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Malliavin Calculus Revisited

By Shigeo Kusuoka

Abstract. The author considers the regularity on diffusion semi-
groups, and shows a precise estimate under a certain assumption which
is much weaker than hypoellipticity assumptions.

1. Introduction and Main Results

Let W0 = {w ∈ C([0,∞);Rd); w(0) = 0}, F be the Borel algebra over

W0 and P be the Wiener measure on (W0,F). Let Bi : [0,∞) ×W0 → R,

i = 1, . . . , d, be given by Bi(t, w) = wi(t), (t, w) ∈ [0,∞) × W0. Then

{(B1(t), . . . , Bd(t)); t ∈ [0,∞)} is a d-dimensional Brownian motion under

P (dw). Let B0(t) = t, t ∈ [0,∞). Let V0, V1, . . . , Vd ∈ C∞
b (RN ;RN ). Here

C∞
b (RN ;Rn) denotes the space of Rn-valued smooth functions defined in

RN whose derivatives of any order are bounded. We regard elements in

C∞
b (RN ;RN ) as vector fields on RN . For simplicity, we sometimes denote

(i) by i, i = 0, 1, . . . , d, and C∞
b (RN ;R) by C∞

b (RN ).

Now let X(t, x), t ∈ [0,∞), x ∈ RN , be the solution to the Stratonovich

stochastic integral equation

X(t, x) = x+
d∑
i=0

∫ t

0
Vi(X(s, x)) ◦ dBi(s).(1)

Then there is a unique solution to this equation. Moreover we may assume

that X(t, x) is continuous in t and smooth in x and X(t, ·) : RN → RN ,

t ∈ [0,∞), is a diffeomorphism with probability one.

Let A = {∅} ∪⋃∞
k=1{0, 1, . . . , d}k. Then A becomes a semigroup with a

product ∗ defined by α ∗ β = (α1, . . . , αk, β1, . . . , β�) for α = (α1, . . . , αk)

∈ A and β = (β1, . . . , β�) ∈ A. For α ∈ A, let |α| = 0 if α = ∅, let |α| = k

if α = (α1, . . . , αk) ∈ {0, 1, . . . , d}k, and let ‖ α ‖ = |α| + card{1 ≤ i ≤
|α|; αi = 0}. Let A0 and A1 denote A \ {∅} and A \ {∅, 0}, respectively.

Also, for each m ≥ 1, A(m), A0(m) and A1(m) denote {α ∈ A; ‖ α ‖≤ m},
{α ∈ A0; ‖ α ‖≤ m} and {α ∈ A1; ‖ α ‖≤ m} respectively.
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We define vector fields V[α], α ∈ A, inductively by

V[∅] = 0, V[i] = Vi, i = 0, 1, . . . , d,

V[α∗i] = [V[α], Vi], i = 0, 1, . . . , d.

Definition 1. We say that a system {Vi; i = 0, 1, . . . , d} of vector

fields satisfies the condition (UFG), if there are an integer � and ϕα,β ∈
C∞
b (RN ), α ∈ A1, β ∈ A1(�), satisfying the following.

V[α] =
∑

β∈A1(�)

ϕα,βV[β], α ∈ A1.

Let c ∈ C∞
b (RN ;R) and let us define a semigroup of linear operators

{P ct }t∈[0,∞) by

(P ct f)(x) = E[exp(

∫ t

0
c(X(s, x))ds)f(X(t, x))], t ∈ [0,∞), f ∈ Cb(R

N ).

Our main result is the following.

Theorem 2. Suppose that {Vi; i = 0, 1, . . . , d} satisfies the (UFG) con-

dition. Then for any k,m ≥ 0 and α1, . . . , αk+m ∈ A1, there is a constant

C > 0 such that

‖ V[α1] · · ·V[αk]P
c
t V[αk+1] · · ·V[αk+m]f ‖Lp(dx)

≤ Ct−(‖α1‖+···+‖αk+m‖)/2 ‖ f ‖Lp(dx)

for any f ∈ C0(R
N ), t ∈ (0, 1] and p ∈ [1,∞].

Definition 3. We say that a system {Vi; i = 0, 1, . . . , d} satisfies the

condition (UH), if there are an integer � such that

inf{
∑

α∈A1(�)

(V[α](x), ξ)2; x, ξ ∈ RN , |ξ| = 1} > 0.

Remark 4. (1) If a system {Vi; i = 0, 1, . . . , d} of vector fields satisfies

the condition (UH), then it satisfies the condition (UFG).
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(2) Theorem 2 is proved in Kusuoka-Stroock [4] under the assumption that

{Vi; i = 0, 1, . . . , d} satisfies the condition (UH).

Remark 5. Sussman [5] introduced a local version of the condition

(UFG). By his argument, we see that if Vi, i = 0, 1, . . . , d, are real analytic

and periodic with the same period, then the system {Vi; i = 0, 1, . . . , d}
satisfies the condition (UFG).

2. Basic Relations

Form now on, we assume the assumption (UFG) throughout this paper.

We define B̂◦α(t), t ∈ [0,∞), α ∈ A, inductively by

B̂◦∅(t) = 1,

B̂◦(i)(t) = Bi(t), i = 0, 1, . . . , d

and

B̂◦(i∗α)(t) =

∫ t

0
B̂◦α(s) ◦ dBi(s) i = 0, 1, . . . , d.

Let J ji (t, x) = ∂
∂xi

Xj(t, x). Then for any C∞
b vector field W on RN , we

see that

(X(t)∗W )i(X(t, x)) =
N∑
j=1

J ij(t, x)W j(x),

where X(t)∗ is a push-forward operator with respect to the diffeomorphism

X(t, ·) : RN → RN . Therefore we see that

d(X(t)−1
∗ W )(x) = −

d∑
i=0

(X(t)−1
∗ [W,Vi])(x) ◦ dBi(t)

for any C∞
b vector field W on RN (cf. [3]). So we have for α ∈ A1(�),

d(X(t)−1
∗ V[α])(x) =

d∑
i=0

∑
β∈A1(�)

cβα,i(X(t, x))(X(t)−1
∗ V[β])(x) ◦ dBi(t),

where

cβα,i(x) =




−1, if α ∗ i ∈ A1(�) and β = α ∗ i
0, if α ∗ i ∈ A1(�) and β �= α ∗ i
−ϕα∗i,β(x), otherwise.
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Note that cβα,i ∈ C∞
b (RN ). Let aβα(t, x), α, β ∈ A1(�), be the solution to the

following SDE

daβα(t, x)

=
d∑
i=0

∑
γ∈A1(�)

cγα,i(X(t, x))aβγ (t, x)dBi(t) +
1

2

d∑
i=1

∑
γ∈A1(�)

(Vic
γ
α,i)(X(t, x))aβγdt

+
1

2

d∑
i=1

∑
γξ∈A1(�)

(cξα,ic
γ
ξ,i)(X(t, x))aβγ (t, x)dt,

aβα(0, x) = δβα.

Here δβα is Kronecker’s delta.

Such a solution exists uniquely, and moreover, we may assume that

aβα(t, x) is smooth in x with probability one and that

sup
x∈RN

EP [ sup
t∈[0,T ]

| ∂
|γ|

∂xγ
aβα(t, x)|p] < ∞, p ∈ [1,∞), T > 0

for any multi-index γ. One can easily see that

daβα(t, x) =
d∑
i=0

∑
γ∈A1(�)

(cγα,i(X(t, x))aβγ (t, x)) ◦ dBi(t).(2)

Then the uniqueness of SDE implies

(X(t)−1
∗ V[α])(x) =

∑
β∈A1(�)

aβα(t, x)V[β](x), α ∈ A1(�).

Similarly we see that there exists a unique solution bβα(t, x), α, β ∈ A1(�),

to the SDE

bβα(t, x) = δβα −
d∑
i=0

∑
γ∈A1(�)

∫ t

0
bγα(s, x)cβγ,i(X(s, x)) ◦ dBi(s).(3)

and we see that bβα(t, x) is smooth in x with probability one ,

sup
x∈RN

EP [ sup
t∈[0,T ]

| ∂
|γ|

∂xγ
bβα(t, x)|p] < ∞, p ∈ [1,∞), T > 0
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for any multi-index γ, and that

V[α](x) =
∑

β∈A1(�)

bβα(t, x)(X(t)−1
∗ V[β])(x), α ∈ A1(�).

Note that

aβα(t, x)

= δβα +
d∑
i=0

∑
γ∈A1(�)

∫ t

0
(cγα,i(X(s, x))aβγ (s, x)) ◦ dBi(s).

So if ‖ α ‖≤ �− 2,

aβα(t, x) = δβα +
d∑
i=0

∫ t

0
(−1)aβα∗i(s, x) ◦ dBi(s),

and if ‖ α ‖= �− 1,

aβα(t, x)

= δβα +
d∑
i=1

∫ t

0
(−1)aβα∗i(s, x) ◦ dBi(s)

+
∑

γ∈A1(�)

∫ t

0
cγα,0(X(s, x))aβγ (s, x)ds.

So we have for any α, β ∈ A1(�) with ‖ α ‖≤‖ β ‖,

aβα(t, x) = a0,β
α (t, x) + rβα(t, x),(4)

where

a0,β
α (t, x) =

{
(−1)|γ|B̂◦γ(t), if β = α ∗ γ for some γ ∈ A,
0, otherwise ,

(5)

and

rβα(t, x)

=
∑
γ,j

′ ∑
δ∈A1(�)

∫ t

0
◦dBγ1(s1)(

∫ s1

0
◦dBγ2(s2) . . . (

∫ sk−1

0
◦dBγk(sk)

(

∫ sk

0
◦dBj(sk+1)(−1)|γ|(c0,δα∗γ,j(X(sk+1, x))aβδ (X(sk+1, x)))) . . .),
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where
∑′
γ,j is the summation taken for γ ∈ A and j = 0, 1, . . . , d such that

‖ γ ‖≤ �− ‖ α ‖ and ‖ γ ∗ j ‖≥ �+ 1− ‖ α ‖ . Therefore we have

sup
x∈RN

E[( sup
t∈(0,1]

t−(�+1−‖α‖)/2+1/4|rβα(t, x)|)p] < ∞(6)

for any p ∈ (1,∞), α, β ∈ A1(�) with ‖ α ‖≤‖ β ‖.

3. Integration by Parts Formula

In this section, we use Malliavin calculus to analyze the operator P ct . We

use the notation in [1] and [2]. Let kα : [0,∞)×RN ×W0 → H, α ∈ A1(�),

be given by

kα(t, x) = (

∫ t∧·

0
aαi (s, x)ds)i=1,...,d, (t, x) ∈ [0,∞) × RN .

Then we have by

X(t)−1
∗ DX(t, x) = (

∫ t∧·

0
(X(s)−1

∗ Vi)(x)ds)i=1,...,d =
∑

α∈A1(�)

kα(t, x)V[α](x)

for (t, x) ∈ [0,∞) × RN (c.f.[3]). Then we have

D(f(X(t, x)) = T ∗
x
〈(X(t)∗df)(x), X(t)−1

∗ DX(t, x)〉Tx(7)

=
∑

β∈A1(�)

T ∗
x
〈(X(t)∗df)(x), V[β](x)〉Txkβ(t, x)

=
∑

β∈A1(�)

(V[β]f)(X(t, x))kβ(t, x).

Let Mα,β(t, x), (t, x) ∈ [0,∞) × RN , α, β ∈ A1(�), be given by

Mα,β(t, x) = t−(‖α‖+‖β‖)/2(kα(t, x), kβ(t, x))H(8)

= t−(‖α‖+‖β‖)/2
d∑
i=1

∫ t

0
aαi (s, x)aβi (s, x)ds

The following will be shown in the next section.

Lemma 6. For any p ∈ (1,∞),

sup
t∈(0,1],x∈RN

Eµ[det(Mα,β(t, x))−pα,β∈A1(�)] < ∞.



Malliavin Calculus Revisited 267

Let E be a separable real Hilbert space and r ∈ R. Let Kr(E) denote

the set of f : (0, 1]×RN → D∞
∞−(E) satisfying the following two conditions.

(1) f(t, x) is smooth in x and ∂νf
∂xν (t, x) is continuous in (t, x) ∈ (0, 1] ×RN

with probability one for any multi-index ν.

(2) sup
t∈(0,1],x∈RN

t−r/2 ‖ ∂νf

∂νx
(t, x) ‖Ds

p(E)< ∞ for any s ∈ R and p ∈ (1,∞).

We denote Kr(R) by Kr.
Then we have the following.

Lemma 7. (1) Suppose that f ∈ Kr(E), r ≥ 0, and let gi(t, x) =∫ t
0 f(s, x)dBi(s), i = 0, 1, . . . , d, t ∈ (0, 1], x ∈ RN . Then g0 ∈ Kr+2(E)

and gi ∈ Kr+1(E), i = 1, . . . , d.

(2) aβα, b
β
α ∈ K(‖β‖−‖α‖)∨0 for α, β ∈ A1(�).

(3) kα ∈ K‖α‖(H), α ∈ A1(�).

(4) Let {M−1
α,β(t, x)}α,β∈A1(�) be the inverse matrix of {Mα,β(t, x)}α,β∈A1(�).

Then M−1
α,β ∈ K0, α, β ∈ A1(�).

Proof. Note that

Dg0(t, x)(h) =

∫ t

0
Df(s, x)(h)dB0(t), and

Dgi(t, x)(h) =

∫ t

0
Df(s, x)(h)dBi(t) +

∫ t

0
f(s, x)hi(s)ds, i = 1, . . . , d,

for any h ∈ H. This implies our assertion (1)(c.f.[4]).

We see that f(X(t, x)), aβα(t, x), bβα(t, x) ∈ K0(R) for any f ∈
C∞
b (RN ,R) and α, β ∈ A1(�), since they are solutions to good stochas-

tic differential equations (c.f. [3]). Then the assertion (2) follows from the

assertion (1) and Equations (2), (3) and (4).

The assertion (3) follows from the definition of kα(t, x) and the asser-

tions (1) and (2). Then we see that Mα,β(t, x) ∈ K0(R), α, β ∈ A1(�), by

the assertion (3). This fact and Lemma 6 imply the assertion (4). This

completes the proof. �

For each α ∈ A1(�), and u ∈ Kr(R), r ∈ R, let

(D(α)u)(t, x) = (Du(t, x), kα(t, x))H .
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Then we have the following.

Lemma 8. (1) For any α ∈ A1(�), and u ∈ Kr, r ∈ R, D(α)u ∈ Kr+‖α‖.
(2) For any f ∈ C∞

b (RN ;R), t ∈ (0, 1], and x ∈ RN , we have

(V[α]f)(X(t, x))

= t−‖α‖/2 ∑
β∈A1(�)

t−‖β‖/2M−1
αβ (t, x)D(β)(f(X(t, x))).

(3) For any r ∈ R, Φ ∈ Kr, and α ∈ A1(�),

Eµ[Φ(t, x)(V[α]f)(X(t, x))] = t−‖α‖/2Eµ[Φα(t, x)f(X(t, x))],

where

Φα(t, x)

=
∑

β∈A1(�)

t−‖β‖/2{−D(β)Φ(t, x)M−1
αβ (t, x)

−(
∑

γ1,γ2∈A1(�)

Φ(t, x)M−1
αγ1(t, x)D(β)Mγ1γ2(t, x)M−1

γ2β
(t, x))

+Φ(t, x)M−1
αβ (t, x)D∗kβ(t, x)}, t > 0, x ∈ RN .

In particular, Φα ∈ Kr.

Proof. By Equation (7), we have

D(α)(f(X(t, x)) =
∑

β∈A1(�)

t(‖α‖+‖β‖)/2Mαβ(t, x)(V[β]f)(X(t, x)).

This implies our assertion. �

For any Φ ∈ Kr(R), r ∈ R, let us define an operator TΦ(t), t ∈ (0, 1] in

C∞
b (RN ;R) by

(TΦ(t)f)(x) = Eµ[Φ(t, x)f(X(t, x))], x ∈ RN .
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Corollary 9. Let r ∈ R, and Φ ∈ Kr.
(1) There is a constant C < ∞ such that

‖ TΦ(t)f ‖∞≤ C

tr/2
‖ f ‖∞

for any t ∈ (0, 1] and f ∈ C∞
b (RN ;R).

(2) For any α ∈ A1(�) there are Φα,i ∈ Kr−‖α‖, i = 0, 1, such that

TΦ(t)V[α] = TΦα,0(t) and V[α]TΦ(t) = TΦα,1(t).

Proof. The assetion (1) is obvious. So we will prove the assertion (2).

The existence of Φα,0(t, x) follows from Lemma 8(3). Let

Ψ′
α(t, x) =

N∑
i=1

V i[α](x)
∂

∂xi
Φ(t, x)

and

Ψα,β(t, x) = Φ(t, x)bβα(t, x), β ∈ A1(�).

Then we see that Ψ′ ∈ Kr and Ψβ ∈ Kr+‖β‖−‖α‖. Also, we see that

V[α]TΦ(t) = TΨ′
α
(t) +

∑
β∈A1(�)

TΨα,β
(t)V[β].

So we see the existence of Φα,1(t, x) from Lemma 8(3). �

Now let us prove Theorem 2. Let Φ(t, x) = exp(
∫ t
0 c(X(s, x))ds). Then

we see that Φ ∈ K0, and that P ct = TΦ(t), t ∈ (0, 1]. So Corollary 9 implies

the assertion for p = ∞.

Now let gi ∈ C∞
b (RN ;R), i = 0, . . . , d, be given by

gi(x) =
d∑
j=1

(
∂

∂xj
V ji )(x), x ∈ RN .

Then we see that the formal self adjoint operator V ∗
i is −Vi − gi. Let Ṽi

∈ C∞
b (RN ;RN ), i = 0, . . . , d, and c̃ ∈ C∞

b (RN ;R) be given by

Ṽ0 = −V0 +
d∑
j=1

gjVj , Ṽi = Vi, i = 1, . . . , d,
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and

c̃ = −g0 +
1

2

d∑
j=1

(g2
j + Vjgj).

Then we see that the system of vector fields {Ṽi; i = 0, 1, . . . , } satisfies the

condition (UFG). Let us think of the SDE

X̃(t, x) = x+
d∑
i=0

∫ t

0

∫ d

0
Ṽi(X̃(s, x)) ◦ dBi(s).

and let P̃t, t ≥ 0, be a linear operator in C∞
b (RN ), given by

P̃t = Eµ[exp(

∫ t

0
c̃(X̃(t, x)))f(X̃(t, x))].

Then we see (c.f. [3]) that∫
RN

(P ct f)(x)g(x)dx =

∫
RN

f(x)(P̃tg)(x)dx, f, g ∈ C∞
0 (RN ).

So we see that for any f ∈ C∞
0 (RN )

‖ V[α1] · · ·V[αk]P
c
t V[αk+1] · · ·V[αk+m]f ‖L1(dx)

≤ sup{|
∫
RN

f(x)(V ∗
[αk+m] · · ·V ∗

[αk+1]P̃tV
∗
[αk] · · ·V ∗

[α1]g)(x)dx|;

g ∈ C∞
0 (RN ), ‖ g ‖∞≤ 1}.

So we have our assertion for the case p = 1. Then by the interpolation

theory we have our assertion.

This completes the proof of Theorem 2.

4. Proof of Lemma 6

First note the following theorem due to [3].

Theorem 10. For any m ≥ 0 and p ∈ (1,∞), we have

E[inf{
∫ 1

0
(

∑
α∈A(m)

aαB̂
α(t))2dt;

∑
α∈A(m)

a2
α = 1}−p] = Cm,p < ∞.
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Note that for any m ≥ 0, p ∈ (1,∞) and T, s > 0,

E[inf{
∫ T

0
(

∑
α∈A(m)

aαB̂
α(t))2dt;

∑
α∈A(m)

T ‖α‖+1a2
α ≥ s}−p] = Cm,ps

−p.

Then we have the following.

Lemma 11. Let m ≥ 0, and fα : [0, 1] × Ω → R, α ∈ A(m), be contin-

uous processes. If

Ap = sup
T∈(0,1]

E[(T−(m/2+3/4)(
∑

α∈A(m)

∫ T

0
fα(t)

2dt)1/2)p] < ∞, p ∈ [1,∞),

then

P (inf{(
∫ T

0
(

∑
α∈A(m)

aα(B̂
α(t) + fα(t)))

2dt)1/2;
∑

α∈A(m)

T ‖α‖+1a2
α = 1} ≤ z−1)

≤ (4pCm,p +A2p)z
−pγ

for any T ∈ (0, 1] and z ≥ 1. Here γ = (4m+ 5)−1.

Proof. Note that for T ∈ (0, 1], and y ≥ 1

(

∫ T

0
(

∑
α∈A(m)

aα(B̂
α(t) + fα(t)))

2dt)1/2

≥ (

∫ T/y

0
(

∑
α∈A(m)

aα(B̂
α(t) + fα(t)))

2dt)1/2

≥ (

∫ T/y

0
(

∑
α∈A(m)

aαB̂
α(t))2dt)1/2

−(
∑

α∈A(m)

T ‖α‖+1a2
α)

1/2(
∑

α∈A(m)

T−(m+1)
∫ T/y

0
fα(t)

2dt)1/2.

Then we have for any T ∈ (0, 1], y ≥ 1, and z = ym/2+5/8, we have

P (inf{(
∫ T

0
(

∑
α∈A(m)

aα(B̂
α(t) + fα(t)))

2dt)1/2;
∑

α∈A(m)

T ‖α‖+1a2
α = 1} ≤ z−1)
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≤ P (inf{(
∫ T/y

0
(

∑
α∈A(m)

aαB̂
α(t))2dt)1/2;

∑
α∈A(m)

T ‖α‖+1a2
α = 1} ≤ 2z−1)

+P (T−(m+1)/2(
∑

α∈A(m)

∫ T/y

0
fα(t)

2dt)1/2 ≥ z−1)

≤ P (inf{
∫ T/y

0
(

∑
α∈A(m)

aαB̂
α(t))2dt;

∑
α∈A(m)

(T/y)‖α‖+1a2
α ≥ y−(m+1)} ≤ 4z−2)

+P ((T/y)−(m/2+3/4)
∑

α∈A(m)

(

∫ T/y

0
fα(t)

2dt)1/2 ≥ ym/2+3/4z−1)

≤ (4z−2y(m+1))pCm,p + (y−(m/2+3/4)z)2pA2p ≤ (4pCm,p +A2p)y
−p/8.

Thus we have our assertion. �

Applying Lemma 11 for m = �−1, we have the following from Equations

(4),(5) and (6).

Corollary 12. For any p ∈ (1,∞), there is a constant C > 0 such

that

P (inf{
∑

α,β∈A1(�)

ξαξβM
α,β(t, x); ξ ∈ RA1(�),

∑
α∈A1(�)

|ξα|2 = 1} ≤ 1

n
) ≤ Cn−p

for any n ≥ 1, t ∈ (0, 1], and x ∈ RN .

Now Lemma 6 is an easy consequence of Corollary 12.

This completes the proof of Lemma 6.

5. Hypoelliptic Part

In this section, we assume that the system {Vi; i = 0, 1, . . . , d} satisfies

the condition (UFG) and let � be as in Definition 1. Let A ∈ C∞
b (RN ;RN⊗

RN ) be given by

A(x) =
∑

α∈A1(�)

V[α](x) ⊗ V[α](x), x ∈ RN ,
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and λ0 : RN → [0,∞) be a continuous function given by

λ0(x) = inf{(A(x)ξ, ξ); ξ ∈ RN , |ξ| = 1}, x ∈ RN .

Then we have the following.

Proposition 13. For any p ∈ (1,∞) there are constants C0, C1 such

that

C0λ0(x)−1 ≤ E[λ0(X(t, x))−p]1/p ≤ C1λ0(x)−1, x ∈ RN .

Proof. Let J(t, x) = { ∂
∂xj

Xi(t, x)}Ni,j=1. Then we have

(A(X(t, x))ξ, ξ) =
∑

α∈A1(�)

(V[α](X(t, x)), ξ)2

=
∑

α∈A1(�)

(
∑

β∈A1(�)

aβα(t, x)(V[β](x), J(t, x)∗ξ))2

≤ (
∑

α∈A1(�)

∑
β∈A1(�)

aβα(t, x)2)(
∑

β∈A1(�)

(V[β](x), J(t, x)∗ξ))2)

So we have

λ0(X(t, x)) ≤ (
∑

α∈A1(�)

∑
β∈A1(�)

aβα(t, x)2) ‖ J(t, x) ‖2 λ0(x).

This implies that

λ0(X(t, x))−1 ≤ (
∑

α∈A1(�)

∑
β∈A1(�)

aβα(t, x)2) ‖ J(t, x) ‖2 λ0(x)−1.

Similarly we have

λ0(x)−1 ≤ (
∑

α∈A1(�)

∑
β∈A1(�)

bβα(t, x)2) ‖ J(t, x)−1 ‖2 λ0(X(t, x))−1.

These imply our assertion. �

Also, let λ : RN → [0,∞) be given by

λ(x) =

{
(traceA(x)−1)−1, if λ0(x) > 0,

0, if λ0(x) = 0.
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Then we can easily see that

N−1λ0(x) ≤ λ(x) ≤ λ0(x), x ∈ RN ,

and so we see that λ is continuous.

Let G0 = {x ∈ RN ; λ0(x) > 0}, and ei = {δji}Nj=1 ∈ RN , i = 1, . . . , N,

and let cα,i : G0 → R, α ∈ A1(�), i = 1, . . . , N, be given by

cα,i(x) = (ei, A(x)−1V[α](x)), x ∈ G0.

Then we see that

∂

∂xi
=

∑
α∈A1(�)

cα,iV[α], on G0.

Since we have

∂

∂xi
(A(x)−1) = −A(x)−1(

∂

∂xi
A(x))A(x)−1,

we see that for any n ≥ 1 and i1, . . . , in ∈ {1, . . . , N}, there is a C > 0 such

that

| ∂n

∂xi1 · · · ∂xin trace(A(x)−1)| ≤ Cλ(x)−(n+1), x ∈ RN ,

| ∂n

∂xi1 · · · ∂xin λ(x)| ≤ Cλ(x)−(n−1), x ∈ RN ,

and

| ∂n

∂xi1 · · · ∂xin cα,i(x)| ≤ Cλ(x)−(n+1), x ∈ RN

for all α ∈ A1(�), i = 1, . . . , N.

Combining these facts and Theorem 2, we have the following.

Proposition 14. Suppose that {Vi; i = 0, 1, . . . , d} satisfies the (UFG)

condition. Then for any n ≥ 1 and i1, . . . , in ∈ {1, . . . , N}, there is a C > 0

such that

‖ λn ∂n

∂xi1 · · · ∂xin P
c
t f ‖Lp(dx)≤ Ct−n�/2 ‖ f ‖Lp(dx)

for any f ∈ C∞
0 (RN ), t ∈ (0, 1] and p ∈ [1,∞].
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Also we have the following by using dual argument as in the proof of

Theorem 2.

Theorem 15. Suppose that {Vi; i = 0, 1, . . . , d} satisfies the (UFG)

condition. Then for any n,m ≥ 0 and i1, . . . , in, j1, . . . , jm ∈ {1, . . . , N},
there is a C > 0 such that

‖ λn ∂n

∂xi1 · · · ∂xin P
c
t

∂m

∂xj1 · · · ∂xjm λmf ‖Lp(dx)≤ Ct−(n+m)�/2 ‖ f ‖Lp(dx)

for any f ∈ C∞
0 (RN ), t ∈ (0, 1] and p ∈ [1,∞].

6. Examples

Example 1. Let d = 1 and N = 2. Let n ≥ 2, and V0, V1 ∈ C∞
b (R2;R2)

be given by

V0(x
1, x2) = (2 + (sinx1)n)

∂

∂x2
, V1(x

1, x2) =
∂

∂x1
.

Then the condition (UH) is satisfied for � = n+2. Let X(t, x) be the solution

to (1) and Pt, t > 0, be a linear operator in C∞
b (R2;R) given by

Ptf(x) = E[f(X(t, x))], f ∈ C∞
b (R2;R), x ∈ R2.

Then we have the following.

Proposition 16. (1) There is a constant C1 > 0 such that

‖ V0Ptf ‖∞≤ C1t
−(n+2)/2 ‖ f ‖∞, f ∈ C∞

b (R2;R), t ∈ (0, 1].

(2) There is a constant C2 > 0 such that

sup{‖ V0Ptf ‖∞; f ∈ C∞
b (R2;R), ‖ f ‖∞≤ 1} ≥ C2t

−(n+2)/2, t ∈ (0, 1].

Proof. The assertion (1) is an easy consequence of Theorem 2. So

we prove the assertion (2). We can easy to see that the solution X(t, x) =

(X(t, (x1, x2), X2(t, (x1, x2))) is given by

X1(t, (x1, x2)) = x1 +B1(t),
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X2(t, (x1, x2)) = x2 + 2t+

∫ t

0
sin(x1 +B1(s))nds.

Then we see that

∂

∂x2
(Ptf)(x) = E[

∂f

∂x2
(X(t, x))], f ∈ C∞

b (R2;R).

Note that

E[|
∫ t

0
sin(B1(s))nds|] ≤ E[

∫ t

0
|B1(s)|nds] = Ant

(n+2)/2,

where An = E[
∫ 1
0 |B1(s)|nds]. So we see that P (|

∫ t
0 sin(B1(s))nds| ≥

2Ant
(n+2)/2) ≤ 1/2.

Let us take a g ∈ C∞
b (R;R) such that g′(z) ≥ 1, z ∈ [−1, 1] and

g′(z) ≥ 0, z ∈ R. Let f (t) ∈ C∞
b (R2;R), t > 0, be given by

f (t)(x1, x2) = g((2Ant
(n+2)/2)−1(x2 − 2t)), (x1, x2) ∈ R2.

Then we see that ‖ f (t) ‖∞ =‖ g ‖∞ and that

∂

∂x2
(Ptf

(t))(0) = (2Ant
(n+2)/2)−1E[g′((2Ant

(n+2)/2)−1(

∫ t

0
sin(B1(s))nds))]

≥ (4Ant
(n+2)/2)−1.

This implies our assertion (2). �

Example 2. Let d = 1 and N = 2. Let V0, V1 ∈ C∞
b (R2;R2) be given

by

V0(x
1, x2) = sinx1 ∂

∂x2
, V1(x

1, x2) = sinx1 ∂

∂x1
.

Then the condition (UH) is not satisfied. But (UFG) is satisfied for � = 4.
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