
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∫
R
xF (dx) ∈ (0,+∞], and let H =

∑∞
n=0 F

n∗ be the corresponding renewal

measure; here F 1∗ := F , F (n+1)∗ := F ∗Fn∗, n ≥ 1, and F 0∗ := δ. Suppose

F is spread-out, i.e., for some m ≥ 1, Fm∗ has a nonzero absolutely contin-

uous component. Stone [30] showed that then there exists a decomposition

H = H1 +H2, where H2 is a finite measure and H1 is absolutely continuous

with bounded continuous density h(x) such that limx→+∞ h(x) = µ−1 and

limx→−∞ h(x) = 0.

Consider the renewal equation

(4) z(t) = g(t) +

∫
R

z(t− y)F (dy) =: g(t) + z ∗ F (t),

where g ∈ L1(R) and F is a spread-out probability distribution on R with

positive mean µ. The function z(t) := g∗H(t)+c is clearly a solution to (4);

here c is any constant. So the asymptotic properties of the solutions to (4)

are essentially those of the convolution g ∗H(t). As pointed out in [2] and

implemented in [1], Stone’s decomposition allows us to obtain an elegant

proof of the following statement:

(5) g ∗H(t) →
{
µ−1

∫
R
g(x) dx as t → +∞,

0 as t → −∞,

provided that g(x) is bounded and lim|x|→∞ g(x) = 0.

Define the convolution of matrix measures as follows. If µ and ν are

two arbitrary matrices of complex-valued measures, then µ ∗ ν :=

(
∑n

k=1 µik ∗ νkj), provided the usual convolutions on the right-hand side

make sense. Let I be the unit matrix.

Definition 2. A matrix renewal measure is a matrix of measures H :=∑∞
k=0 Fk∗; here F1∗ := F, F(k+1)∗ := Fk∗ ∗ F = F ∗ Fk∗, F0∗ := δI.

In this section, we shall obtain an abstract Banach-algebraic version of

Stone’s decomposition for the matrix renewal measure H. Here we will

assume that l
∫

R
xF(dx)r ∈ (0,+∞). By choosing specific Banach algebras

of measures, we can apply the result to the study of the rates of convergence

in a multidimensional analog of (5). The case l
∫

R
xF(dx)r = +∞ does not

seem to admit a Banach-algebraic treatment and will be dealt with by

traditional methods in a forthcoming paper.
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Let S(r1, r2) be the Banach algebra S(ϕ) with ϕ(x) = max(er1x, er2x),

where r1 ≤ 0 ≤ r2. We shall also consider Banach algebras A of measures

such that (i) A ⊂ S(r1, r2) and (ii) each homomorphism A �→ C is the

restriction to A of some homomorphism S(r1, r2) �→ C. Property (ii) can

be restated as follows: Each maximal ideal M of A is of the form M1 ∩ A,

where M1 is a maximal ideal of S(r1, r2). It follows from the general theory

of Banach algebras that if ν ∈ A is invertible in S(r1, r2), then ν−1 ∈ A.

There is already a sizeable pool of Banach algebras of measures satisfying

the above properties (for an incomplete list, see, e.g., [7, 11, 20, 13, 24]). In

some cases, it is the asymptotic behavior of ν((x, x+ h]) that characterizes

the elements of A; otherwise, a distinguishing feature of the elements of A
is their specific density behavior (or tail behavior). Finally, one can take as

A the Banach algebra S(ϕ) with a general submultiplicative ϕ(x). Denote

by L the restriction of Lebesgue measure to [0,∞).

Theorem 1. Let F be an n×n-matrix whose elements are finite non-

negative measures on R. Suppose that the matrix F(R) is irreducible with

spectral radius %[F(R)] = 1. Choose positive left and right eigenvectors

l = (l1, . . . , ln) and r = (r1, . . . , rn)T corresponding to the eigenvalue 1

of F(R). Assume that µ := l
∫

R
xF(dx)r ∈ (0,+∞), %[(Fm∗)∧s (ri)] < 1,

i = 1, 2, for some integer m ≥ 1, and that in the strip Π(r1, r2) there are

no nonzero roots of the characteristic equation

(6) det(I − F̂(s)) = 0.

Let A be a Banach algebra with properties (i) and (ii). Suppose, finally, that

F, TF ∈ A. Then the matrix renewal measure H =
∑∞

n=0 Fn∗ admits a

Stone-type decomposition H = H1 + H2, where H2 ∈ A and H1 = rlL/µ+

rTH2 for some r > r2. If, in addition, T 2F ∈ A, then H1 − rlL/µ ∈ A.

Proof. We shall split the proof into several lemmas. Denote by M̂(s)

the adjugate matrix of I − F̂(s). We note that det(I − F̂(s)) is a linear

combination of products of n factors which are elements of I− F̂(s). Hence

det(I − F̂(s)) is the Laplace transform of some real-valued measure, say

α. By the same reason, the entries of M̂(s) are the Laplace transforms of

real-valued measures belonging to A, and we will denote by M = (Mij) the

corresponding matrix of measures.
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Lemma 1. Under the hypotheses of Theorem 1, Tα ∈ A and TM ∈ A,

i.e., TMij ∈ A for all i, j.

Proof of Lemma 1. It suffices to prove that if ν and κ are any

two measures such that
∫

R
|x|eγx |ν|(dx) < ∞,

∫
R
|x|eγx |κ|(dx) < ∞ and

ν, κ, Tν, Tκ ∈ A, then Tν ∗ κ ∈ A. But this follows immediately from the

equality T (ν ∗ κ) = (Tν) ∗ κ+ ν̂(0)Tκ implied by

ν̂(s)κ̂(s) − ν̂(0)κ̂(0)

s
=

[ν̂(s) − ν̂(0)]κ̂(s)

s
+
ν̂(0)[κ̂(s) − κ̂(0)]

s
, �s = 0.

Lemma 1 is proved. �

Let r > r2 and d(s) := (s − r) det(I − F̂(s))/s = (s − r)α̂(s)/s, s ∈
Π(r1, r2), where d(0) := −rα̂′(0). By Lemma 1, d(s) is the Laplace trans-

form of the measure D := α− rTα ∈ A since

(7) d(s) = α̂(s) − rα̂(s)/s = α̂(s) − r(Tα)∧(s) = D̂(s).

Lemma 2. Under the hypotheses of Theorem 1, D is invertible in A.

Proof of Lemma 2. It suffices to prove invertibility in S(r1, r2). Let

M be the space of maximal ideals of the Banach algebra S(r1, r2). Each

M ∈ M induces a homomorphism h : S(r1, r2) → C and M is the kernel of

h. Denote by ν(M) the value of h at ν ∈ S(r1, r2). An element ν ∈ S(r1, r2)

has an inverse if and only if ν(M) �= 0 for all M ∈ M.

The space M is split into two sets: M1 is the set of those maximal ideals

which do not contain the collection L(r1, r2) of all absolutely continuous

measures from S(r1, r2), and M2 = M \ M1. If M ∈ M1, then the

homomorphism induced by M is of the form h(ν) = ν̂(s0), where r1 ≤
�s0 ≤ r2. In this case, M = {ν ∈ S(r1, r2) : ν̂(s0) = 0} [15, Chapter IV,

Section 4]. If M ∈ M2, then ν(M) = 0 ∀ν ∈ L(r1, r2).

We now show that D(M) �= 0 for each M ∈ M, thus establishing the

existence of D−1 ∈ S(r1, r2). Actually, if M ∈ M1, then, for some s0 ∈
{r1 ≤ �s ≤ r2}, we have D(M) = D̂(s0) �= 0. Now let M ∈ M2. By

Theorem 1 of [20],

(8) h(ν) =

∫
R

χ(x, ν) exp(βx) ν(dx), ν ∈ S(r1, r2),
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where β is a real number such that r1 ≤ β ≤ r2, and the function χ(x, ν) of

two variables is a generalized character; here we mention only one property

of a generalized character to be used later: |ν| − ess supx∈R |χ(x, ν)| ≤ 1.

By the multiplicative property of the functional ν → ν(M), ν ∈ S(r1, r2),

we have F(M)m = Fm∗(M) = (Fm∗)s(M). Denote Θ = (Θij) := (Fm∗)s.
By (8), we have, for some β ∈ [r1, r2],

(9) |Θij(M)| =

∣∣∣∣
∫

R

χ(x,Θij) exp(βx) Θij(dx)

∣∣∣∣ ≤ Θ̂ij(β).

Choose λ ∈ [0, 1] such that β = λr1 + (1 − λ)r2. Since Θ̂ij(ξ) is a convex

function of ξ, we have Θ̂ij(β) ≤ λΘ̂ij(r1) + (1 − λ)Θ̂ij(r2). If A and B

are matrices such that |A| ≤ B, then %(A) ≤ %(B) [16, Theorem 8.1.18].

Also, it is easily verified that if B = λB1 + (1 − λ)B2, λ ∈ [0, 1], then

%(B) ≤ λ%(B1) + (1 − λ)%(B2). It follows from (9) that

%[Θ(M)] ≤ %[Θ̂(β)] ≤ λ%[Θ̂(r1)] + (1 − λ)%[Θ̂(r2)] < 1.

Consequently, %[F(M)m] < 1. It follows that %[F(M)], being equal to the

m-th root of %[F(M)m], is also less than 1. Since Tα ∈ L(r1, r2), (7) implies

D(M) = α(M) = det(I − F(M)) �= 0. So D(M) �= 0 for all M ∈ M. This

means that ∃D−1 ∈ S(r1, r2). Lemma 2 is proved. �

Consider the auxiliary matrix

(10) q(s) :=
s

s− r
[I − F̂(s)]−1, s ∈ Π(r1, r2),

where q(0) := −M̂(0)/[rα̂′(0)].

Lemma 3. Under the hypotheses of Theorem 1, q(s) is the Laplace

transform matrix of some Q ∈ A.

Proof of Lemma 3. It follows from (10) that q(s) = [1/d(s)]M̂(s).

Consequently, by Lemma 2, q(s) = Q̂(s), where Q = D−1 ∗ M ∈ A, the

entries of Q being the convolutions of D−1 with the corresponding elements

of M. Lemma 3 is proved. �
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For s ∈ Π(r1, r2) \ {0}, we have

(11) [I − F̂(s)]−1 =
s− r

s
Q̂(s) = −rQ̂(0)

s
− r[Q̂(s) − Q̂(0)]

s
+ Q̂(s).

We will show that (11) implies the following representation for H:

(12) H = rQ̂(0)L− rTQ + Q = −M̂(0)

α̂′(0)
L− rTQ + Q.

To this end, we shall need some knowledge from the theory of tempered dis-

tributions and more lemmas. Denote by S1 the space of rapidly decreasing

functions in R and by S ′
1 the dual space (the space of tempered distribu-

tions) [21, Chapter 7]. It is well known that if β is a σ-finite nonnegative

measure such that

(13)

∫
R

β(dx)

(1 + x2)k
< ∞

for some integer k > 0, then β ∈ S ′
1; here the tempered distribution β is

defined by

β(φ) :=

∫
R

φ(x)β(dx), φ ∈ S1.

Lemma 4. Let β be a σ-finite nonnegative measure such that β([x, x+

1]) ≤ c < ∞ ∀x ∈ R. Then (13) holds with k = 1.

Proof of Lemma 4. We have

∫
R

β(dx)

1 + x2
≤

−1∑
k=−∞

β([k, k + 1])

1 + (k + 1)2
+

∞∑
k=0

β([k, k + 1])

1 + k2
≤ 2c

∞∑
k=0

1

1 + k2
< ∞. �

Lemma 5. Let F be an n × n-matrix whose elements are finite non-

negative measures on R. Suppose that the matrix F(R) is irreducible and

%[F(R)] = 1. Choose positive left and right eigenvectors l = (l1, . . . , ln)

and r = (r1, . . . , rn)T corresponding to the eigenvalue 1 of F(R). Assume

that µ := l
∫

R
xF(dx)r ∈ (0,+∞). Then all the entries Hij of the matrix

renewal measure H satisfy condition (13) for k = 1, so that the Hij are

tempered distributions.
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Proof of Lemma 5. Although Lemma 5 is intuitive, especially in the

light of a corresponding one-dimensional result [12, Chapter XI, Section 9,

Theorem 1], its rigorous proof is rather involved. If F is concentrated

on [0,∞), then the asymptotic behavior of H((x, x + h]) as x → +∞ is

described in [9] for nonlattice F. A distinctive feature of lattice matrices F

is the fact that all Fk∗ are concentrated on sets of Lebesgue measure zero.

In the case under consideration, the above property of lattice matrices is

violated since %[(Fm∗)s(R)] < 1 for some m ≥ 1. Hence F is nonlattice.

Suppose F is concentrated on (0,∞). Then, by Theorem 2.1 of [9], there

exists limx→+∞ H((x, x+h]) := A(h) < ∞ for all h > 0. In particular, this

means that

(14)

(
sup
x∈R

Hij((x, x+ h])

)
:= K(h) < ∞.

We will show that this inequality is also valid when F is concentrated on R.

Suppose, for the time being, that F(R) ia a primitive [16, Definition 8.5.0]

stochastic matrix, i.e.,
∑n

j=1 Fij(R) = 1 ∀i. We shall use a basic factoriza-

tion identity [19, (2.9)] without describing the probabilistic meaning of its

components, since it is of no importance for our purposes. We have

I − zF̂(s) = [I − Ĝ−(z, s)][I − Ĝ+(z, s)], z ∈ (0, 1], �s = 0,

where Ĝ±(z, s)], as functions of s, are matrices of Laplace transforms of non-

negative finite measures. The measures involved are concentrated on (0,∞)

and (−∞, 0], respectively, and they continuously depend on z. Moreover,

%[Ĝ±(z, 0)] ≤ z. Hence, for z ∈ (0, 1), we have

(15)

∞∑
k=0

zkF̂(s)k =

∞∑
k=0

zkĜ+(z, s)k[I − Ĝ−(z, s)]−1.

The matrix F̂−(s) := I − Ĝ−(1, s) is invertible in the sense that [I −
Ĝ−(1, s)]−1 is the matrix of Laplace transforms of finite (and even non-

negative) measures. Let F−1
− be the corresponding matrix of measures, i.e.,

F̂−1
− (s) = [I − Ĝ−(1, s)]−1. Passing in (15) from Laplace transforms to

measures and letting z ↑ 1, we obtain

(16) H(A) = H1 ∗ F−1
− (A), A ∈ B,
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where B is the σ-algebra of all Borel subsets of R and H1 is the matrix

renewal measure induced by F+(A) := G+(1, A), A ∈ B. Notice that

H1 is concentrated on [0,∞). In order to apply Theorem 2.1 of [9] to

describe the asymptotic behavior of H1((x, x + h]), we have to show that

F+ satisfies all the necessary requirements, namely, (i) %[F+(R)] = 1, (ii)

F+(R) is irreducible, and (iii) F+ is nonlattice. In the notation of [6],

F+(R) = M+(0). Hence, by Lemma 2 (a) of [6], F+(R) is a stochastic

matrix, so that %[F+(R)] = 1. Next, as pointed out in [6, the proof of

Theorem 2], a Markov chain with transition matrix Q = F+(R) can have

only one class of essential states, which in the language of matrix theory

means that F+(R) is irreducible. Finally, the nonlattice property of F+

follows from the fact that (Fk∗
+ )s(R) �= Fk∗

+ (R) for some k ≥ 1. To prove

this, we argue by contradiction. Suppose (Fk∗
+ )s(R) = Fk∗

+ (R) ∀k, and let

A ∈ B be a set of Lebesgue measure zero such that all (Fk∗
+ )s, k = 1, 2, . . .

are concentrated on A. Since r := (1, . . . , 1)T is a right invariant vector of

F+(R), we have

(17) H1(A)r =
∞∑
k=0

Fk∗
+ (A)r =

∞∑
k=0

(Fk∗
+ )s(R)r = (∞, . . . ,∞)T .

Denote by F− a matrix of finite measures such that F̂−(s) = I− Ĝ−(1, s).

In view of (16), we have

(18) H1(A) = H ∗ F−(A) =

( ∞∑
k=0

Fmk∗ ∗
m−1∑
k=0

Fk∗ ∗ F−

)
(A)

≤
∞∑
k=0

(
Fmk∗

)
s
(R)

m−1∑
k=0

Fk∗(R)|F−|(R)

≤
∞∑
k=0

[
(Fm∗)s (R)

]k m−1∑
k=0

Fk∗(R)|F−|(R) < ∞.

The last inequality follows from %[(Fm∗
+ )s(R)] < 1. Actually,

[
I − (Fm∗)s (R)

]−1
=

∞∑
k=0

[
(Fm∗)s (R)

]k
< ∞.
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The contradiction between (17) and (18) proves that F+ is nonlattice. Ap-

plying [9, Theorem 2.1] to F+, we see that (14) is valid for H1 with some

constant matrix K1(h). It follows from (16) that

(19) sup
x∈R

Hij((x, x+ h]) ≤
n∑

k=1

[K1(h)]ik[F
−1
− (R)]kj ,

i.e., H satisfies (14). Let now F(R) be a primitive but not necessarily

stochastic matrix. We set J := diag(r1, . . . , rn), G := J−1FJ, and HG :=∑∞
k=0 Gk∗. Since G(R) = J−1F(R)J is a primitive stochastic matrix, HG

satisfies (19). But then

(20) H((x, x+ h]) = J−1HG((x, x+ h])J ≤ J−1KG(h)J < ∞.

Finally, let F(R) be an irreducible matrix with imprimitivity index d > 1

[14]. Rearranging, if necessary, the same rows and columns of F(R)d, we can

decompose it into d primitive block matrices of spectral radius 1. Without

loss of generality. we may assume that such a decomposition has already

been achieved:

F(R)d =




F(1)(R) 0 . . . 0

0 F(2)(R) . . . 0

. . . . . . . . . . . .

0 0 . . . F(d)(R)


 ,

where F(i)(R) are primitive matrices. It follows that all the block matrices

F(i) are of the same type as F itself; namely, there exists an integer q ≥ 1

such that %[(F(i)q∗)s(R)] < 1 ∀i [28, the proof of Lemma 2]. Put H(0) :=∑∞
k=0 Fkd∗ and H(j) := Fj∗ ∗ H(0), j = 1, . . . , d − 1. It is clear that H =∑d−1
j=0 H(j) and

H(0) =




H
(0)
1 0 . . . 0

0 H
(0)
2 . . . 0

. . . . . . . . . . . .

0 0 . . . H
(0)
d


 ,

where H
(0)
i are the matrix renewal measures induced by F(i), i = 1, . . . , d.

Since each of the H
(0)
i satisfies a relation similar to (14), the same is true
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for H(0). Next, relations of type (19) with F−1
− replaced by Fj∗ hold for the

H(j). Finally, “summing up” the corresponding inequalities for H(j) over j

from 0 to d− 1, we obtain (14) in the general case. To complete the proof

of Lemma 5, it now remains to apply Lemma 4. �

Denote by F(u) the Fourier transform of u ∈ S ′
1: F(u)(φ) := u(F(φ)),

φ ∈ S1, where

F(φ)(t) := (2π)−1/2

∫
R

φ(x) exp(−itx) dx, t ∈ R.

Let ν be a σ-finite measure defining an element in S ′
1. For arbitrary a ∈

R, we set νa(A) := ν(A − a), A ∈ B. Define the element ∆aν ∈ S ′
1 by

∆aν := ν−νa. Then F(∆aν) = [1−exp(−iat)]F(ν). If ν and κ are any two

measures which define tempered distributions and for which the convolution

ν ∗ κ makes sense, then obviously ∆a(ν ∗ κ) = ν ∗ (∆aκ) = (∆aν) ∗ κ.

Lemma 6 [26, Lemma 3]. Let ν be a finite measure. Then the tempered

distribution F(∆aTν) may be identified with the function

(2π)−1/2(1 − e−iax)[ν̂(−ix) − ν̂(0)]/(−ix), x ∈ R.

It is also clear that ∆aL is Lebesgue measure on the interval [0, a] and,

therefore, the tempered distribution F(∆aL) can be identified with the

function [1 − exp(−iat)]/[it(2π)1/2], t ∈ R.

We now turn to (11). Put s = −ix, x ∈ R, multiply both sides by

(2π)−1/2(1 − e−iax)φ(x), φ ∈ S1, and then integrate the resulting equality

over the whole line R. This yields

(21) (2π)−1/2

∫
R

(1 − e−iax)[I − F̂(−ix)]−1φ(x) dx

= (2π)−1/2

∫
R

rQ̂(0)
1 − e−iax

ix
φ(x) dx

− (2π)−1/2

∫
R

(1 − e−iax)
r[Q̂(−ix) − Q̂(0)]

−ix φ(x) dx

+ (2π)−1/2

∫
R

(1 − e−iax)Q̂(−ix)φ(x) dx.
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Lemma 7. Under the hypotheses of Theorem 1, the left-hand side of

(21) is equal to F(∆aH)(φ).

Proof of Lemma 7. Let z ∈ (0, 1). Define the matrix measure Hz

by

Hz(A) :=
∞∑
k=0

zkFk∗(A), A ∈ B.

Since %[zF(R)] < 1, the measure Hz is finite and Ĥz(s) = [I − zF̂(s)]−1,

�s = 0. It follows that the tempered distribution F(Hz) may be identified

with the function (2π)−1/2[I−zF̂(−ix)]−1, x ∈ R. Clearly, Hz → H in S ′
1 as

z → 1−, and hence ∆aHz → ∆aH as z → 1−. Next, F(∆aHz) → F(∆aH)

as z → 1−. Now to complete the proof of Lemma 7, it suffices to justify

the passage to the limit as z → 1− in

(22) F(∆aHz)(φ) = (2π)−1/2

∫
R

(1 − e−iax)[I − zF̂(−ix)]−1φ(x) dx.

Subtracting the left-hand side of (21) from the right-hand side of (22) and

multiplying both sides of the resulting equation by (2π)1/2, we have

(23) A(z) :=

∫
R

(1 − e−iax)
{
[I − zF̂(−ix)]−1 − [I − F̂(−ix)]−1

}
φ(x) dx

=

∫
R

(1 − e−iax)(z − 1)F̂(−ix)[I − zF̂(−ix)]−1

× [I − F̂(−ix)]−1φ(x) dx.

As z → 1−, the integrand converges to zero for all x �= 0. Now, in order

to prove limz→1− A(z) = 0, it remains to find an integrable majorant. By

Theorem 8.6.1 of [16],
∑k

j=0 F(R)j/k → rl as k → ∞. Applying the Taube-

rian theorem for power series [12, Chapter XIII, Section 5, Theorem 5], we

have, as z → 1−,

(24) |(z − 1)F̂(−ix)[I − zF̂(−ix)]−1| ≤ F(R)(1 − z)
∞∑
j=0

zjF(R)j → rl.
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It follows that the left-hand side of (24) is bounded for all x ∈ R and for

all z < 1 sufficiently close to 1. Let us bound the expression

B(x) := (1 − e−iax)[I − F̂(−ix)]−1 =
(1 − e−iax)M̂(−ix)

α̂(−ix)
.

In a sufficiently small neighborhood of zero, we have

(25) |B(x)| ≤ |ax||M|(R)

|α̂′(0)x+ o(x)| ≤
|ax||M|(R)

|α̂′(0)||x| − |o(x)| ≤
2|a||M|(R)

|α̂′(0)| .

It remains to bound B(x) outside a neighborhood of zero. We have

(26) |B(x)| ≤ 2|M|(R)
/

inf
|x|≥ε

|α̂(−ix)|.

The function α̂(−ix), x ∈ R, is continuous. By assumption, |α̂(−ix)| �= 0

∀x �= 0. We will show that lim inf |x|→∞ |α̂(−ix)| > 0, thus establishing

(27) inf
|x|≥ε

|α̂(−ix)| > 0.

We argue by contradiction. Assume that

(28) lim inf
|x|→∞

|α̂(−ix)| = 0.

Then there exists a sequence {xk} such that |xk| → ∞, α̂(−ixk) → 0 and

F̂(−ixk) → G as k → ∞, where G is a numerical matrix with %(G) ≥ 1

since det(I − G) = limk→∞ α̂(−ixk) = 0. Let m be the number appearing

in the statement of Theorem 1. Then F̂(−ixk)m → Gm as k → ∞. By the

Riemann-Lebesgue lemma, limk→∞
{
F̂(−ixk)m − [(Fm∗)s]∧(−ixk)

}
= 0,

and hence |G| ≤ (Fm∗)s(R), whence %(Gm) ≤ %[(Fm∗)s(R)] < 1. On the

other hand, %(Gm) = [%(G)]m ≥ 1. The contradiction shows that the

assumption (28) is false. It follows from (24)–(27) that the integrand in

(23) is bounded entrywise by a matrix of functions φ(x)K, where K > 0 is

a constant matrix. Lemma 7 is proved. �

Lemma 8. Let F be an n × n-matrix whose elements are finite non-

negative measures on R. Suppose that the matrix F(R) is irreducible and
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%[F(R)] = 1. Choose positive left and right eigenvectors l = (l1, . . . , ln) and

r = (r1, . . . , rn)T corresponding to the eigenvalue 1 of F(R). Assume that

µ := l
∫

R
xF(dx)r ∈ (0,+∞). Then, for any fixed h > 0,

H((x, x+ h]) → 0 as x → −∞.

Proof of Lemma 8. This is done by retracing the proof of

Lemma 5 and applying, wherever necessary, the dominated convergence

theorem. First, suppose F(R) is a primitive stochastic matrix. We have

limx→−∞ H1((x − y, x − y + h]) = 0 ∀y ∈ R since H1 is concentrated on

(0,∞). By dominated convergence, the assertion of the lemma now fol-

lows from (16) and from (14) with H replaced by H1. If F(R) is primitive

but not necessarily stochastic, then the assertion of the lemma is implied

by the equality in (20). Consider now the general case. By the above,

limx→−∞ H(0)((x, x + h]) = 0. Applying again the dominated convergence

theorem, we have limx→−∞ H(j)((x, x+h]) = 0, j = 1, . . . , d−1. and hence

H((x, x+ h]) → 0 as x → −∞. Lemma 8 is proved. �

We return to the proof of Theorem 1. It follows from (11) and Lemmas 3–

7 that F(∆aH) = rQ̂(0)F(∆aL) − F(r∆aTQ) + F(∆aQ). Passing over

from Fourier transforms to their inverse images, we obtain

(29) ∆aH = rQ̂(0)∆aL− ∆arTQ + ∆aQ.

Let D(R) be the space of all infinitely differentiable functions with compact

supports. Any tempered distribution is completely determined by its values

at functions φ ∈ D(R) since D(R) is dense in S1 [21, Theorem 7.10]. Let

φ be an arbitrary element of D(R) whose support is contained in a finite

interval [c, d]. Apply both sides of (29) to φ. The left-hand side becomes∫
R
φ(x)H(dx)−

∫
R
φ(x+a)H(dx). The latter integral is bounded in absolute

value by the matrix

H([c− a, d− a]) max{|φ(x)| : x ∈ [c, d]},

which, by Lemma 8, tends to the null matrix 0 as a → +∞. Next,∫
R

rQ̂(0)φ(x) ∆aL(dx) = rQ̂(0)

∫ a

0
φ(x) dx → rQ̂(0)

∫ ∞

0
φ(x) dx
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as a → +∞ and

∆arTQ(φ) =

∫
R

φ(x) rTQ(dx) −
∫

R

φ(x+ a) rTQ(dx);

the latter integral is bounded in absolute value by

rTQ([c− a, d− a]) max{|φ(x)| : x ∈ [c, d]} → 0 as a → +∞

since Q is a matrix of finite measures and

|TQ([c− a, d− a])| =

∣∣∣∣
∫ d−a

c−a
Q((−∞, x]) dx

∣∣∣∣ ≤ (d− c)|Q|((−∞, d− a]).

Finally,

∆aQ(φ) =

∫
R

φ(x)Q(dx) −
∫

R

φ(x+ a)Q(dx).

The latter integral is bounded in absolute value by

Q([c− a, d− a]) max{|φ(x)| : x ∈ [c, d]} → 0 as a → +∞

since Q is a matrix of finite measures. Summing up, we arrive at the

equality H(φ) = rQ̂(0)L(φ) − rTQ(φ) + Q(φ) ∀φ ∈ D(R), whence (12)

follows.

Lemma 9. Let F be an n × n-matrix whose elements are finite non-

negative measures on R. Suppose that the matrix F(R) is irreducible and

%[F(R)] = 1. Assume that F̂′(0) := (F̂ ′
ij(0)) is a matrix with finite en-

tries. Choose positive left and right eigenvectors l = (l1, . . . , ln) and r =

(r1, . . . , rn)T corresponding to the eigenvalue 1 of F̂(0) in such a way that

lr = 1. Then

(30) −M̂(0)

α̂′(0)
=

rl

lF̂′(0)r
.

Proof of Lemma 9. We shall suitably modify the arguments em-

ployed in the proofs of Lemmas 8 and 6 in [17]. Unlike [17], here we shall

use the fact that, because of the irreducibility of F̂(0),
∑k

j=1 F̂(q)j/k → rl
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as k → ∞ [16, Theorem 8.6.1], and we will also replace the column vector

e with unit coordinates by the right eigenvector r. We have M̂(0) = crl,

where

c = lim
z→1−

det(I − zF̂(0))/(1 − z) > 0.

Indeed, for 0 < z < 1, the adjugate matrix M̂z(0) of I − zF̂(0) is equal to

(31) det(I − zF̂(0))
∞∑
k=0

zkF̂(0)k =
det(I − zF̂(0))

1 − z
(1 − z)

∞∑
k=0

zkF̂(0)k.

The characteristic polynomial f(λ) of F̂(0) is equal to det(λI − F̂(0)) =∏k
j=1(λ − λj)

mj , where λj are the eigenvalues of F̂(0) and mj are their

multiplicities, j = 1, . . . , k,
∑k

j=1 mj = n, the eigenvalue λ1 = 1 having

multiplicity 1. Hence

det(I − zF̂(0)) = znf(1/z) = zn
k∏

j=1

(1/z − λj)
mj = (1 − z)

k∏
j=2

(1 − zλj)
mj .

Thus, c :=
∏k

j=2(1 − λj)
mj > 0 since λj �= 1 ∀j > 1 and if λj is a complex

eigenvalue, then ∃λi = λj with mi = mj , whence (1−λj)
mj (1−λi)

mi = |1−
λj |2mj . By the Tauberian theorem for power series, (1−z)

∑∞
k=0 z

kF̂(0)k →
rl as z → 1− [12, Chapter XIII, Section 5, Theorem 5]. Therefore, it follows

from (31) that

(32) M̂(0) = lim
z→1−

M̂z(0) = crl.

Differentiating [I − F̂(s)]M̂(s) = α̂(s)I at s = 0, we obtain −F̂′(0)M̂(0) +

[I − F̂(0)]M̂′(0) = α̂′(0)I. Multiply both sides of the last equality first by

l from the left and then by r from the right. Taking into account (32) and

lr = 1, we arrive at

(33) −lF̂′(0)M̂(0)r = −lF̂′(0)cr = α̂′(0).

Now (30) follows from (32) and (33). Lemma 9 is proved. �
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By Lemma 9, rQ̂(0) = −M̂(0)/α̂′(0) = rl/µ. In order to complete the

proof of Theorem 1, it now remains to put H1 := (rl/µ)L − rTQ and

H2 := Q (see (12)).

Remark 1. In the case r1 = r2 = 0, the requirement that in Π(r1, r2)

there be no nonzero roots of (6) is superfluous as is shown by the following

lemma.

Lemma 10. Let F be an n × n-matrix whose elements are finite non-

negative measures on R. Suppose that the matrix F(R) is irreducible and

%[F(R)] = 1. Assume that %[(Fm∗)s(R)] < 1 for some integer m ≥ 1. Then

det(I − F̂(s)) �= 0 for all s �= 0 such that �s = 0.

Proof of Lemma 10. Assume the contrary, i.e., det(I − F̂(s0)) = 0

for some s0 �= 0 with �s0 = 0. This means that 1 is an eigenvalue of F̂(s0).

By Theorem 8.4.5 of [16], there exist numbers θ1, . . . , θn ∈ R such that

F̂(s0) = DF(R)D−1, where D = diag(eiθ1 , . . . , eiθn), and hence F̂(s0)
m =

DF(R)mD−1. By assumption, Fm∗ = F(1) + F(2), where F(1) is a nonzero

matrix of absolutely continuous nonnegative measures, so that

F(R)m = D−1F̂(1)(s0)D + D−1F̂(2)(s0)D,

which is impossible by the following reason. Suppose F
(1)
jk (R) �= 0. Then

∣∣∣F̂ (1)
jk (s0)

∣∣∣ = ∣∣∣∣
∫

R

es0x F
(1)
jk (dx)

∣∣∣∣ < F
(1)
jk (R)

and hence

[D−1F̂(s0)
mD]jk =

∣∣∣e−iθj F̂
(1)
jk (s0)e

iθk + e−iθj F̂
(2)
jk (s0)e

iθk
∣∣∣

≤
∣∣∣F̂ (1)

jk (s0)
∣∣∣+ ∣∣∣F̂ (2)

jk (s0)
∣∣∣ < F

(1)
jk (R) + F

(2)
jk (R) = (Fm∗)jk(R).

This contradiction proves Lemma 10. �
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4. Solutions and Rates of Convergence

Consider first the simplest case A = S(0, 0), i.e., A is the algebra of

finite measures. Suppose g ∈ L1(R). It is clear that under the hypotheses

of Theorem 1 with T 2F ∈ A, z(x) := H∗g(x) is a solution to (2); moreover,

if c is an arbitrary right eigenvector of F(R) corresponding to the eigenvalue

1, then z(x)+c is also a solution. So the asymptotic properties of solutions

to (2) are those of the convolution H ∗ g(x). The decomposition of H

provided by Theorem 1 allows us to write z = z1 + z2, where zi := Hi ∗ g,

i = 1, 2. It follows that z2 ∈ L1(R) and z1 is a continuous function such

that z1(x) → rl
∫

R
g(y) dy/µ as x → +∞ and z1(x) → (0, . . . , 0)T as t →

−∞. If, in addition, g(x) is bounded and lim|x|→∞ g(x) = (0, . . . , 0)T , then

lim|x|→∞ z2(x) = (0, . . . , 0)T , and the solution z has the following property:

(34) z(x) →
{

rl
∫

R
g(y) dy/µ as x → +∞,

(0, . . . , 0)T as x → −∞.

In this section, we will limit ourselves to obtaining submultiplicative

rates of convergence in (34) by means of the Stone-type decomposition of

Theorem 1 with A := S(ϕ). Let ϕ(x), x ∈ R, be a submultiplicative

function such that r1 ≤ 0 ≤ r2. By Theorem 1 of [20], S(ϕ) satisfies

properties (i) and (ii) of the preceding section, and hence Theorem 1 applies.

We note some nuances. Let F be a nonnegative finite measure. Relation

TF ∈ S(ϕ) implies F ∈ S(ϕ). Actually,

∫ ∞

0
ϕ(x)F ((x,∞)) dx ≥

∞∑
k=0

inf
x∈[k,k+1)

ϕ(x)F ((k + 1, k + 2])

≥ 1

M(1)

∞∑
k=0

∫ k+2

k+1
ϕ(x)F (dx) =

1

M(1)

∫ ∞

1
ϕ(x)F (dx).

Since, obviously,
∫ 1
0 ϕ(x)F (dx) < ∞, we have

∫∞
0 ϕ(x)F (dx) < ∞. Sim-

ilarly,
∫ 0
−∞ ϕ(x)F (dx) < ∞. Therefore, instead of the hypotheses F,

TF ∈ S(ϕ) in Theorem 1, we may assume only TF ∈ S(ϕ). Similarly,

the set of conditions F, TF, T 2F ∈ S(ϕ) may be replaced by T 2F ∈
S(ϕ). Suppose now that ϕ(x)/ exp(r1x) is nonincreasing on (−∞, 0) and

ϕ(x)/ exp(r2x) is nondecreasing on [0,∞). Theorem 3 of [27] implies that
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if r1 = 0 = r2 and
∫

R
(1 + |x|)kϕ(x)F (dx) < ∞ for some integer k ≥ 1,

or if r1 < 0 = r2 and
∫∞
0 (1 + x)kϕ(x)F (dx) < ∞, or if r1 = 0 < r2 and∫ 0

−∞(1 + |x|)kϕ(x)F (dx) < ∞, then T kF ∈ S(ϕ). If r1 < 0 < r2, then

F ∈ S(ϕ) ⇒ T kF ∈ S(ϕ) ∀k ≥ 1 [27, Theorem 2]. Suppose now that

r1 = 0 = r2. Then, instead of the hypotheses F, TF ∈ S(ϕ) in Theorem 1,

we may assume only F ∈ S(ϕ1) , where ϕ1(x) := (1 + |x|)ϕ(x). Similarly,

the set of conditions F, TF, T 2F ∈ S(ϕ) may be replaced by F ∈ S(ϕ2),

where ϕ2(x) := (1+ |x|)2ϕ(x). In the latter case, H2 will be in S(ϕ1). Sup-

pose r1 < 0 < r2. Then the set of conditions F, TF, T 2F ∈ S(ϕ) may be

replaced by F ∈ S(ϕ). The intermediary cases r1 < 0 = r2 and r1 = 0 < r2
are dealt with in a similar way.

Theorem 2. Let ϕ(x) be a submultiplicative function such that r1 ≤
0 ≤ r2, and let g(x), x ∈ R, be a Borel-measurable vector function such that

(a) g ∈ L1(R), (b) g · ϕ ∈ L∞(R), (c) g(x)ϕ(x) → 0 as |x| → ∞ outside

a set of Lebesgue measure zero, and (d) ϕ(t)
∫∞
t |g(x)| dx → 0 as t → +∞

and ϕ(t)
∫ t
−∞ |g(x)| dx → 0 as t → −∞. Let F be an n × n-matrix whose

elements are finite nonnegative measures on R. Suppose that the matrix

F(R) is irreducible and %[F(R)] = 1. Choose positive left and right eigen-

vectors l = (l1, . . . , ln) and r = (r1, . . . , rn)T corresponding to the eigenvalue

1 of F(R). Assume that µ := l
∫

R
xF(dx)r ∈ (0,+∞), %[(Fm∗)∧s (ri)] < 1,

i = 1, 2, for some integer m ≥ 1, and that in the strip Π(r1, r2) there are no

nonzero roots of the characteristic equation (6) distinct from zero. Suppose

T 2F ∈ S(ϕ). Then, as t approaches ±∞ outside a set of Lebesgue measure

zero,

sup
α:|α|≤|g|

∣∣∣∣H ∗α(t) − rl

µ

∫
R

α(x) dx

∣∣∣∣ = o

(
1

ϕ(t)

)

and supα:|α|≤|g| |H ∗ α(t)| = o(1/ϕ(t)), respectively, the α(x) being Borel-

measurable vector functions on R.

Proof. By Theorem 1 with A = S(ϕ), both H1 − rlL/µ and

H2 are elements of S(ϕ). Choose g̃ ∈ L1(R) such that g̃ = g a.e.,

supx∈R |g̃(x)|ϕ(x) < ∞, and g̃(x)ϕ(x) → 0 as |x| → ∞ in the usual sense.

It suffices to put g̃(x) = 0 on {x ∈ R : |g(x)|ϕ(x) > ‖g · ϕ‖∞} and on a

set, say B, of Lebesgue measure zero such that limx �∈B,|x|→∞ g(x)ϕ(x) = 0;
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otherwise, g̃(x) := g(x). By Fubini’s theorem, the sets

A1 :=

{
x :

∣∣∣∣H1 −
rlL

µ

∣∣∣∣ ∗ |g̃|(x) �=
∣∣∣∣H1 −

rlL

µ

∣∣∣∣ ∗ |g|(x)

}

and A2 := {x : |H2| ∗ |g̃|(x) �= |H2| ∗ |g|(x)} are both of Lebesgue measure

zero. Set A := A1 ∪A2. We have

ϕ(t)|H2| ∗ |g̃|(t) ≤
∫

R

|H2|(dx)ϕ(t− x)ϕ(x)|g̃(t− x)|.

By dominated convergence, the right-hand side tends to zero as |t| → ∞,

and so does the left-hand side. Similarly, lim|t|→∞ ϕ(t)|H1−rlL/µ|∗|g̃|(t) =

0. Hence both ϕ(t)|H2| ∗ |g|(t) and ϕ(t)|H1 − rlL/µ| ∗ |g|(t) tend to zero as

|t| → ∞, remaining outside the set A of Lebesgue measure zero. The first

assertion of the theorem now follows from the obvious inequality

∣∣∣∣H ∗α(t) − rl

µ

∫
R

α(x) dx

∣∣∣∣
≤
∣∣∣∣H1 −

rlL

µ

∣∣∣∣ ∗ |g|(t) + |H2| ∗ |g|(t) +
rl

µ

∫ ∞

t
|g(x)| dx

and condition (d). The case t → −∞ is dealt with in a similar way. �
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