J. Math. Sci. Univ. Tokyo
10 (2003), 261-277.

Malliavin Calculus Revisited

By Shigeo Kusuoka

Abstract. The author considers the regularity on diffusion semi-
groups, and shows a precise estimate under a certain assumption which
is much weaker than hypoellipticity assumptions.

1. Introduction and Main Results

Let Wy = {w € C([0,00); RY); w(0) = 0}, F be the Borel algebra over
Wy and P be the Wiener measure on (Wy, F). Let B’ : [0,00) x Wy — R,
i = 1,...,d, be given by Bi(t,w) = w'(t), (t,w) € [0,00) x Wy. Then
{(B(t),...,B%t));t € [0,00)} is a d-dimensional Brownian motion under
P(dw). Let B(t) = t, t € [0,00). Let Vo, Vi,...,Vy € C2(RN; RY). Here
e (RY;R") denotes the space of R™-valued smooth functions defined in
R” whose derivatives of any order are bounded. We regard elements in
e (RN ‘RN ) as vector fields on RY. For simplicity, we sometimes denote
(i) by i,i=0,1,...,d, and C°(RV; R) by C°(RY).

Now let X (t,z), t € [0,00), 2 € R¥, be the solution to the Stratonovich
stochastic integral equation

d t )
(1) X(t, ) :x+z/0 Vi(X (s, 2)) 0 dB'(s).
=0

Then there is a unique solution to this equation. Moreover we may assume
that X (¢,z) is continuous in ¢ and smooth in z and X (¢,-) : RN — RV,
t € [0,00), is a diffeomorphism with probability one.

Let A= {0} ulU2,{0,1,...,d}*. Then A becomes a semigroup with a
product * defined by a x 8 = (al,..., o, pL,..., B for a = (al,...,a")
cAand 3= (8'...,0°) € A Forac A, let |a|=0if a =0, let |a| =k
if a = (al,...,a%) € {0,1,...,d}*, and let || a || = |a| + card{1 < i <
lal; o' = 0}. Let Ap and A; denote A\ {#} and A\ {0, 0}, respectively.
Also, for each m > 1, A(m), Ao(m) and A;(m) denote {a € A; || a [|[< m},
{a € Ap; || a||<m} and {a € A;; || a [|[< m} respectively.
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262 Shigeo Kusuoka

We define vector fields V), a € A, inductively by
Vig =0,  Vy=V, i=0,1,....d,

V[a*i]:[V[a],Vi], 1=0,1,....,d.

DEFINITION 1. We say that a system {V;;i = 0,1,...,d} of vector
fields satisfies the condition (UFG), if there are an integer ¢ and ¢, 3 €
CP(RY), a € Ay, B € A (f), satisfying the following.

V= > %asVg, @ €A
BEA (L)

Let ¢ € C°(RY;R) and let us define a semigroup of linear operators
{Pf}eepo,00) bY

t
(PEf) (@) = E[GXP(/O (X (s,2))ds) (X (t,2))],  te[0,00), feCy(RY).
Our main result is the following.

THEOREM 2. Suppose that{V;;i=0,1,...,d} satisfies the (UFG) con-
dition. Then for any k,m >0 and a1, ..., a1, € A1, there is a constant
C > 0 such that

I View) = Vi P Vi) - Vi) [ 1|20 (d)
< ¢t~ Uleallt+llaweml)/2 ) f | £ ()

for any f € Co(RN), t € (0,1] and p € [1, ).

DEFINITION 3. We say that a system {V;;¢ = 0,1,...,d} satisfies the
condition (UH), if there are an integer ¢ such that

inf{ > (Viy(@),9?% z,6 € RN, ¢ =1} > 0.

acAq (f)

REMARK 4. (1) If asystem {V;;i =0,1,...,d} of vector fields satisfies
the condition (UH), then it satisfies the condition (UFG).
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(2) Theorem 2 is proved in Kusuoka-Stroock [4] under the assumption that
{Vi;i=0,1,...,d} satisfies the condition (UH).

REMARK 5. Sussman [5] introduced a local version of the condition
(UFG). By his argument, we see that if V;, i =0, 1,...,d, are real analytic
and periodic with the same period, then the system {V;;i = 0,1,...,d}
satisfies the condition (UFG).

2. Basic Relations

Form now on, we assume the assumption (UFG) throughout this paper.
We define B°*(t), t € [0,00), o € A, inductively by

Bt =1,
B°O(t) = Bi(t), i =0,1,...,d

and .
goam)(t):/ Beo(s)odBi(s)  i=0,1,....d.
0

Let Jij (t,z) = 8‘?31. XI(t,z). Then for any Cg® vector field W on RN, we
see that

N
(X @I (X (t2)) = 3 Ti(t,2)W (@),

where X (t), is a push-forward operator with respect to the diffeomorphism
X(t,) : RN — RY. Therefore we see that

d

dX ()7 W)(@) = =Y (X (07 [W. Vi) (z) 0 dB'(t)

1=0

for any Cp° vector field W on RY (cf. [3]). So we have for a € A (£),

d(X ()5 Vi) (@ Z >« 2))(X ()5 Vig)(x) 0 dB(t),
1= OﬂEAl(f)
where
-1, ifaxiec Aj(¢) and f=ax1
cg?i(x): 0, ifaxie Ai(¢) and B # a i

—@axip(z), otherwise.
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Note that cgi € C°(RY). Let al(t,x), a, B € A1(£), be the solution to the
following SDE
daP(t,x)

—Z Z (tmdB’ + - Z Z tx))agdt

i= OyeAl() i=lyeAi(f)
+= Z > X(t,x))al(t,x)dt,
i= 1w£€A1(€)
al(0,z) = 65,

Here 62 is Kronecker’s delta.
Such a solution exists uniquely, and moreover, we may assume that
al(t,x) is smooth in = with probability one and that

ah!
sup EX[ sup |=—aP

ot 2)|P] < oo, p€(l,00), T>0
2eRN  tefo,r] 07

for any multi-index 7. One can easily see that
d .
(2) dal(t,x) =" Y () (X(t x))al(t,x)) o dB(¢).
i=0 yeA1(0)

Then the uniqueness of SDE implies

XO V@) = Y al(t,0)Vig (@), a € Ai0).

BeAL(L)

Similarly we see that there exists a unique solution b3 (¢, z), a, 8 € A (£),
to the SDE

(3) Wi (t,x) =65 — Z Z /b’y s,x)ct (X (s,x)) o dB'(s).

1=0 ’yEAl

and we see that b2 (¢, ) is smooth in z with probability one ,

ol
sup ET[ sup |—bﬁ(t z)P] < oo, p€E[l,o0), T>0
zeRN tefo,r] 027



Malliavin Calculus Revisited

for any multi-index v, and that

‘/[oz Z bﬁ t,x)(X (1), 1‘/[5})( ), a € Ai(0).
Be Ay (£)
Note that
ag(t, )
d t
> Y [ (@i a)ad(sa) o dB ()
=0 ~yeA; ()70

Soif || a||< € —2,

tx—5’8+2/ a*lsx o dB'(s),

and if || a [|= € — 1,

—5B+Z/ a*zsx o dB'(s)

b Y [ (X aalis s

vyeA(0)
So we have for any «, f € A;(¢) with || o ||<]| 5 |,

(4) ag(t,x) = ay’(t,z) + ri(t @),
where
0.5 _ (_1)|W|B°7(t)7 if B = ax*~ for some v € A,
(5) ag” (t,z) { 0, otherwise ,
and
ri(t, )
S1 Sk—1
-y Y / odB (s1) / odB™(s3) ... (/ od B (s,)
v.J 6€A1(0) 0

([ odB (s10) (=) (2, (X (sn41, ) (X1, 2)) .
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where Z'%j is the summation taken for v € A and j =0,1,...,d such that
|vI<l— ] aland ||y*j||> ¢+ 1—| a| . Therefore we have

® sup, El( sup IR0, 0) 7] < oo
S S )

for any p € (1,00), a, 5 € A1 (¢) with || « ||<|| B |-
3. Integration by Parts Formula

In this section, we use Malliavin calculus to analyze the operator PS. We
use the notation in [1] and [2]. Let k¥ : [0,00) x RN x Wy — H, a € A;(¥),
be given by

E*(t,x) = (/OtA~ ai'(s,x)ds)i=1,.. ds (t,z) € [0,00) X RY.
Then we have by
XO2DX(02) = ([ KOs = T 0o
acA; (L
for (t,z) € [0,00) x RN (c.f.[3]). Then we have
(1) D(f(X(tx)) = r:((X(®)df)(x), X(1); ' DX(t,2)),
= > rA(X®) ) (), Vg (2)) 1, k7 (t, z)

BEAL(L)

= > (Vg )X (tx)k (¢, ).

BeAL(L)
Let M®8(t,x), (t,x) € [0,00) x RN, a, B € A;(£), be given by
(8) MOP (¢, ) = ¢~ Wl HIBN/2 (g3 2) kP (¢, 2)) i

- (||a||+|\ﬁll)/2z/ (s, z)ds

The following will be shown in the next section.
LEMMA 6. For any p € (1,00),

sup  EHM[det(M>P(t, )" )] < oo.
t€(0,1],z€RN BEAL (L)
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Let E be a separable real Hilbert space and r € R. Let K,.(F) denote
the set of f: (0,1] xRN — DOO (E) satisfying the following two conditions.
(1) f(t,x) is smooth in z and f(t ) is continuous in (¢,z) € (0,1] x RN
with probability one foryany multl index v.

@ s 0]
te(O,l],:::eRN

We denote K, (R) by ICT.
Then we have the following.

(t ) |lps(r)< oo for any s € R and p € (1,00).

LEMMA 7. (1) Suppose that f € K.(E), r > 0, and let g;(t,x) =
fo f(s,x)dBi(s), i = 0,1,...,d, t € (0,1], x € RN. Then gy € K,12(E)
and g; € Krp1(E), i =1,...,d.
(2) af, b3 € K(gj—fafyvo for a, B € Ai(0).
(3) k% € Koy (H), a € Ai(0).
(4) Let {M, 5(t,2)}a,pea (o) be the inverse matriz of {M>B(t,2)} o per )
Then Ma,ﬁ € Ko, a,8 € ./41( )

Proor. Note that

Dao(t,2)() = [ Df(s, 2)(R)aBo(t), and

t t
Dgi(t,:v)(h):/o Df(s,:c)(h)dBl-(t)—k/O F(s,2)hi(s)ds, i=1,....d,

for any h € H. This implies our assertion (1)(c.f.[4]).

We see that f(X(t,x)), aB(t,x), b3(t,z) € Ko(R) for any f €
C*(RN,R) and a,8 € Aj(f), since they are solutions to good stochas-
tic differential equations (c.f. [3]). Then the assertion (2) follows from the
assertion (1) and Equations (2), (3) and (4).

The assertion (3) follows from the definition of k“(¢,x) and the asser-
tions (1) and (2). Then we see that M*P(t,z) € Ko(R), o, € A1 (£), b
the assertion (3). This fact and Lemma 6 imply the assertion (4). This
completes the proof. []

For each a € A;(¢), and u € K. (R), r € R, let

(D) (¢, z) = (Du(t, z), k®(t,z))q.
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Then we have the following.

LEMMA 8. (1) Foranya € Ai(f), andu € K,,7 € R, Dy € Kyt
(2) For any f € C°(RY;R), t € (0,1], and v € RY, we have

(Vi) (X (2, 7))

= ¢ lel/z S~ 18120 8, 2) DO (F(X (2, 2))).
BEAL(L)

(3) For anyr € R, ® € K, and a € A;(¢),

EM[®(t, ) (Via) /) (X (8,2))] = 12 E1 (@0 (1, 2) f (X (1. 2))),

where
O, (t, )
= Z tiHﬁH/?{—D(B)(I)(t,:E)M(;ﬁl(t, )
BEAL(L)

—( > ()M (£, ) DO MY, 2) M (¢, )
Y1,72E€A1 (€)

+&(t, x) My (t,2) D"k (t,2)},  t>0, z € RV,
In particular, ®, € K,
ProOF. By Equation (7), we have

D(O‘)(f(X(t,x)): Z t(H"‘HH'BH)/QMO‘ﬁ(t,:U)(V[B]f)(X(t,x)).
BeAL(L)

This implies our assertion. []

For any ® € IC,(R), r € R, let us define an operator Ts(t), t € (0,1] in
Cp*(RY;R) by

(Ts(0))(x) = B*[®(t,2) f(X(t,2))],  «eRV.
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COROLLARY 9. Letr € R, and ® € K,.
(1) There is a constant C' < oo such that

C
I T @) f o< 75 I f lloo

for any t € (0,1] and f € C°(RY; R).
(2) For any a € A1(€) there are ®; € K,_j|o, i = 0,1, such that

To(t)Via] = Ta,0(t) and  VigTs(t) = To, , (t).

PROOF. The assetion (1) is obvious. So we will prove the assertion (2).
The existence of @, o(t,x) follows from Lemma 8(3). Let

\I// tll? Z [04] t.’L’)

and

Vo p(t,z) = Ot 2)bo(t,2), B € Au(D).
Then we see that ¥’ € K, and W € K,y g|—|a|- Also, we see that

VigTo(t) = Tur, () + > T‘I’aﬁ Wi
BeAL(L

So we see the existence of @, 1(¢, ) from Lemma 8(3). O

Now let us prove Theorem 2. Let ®(t,z) = exp(fi ¢(X (s,x))ds). Then
we see that & € Ko, and that Pf = Tg(t), t € (0, 1]. So Corollary 9 implies
the assertion for p = oo.

Now let g; € C°(RM;R), i =0,...,d, be given by

v =Y (Vi)@), xRN
j=1

Then we see that the formal self adjoint operator V;* is —V; — g;. Let f/,
€ CPRM;RY),i=0,...,d, and ¢ € C°(R™;R) be given by

V:_%+Zg] 7o ‘71:‘/;7 i:17...7d,
J=1
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and

d
1
¢=—go+ 52 97 + Vig;).

Then we see that the system of vector fields {Vl,z =0,1,...,} satisfies the
condition (UFG). Let us think of the SDE

t:z:—:H—Z//V )) 0 dBi(s).

and let Py, t > 0, be a linear operator in C;;O(RN ), given by

t

P = Brlesp( | (X (t2) f(X ()]

0

Then we see (c.f. [3]) that
| FrD@ga)ds = [ f@)(Pg)@)ds, f.g € CFRY),
RN RN
So we see that for any f € C5°(RY)

” ‘/[011} to Wak]Ptc‘/[ak+1] T ‘/[ak+m]f ||L1(dac)

< sup{| / flz [ak-‘rm] V[zmﬂptv[zk} o Vzcﬂg)(x)dx‘;
9€CFERY), [l g o< 1}

So we have our assertion for the case p = 1. Then by the interpolation
theory we have our assertion.
This completes the proof of Theorem 2.

4. Proof of Lemma 6
First note the following theorem due to [3].

THEOREM 10. For any m > 0 and p € (1,00), we have

1 ~
Elinf{ [ ( Z aa B (t))%dt; Z a2 =1}77] = Oy p < 0.
0 acA(m) acA(m)
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Note that for any m >0, p € (1,00) and T, s > 0,
mf{/ aaBa(t))2dt; Z Tled+1g2 > sy =P = C,, 5P,
acA(m) acA(m)

Then we have the following.

LEMMA 11. Letm >0, and f, :[0,1] x Q@ — R, a € A(m), be contin-
uous processes. If

A= sup E[(T-/23( Y / fal)2dt)2P) < 00, pe[1,00),
Te(0,1] aEA(m

P(inf{(/OT( S aa(BUW) + fa())2d)% Y Tl — 1) < 271

acA(m) acA(m)
< (4PChp + Agp)z V7
for any T € (0,1] and z > 1. Here y = (4m +5)~!

ProoOF. Note that for T € (0,1], and y > 1

([1CS aalB+ fultnan'”

acA(m)

/ .
>([TCS aalBw + fuli)an”?

acA(m)
S B*(t))%dt)'/?
> ([ (). aaB(t))%dt)
0 acA(m)
S Tlel+142)1/2( (Y 1 m+1/ Fa(D)2d)V2,
acA(m) acA(m)

Then we have for any T € (0,1], y > 1, and z = y"/>*5/8 we have

P(inf{(/OT( Z o (BE(t) + folt)))2dt)Y/?; Z rlll+142 = 1} < =1

acA(m) acA(m)
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P(inf{(/OT/y( ST anBe)2dn)tr YT Tllelte2 =13 < 2.7

acA(m) a€A(m)

P [

acA(m

7/ )
P(int{ / Y aaBO‘(t))2dt;
aEA

> (T/y)”””+1 >y} < 4272
acA(m)

P((T/y)~ e 57 / fa)?dt)!/? >y 2431571
acA(m)
< (4272 Co 4 (g )W gy < (P Copp + Ay )y

Thus we have our assertion. [

Applying Lemma 11 for m = £—1, we have the following from Equations

(4),(5) and (6).

COROLLARY 12. For any p € (1,00), there is a constant C' > 0 such
that

1
P(inf{ Y &a&gM™P(ta); e RV, 3 P =1}< ) <Cn7?
a,B6A:(0) ac A (f) n
for anyn >1,t € (0,1], and z € RV.
Now Lemma 6 is an easy consequence of Corollary 12.
This completes the proof of Lemma 6.
5. Hypoelliptic Part
In this section, we assume that the system {V;;i = 0,1,...,d} satisfies

the condition (UFG) and let £ be as in Definition 1. Let A € C°(RY; RY ®
R™) be given by

Z V[a] ) ® V[a} (2), S RNa
acA;(€)
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and Ao : RV — [0,00) be a continuous function given by
Mo(z) = inf{(A(2)§,€); £ € RN, ¢ =1}, zeRN.

Then we have the following.

PROPOSITION 13. For any p € (1,00) there are constants Cy, Cy such
that

Codo(z) ™" < EXo(X (t,2)) PV < Chdo(z) ", z e RV

PrROOF. Let J(t,x) = {6 - X, ac)}” 1- Then we have

(AX(t,2)€,8) = Y. (Vig(X(t,2)),£)?

acAy(f)

= > (> ag(t,x)(V[m(x)7J(tvm)*f))Q

a€A1( ) ,BE.Al( )

(> > a (> (Vigy(a), J(t,2)*€))?)

acA1 (L) BEAL(L) 5641(5)

So we have

Aol (> D a )1 It ) 1P do(@).

acA(C) BeAq(0)

This implies that

Ao (X (2, (> > a ) It 2) 1 Ao(z) ™

acA; (L) BeAL(0)

Similarly we have

M@)H< (Y DD B )) [ I(ta) TP A(X (Ea) T

acA;(£) BeEAL(D)

These imply our assertion. [
Also, let A : RN — [0,00) be given by

“hy=1lg T
Az) = { (traceA(x)™")~", ‘f Aol )zg,
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Then we can easily see that
N~"Xo(z) < Mz) < Xo(z), zeRY,

and so we see that A is continuous.
Let Go = {x € RY; M\o(z) > 0}, and ¢; = {6ji}§vzl eRM,i=1,...,N,
and let co; : Go = R, a € A1(¢),i=1,..., N, be given by

Cai(T) = (ei,A(a:)_lV[a} (x)), z € Go.

Then we see that

- = Z C(X,Z“/[a], on Go.
acA; (L)

Since we have

0 0
ozt ozt

we see that for any n > 1 and iy,...,4, € {1,..., N}, there is a C' > 0 such
that

(A(2)™h) = —A() (55 A)) A(z) 7,

o _ —(n
|mtrace(z4(x) 1)‘ S C)\(:r) ( +1), WS :R,JV7
’44491447A0w|<(jA@Q—m7n re RN
axil P awin - ’ ’
and an
5o Cad(@)] < CM@) ),z e RN

forall a € Ay(¢),i=1,...,N.
Combining these facts and Theorem 2, we have the following.

PROPOSITION 14.  Suppose that {V;;i = 0,1, ...,d} satisfies the (UFG)
condition. Then for anyn > 1 and i1, ...,i, € {1,...,N}, thereis a C >0
such that

[

o ) -
s g Do o) < CE2 | f o)

for any f € CP(RN), t € (0,1] and p € [1, ).
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Also we have the following by using dual argument as in the proof of
Theorem 2.

THEOREM 15. Suppose that {Vi;i = 0,1,...,d} satisfies the (UFQG)
condition. Then for any n,m > 0 and i1,...,in,j1,---,Jm € {1,..., N},
there is a C' > 0 such that

87’1 PC am

for any f € CP(RN), t € (0,1] and p € [1, ).

A"

— A" f | o (da) < Ct= 2 Loy

6. Examples

Ezample 1. Letd=1and N =2.Let n > 2, and Vg, V; € C°(R?*; R?)
be given by
0 1 0
o T =g
Then the condition (UH) is satisfied for £ = n+2. Let X (¢, ) be the solution
to (1) and P, t > 0, be a linear operator in C{°(R?; R) given by

Vo(a!,2?) = (2 + (sinz')")

Pf(z) = BE[f(X(t,2))],  feCF(R%R), € R
Then we have the following.
PROPOSITION 16. (1) There is a constant Cy > 0 such that
IVoPLf lloo< Cot™ "2 | f oo, f € GP(R%:R), t € (0,1].
(2) There is a constant Cy > 0 such that

sup{[| VoPof lloos f € CR°(R*R), || f lloo< 1} = Cot™ "2 1€ (0,1].

PROOF. The assertion (1) is an easy consequence of Theorem 2. So
we prove the assertion (2). We can easy to see that the solution X (¢,z) =
(X(t, (zt, %), X2(¢, (a1, 2%))) is given by

X1(t, (2, 2?) = 2t + B (),
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t
X2(t, (), 22)) = & + 2t + / sin(z' + B'(s))"ds.
0
Then we see that

9 @ = B X na),  fecEER)

Note that

]/ sin(B*(s))"ds|] <E/ |BY(s)|"ds] = A t"t/2,

where A, = E[fol\Bl(s)\”ds]. So we see that P(| [isin(B'(s))"ds|
24,1212y < 1/2.

Let us take a ¢ € Cp°(R;R) such that ¢'(z) > 1, z € [-1,1] and
g'(2) >0, z€ R. Let f® € C*(R%;R), t > 0, be given by

fO@! 2?) = (24,82 @? —21)),  (2',2%) e R%
Then we see that || f® ||oo =| ¢ |leo and that

0

2 (PO)(0) = (24,1H/) Bl (24,1002 sin(B (9))"ds)]
X 0

> (4Ant(n+2)/2)71

This implies our assertion (2). O

Ezample 2. Let d =1 and N = 2. Let Vp, Vi € Cf°(R?%* R?) be given
by
1,2 9 1,2 .19
Vo(z!,2?) = sina! — Vi(z',z*) =sinz” —.

Oz?’ dz!
Then the condition (UH) is not satisfied. But (UFG) is satisfied for ¢ = 4
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