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On the ex1stence of homomorphlsms
between principal series of complex semlslrnple Lie groups

Noriyuki Abe

ABSTRACT. We determine when there exists a nonzero homomorphism be-
tween principal series representations of a complex semisimple Lie group. We
also determine the condition for the existence of nonzero homomorphisms
between twisted Verma modules.

§1. Introduction

Let G be a complex semisimple Lie group. Then the principal series representations of G
are defined and play an important role in the representation theory of G. One of a fundamental
problem about principal series is a description of the space of homomorphisms between such
representations (cf. [Zel75, p. 720, I1]). In this paper, we determine when there exists a nonzero
homomorphism between principal series representations of a complex semisimple Lie group. We
also determines the existence of homomorphisms between twisted Verma modules. This gives a
generalization of results of Verma [Ver68] and Bernstein-Gelfand-Gelfand [BGGT71].

We state our main results. Let g be the Lie algebra of G, b its Cartan subalgebra, A the
root system for (g, h) and W the Weyl group of A. By the Killing form we 1dent1fy g with g* =
Homc(g, C). Then the Killing form also defines a non-degenerate bilinear form on g*. We denote
this form by (-, ). For a € h*, put & = 2a/(e, a) and s4(\) = A—(&, Ao Take a positive system
A* C A. Then A determines a Borel subalgebra b. Put n = [b,b]. Let O be the Bernstein-
Gelfand-Gelfand category [BGG76, Definition 1] for (g,b) and M(\) the Verma module with
highest weight A — p for A € h* where p is the half sum of positive roots. Fix an involution
o of g such that ol = —idy. The category O has a dualizing functor § defined by M =
Homc (M, C)y-finite Where the action is given by (X f)(m) = f(—o(X)m). Put & = {(X, a(X)) |
X cg}Ccg@g. For M,N € O, we define the g @ g-module L(M,N) = Homc (M, N)e_finite
where the action is given by ((X,Y)f)(m) = o(X)f(=Ym). Then under some identification
g ®r C ~ g @ g, the principal representations of G are L(\, p) = L(M(—u),8M(—X)). This is
an object of H where H is a category of Harish-Chandra modules.

For A € b*, let A\ be the integral root system of A\, W) the Weyl group of Ay. Let P be
the integral weight lattice of A. Then it is well-known that W) = {w € W | wA — A € P}. Let
wy be the longest element of Wy. Put A+ AT N A,. Then A+ ‘determines the set of simple
roots IIy. Put S) = {sq | @ € I} and Wg ={weW,|w\= /\} For w € Wy, let A(w) be a
length of w as an element of W.
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For a sequence of simple roots a4, ...,o; € Il and u € h*, we define a subset A(SQI,".,SW)(#)
of h* as follows. Put §; = sq, -+ Sq,_, () for i = 1,...,1. For pu € h*, put '

A(sal,...,sal)(p’) = {/‘l € b*

for some 1 <4y < --- <4, <1, l‘/:é’ﬁir”‘sﬁil# and
(ﬁik,sﬁik_l -‘-sBil,u,) €Ze forallk=1,...,r

For a reduced expression w = s1---s; € W, it will be proved that the set Asy,s) (1) s
independent of the choice of a reduced expression (Lemma 2.3).  We write A, (u) instead of

A(sl,...,sl) (/‘l’)
Now we state the main theorems of this paper.

Theorem 1.1. Let A € b*, p,pu2 € A+ P and w,w' € Wy. Assume that X is dominant,
i.e., (&, A) & Zeo for all @ € A*. Then Homy(L(M (wiX), SM (p1)), L(M (waX), M (u2))) # 0
if and only if Wi waAwyw, (Wap1) N Wow5 Ay, (u2) # 0.

Moreover, if Homgy(L(M (w1X), 6M (u1)), L(M (w2X),6M(p2))) = O, then for all k € Zx,
we have Ext¥, (L(M (w1 ), SM (111)), L(M (w3 ), 0M(uz2))) = 0.

We can determine when there exists a nonzero homomorphisms between principal series
representations of G from Theorem 1.1 (see Lemma 3.2).

Let Ty, be the twisting functor for w € W [AL03, 6.2] and wp the longest element of W (see
also Arkhipov [Ark04, Definition 2.3.4]).

Theorem 1.2. We have Homo (T, M (p1), Tw, M (p2)) # 0 if and only if w1Aw1-1 (m) N
wzwko°w2_1 (’wo/J,z) 75 (Z)

Moreover, if Homo (T, M(p1), Tw, M (p2)) = 0, then EXtI(C’)(TwlM(Ml)aTw2M(N2)) =0 for
all k € Zo.

The proof of this theorem gives a new proof of the famous result of Verma [Ver68] and Bernstein-
Gelfand-Gelfand [BGG71] about homomorphisms between Verma modules.
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§2. General theory

We use the notation in Section 1. It is easy to prove the following lemma. We omit the
proof.

Lemma 2.1. Let sq,...,s;,8),...,8, € Sy be simple reflections. Put w = s;---s;. Then
1 l 74

Fix a dominant A € h*. Let C be an abelian category with enough injective objects, D C h*
a W)-stable subset. Let {Mx(w,u) | w € W, € D} be objects of C such that the following

. conditions are satisfied:

(A1) For w € Wy and w' € WY, My(ww', ) ~ My (w, ).
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(A2) For « € IT) such that sqw > w, if (&, p) & Z<o then we have My (sqw, y) ~ MA(w Salt)-

(A3) For a € Il such that spw > w, (&, wA) # 0 and (& u) € Zo there exists an exact
sequence 0 — My (w, ) — My (sqt0, 1) = Mx(w, saps) — Mx(w, ) — 0.

(A4) We have Home(My(wy, i), Ma(e, 1)) # 0 if and only if p € Wwyu'.
(A5) We have Ext§(My(w, i), Ma(e, ) = 0 for & > 0.

Lemma 2.2. Let o €Iy, w € Wy, u € D. Assume that (o, w\) = 0. Then we have
M(w, p) = Mx(w, sap) ~ Mx(sqw, p) =~ My(sqw, Sqpt).

PROOF. If necessary, replacing w by sqw, we may assume that sqw < w. By applying the
condition (A1) as w' = s,-14, We get Mx(sqw, ) = My (w, p) and My (sqw, sap) ~ My (w, Sapt)-
If (o, ) > 0, then My(w,p) ~ My(sqw,squ) by the condition (A2). If (a,pu) < 0, then
My(w, sap) =~ Mx(sqw, ) by the condition (A2). Hence we have My (w, ) ~ My(sqw, p) ~
My (w, sqp) >~ My(sqw, squ) for all p. . a

Lemma 2.3. Let wo € W, wy = s1---5; be a reduced expression and p1,pus € D. Then the
following conditions are equivalent.

(1) Home(Mx(wy, p1), Mx(ws, p2)) # 0.
(2) There exists k € Zo such that Extf(My(wy, p1), Mx(ws, u2)) # 0

(3) w1 € AWy Agg, o) (12).

PROOF. Obviously, (1) implies (2). We prove the lemma by induction on £(wz). If wy = e,
then the lemma follows from the conditions (A4) and (A5).

Assume that éA(wz) > 0. Take a € II) such that s; = s,. First assume that (a wod) =
0. Then we have Wy (sqwsz) A, L) (H2) = W(sqwa) 1A, .s1)(Sap2) by Lemma 2.2 and
induction hypothesis. By the definition, we have A, )(u2) = {ua} or Asey (p2) = {p2, sapa}.
Therefore W)?w2 Ay, (2) = W (sqwa)™ A(sz,...,sl)(m) by Lemma 2.1. This implies the
lemma, in the case of (a waA) = 0.

In the rest of this proof, we assume that (o, wa)) # 0. Assume that (&, u2) & Z<o,
then, by the condition (A2), M,\(wQ,,uz) ~ My(saws, sapi2). Since A(s,)(p2) = {2}, we have

Wy A(Sl, s (p2) = (sqwz)” A(S,‘,’ ,s)(8ap2) by Lemma 2.1. Hence (1)—(3) are equlvalent in
this case.
Fmally assume that (&, u2) € Z<o. Then we have A(sa)(ug) {p2, Sap2}. This implies that

wy A(sh ,sl)(/J,Q) = (Sqw2)~ A(Sz, ,sl)(ug) U (sqw2)~ 1A(32’_..ysl (sap2) by Lemma 2.1. By the
induction hypothesis, u1 & waAWwy | (s1,...s1) (2) if and only if :

Home (My(wy, 1), Ma(saw2, 2)) = Home (M (wy, 1), My (sqws, sapta)) = 0
From the condition (A3), we have an exact sequence

0 — My(sqwz, po) = Mx(wa, p2) — Mx(sqwa, Sap2) — My (sqws, pz) — 0. (2.1)
Since the functor Homg is left-exact, we have an exact sequence

0 — Homge (M (wy, p), Ma(sqwa, 2))
— Home (M (wy, ) M (wa, p2)) — Home (M (wa, p), Ma(sqw2, Sap2))-
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If (3) does not hold, Home (M (wa, u), Mx(sqwz, p2)) = Home (M (wy, p), Mx(sqw2, Squz)) = 0.
Hence we have Homc(M,\(wA, #), Mx(wa, u2)) = 0, i.e., (1) does not hold. Therefore, (1) implies
).

Now assume that (1) does not hold, i.e., Home(Mj(wy, p), Mx(ws, u2)) = 0. We prove
Homc(M)\(wA, w), Mx(sqwa, u2)) = Homc(M,\(wA, 1), MA(Sqw2, Sapi2)) = 0 and, for all k € Zy,
Ext (M (wy, p), Mx(wa, p2)) = 0. These imply the lemma.

By the exact sequence

0 — Homc (M (wy, u), Ma(sqwz, pi2)) — Home (M (wy, i), Ma(w2, u2)),

we have Homc (M (wy, i), M (sqws, p2)) = 0. Hence we have Extf (My (wy, 1), M,\(sawg, U2)) =
0 for all k € Z»o by induction hypothesis. Put L = Ker(My(sqwa, Squ2) — M A(Saw2, p2)).
From an exact sequence (2.1), we have exact sequences

0 — Mx(saw, p2) = Mx(w,p2) = L — 0

and o
0 — L — M)(sqwz, sapz) — Mx(sqwa, p2) — 0.

Using Extc(M Awa, w), My(sqwa, p2)) = 0 and the long exact sequences 1nduced from there
sequences, we have

Extg (M (wa, w), Mx(wa, p2)) == Ext&(M(wa, p), L) ~ Extf(My(wy, 1), M (s6w2, Sapiz))-

In particular, Home(My(wy, p), M/\(Saw2> sap2)) =~ Home(My(wy, ), Mx(wa, p2)) = 0. By
induction hypothesis, we have Extc(M A(wx, 1), My\(sqwa, Squz2)) = 0 for all k € Z~o. Hence we
have Extf(My(wy, 1), My(wg, p2)) = 0 for all k € Zo. \ O

If for some abelian category C and some regular A there exist objects which satisfy the con-
ditions (A1-5), then the set A(,, . ,)(u) is independent of the choice of a reduced expression
by Lemma 2.3. In the rest of this section, we assume it (It will be proved in Section 3). Put

A'w2 (l/’) = A(sl,...,sl) (l‘l')

Theorem 2.4. Let wi,ws € Wy and p1, us € D. The following conditions are equivalent.

(1) Home(M(w1, p1), Ma(w2, p2)) # 0.
(2) There ezists k € Z>o such that Exts(My (w1, p1), My (wa, p2)) # 0

(3) wl_lw/\Awal (wapa) N Wgwé-lsz (w2) # 0.

PRrROOF. We prove by backward induction on £y(wi). If w; = wy, then from Lemma 2.3,
(1)—(3) are equivalent. We use the similar argument in the proof of Lemma 2.3.

Take a € II\ such that sqwi > wi. Put f = —wy(a) € Iy. We have Ay, (wrpa) =
Upoe Ay (wap) 86 Awssquwr (Sst0) by Lemma 2.1. First assume that (a,w1A) = 0. Then by
Lemma 2.2, we have M) (w1, p1) =~ Mx(sqw1, p1) ~ Mx(sqw1, Squ1). This implies the lemma.

In the rest of this proof, we assume that (o, w;\) # 0. First assume that (&, p;1) € Zso,
then by the condition (A2), My(wi,u1) =~ Mx(sqw1,squ1). Since Agy(wip1) = {wap},
Awywy (Wrp1) = Awysqw: (WrSatto). Hence we have the lemma. /
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Finally, we assume that (&, p1) € Zso. We have wi  wy Ay, w, (w,\,ul)ﬂWf\)w2 1Ay, (,uz) # 0 if
and Only if (sqw1)~ w)\Aw,\sawl (wap) OW)\wz 1Aw2 (u2) # 0 or (saw1)~ wAAwAsawl (waSaqp1) N
Wwyt Ay, (12) # O since Asg(wap1) = {wapa, wasqpi1}. By the condition (A2), we have
My (w1, Sap1) ~ Mx(sqwi,u1). Hence, there exists an exact sequence 0 — M A(Saw1, 1) —
My (sqw1, Sap1) — M,\(wl,,ul) — Mj(saw1,p1) — 0 by the condition (A3). Therefore (1)
implies (3).

Now assume (1) dose not hold, i.e., Home (M) (w1, 41), M,\(wg,uz)) = 0. We prove that
Homc(M,\(sawl,,ul) M)\(’LUQ,,LLQ)) = Homc(M,\(sawl,sapl) M)\(’wg,/.tg)) = 0 and, for all £ €
Z~o, Extc(M A(w1, p1), My(wa, p2)) = 0. Since we have an exact sequence :

0 — Homge (M) (sqw1, p1), M,\(U&,m)) — Homc(MA(wl»m), M (w2, p2)),

we have Home (M) (sqw1, 1), Mx(we, u2)) = 0. Hence, by induction hypothesis, we have that
Extf ((Mx(sqw1, 1), My (ws, u2)) = 0. Therefore we have

Exté (M (w1, p1), Ma(ws, p2)) = Ext®(My(saw1, safi1), Ma(wa, p2)).

In particular, Home (M) (sqw1, Sap1), Mx(we, p2)) = 0. Hence we have

Exté(Mx (w1, 1), Ma(wa, p2)) = Extf(M(sqw1, sap1), Ma(wz, pg)) = 0.

§3. Proof of the main theorems

In this section, we prove Theorem 1.1 and Theorem 1.2 using the result of Section 2. First
we consider the twisted Verma modules. Fix a regular dominant integral element A. Put C = O,
D =b*. Set Myx(w, p) = Ty-1,9, M (wop).

Lemma 3.1. The modules {My(w, n)} satisfy the conditions (A1-5).

PROOF. The condition (A1) is obvious since \ is regular. The conditions (A2) and (A3)
are [ALO3, Proposition 6.3]. Since TyoM(wou) =~ SM(u) [AL03, Corollary 5.1], we have
Homo (M (wx, &), Ma(e, 1)) = Homo (M(wop), SM(w)). Since Home (M (wop), 5M(w)) £ 0
if and only if woyu' = p, we have (A4). Moreover, we have Do Ext§ (M (wop'), 6M (1)) =~
H*(n,6M (1)) ~ Hy(m, M(n)) = 0 where 7 is the nilradical of the opposite Borel subalgebra of
b. Hence we have (A5). _ O

From Lemma 3.1 and Theofem 2.4, we have Theorem 1.2.
Next, we consider the principal series representations of G. This is a full-subcategory of
g @ g-modules. We also regard H as a full-subcategory of g-bimodules.

Lemma 3.2. Let A\, € h* such that \—p € P, we W. Put A~ = —A* and A] = ——Aj\".
(1) There exists w' € W)y such that AT N (W'w™ ) TA~NwAy = 0.

(2) Take w' as in (1). Then we have L(M (wX), M (wp)) ~ L(M('w’)\), IM(w'p)).
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PROOF. (1) Since w™'A* N A, is a positive system of Ay, there exists w' € W such that
wlAT N Ay = (W)~ 1A+ Since (w')7'AY = (w)TH(ATNAY) = (W) TAT N Ay, we have
AYA(wwmH)TIAT mwAA =w(w AT N (w’)-lA NAy) =ww AT N (W) AT NA)) =

(2) By the condition of w/, for all @ € AT N (w'w™!)" A~ we have (&, —w)) & Z Hence by
[Duf77, 4.8. Proposition| we have L(M (w), M (wp)) ~ L(M(w'X), SM (w'k)). O

By Lemma 3.2, it is sufficient to study Homy (L(M (w'X), 6M (1)), L(M(w), M (i))) for
dominant A and w,w’ € W). Moreover, we may assume u € Wyp' since L(M (w), §M () =0
unless wA — u € P. Fix such a A and put M) (w,u) = L(M(w)),dM(u)) for p € A+ P and
w € Wy. Put D = XA+ P. For a € I, let Cy be Joseph’s Enright functor [Jos82]. Recall that
M € O is called o-free if the canonical map M — C,M is injective.

Lemma 3.3. Let p € A+ P and o € II,.
(1) If N € O is a-free and (&, p) € Z<o then L(My(squ), CalN) =~ L(Mx(u), N).

(2) Let w € Wx. If (& w)\) € Z<o and (& p) € Z<o, then L(M(sqw)), M(squ)) ~
L(M(wA), M (). :

(3) Let w € Wy. If {(&,w)) € ZSIO and (&, p) € Zxo, then L(M(sqwl),0M (squ)) ~
L(M(wA), 6M (1))

(4) We have L(M(us)), 0M(4)) = LOI(N), M(waps).
(5) The modules {My(w, n)} satisfy the conditions (A1-5).

PROOF. (1) Put M = M(u) and M’ = M(squ) in [Jos82, 3.8. Lemma]. Then we get (1).

(2) Take N = M () in (1) and use [Jos82, 2.5. Lemma).

(3) Let X € A+P be a regular element such that A is dominant. Then by [Jos83, 2.5. Lemma],
we have Co6M(\) ~ 6M (seM). For g ® g-module N, let N7 be a g @ g-module where the
action is twisted by (X,Y) — (Y, X). Using [Jos82, 2.8], we have L(M (X), CadM (W) =~

L(M (5q)), M (p)) ~ L(M(u), 6M (5q))" =~ L(M(w),C. WSM(X \))". Notice that dM(sq)) is
a-free. Hence we have L(M(u), CodM (X)) ~ L(M (squ), SM(\ ))77 ~ L(M(N), OM(squ)) by
(1). Therefore we have CodM (1) ~ 6M (squ). We get (3) by (1).

(4) Take w € W), such that (3, wu) € Z<o for all B € Aj". Put po = wp. Let w = 8¢, -+ 8oy
be a reduced expression. Then we have (d;, 5q; - - . S ) € Z>o and (G, Sg;_, - - - Sy WAN) € Z<yp.
Hence by (3), we have L(M (wxX), M (w)) =~ L(M (wwy)),dM (ug)). Take a reduced expression
of wwy and use (2), then we have L(M(wwx)), M (uo)) ~ L(M(X), M(wyu)) by the same
argument. Since M (uo) ~ M (uo), we have (4).

(5) The condition (A1) is obvious. The condition (A2) follows from (2) and (A3) from [Jos82,
4.7. Corollary]. To prove (A4) and (A5), we may assume that y' € Wyu. Let u; € Wy such
that (8, 1) > 0 for all 8 € Af. Take w,w’ € Wy such that u/ = w'u; and g = wp;. Then
by the argument in (4), we have L(M (wx\), M (p')) ~ L(M (wx(w') " wiX), 6M (wxu1)) and
L(M(X),0M () ~ L(M(w™'X),6M(u1)). We prove (A4) and (A5). First we assume that
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is regular. Then by (4), we have

Extf, (Mx(wy, i), Ma(e, 1))
~ Extf, (L(M (wa(w') " wa), M (wap1)), L(M (w™'X), M (1))
~ Ext, (L(M (wx(w') 2wy \), M (wap )", LM (w™1)), 6M(u1))
=~ Extf(L(M (wap), M (wr(w') "wpd)), L(M (1), M (w™X)))
~ Exty (L(M (), M((w') " waX)), L(M (u1), M (w™'X)))

")

By the Bernsteln—Gelfand-Joseph—Enrlght equivalence [BG80, 5.9. Theorem], this space is iso-
morphic to Ext® (M ((w')~lwy\), sM (w='))). Hence the proof is done in this case (see the proof
of Lemma 3.3).

- We prove (A4) and (A5) for general uj. Take a regular element ps € py + P such that for
all B € A. Let T/? be the translation functor of O and L2 the translation functor of H with
respect to the left g-action. Then we have LLIL(M,N) = L(M,T;?N) for M, N € O. Since
TS? commutes with §, we have

Extf, (M (wx, 1), Ma(e, ) = Extfy(L(M (wxX), Tf2 M (w' pa)), LIM(X), TH2 M (wpsp)))
= Extf, (L2 L(M(waX), M (W' p2)), L(M (), T#2 6 M (wus)))

=~ Extf; (L(M (waX), M (w'p2)), L4 L(M(X), T#2 M (wps)))

= Bxty (L(M (wxX), M (w'p2)), L(M(X), TE TS M (wps)))

The module T}y Ti? M (wpso) has a filtration 0 = My C My C --- C M, = T{2TH2 M (wps)
such that {M;/M;_1 | 1 <i < r} = {M(wvps) | v € W)} [Jan79, 2.3 Satz (b)]. Since X is
dominant, L(M(]X), -) is an exact functor. Hence we have an exact sequence 0 — L(M()), M;) —
L(M(X), M;—1) — L(M(X), M;/M;_1) — 0. Using the long exact sequence and the result in
regular case, we have Ext% (My(wy, i), Mx(e, 1)) = 0 for k > 0. Moreover, by the vanishing of
the Ext-groups, ‘ ‘ :

dim Homy (M (wy, 1), Ma(e, 1))

Z dlmHomH(L(M(wA)\) M (w'w2)), L(M(X), M (wops))).
veW

From this formula, we have Homy (M (wy, i), Mx(e, ) # 0 if and only if w’ € Wwywv for
some v € Wﬁl. This condition is equivalent to u' = w'u; € Wf\)'wAwul = Wwypu. O

From Lémma 3.3 and Theorem 2.4, we have Theorem 1.1.
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