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Borel Summability of Divergent Solutions for Singular

First Order Linear Partial Differential Equations with

Polynomial Coefficients

By Masaki Hibino

Abstract. This paper is concerned with the study of the Borel
summability of divergent power series solutions for singular first order
linear partial differential equations of nilpotent type. The conditions
under which formal solutions are Borel summable are given by ana-
lytic continuation properties and growth (or decreasing) estimates for
coefficients.

1. Introduction and Main Result

In this paper, we are concerned with the Borel summability of the for-

mal solution for the following singular first order linear partial differential

equation of nilpotent type:

Pu(x, y) = f(x, y),

P = 1 + {a+ bx+ c(x, y)}yDx + {d+ e(x, y)}y2Dy,
(1.1)

where x, y ∈ C, Dx = ∂/∂x, Dy = ∂/∂y, and a, b and d are complex

constants, and f(x, y) is holomorphic at the origin. c(x, y) and e(x, y) are

polynomials of at least degree 1 with respect to y, that is, c(x, y) and e(x, y)

have following forms:

c(x, y) =
p1∑

p=p0

cp(x)yp,(1.2)

e(x, y) =
q1∑

q=q0

eq(x)yq,(1.3)

where 1 ≤ p0 ≤ p1 and 1 ≤ q0 ≤ q1. cp(x) (p = p0, p0 + 1, . . ., p1) and

eq(x) (q = q0, q0 + 1, . . ., q1) are holomorphic at the origin. Throughout

this paper, we always assume that

a �= 0,(1.4)
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cp0(x) �≡ 0 unless c(x, y) ≡ 0,(1.5)

and

eq0(x) �≡ 0 unless e(x, y) ≡ 0.(1.6)

1.1. Motivation

In the paper Hibino[5], we studied the following more general equation:

P0u(x, y) = f(x, y),

P0 = 1 + {a(x, y)y + b(x, y)xy + c(x, y)y2}Dx + d(x, y)y2Dy,
(1.7)

where the coefficients a, b, c, d and f are holomorphic at the origin with

a(0, 0) �= 0.

First, in order to state the problem and the result in [5], let us introduce

some notations.

Definition 1.1. (1) O[R] denotes the ring of holomorphic functions

on the closed ball B(R) := {x ∈ C; |x| ≤ R}.
(2) The ring of formal power series in y (∈ C) over the ring O[R] is de-

noted as O[R][[y]]: O[R][[y]] = {u(x, y) =
∑∞

n=0 un(x)yn; un(x) ∈ O[R]}.
(3) We say that u(x, y) =

∑∞
n=0 un(x)yn ∈ O[R][[y]] belongs to O[R][[y]]2

if there exist some positive constants C and K such that max|x|≤R |un(x)| ≤
CKnn! for all n ∈ N.

(4) For θ ∈ R, α > 0 and 0 < ρ ≤ +∞, the sector S(θ, α, ρ) in the

universal covering space of C \ {0} is defined by

S(θ, α, ρ) =

{
y; | arg(y) − θ| < α

2
, 0 < |y| < ρ

}
.(1.8)

(5) Let u(x, y) =
∑∞

n=0 un(x)yn ∈ O[R][[y]]2 and let U(x, y) be a holo-

morphic function on X := B(R)× S(θ, α, ρ). Then we say that U(x, y) has

u(x, y) as an asymptotic expansion of Gevrey order 2 in X if the following

asymptotic extimates hold: For any α′ and ρ′ (0 < α′ < α, 0 < ρ′ < ρ),

there exist some positive constants C and K such that

max
|x|≤R

∣∣∣∣∣U(x, y) −
N−1∑
n=0

un(x)yn
∣∣∣∣∣ ≤ CKNN !|y|N , y ∈ S(θ, α′, ρ′);(1.9)

N = 1, 2, . . . .
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Then we write this as

U(x, y) ∼=2 u(x, y) in X.

Now we already know that the equation (1.7) has a unique formal power

series solution in O[R][[y]]2 for some R > 0 (see Hibino[4]). The main

problem in [5] was the existence of holomorphic solutions U(x, y) on some

X = B(R) × S(θ, α, ρ) such that U(x, y) ∼=2 u(x, y) in X. [5] proved that

this problem was solved positively if α < π:

Theorem 1.1 (Hibino[5]). Let u(x, y) =
∑∞

n=0 un(x)yn ∈ O[R][[y]]2
be the formal solution of the equation (1.7), and let θ be an arbitrary real

number. Let us assume that 0 < α < π. Then there exist some posi-

tive constants rα, ρα and a holomorphic solution U(x, y) of (1.7) on Xα =

B(rα) × S(θ, α, ρα) such that U(x, y) ∼=2 u(x, y) in Xα. Such asymptotic

solutions U(x, y) exist infinitely many.

Let us remark that we do not require any additional condition for coef-

ficients.

Theorem 1.1 does not necessarily hold when α > π. When we con-

sider an open disk (see Definition 1.2) instead of a sector also, we can not

unconditionally expect the existence of asymptotic solutions as the above.

However, in these cases, if there exists such an asymptotic solution, then we

see that it is unique by a general theory of Gevrey asymptotic expansions

(cf. Balser[1][2], Lutz-Miyake-Schäfke[8] and Malgrange[9]). Such a solution

is called the Borel sum of the formal solution. In the paper Hibino[6], we

studied the condition under which the formal solution is Borel summable in

the case where the region is an open disk. Since it is difficult to obtain such

a condition for the general equation (1.7), [6] restricted that the coefficients

a, b, c and d are constants. In this paper, we give one of the generalizations

of [6].

1.2. Main Result

Now let us return to the equation (1.1) and let us consider the condition

under which the formal solution is Borel summable. First of all, let us give

the precise definition of the Borel summability.
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Definition 1.2. (1) For θ ∈ R and T > 0, we define the region

O(θ, T ) by

O(θ, T ) = {y; |y − T eiθ| < T},(1.10)

where et = exp t.

(2) Let u(x, y) =
∑∞

n=0 un(x)yn ∈ O[R][[y]]2. We say that u(x, y)

is Borel summable in θ if there exists a holomorphic function U(x, y) on

B(r) ×O(θ, T ) for some 0 < r ≤ R and T > 0 which satisfies the following

asymptotic estimates: There exist some positive constants C and K such

that

max
|x|≤r

∣∣∣∣∣U(x, y) −
N−1∑
n=0

un(x)yn
∣∣∣∣∣ ≤ CKNN !|y|N , y ∈ O(θ, T );(1.11)

N = 1, 2, . . . .

As mentioned in §1.1, when u(x, y) is Borel summable in θ, the above

holomorphic function U(x, y) is unique. So we call this U(x, y) the Borel

sum of u(x, y) in θ.

We divide the problem into the following four cases:

Case (1): b = d = 0,

Case (2): b = 0, d �= 0,

Case (3): b �= 0, d = 0,

Case (4): b, d �= 0.

In order to state the main result, we introduce some notations. Let us

define the function Φ(x, η) by

Φ(x, η) =



x− aη (Case (1))

x− a

d
log(1 + dη) (Case (2))(

a

b
+ x

)
e−bη − a

b
(Case (3))(

a

b
+ x

)
(1 + dη)−b/d − a

b
(Case (4)),

(1.12)

and let us define the region Ωr,θ,κ (κ > 0) by

Ωr,θ,κ = {Φ(x, η); |x| ≤ r, η ∈ E+(θ, κ)}.(1.13)
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Here E+(θ, κ) is a region defined by

E+(θ, κ) = {η; dist (η,R+eiθ) ≤ κ},(1.14)

where R+ = [0,+∞). In order to ensure the well-definedness of Ωr,θ,κ, we

always assume the following:

θ �= arg

(
−1

d

)
in Case (2) and Case (4).(1.15)

In Case (3) and Case (4), Ωr,θ,κ is usually a spiral region turning around

−a/b, and analytic functions on Ωr,θ,κ have a branch point at −a/b in

general. Therefore in such cases we regard Ωr,θ,κ as a region in the Riemann

surface of log

(
x+

a

b

)
.

Under these notations, let us give the assumptions for the equation (1.1).

(A1) In each case, f(x, y) can be continued analytically to Ωr,θ,κ×{y ∈
C; |y| ≤ r′} for some r, κ and r′.

(A2) f(x, y) has the following growth estimate on Ωr,θ,κ×{y ∈ C; |y| ≤
r′}: There exist some positive constants C and δ such that:

Case (1):

max
|y|≤r′

|f(x, y)| ≤ Ceδ|x|, x ∈ Ωr,θ,κ;(1.16)

Case (2):

max
|y|≤r′

|f(x, y)| ≤ C exp

{
δ

∣∣∣∣exp

(
−d

a
x

)∣∣∣∣} , x ∈ Ωr,θ,κ;(1.17)

Case (3):

max
|y|≤r′

|f(x, y)| ≤ C exp

{
δ

∣∣∣∣log

(
x+

a

b

)∣∣∣∣} , x ∈ Ωr,θ,κ;(1.18)

Case (4):

max
|y|≤r′

|f(x, y)| ≤ C exp

{
δ

∣∣∣∣∣
(
x+

a

b

)−d/b
∣∣∣∣∣
}
, x ∈ Ωr,θ,κ.(1.19)

(A3) In each case, cp(x) and eq(x) (p = p0, p0 + 1, . . ., p1; q = q0,

q0 + 1, . . ., q1) can be continued analytically to Ωr,θ,κ.
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(A4) In each case cp(x) has the following estimate on Ωr,θ,κ:

Case (1): cp(x) is bounded:

Mp := sup
x∈Ωr,θ,κ

|cp(x)| < ∞;(1.20)

Case (2): For some positive constants Mp > 0 and βp < p,

|cp(x)| ≤ Mp

∣∣∣∣exp

(
−d

a
x

)∣∣∣∣βp , x ∈ Ωr,θ,κ;(1.21)

Case (3): For some positive constant Mp > 0,

|cp(x)| ≤ Mp

∣∣∣∣x+
a

b

∣∣∣∣ , x ∈ Ωr,θ,κ;(1.22)

Case (4): For some positive constants Mp > 0 and βp < p,

|cp(x)| ≤ Mp

∣∣∣∣∣
(
x+

a

b

)−d/b
∣∣∣∣∣
βp ∣∣∣∣x+

a

b

∣∣∣∣ , x ∈ Ωr,θ,κ.(1.23)

(A5) In each case eq(x) has the following estimate on Ωr,θ,κ:

Case (1): For some positive constants Nq > 0 and αq > 1,

|eq(x)| ≤ Nq

(1 + |x|)αq
, x ∈ Ωr,θ,κ;(1.24)

Case (2): For some positive constants Nq > 0 and βq
′ < q,

|eq(x)| ≤ Nq

∣∣∣∣exp

(
−d

a
x

)∣∣∣∣βq ′ , x ∈ Ωr,θ,κ;(1.25)

Case (3): For some positive constants Nq > 0 and αq > 1,

|eq(x)| ≤ Nq{
1 +

∣∣∣∣log

(
x+

a

b

)∣∣∣∣}αq
, x ∈ Ωr,θ,κ;(1.26)

Case (4): For some positive constants Nq > 0 and βq
′ < q,

|eq(x)| ≤ Nq

∣∣∣∣∣
(
x+

a

b

)−d/b
∣∣∣∣∣
βq

′

, x ∈ Ωr,θ,κ.(1.27)



Borel Summability of Divergent Solutions for 1st Order Linear PDEs 285

The main result in this paper is stated as follows:

Main Theorem Under the assumptions (A1), (A2), (A3), (A4) and

(A5), the formal solution u(x, y) of the equation (1.1) is Borel summable in

θ, and its Borel sum is a holomorphic solution of (1.1).

Remark 1.1. In Case (3) and Case (4), it depends on the values of

�(beiθ) and �(b/d), respectively, whether the condition (A4) is a growth or

decreasing condition. For example, let us consider the equation

{1 + (a+ bx+ cy)yDx + dy2Dy}u(x, y) = f(x, y).(1.28)

This is the case where c(x, y) = cy (c1(x) ≡ c) and e(x, y) ≡ 0. In Case (3),

if �(beiθ) > 0, our condition (1.22) is the decreasing condition. Therefore

a constant c which satisfies such a decreasing condition is exactly zero.

Similarly in Case (4), if �(b/d) ≥ 1, we see that a constant which satisfies

the condition (1.23) for p = 1 is exactly zero. Let us remark that in Case

(3) (resp. Case (4)) if �(beiθ) ≤ 0 (resp. �(b/d) < 1), the condition (A4) is

always satisfied for (1.28). Therefore for the equation (1.28), our condition

(A4) can be written as follows:

Case (3):

c = 0 or �(beiθ) ≤ 0;

Case (4):

c = 0 or �
(
b

d

)
< 1.

In [6], the equation (1.28) is studied in detail, and we see there that the

above conditions are not technical but essential.

Finally, we give some remarks on the precedent results.

On the problem of the existence of Gevrey asymptotic solutions for di-

vergent formal solutions, there are many results in the theory of ordinary

differential equations, which can be seen in Balser[1][2]. On the other hand,

in the theory of partial differential equations, such studies started recently,

and there are not so many articles. On the existence of Gevrey asymptotic

solutions in small sectors, such as in Theorem 1.1, we can find some inter-

esting results in Ōuchi[11], where very general nonlinear partial differential
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equations are dealt with. In Ōuchi’s results and our Theorem 1.1, in order

to prove the existence of Gevrey asymptotic solutions, the Gevrey version of

Borel-Ritt’s theorem (cf. Balser[1][2]) plays a fundamental role (on the orig-

inal version of Borel-Ritt’s theorem, see Wasow[12]). Moreover, we remark

that the existence of Gevrey asymptotic solutions in small sectors is assured

without any global condition for coefficients. Unfortunately, the theorem of

Borel-Ritt is not useful in the argument of Borel summability. Being dif-

ferent from small sector cases, in order to assure the Borel summability of

formal solutions the global conditions, such as in our main theorem, are

demanded despite that the domain O(θ, T ) of the Borel sum is local. Lutz-

Miyake-Schäfke[8] and Miyake[10] gave the necessary and sufficient condi-

tions for the Borel summability of formal solutions for non-Kowalevskian

equations with constant coefficients like heat equations. Balser-Miyake[3]

dealt with more general equations with constant coefficients and gave the

sufficient conditions for the Borel summability. The equation which is stud-

ied in this paper is the one with variable coefficients and is a different type

of equation from theirs.

2. Formal Borel Transform of Equations

Before proving the main theorem, we give some preliminaries. First, we

remark that if the formal solution u(x, y) of (1.1) is Borel summable, then it

is easily proved that its Borel sum U(x, y) is a holomorphic solution of (1.1)

as follows: Since U(x, y) is the Borel sum of u(x, y), it follows that PU(x, y)

is the Borel sum of Pu(x, y). On the other hand, it is clear that f(x, y) is

the Borel sum of Pu(x, y). Therefore it follows from the uniqueness of the

Borel sum that PU(x, y) = f(x, y).

Thus in order to prove the main theorem, it is sufficient to prove that

the formal solution u(x, y) is Borel summable under the conditions in the

theorem.

When we want to check the Borel summability of the formal power

series u(x, y) =
∑∞

n=0 un(x)yn ∈ O[R][[y]]2, the following theorem plays a

fundamental role in general.

Theorem 2.1 (Lutz-Miyake-Schäfke[8]). In order that a formal

power series u(x, y) =
∑∞

n=0 un(x)yn ∈ O[R][[y]]2 is Borel summable in

θ, the following condition (BS) is necessary and sufficient: Let B(u)(x, η)
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be the formal Borel transform of u(x, y) defined by

B(u)(x, η) =
∞∑
n=0

un(x)
ηn

n!
,(2.1)

which is holomorphic in a neighborhood of the origin. Then the condition

(BS) is stated as follows:

(BS) B(u)(x, η) can be continued analytically to B(r0) ×E+(θ, κ0) for

some r0 > 0 and κ0 > 0, and has the following exponential growth estimate

for some positive constants C and δ:

max
|x|≤r0

|B(u)(x, η)| ≤ Ceδ|η|, η ∈ E+(θ, κ0).(2.2)

When (BS) is satisfied, the Borel sum U(x, y) of u(x, y) in θ is given by

U(x, y) =
1

y

∫
R+eiθ

e−η/yB(u)(x, η)dη.(2.3)

It is thus sufficient to prove that the formal Borel transform B(u)(x, η)

of the formal solution u(x, y) satisfies the above condition (BS) under the

conditions in the theorem. In order to do that, firstly let us write down the

equation which B(u)(x, η) should satisfy. By the formal Borel transform,

the operators y and Dy are transformed to the operators Dη
−1 =

∫ η

0
dη and

DηηDη, respectively. They are easily seen from the following commutative

diagrams:

yn
Borel tr.−−−−−→ ηn

n!�y �Dη
−1

yn+1 −−−−−→
Borel tr.

ηn+1

(n+ 1)!
,

yn
Borel tr.−−−−−→ ηn

n!�Dy

�DηηDη

nyn−1 −−−−−→
Borel tr.

n
ηn−1

(n− 1)!
.

(2.4)

Therefore we see that B(u)(x, η) is a solution of the following equation:{
1 + (a+ bx)Dη

−1Dx +Dη
−1

p1∑
p=p0

cp(x)Dη
−pDx(2.5)

+ dDη
−1ηDη +Dη

−1
q1∑

q=q0

eq(x)Dη
−qηDη

}
v(x, η)

= B(f)(x, η),
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where B(f)(x, η) is the formal Borel transform of f(x, y) =
∑∞

n=0 fn(x)yn,

that is,

B(f)(x, η) =
∞∑
n=0

fn(x)
ηn

n!
.

Furthermore by operating Dη to the equation (2.5) from the left, we see

that B(u)(x, η) is a solution of the initial value problem of the following

integro-differential equation:

Lv(x, η) = −
{ p1∑
p=p0

cp(x)Dη
−pDx +

q1∑
q=q0

eq(x)Dη
−qηDη

}
v(x, η)(2.6)

+ g(x, η),

v(x, 0) = f(x, 0),

where

L = (1 + dη)Dη + (a+ bx)Dx,(2.7)

and g(x, η) = DηB(f)(x, η).

Here it follows from an integration by parts that

Dη
−qηDηv(x, η) =

∫ η

0

∫ s1

0
· · ·
∫ sq−1

0
sq · vη(x, sq)dsq · · ·ds2ds1

=

∫ η

0

∫ s1

0
· · ·
∫ sq−1

0
sq ·

d

dsq
v(x, sq)dsq · · ·ds2ds1

=

∫ η

0

∫ s1

0
· · ·
∫ sq−2

0
sq−1 · v(x, sq−1)dsq−1 · · ·ds2ds1

−
∫ η

0

∫ s1

0
· · ·
∫ sq−1

0
v(x, sq)dsq · · ·ds2ds1.

Therefore we see that B(u)(x, η) is a solution of the following initial value

problem:

Lv(x, η) =
3∑
i=1

Iiv(x, η) + g(x, η),

v(x, 0) = f(x, 0),

(2.8)

where each operator Ii is given by

I1v(x, η) = −
p1∑

p=p0

cp(x)

∫ η

0

∫ s1

0
· · ·
∫ sq−1

0
vx(x, sp)dsp · · ·ds2ds1,
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I2v(x, η) = −
q1∑

q=q0

eq(x)

×
∫ η

0

∫ s1

0
· · ·
∫ sq−2

0
sq−1 · v(x, sq−1)dsq−1 · · ·ds2ds1,

I3v(x, η) =
q1∑

q=q0

eq(x)

∫ η

0

∫ s1

0
· · ·
∫ sq−1

0
v(x, sq)dsq · · ·ds2ds1.

The main theorem will be proved by showing that the solution v(x, η)

of the equation (2.8) satisfies the condition (BS).

We will prove this fact in the next section. If c(x, y) =
∑p1

p=p0 cp(x)yp ≡ 0

or e(x, y) =
∑q1

q=q0 eq(x)yq ≡ 0, the proof becomes easier. Therefore in the

following we consider only the case c(x, y) �≡ 0 and e(x, y) �≡ 0. In this case,

we remark that cp0(x) �≡ 0 and eq0(x) �≡ 0 by the assumptions (1.5) and

(1.6).

The proof will be done only in Case (4). Since the proof for other cases

can be seen in Chapter 5 of author’s doctoral thesis Hibino[7], here we only

remark the following: Case (1) and Case (3) are proved by an essentially

same method. On the other hand, Case (2) and Case (4) are proved by an

essentially same method different from the one used in the proofs of Case

(1) and Case (3). For details, refer to [7].

3. Proof of Main Theorem (Case (4))

Let us prove that the solution v(x, η) of the equation (2.8) for b, d �= 0,

satisfies the condition (BS) in Theorem 2.1. Firstly we remark that in

general the solution w(x, η) of the initial value problem of the following first

order linear partial differential equation

{(1 + dη)Dη + (a+ bx)Dx}w(x, η) = k(x, η),

w(x, 0) = l(x)
(3.1)

is given by

w(x, η) = l

((
a

b
+ x

)
(1 + dη)−b/d − a

b

)

+

∫ η

0
k

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, t

)
1

1 + dt
dt.

(3.2)
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Proof of Main Theorem (Case (4)). First, let us transform (2.8)

into the integral equation. It follows from (3.2) that the equation (2.8) is

equivalent to the following equation:

v(x, η) = f

((
a

b
+ x

)
(1 + dη)−b/d − a

b
, 0

)
+

∫ η

0
g

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, t

)
1

1 + dt
dt

+
3∑
i=1

∫ η

0
(Iiv)

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, t

)
1

1 + dt
dt.

Let us transform

∫ η

0
(I1v)

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, t

)
1

1 + dt
dt. This

is given by∫ η

0
(I1v)

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, t

)
1

1 + dt
dt

= −
p1∑

p=p0

∫ η

0
cp

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b

)

×
∫ t

0

∫ s1

0
· · ·
∫ sp−1

0
vx

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, sp

)

×dsp · · ·ds2ds1
1

1 + dt
dt

= −
p1∑

p=p0

∫ η

0

∫ s1

0
· · ·
∫ sp−1

0

∫ η

s1
cp

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b

)

× vx

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, sp

)
1

1 + dt
dtdsp · · ·ds2ds1.

(by Fubini’s Theorem)

Here we remark that∫ η

s1
cp

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b

)

× vx

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, sp

)
1

1 + dt
dt
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=
1

b

(
a

b
+ x

)−1

(1 + dη)b/d
∫ η

s1
cp

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b

)

× (1 + dt)−b/d
d

dt

{
v

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, sp

)}
dt.

Therefore by an integration by parts and Fubini’s Theorem again, we see

that (2.8) is equivalent to the following integral equation:

v(x, η) = f

((
a

b
+ x

)
(1 + dη)−b/d − a

b
, 0

)
(3.3)

+

∫ η

0
g

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, t

)
1

1 + dt
dt

+
6∑
i=1

Jiv(x, η),

where each integral operator Ji is given by

J1v(x, η)

=
1

b

(
a

b
+ x

)−1 p1∑
p=p0

(1 + dη)b/d

×
∫ η

0
(1 + ds1)

−b/dcp

((
a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b

)

×
∫ s1

0
· · ·
∫ sp−1

0
v

((
a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b
, sp

)
dsp · · ·ds2ds1,

J2v(x, η)

= −1

b

(
a

b
+ x

)−1 p1∑
p=p0

cp(x)

∫ η

0

∫ s1

0
· · ·
∫ sp−1

0
v(x, sp)dsp · · ·ds2ds1,

J3v(x, η)

= −
(
a

b
+ x

)−1 p1∑
p=p0

(1 + dη)b/d

×
∫ η

0
(1 + ds1)

−b/dcp

((
a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b

)

×
∫ s1

0
· · ·
∫ sp

0
v

((
a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b
, sp+1

)
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× dsp+1 · · ·ds2
1

1 + ds1
ds1,

J4v(x, η)

=
p1∑

p=p0

∫ η

0
cp

′
((

a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b

)

×
∫ s1

0
· · ·
∫ sp

0
v

((
a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b
, sp+1

)

× dsp+1 · · ·ds2
1

1 + ds1
ds1,

J5v(x, η)

=

∫ η

0
(I2v)

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, t

)
1

1 + dt
dt

= −
q1∑

q=q0

∫ η

0
eq

((
a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b

)

×
∫ s1

0
· · ·
∫ sq−1

0
sq · v

((
a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b
, sq

)

× dsq · · ·ds2
1

1 + ds1
ds1,

J6v(x, η)

=

∫ η

0
(I3v)

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, t

)
1

1 + dt
dt

=
q1∑

q=q0

∫ η

0
eq

((
a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b

)

×
∫ s1

0
· · ·
∫ sq

0
v

((
a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b
, sq+1

)

× dsq+1 · · ·ds2
1

1 + ds1
ds1,

where cp
′(x) =

dcp
dx

(x).

In order to prove that the solution v(x, η) of (3.3) satisfies the condi-

tion (BS), we employ the iteration method. Let us define {vn(x, η)}∞n=0 as
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follows:

v0(x, η) = f

((
a

b
+ x

)
(1 + dη)−b/d − a

b
, 0

)
+

∫ η

0
g

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, t

)
1

1 + dt
dt.

For n ≥ 0,

vn+1(x, η) := v0(x, η) +
6∑
i=1

Jivn(x, η).(3.4)

Next, we define {wn(x, η)}∞n=0 by w0(x, η) := v0(x, η) and wn(x, η) =

vn(x, η) − vn−1(x, η) (n ≥ 1), and define {Wn(x, η, t)}∞n=0 by

Wn(x, η, t) := wn

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b
, t

)
.(3.5)

Definition 3.1. (1) For λ ≥ 0 and ε > 0, Uε[0, λ] denotes the ε-

neighborhood of [0, λ] in C.

(2) For η ∈ C, we define the function Gη(τ) by

Gη(τ) =
τei arg(η)

1 + d(|η| − τ)ei arg(η)
, τ ∈ C,

and define Gη and Gεη as follows:

Gη := {Gη(R) ∈ C; 0 ≤ R ≤ |η|},
Gεη := {Gη(τ) ∈ C; τ ∈ Uε[0, |η|]}.

Now let us define Cp(x, η) by

Cp(x, η) := cp

((
a

b
+ x

)
(1 + dη)−b/d − a

b

)
.

It follows from the assumptions (A3) and (A4) that Cp(x, η) is holomorphic

on B(r) × E+(θ, κ) with the estimate

max
|x|≤r

|(1 + dη)b/dCp(x, η)| ≤ Mp
′(1 + |η|)βp , η ∈ E+(θ, κ),(3.6)
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for some positive constant Mp
′. Therefore by Cauchy’s integral formula, we

see that for κ′ := κ/2 there exists a positive constant Mp
′′ such that

max
|x|≤r

|(1 + dη)b/dCp,η(x, η)| ≤ Mp
′′(1 + |η|)βp , η ∈ E+(θ, κ′),(3.7)

where Cp,η(x, η) =
∂Cp
∂η

(x, η).

Similarly, let us define Eq(x, η) by

Eq(x, η) := eq

((
a

b
+ x

)
(1 + dη)−b/d − a

b

)
.

Then it follows from the assumptions (A3) and (A5) that Eq(x, η) is holo-

morphic on B(r) × E+(θ, κ) with the estimate

max
|x|≤r

|Eq(x, η)| ≤ Nq
′(1 + |η|)βq ′ , η ∈ E+(θ, κ),(3.8)

for some positive constant Nq
′.

Next, we take a positive constant K so that

K−1 1

1 + |η| ≤
∣∣∣∣ 1

1 + dη

∣∣∣∣ ≤ K
1

1 + |η| (≤ K), η ∈ E+(θ, κ),(3.9)

and we define β > 0 by

β = min{p− βp, q − βq
′; p = p0, p0 + 1, . . . , p1(3.10)

and q = q0, q0 + 1, . . . , q1}.

Finally let us define L > 0 by

L = max

{
3

β
, 1 +

2

β

}
.(3.11)

Under these preparations, let us take a positive constant A so that

Mp
′Kp+2 · max

|x|≤r

∣∣∣∣∣1b
(
a

b
+ x

)−1
∣∣∣∣∣ ≤ A, Mp

′Kp · max
|x|≤r

∣∣∣∣∣1b
(
a

b
+ x

)−1
∣∣∣∣∣ ≤ A,

Mp
′Kp+1 · max

|x|≤r

∣∣∣∣∣
(
a

b
+ x

)−1
∣∣∣∣∣ ≤ A, Mp

′′Kp · max
|x|≤r

∣∣∣∣∣1b
(
a

b
+ x

)−1
∣∣∣∣∣ ≤ A,

(p = p0, p0 + 1, . . . , p1),
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Nq
′Kq+1 ≤ A, (q = q0, q0 + 1, . . . , q1),

and let us take a monotonically decreasing positive sequence {εn}∞n=0 satis-

fying

κ̃ := κ′ −
∞∑
n=0

εn > 0.(3.12)

Then we obtain the following lemma:

Lemma 3.1. Wn(x, η, t) is continued analytically to {(x, η, t); |x| ≤
r, η ∈ E+(θ, κ′ − ∑n

j=0 εj), t ∈ Gεnη }. Furthermore on {(x, η, t); |x| ≤
r, η ∈ E+(θ, κ′ −∑n

j=0 εj), t ∈ Gη} we have the following estimate: For

some positive constants C1 > 0 and δ1 > 1,

|Wn(x, η,Gη(R))|(3.13)

≤ C1e
δ1|η|(AL)n

 ω∑
p′=ξ

1

δ1
p′

n 1

(1 + |η| −R)nβ

n∑
k=0

(
n

k

)
δ1
k(1 + |η|)k

k!
,

where ξ = min{p0, q0} and ω = max{p1, q1}.

If we admit Lemma 3.1, the theorem is proved as follows: It follows

from Lemma 3.1 that wn(x, η) (= Wn(x, η, η)) is continued analytically to

B(r) × E+(θ, κ′ −∑n
j=0 εj)} with the estimate

|wn(x, η)| = |Wn(x, η,Gη(|η|))|

≤ C1e
δ1|η|(AL)n

 ω∑
p′=ξ

1

δ1
p′

n n∑
k=0

(
n

k

)
δ1
k(1 + |η|)k

k!
.

Hence on B(r) × E+(θ, κ̃) we obtain

∞∑
n=0

|wn(x, η)| ≤ C1e
δ1|η|

∞∑
n=0

(AL)n

 ω∑
p′=ξ

1

δ1
p′

n n∑
k=0

(
n

k

)
δ1
k(1 + |η|)k

k!

= C1e
δ1|η|

∞∑
k=0

∞∑
n=k

(AL)n

 ω∑
p′=ξ

1

δ1
p′

n(n
k

)
δ1
k(1 + |η|)k

k!
.

Since ξ ≥ 1, we may take δ1 so large that

A′ := 2AL
ω∑

p′=ξ

1

δ1
p′ < 1,
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which implies that

∞∑
n=k

(AL)n

 ω∑
p′=ξ

1

δ1
p′

n(n
k

)
≤

∞∑
n=k

(A′)n =
(A′)k

1 −A′ .

Therefore on B(r) × E+(θ, κ̃) it holds that

∞∑
n=0

|wn(x, η)| ≤ C1

1 −A′ e
δ1|η|

∞∑
k=0

{A′δ1(1 + |η|)}k
k!

=
C1e

A′δ1

1 −A′ exp[(δ1 +A′δ1)|η|].

This shows that vn(x, η) (=
∑n

k=0 wk(x, η)) converges to the solution

V (x, η) of (3.3) uniformly on B(r) ×E+(θ, κ̃). It is clear that V (x, η) is an

analytic continuation of v(x, η) and that

max
|x|≤r

|V (x, η)| ≤ C1e
A′δ1

1 −A′ exp[(δ1 +A′δ1)|η|], η ∈ E+(θ, κ̃).

It follows from the above argument that v(x, η) satisfies the condition (BS).

The theorem is proved. �

Therefore it is sufficient to prove Lemma 3.1.

Proof of Lemma 3.1. It is proved by the induction. Since the case

n = 0 have been already proved in [6], we assume that the claim of the

lemma is proved up to n and prove it for n+ 1.

By (3.4) and (3.5), we have the following relation between Wn and Wn+1:

Wn+1(x, η, t) =
6∑
i=1

Ji(x, η, t),(3.14)

where

J1(x, η, t)

=
1

b

(
a

b
+ x

)−1 p1∑
p=p0

(1 + dη)b/d
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×
∫ t

0
(1 + ds1)

−b/dcp

((
a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b

)

×
∫ s1

0
· · ·
∫ sp−1

0
Wn(x, ζ(η, s1, sp), sp)dsp · · ·ds2ds1,

J2(x, η, t)

= −1

b

(
a

b
+ x

)−1 p1∑
p=p0

(1 + dη)b/dcp

((
a

b
+ x

)(
1 + dη

1 + dt

)−b/d
− a

b

)

× (1 + dt)−b/d
∫ t

0

∫ s1

0
· · ·
∫ sp−1

0
Wn(x, ζ(η, t, sp), sp)dsp · · ·ds2ds1,

J3(x, η, t)

= −
(
a

b
+ x

)−1 p1∑
p=p0

(1 + dη)b/d

×
∫ t

0
(1 + ds1)

−b/dcp

((
a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b

)

×
∫ s1

0
· · ·
∫ sp

0
Wn(x, ζ(η, s1, sp+1), sp+1)dsp+1 · · ·ds2

1

1 + ds1
ds1,

J4(x, η, t)

=
p1∑

p=p0

∫ t

0
cp

′
((

a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b

)

×
∫ s1

0
· · ·
∫ sp

0
Wn(x, ζ(η, s1, sp+1), sp+1)dsp+1 · · ·ds2

1

1 + ds1
ds1,

J5(x, η, t)

= −
q1∑

q=q0

∫ t

0
eq

((
a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b

)

×
∫ s1

0
· · ·
∫ sq−1

0
sq ·Wn(x, ζ(η, s1, sq), sq)dsq · · ·ds2

1

1 + ds1
ds1,

J6(x, η, t)

=
q1∑

q=q0

∫ t

0
eq

((
a

b
+ x

)(
1 + dη

1 + ds1

)−b/d
− a

b

)

×
∫ s1

0
· · ·
∫ sq

0
Wn(x, ζ(η, s1, sq+1), sq+1)dsq+1 · · ·ds2

1

1 + ds1
ds1,
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where ζ is defined by

(1 + dη)(1 + dν)

1 + dµ
= 1 + dζ(η, µ, ν).(3.15)

Let us prove that each Ji(x, η, t) is well-defined on {(x, η, t); |x| ≤ r, η ∈
E+(θ, κ′ −∑n+1

j=0 εj), t ∈ Gεn+1
η } by taking suitable integral paths. Let us

write t ∈ Gεn+1
η as t = Gη(τ) (τ ∈ Uεn+1 [0, |η|]).

On J1(x, η,Gη(τ)): Let us take integral paths as

s1(σ1) =
σ1e

i arg(η)

1 + d(|η| − σ1)ei arg(η)
(σ1 ∈ [0, τ ]),(3.16)

and

sj(σj) =
σje

i arg(η)

1 + d(|η| − σ1)ei arg(η)
(σj ∈ [0, σj−1]) (j = 2, . . . , p).(3.17)

Then we have ζ(η, s1(σ1), sp(σp)) ∈ E+(θ, κ′ − ∑n
j=0 εj) and sp(σp) ∈

Gεnζ(η,s1(σ1),sp(σp)). Hence Wn(x, ζ(η, s1(σ1), sp(σp)), sp(σp)) is well-defined.

It is clear that

cp

((
a

b
+ x

)(
1 + dη

1 + ds1(σ1)

)−b/d
− a

b

)

= cp

((
a

b
+ x

)
{1 + d(|η| − σ1)e

i arg(η)}−b/d − a

b

)
is well-defined. Therefore J1(x, η,Gη(τ)) is well-defined.

On J2(x, η,Gη(τ)): Let us take integral paths as

sj(σj) =
σje

i arg(η)

1 + d(|η| − τ)ei arg(η)
(σj ∈ [0, σj−1]) (j = 1, . . . , p),(3.18)

where σ0 := τ . Then we have ζ(η,Gη(τ), sp(σp)) ∈ E+(θ, κ′ −∑n
j=0 εj) and

sp(σp) ∈ Gεnζ(η,Gη(τ),sp(σp)). Hence Wn(x, ζ(η,Gη(τ), sp(σp)), sp(σp)) is well-

defined. It is clear that

cp

(a
b

+ x

)(
1 + dη

1 + dGη(τ)

)−b/d
− a

b


= cp

((
a

b
+ x

)
{1 + d(|η| − τ)ei arg(η)}−b/d − a

b

)
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is well-defined. Therefore J2(x, η,Gη(τ)) is well-defined.

On J3(x, η,Gη(τ)), J4(x, η,Gη(τ)), J5(x, η,Gη(τ)) and J6(x, η,Gη(τ)),
we only state the integral paths. The suitable integral paths are as follows:

On J3(x, η,Gη(τ)) and J4(x, η,Gη(τ)): (3.16) and

sj(σj) =
σje

i arg(η)

1 + d(|η| − σ1)ei arg(η)
(σj ∈ [0, σj−1])(3.19)

(j = 2, . . . , p+ 1).

On J5(x, η,Gη(τ)): (3.16) and

sj(σj) =
σje

i arg(η)

1 + d(|η| − σ1)ei arg(η)
(σj ∈ [0, σj−1]) (j = 2, . . . , q).(3.20)

On J6(x, η,Gη(τ)): (3.16) and

sj(σj) =
σje

i arg(η)

1 + d(|η| − σ1)ei arg(η)
(σj ∈ [0, σj−1])(3.21)

(j = 2, . . . , q + 1).

By taking the above integral paths, we see that each Ji(x, η, t) (there-

fore Wn+1(x, η, t)) is well-defined on {(x, η, t); |x| ≤ r, η ∈ E+(θ, κ′ −∑n+1
j=0 εj), t ∈ Gεn+1

η }. Moreover on {(x, η, t); |x| ≤ r, η ∈ E+(θ, κ′ −∑n+1
j=0 εj), t ∈ Gη} we have the following representations:

J1(x, η,Gη(R))

=
1

b

(
a

b
+ x

)−1 ∫ R

0
{1 + d(|η| −R1)e

i arg(η)}b/dCp(x, (|η| −R1)e
i arg(η))

×
∫ R1

0
· · ·
∫ Rp−1

0
Wn(x, η,R1, Rp)dRp · · ·dR2

× (1 + dη){ei arg(η)}p
{1 + d(|η| −R1)ei arg(η)}p+1

dR1,

J2(x, η,Gη(R))

= −1

b

(
a

b
+ x

)−1 p1∑
p=p0

{1 + d(|η| −R)ei arg(η)}b/dCp(x, (|η| −R)ei arg(η))

× {ei arg(η)}p
{1 + d(|η| −R)ei arg(η)}p
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×
∫ R

0

∫ R1

0
· · ·
∫ Rp−1

0
Wn(x, η,R1, Rp)dRp · · ·dR2dR1,

J3(x, η,Gη(R))

= −
(
a

b
+ x

)−1 p1∑
p=p0

∫ R

0
{1 + d(|η| −R1)e

i arg(η)}b/d

× Cp(x, (|η| −R1)e
i arg(η))

×
∫ R1

0
· · ·
∫ Rp

0
Wn(x, η,R1, Rp+1)dRp+1 · · ·dR2

× {ei arg(η)}p+1

{1 + d(|η| −R1)ei arg(η)}p+1
dR1,

J4(x, η,Gη(R))

= −1

b

(
a

b
+ x

)−1 p1∑
p=p0

∫ R

0
{1 + d(|η| −R1)e

i arg(η)}b/d

× Cp,η(x, (|η| −R1)e
i arg(η))

×
∫ R1

0
· · ·
∫ Rp

0
Wn(x, η,R1, Rp+1)dRp+1 · · ·dR2

× {ei arg(η)}p+1

{1 + d(|η| −R1)ei arg(η)}pdR1,

J5(x, η,Gη(R))

= −
q1∑

q=q0

∫ R

0
Eq(x, (|η| −R1)e

i arg(η))

×
∫ R1

0
· · ·
∫ Rq−1

0
Wn(x, η,R1, Rq)RqdRq · · ·dR2

× {ei arg(η)}q+1

{1 + d(|η| −R1)ei arg(η)}q+1
dR1,

J6(x, η,Gη(R))

=
q1∑

q=q0

∫ R

0
Eq(x, (|η| −R1)e

i arg(η))

×
∫ R1

0
· · ·
∫ Rq

0
Wn(x, η,R1, Rq+1)dRq+1 · · ·dR2

× {ei arg(η)}q+1

{1 + d(|η| −R1)ei arg(η)}q+1
dR1,
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where Wn is defined by

Wn(x, η, µ, ν) = Wn(x, (|η| − µ+ ν)ei arg(η),G(|η|−µ+ν)ei arg(η)(ν)).(3.22)

Let us estimate each Ji(x, η,Gη(R)).

First, we prepare the following lemma. We omit the proof.

Lemma 3.2. For δ > 0, it holds that∫ R

0

∫ R1

0
· · ·
∫ Rp−1

0
eδRpdRp · · ·dR2dR1 ≤ 1

δp
eδR (R ≥ 0).

On J1(x, η,Gη(R)): It follows from the assumption of the induction

that

|Wn(x, η,R1, Rp)|(3.23)

≤ C1e
δ1|η|e−δ1R1eδ1Rp(AL)n

 ω∑
p′=ξ

1

δ1
p′

n 1

(1 + |η| −R1 +Rp −Rp)nβ

×
n∑

k=0

(
n

k

)
δ1
k(1 + |η| −R1 +Rp)

k

k!

≤ C1e
δ1|η|e−δ1R1eδ1Rp(AL)n

 ω∑
p′=ξ

1

δ1
p′

n 1

(1 + |η| −R1)nβ

×
n∑

k=0

(
n

k

)
δ1
k(1 + |η|)k

k!
,

which implies that

|J1(x, η,Gη(R))|

≤ C1e
δ1|η|(AL)nA

 ω∑
p′=ξ

1

δ1
p′

n n∑
k=0

(
n

k

)
δ1
k(1 + |η|)k+1

k!

×
p1∑

p=p0

∫ R

0

e−δ1R1

(1 + |η| −R1)nβ+p−βp+1

×
∫ R1

0
· · ·
∫ Rp−1

0
eδ1RpdRp · · ·dR2dR1.
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Here it follows from

1

(1 + |η| −R1)nβ+p−βp+1
≤ 1

(1 + |η| −R1)(n+1)β+1

and Lemma 3.2 that∫ R

0

e−δ1R1

(1 + |η| −R1)nβ+p−βp+1

∫ R1

0
· · ·
∫ Rp−1

0
eδ1RpdRp · · ·dR2dR1

≤ 1

δ1
p−1

∫ R

0

1

(1 + |η| −R1)(n+1)β+1
dR1

≤ 1

δ1
p−1

1

(n+ 1)β

1

(1 + |η| −R)(n+1)β

≤ 1

β

1

δ1
p−1

1

(1 + |η| −R)(n+1)β

1

k + 1
(k = 0, 1, 2, . . . , n).

Hence we obtain

|J1(x, η,Gη(R))|

≤ C1e
δ1|η|(AL)n

A

β

×

 ω∑
p′=ξ

1

δ1
p′

n ·
[ p1∑
p=p0

1

δ1
p

]
1

(1 + |η| −R)(n+1)β

×
n∑

k=0

(
n

k

)
δ1
k+1(1 + |η|)k+1

(k + 1)!

≤ C1e
δ1|η|(AL)n

A

β

 ω∑
p′=ξ

1

δ1
p′

n+1

1

(1 + |η| −R)(n+1)β

×
n+1∑
k=1

(
n

k − 1

)
δ1
k(1 + |η|)k

k!
.

On J4(x, η,Gη(R)): Since a similar estimate to (3.23) holds for

|Wn(x, η,R1, Rp+1)| (let us consider Rp+1 instead of Rp), we have

|J4(x, η,Gη(R))|

≤ C1e
δ1|η|(AL)nA

 ω∑
p′=ξ

1

δ1
p′

n n∑
k=0

(
n

k

)
δ1
k(1 + |η|)k

k!
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×
p1∑

p=p0

∫ R

0

e−δ1R1

(1 + |η| −R1)nβ+p−βp

×
∫ R1

0
· · ·
∫ Rp

0
eδ1Rp+1dRp+1 · · ·dR2dR1.

Here it follows from

1

(1 + |η| −R1)nβ+p−βp ≤ 1

(1 + |η| −R1)(n+1)β

≤ 1 + |η|
(1 + |η| −R1)(n+1)β+1

, δ1 > 1

and Lemma 3.2 that∫ R

0

e−δ1R1

(1 + |η| −R1)nβ+p−βp

∫ R1

0
· · ·
∫ Rp

0
eδ1Rp+1dRp+1 · · ·dR2dR1

≤ 1 + |η|
δ1
p

∫ R

0

1

(1 + |η| −R1)(n+1)β+1
dR1

≤ 1 + |η|
δ1
p−1

1

(n+ 1)β

1

(1 + |η| −R)(n+1)β

≤ 1

β

1 + |η|
δ1
p−1

1

(1 + |η| −R)(n+1)β

1

k + 1
(k = 0, 1, 2, . . . , n).

Hence we obtain

|J4(x, η,Gη(R))|

≤ C1e
δ1|η|(AL)n

A

β

 ω∑
p′=ξ

1

δ1
p′

n+1

1

(1 + |η| −R)(n+1)β

×
n+1∑
k=1

(
n

k − 1

)
δ1
k(1 + |η|)k

k!
.

On J5(x, η,Gη(R)): Let us consider Rq instead of Rp in (3.23). Then

we have

|J5(x, η,Gη(R))|

≤ C1e
δ1|η|(AL)nA

 ω∑
p′=ξ

1

δ1
p′

n n∑
k=0

(
n

k

)
δ1
k(1 + |η|)k

k!
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×
q1∑

q=q0

∫ R

0

e−δ1R1

(1 + |η| −R1)nβ+q−βq ′+1

×
∫ R1

0
· · ·
∫ Rq−1

0
eδ1RqRqdRq · · ·dR2dR1.

Here it follows from

1

(1 + |η| −R1)nβ+q−βq ′+1
≤ 1

(1 + |η| −R1)(n+1)β+1
, Rq ≤ 1 + |η|,

and Lemma 3.2 that∫ R

0

e−δ1R1

(1 + |η| −R1)nβ+q−βq ′+1

∫ R1

0
· · ·
∫ Rq−1

0
eδ1RqRqdRq · · ·dR2dR1

≤ 1 + |η|
δ1
q−1

∫ R

0

1

(1 + |η| −R1)(n+1)β+1
dR1

≤ 1

β

1 + |η|
δ1
q−1

1

(1 + |η| −R)(n+1)β

1

k + 1
(k = 0, 1, 2, . . . , n).

Hence we obtain

|J5(x, η,Gη(R))|

≤ C1e
δ1|η|(AL)n

A

β

×

 ω∑
p′=ξ

1

δ1
p′

n ·
[ q1∑
q=q0

1

δ1
q

]
1

(1 + |η| −R)(n+1)β

×
n∑

k=0

(
n

k

)
δ1
k+1(1 + |η|)k+1

(k + 1)!

≤ C1e
δ1|η|(AL)n

A

β

 ω∑
p′=ξ

1

δ1
p′

n+1

1

(1 + |η| −R)(n+1)β

×
n+1∑
k=1

(
n

k − 1

)
δ1
k(1 + |η|)k

k!
.

By the above argument, it holds that∑
i=1,4,5

|Ji(x, η,Gη(R))|(3.24)
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≤ C1e
δ1|η|(AL)n+1

 ω∑
p′=ξ

1

δ1
p′

n+1

1

(1 + |η| −R)(n+1)β

×
n+1∑
k=1

(
n

k − 1

)
δ1
k(1 + |η|)k

k!
.

On J2(x, η,Gη(R)): Let us consider R instead of R1 in (3.23). Then we

have

|J2(x, η,Gη(R))|

≤ C1e
δ1|η|(AL)nA

 ω∑
p′=ξ

1

δ1
p′

n n∑
k=0

(
n

k

)
δ1
k(1 + |η|)k

k!

×
p1∑

p=p0

e−δ1R

(1 + |η| −R)nβ+p−βp

∫ R

0

∫ R1

0
· · ·
∫ Rp−1

0
eδ1RpdRp · · ·dR2dR1.

Here it follows from (1 + |η| −R)nβ+p−βp ≥ (1 + |η| −R)(n+1)β and Lemma

3.2 that

e−δ1R

(1 + |η| −R)nβ+p−βp

∫ R

0

∫ R1

0
· · ·
∫ Rp−1

0
eδ1RpdRp · · ·dR2dR1

≤ 1

δ1
p

1

(1 + |η| −R)(n+1)β
,

Hence we obtain

|J2(x, η,Gη(R))|

≤ C1e
δ1|η|(AL)nA

 ω∑
p′=ξ

1

δ1
p′

n ·
[ p1∑
p=p0

1

δ1
p

]
1

(1 + |η| −R)(n+1)β

×
n∑

k=0

(
n

k

)
δ1
k(1 + |η|)k

k!

≤ C1e
δ1|η|(AL)nA

 ω∑
p′=ξ

1

δ1
p′

n+1

1

(1 + |η| −R)(n+1)β

×
n∑

k=0

(
n

k

)
δ1
k(1 + |η|)k

k!
.
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On J3(x, η,Gη(R)): Let us consider Rp+1 instead of Rp in (3.23). Then

we have

|J3(x, η,Gη(R))|

≤ C1e
δ1|η|(AL)nA

 ω∑
p′=ξ

1

δ1
p′

n n∑
k=0

(
n

k

)
δ1
k(1 + |η|)k

k!

×
p1∑

p=p0

∫ R

0

e−δ1R1

(1 + |η| −R1)nβ+p−βp+1

×
∫ R1

0
· · ·
∫ Rp

0
eδ1Rp+1dRp+1 · · ·dR2dR1.

Here similarly to the calculation for J1(x, η,Gη(R)), we have∫ R

0

e−δ1R1

(1 + |η| −R1)nβ+p−βp+1

∫ R1

0
· · ·
∫ Rp

0
eδ1Rp+1dRp+1 · · ·dR2dR1

≤ 1

δ1
p

1

(n+ 1)β

1

(1 + |η| −R)(n+1)β
≤ 1

β

1

δ1
p

1

(1 + |η| −R)(n+1)β
,

which implies

|J3(x, η,Gη(R))|

≤ C1e
δ1|η|(AL)n

A

β

 ω∑
p′=ξ

1

δ1
p′

n+1

1

(1 + |η| −R)(n+1)β

×
n∑

k=0

(
n

k

)
δ1
k(1 + |η|)k

k!
.

On J6(x, η,Gη(R)): Let us consider Rq+1 instead of Rq in (3.23). Then

we have,

|J6(x, η,Gη(R))|

≤ C1e
δ1|η|(AL)nA

 ω∑
p′=ξ

1

δ1
p′

n n∑
k=0

(
n

k

)
δ1
k(1 + |η|)k

k!

×
q1∑

q=q0

∫ R

0

e−δ1R1

(1 + |η| −R1)nβ+q−βq ′+1

×
∫ R1

0
· · ·
∫ Rq

0
eδ1Rq+1dRq+1 · · ·dR2dR1.
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Here similarly to the calculation for J3(x, η,Gη(R)), we have

∫ R

0

e−δ1R1

(1 + |η| −R1)nβ+q−βq ′+1

∫ R1

0
· · ·
∫ Rq

0
eδ1Rq+1dRq+1 · · ·dR2dR1

≤ 1

β

1

δ1
q

1

(1 + |η| −R)(n+1)β
,

which implies

|J6(x, η,Gη(R))|

≤ C1e
δ1|η|(AL)n

A

β

 ω∑
p′=ξ

1

δ1
p′

n+1

1

(1 + |η| −R)(n+1)β

×
n∑

k=0

(
n

k

)
δ1
k(1 + |η|)k

k!
.

By the above argument, it holds that∑
i=2,3,6

|Ji(x, η,Gη(R))|(3.25)

≤ C1e
δ1|η|(AL)n+1

 ω∑
p′=ξ

1

δ1
p′

n+1

1

(1 + |η| −R)(n+1)β

×
n∑

k=0

(
n

k

)
δ1
k(1 + |η|)k

k!
.

Therefore it follows from (3.24) and (3.25) that

|Wn+1(x, η,Gη(R))|

≤
6∑
i=1

|Ji(x, η,Gη(R))|

≤ C1e
δ1|η|(AL)n+1

 ω∑
p′=ξ

1

δ1
p′

n+1

× 1

(1 + |η| −R)(n+1)β

{
n+1∑
k=1

(
n

k − 1

)
+

n∑
k=0

(
n

k

)}
δ1
k(1 + |η|)k

k!



308 Masaki Hibino

= C1e
δ1|η|(AL)n+1

 ω∑
p′=ξ

1

δ1
p′

n+1

1

(1 + |η| −R)(n+1)β

×
n+1∑
k=0

(
n+ 1

k

)
δ1
k(1 + |η|)k

k!
,

which implies the lemma for n+ 1. The proof is completed. �
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