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Part 1

Inverse Source Problems for
Diffusion Equations



Chapter 1

Inverse heat source problem from
time distributing
overdetermination

1.1 Introduction

Let © C R? be a bounded domain with sufficiently smooth boundary Q. We

consider an initial-boundary value problem for a parabolic equation:

(2, 1) = %Au(m,t) +I@h@Y),  ceQteOT), (1)
u(z,0) =0, z€Q, » | (1.2)
u(z,t) =0, x €N, t S (0,7), ' ' (1.3)

where R > 0 is fixed, r € (0, R) is a parameter, and h.is a given function on
Q x [0,T]. We note that 1 is a diffusion coefficient.

We discuss the followmg inverse problem:

Inverse Problem. Let r > 0 be fixed and let p(z,t) be given. Determine
u(z,t) = u(r, f)(z,t) and f(z), z € Q, t € (0,T) satisfying (1.1) - (1.3) and

/0 p(z, t)u(z,t)dt = p(x), z €. (1.4)

Here f is a spatially varying function in the source term, while p(z, t) is a density

function in the observation. As p, for example, we can take

p(z,t) = po(t)g(z),
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where po(t) is the t-intensity of spatial observation density g(z). Another example
is p(z,t) = p1 (2o — vt) where v € R? with |v| = 1, is a fixed vector, ¢ > 0 is a
constant and p; is a function in R? supported in a compact set. This function
describes a moving sensor with velocity cv. '

Similar kinds of inverse problems are discussed in Prilepko, Orlovsky and
Vasin [42], but the weight function p is mainly assumed to be independent of z
and the well-posedness in the sense of Hadamard is proved under some smallness
assumptions (e.g., the smallness of diameter of Q). In this chapter, p may depend
on z, which can describe a moving sensor fromw the physical point of view.

We prove that the inverse problem is well-posed in the sense of Hadamard
except for a finite set of 7. This idea is based on Choulli and Yamamoto [6],
where in place of (1.4), the final overdetérmining observation u(-, T) is considered.
As for inverse problems with final overdetermining observations, see Choulli and
Yamamoto [5], Hoffmann and Yamamoto [15], Isakov [17], [18], Prilepko, Kostin

-and Tikhonov [41], Prilepko, Orlovsky and Vasin [42] and the references therein.

Our main tools are the theory of analytic perturbation of linear operators and
the uniqueness in the inverse problem (1.1) - (1.4) for small r > 0.

The remainder of this chapter is composed of three sections. In Section 2, we
state our main result. In Section 3, we reduce the inverse problem to a Fredholm
equation of second kind, and in Section 4, we complete the proof of the main

result.

1.2 Main results

We denote the Sobolev spaces by H'(Q) with [ > 0 (e.g., Adams [1]) and set
H>Y(Q x (0,T)) = L2(0, T; H*(Q)) N HY(0, T; L*(Q)). Let us define an operator
Ain L*(Q) by

(—Av)(z) = Av(z), z€ Q, D(A)=H*(Q)NH}Q).

Then A™! exists and A™! € L(L*(Q), H*(Q) N H}()). Here and henceforth

L(X,Y’) denotes the Banach space of all bounded linear operators from a Banach



space X to a Banach space Y, and by || - ||z(x,y) we denote the operator norm if
we should specify the spaces X and Y.

Throughout this chapter, we assume:

(i) heHY0,T;L%(RQ)), pe LX0,T;W2*()),

(i) M™'e L(HX(Q)N HL(Q), L(Q)). (1.5)
Here we set
Mf = / B, 8)f)dt.
We note that M EAZ(Lz(Q) )N Hl(Q))

“We arbitrarily choose ry > 0 such that 0 < 79 < R and set I = (rp, R). Here
and henceforth C; denotes positive constants which are independent of choices of
r €I and f in (1.1), but may depend on h and p. ; .

Then for every arbitrary fixed r € I and f € L%(Q), by means of h €
HY0,T; L*>(Q2)), there exists a uriique solution ’

u=u(r, f) € C([0,T}; H*(Q) N Hy(Q) N C*((0, T]; L*(2))

to (1.1) - (1.3) (e.g., Theorem 1.1 on p.5 in Lions and Magenes [26], Theorem 3.5
(ii) on p.114 in Pazy [38]). Moreover this solution satisfies

Jlu(r, f)||H2’1,(9><(0,T)) < Cu|| Rl 2@xo,1)- (1.6)

Now we are ready to state our main theorem.

Theorem 1.2.1 There exists a finite set E = E(h,p,I) C I satisfying: For
r€ I\ E and p € H*(Q) N Hj(Q), there exists a unique solution {u(r, f), f} €
{C([0, T]; H*(Q) N H(Q)) NCY([0, T}; L2(Q))} x L*(Q) to (1.1) - (1.4). Moreover

there exists a constant Cy > 0 satisfying

1fllz2@) + lulr, Hlleqoraz@) + lulr, Hllcromsczey) < Collella@.  (1.7)

Our main result asserts the generic well-posedness in the sense of Hadamard,
that is, the well-posedness holds except a finite set of values % of diffusion coeffi-
cients. In general, the exceptional set E is not empty, as the following example

shows.



Example 1.2.2 Let Q = (0,1), f(z) = sinnz and h(z,t) = 1,':1,"6 2,t>0. We
consider 1
w(z,t) = ;um(x,t) +sinmz, z€Q,t>0,

0,¢) =u(l,t) =0, ¢>0,
u(z,0) =0, z € Q.
For any fired r > 0, we choose p = p(t) such that p € L*(0,T),

T T
/ p(t)dt = / e tp(t)dt = 1.
0 0

] |
| owasa
0

u

Then

= [|A7 fllrz) = Csll fll L2,
m2(Q)

that is, assumption (1.5) holds. However we have u(z,t) = % (1 - e_"r—zt) sin 7z
and fOT p(t)u(z,t)dt = 0 for z € Q. This shows that in our inverse problem, the

uniqueness breaks for some value r > 0.

We state three corollaries where the technical assumption (1.5) is satisfied.

Corollary 1.2.3 Let p(z,t) = po(t)g(z) with py € L*(0,T), g € W?®(Q) and
h € HY(0,T; L®(Q)). If '

T ;

/ p(w,t)h(x,t)dt’ >0, zel, (1.8)
0

then (1.5) holds.

Corollary 1.2.4 Let h(z,t) = h(t) be xz-independent and h € H(0,T), p €
L0, T; W2>(Q)). Then (1.8) implies (1.5).

Corollary 1.2.5 (moving sensor with high speed). Let py € W2®(R"), v €
ST ={z € R% |o| =1}, ¢ > 0, and let us set
1
pe(z,t) = p1 (Zx - yt) .

We assume -
/ pl(fyt)h(x,t)dtl >0, ze€q.
0 .

Then there exists co > 0 such that (1.5) holds for any ¢ > cy.
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In p., we notice that cv corresponds to the velocity of the moving sensor and ¢
is the speed. We conclude this section with the proofs of the corollaries.
Proof: (Proof of Corollary 1.2.3) We have

PO b0t =g [ po) A (0 )
[ [osrscons
=04 ([ soomc.0at) 7).

Since [y p(, )AL (h( 1) f)dt € HX(Q) N Hy(Q) and [|A7l|z2@) < CslInllaz(g),
setting y = A1 ((fOT po(t)h(-,t)dt> f) € H2(Q) N H (), we have

oo ([ o))

=C5'|gAy + 2Vg - Vy + yAg||r2()-

>Cg!
H2(Q)

/0 ol )AL (-, 1) )t

L3(Q)

By (1.8), we notice that |g| > 0 on Q. We set Ly = Ay + 2%‘1 -Vy + %gy where
the coefficients are in L>(2) by g € W%>(Q). If 0 is not an eigenvalue of L with
D(L) = H%(Q) N H}(£2), then we see that

lyllz2) < CollLyl| L2

(e.g., Gilbarg and Trudinger [12], Kato [20]). We can prove that 0 is not an
eigenvalue as follows. Let Ly = 0 in Q. Then 0 = gLy = A(gy) in Q. By
gy € H*(Q) N H} (), this means that gy = 0 in Q. By (1.8) we see that y = 0 in
Q. '

Therefore we have

T ' ‘ ,
/ p(ut)A'l(h(-,t)f)dt‘ > C5 M lgLyllzz@) > Co I Lyl 2oy
0

H2(Q)
([ po<tl)h(-,t>dt) /

again by (1.8). On the other hand, since A~! is a surjection from L?(2) onto
H?(Q) N Hy(Q2), we have R(M) = H2(Q) N HX(R). Thus (1.5) holds true.
Proof: (Proof of Corollary 1.2.4) We have

2Cy ' Cs | Ayllza@ = C5 G5

> Crl| fll2
(@) ‘

/OT p(-, ) A (h(t) f)dt = (/OT P(',t)h(t)dt) Ay
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that is,

§ A(fo ,A1<h<>f>dt>
Jo pL-t)h(t)d

by (1.8). Thanks to p € L?(0, T; W2*(Q)), we obtain (1.5).
Proof: (Proof of Corollary 1.2.5) We set
T
: T
D@ = [ o (2= vt) A7 O 1)
0 c . '
and :
T
(M) = [ (=) A7 1))
By Corollary 1.2.3, we see that '
||Mo_ol||c(H2(Q)an(Q),L2(Q)) < Cs.

On the other hand, for ¢ > 1, we have

A‘( /0 i (p1(~1/t) n (f - Vt)) AN (R(, 1) f)dt)

(B) (2 = vt) A BC,05) + 2T ) (f—ut) VAT (B, 1)1)

2
(Moo — M) f |32y <Co

T
SCQ/
0

L*(Q)

dt
L*(Q)

_ <p1'(_m:) s (% —/yi)) h{-1) f

' T
1 1
B | :
sup T
+_z§9—”p1.|lwz’°°(R”)||h("t)||L°°(Q)> dt

Cu
—5 1flZ20)-

Hence

V C’11

1Moo — Mell£(r2(0), H20)nm3 () < .

- Since :

M, = My + (M, — Ma) = Mao(I + MZA(M, — M),
for sufficiently large c > 0, the Neumann series (e.g., Kato [20]) implies that (I +
MM —My)) ' € L(L*(Q), L%(Q)), so that M ' € L(H*(Q)NHL(Q), L*(Q)).
Thus the proof of Corollary 1.2.5 is completed.
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1.3 Redyuctiony of the inverse problem to a Fred-
holm equation of second kind

- We reduce the inverse problem to a Fredholm equation of second kind.
We notice that —%A generates an analytic semigroup in L%(Q2) (e.g., Pazy
[38]) and represent the solution u to (1.1) - (1.3) by

u(t) = /ot e_(t_s)%h(s)fds, t>0. | (19)

Here we write u(t) = u(:,t), etc. In terms of (1.9) and intergration by parts, we

rewrite (1.4) as
o) = [ ottty = [ o
_ /0 0 ( /0 LR p () fds) dt |
- [0 { e et won] 7 - [[rarertnnas) a
= [ orarwwna- [

0

T

p(t)rA! (e-t%(h(O) f)+ /0 t e =97 (1 (s) f)ds) dt.

Here and henceforth we write A'(t) = hy(-, ).

Hence

M

ey iy / ' p(tjA—l (e-t-?(h(o)f) + / t e—<t—s>%<h'<s>f>ds) dt.

We set

0

K.f=M71 /0 Tp(t)A-l (até(ﬁ(o) )+ / te—<t—5>%(h'(s) f)ds) dt  (1.10)

and

Then we obtain a Fredholm equation of second kind:

F=K.f+9,. , . (1.11)
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Lemma 1.3.1 Letr € I be arbitrarily fized. ‘

(i) Equation (1.11) possesses a solution f € L*(Q) if and only if {u(r, f),f} €
{C([o,T]; H*() N H(Q2)) N CY([0, T]; LA())} x L*(Q) satisfies (1.1) - (1.4).
(i1) Equation (1.11) possesses a unique solution if and only if there ezists a unique

solution {u(r, f), f} to (1.1) - (1.4).

Proof: (i) First assume that (1..11) possesses a solution f € L*(Q2). By Theorem
3.5 (ii) on p.114 in [38], there exists a unique solution u(r, f) € C([0, T]; H*(Q)N
H}(Q))NCY([0, T); L3(2)) to (1.1) - (1.3) with this f. We have to prove that the
solution u(r, f) satisfies (1.4). We set

/0 o(t)ulr, £)(t)dt =

By u(r, f) € C([0,T]; H*(Q) N HL(Q)) N C*([0,T]; L*(Q)), we can directly see
¢1 € H*(Q) N Hi(Q). Let us multiply the both sides of (1.1) by the operator
p(t)A™! and integrate the equation with respect to ¢ from 0 to 7. Then we have

/0 pOA  ulr, (Ot = =2 4 M.

Since p(t)A™ u(r, f)(t) € H*(Q) N H(Q) for almost all t € (0,T) and ¢, €
H*(Q) N H(Q), we see that

f=M- / A u(r, F)(0)dt + M 901 112
On the other hand, the solution w(r, f) € C([0,T]; L3(Q)) is given by

welr, )+ 1) = e (fh(0)) + / eI (fH(s)ds, te(0,T) (113)

(e.g., Theorem 3.5 (p.114) in [38]). Therefore by (1.11) and (1.12), we see that
My . Ml |

T r

in L*(9).

Hence ¢ = ¢;.

Next the converse assertion of (i) is already seen in deriving (1.11).

(ii) Next we prove the part (ii). Let us assume that (1.11) possesses a unique
solution f € L?(Q). Contrarily suppose that both {u(r, f1), f1} and {u(r, f2), f2}

11



are distinct solutions to (1.1) - (1.4). Let f; = fo. Then u(r, fi) = u(r, f2)
- because of the unique solvability of the direct problem (1.1) - (1.3). If f; # f,
then f; and f; are solutions to (1.11) from the part (i), which contradicts the
uniciue solvability of (3.3). Conversely we assume that the solution to (1.1) - (1.4)
exists uniquely, say {u(r, f), f}. If f1 and f> are distinct solutions to (1.11), then
from the part (i), there exist the solutions {u(r, f1), 1} and {u(r, f2), f2} to (1.1)
- (1.4), which contradicts the unique solvability to (1.1) - (1.4). Thus the proof |

of Lemma 1.3.1 is completed.

1.4 Proof of Theorem 1.2.1

We divide the proof into four steps.

First Step We show

Lemma 1.4.1 For an arbitrarily fized f € L*(Q), the mapping
K. f:I— L*Q)
is real analytic inr € I.

In order to prove Lemma 1.4.1, we prove the following lemma.

Lemma 1.4.2 For an arbitrarily fized f € L*(2), let us deﬁne the mapping
F:1— H*(Qx(0,T))
by F(r)(z,t) = u(r, f)(z,t). Then § is real analytic inr € I.

Proof: (Proof of Lemma 1.4.2.) The same results .are provéd in Choulli and
Yamamoto [5] as Proposition 5 and Choulli and Yamamoto [6] as Lemma 3. For
‘completeness, we repeat the proof here. We set I= (R7Y,r;1Y). Let us consider

the following equations:

vz, t) = sAu(z, t) + f(x)h(z,t), z€Q te(0,T),  (114)
v(z,0) =0, z €9, . (1.15)
v(z,t) =0, z e o, te(0,7). (1.16)
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For f € L*(Q) and s € I, system (1.14) - (1.16) possesses a unique solution
v(s, f) € C’([O,T];HQ(Q) N HY(Q)) N CH([0,T); L*(Q)). Since f is fixed, we set
v(s, f) = v(s) for simplicity. It is sufficient to prove that v(s) : I — H>(Q x
(0,7)) is real analytic in s € . We denote the n-th derivative in s € I of the
mapping v(s) : I — H>L(Q x (0,T)) by v™(s).

For the real analyticity in s € I~, it is sufficient to prove the following two
things (e.g., pp.65-66 in John [19]): '

(i) v € C®(I; H*Y(Q x (0,T))).
(ii) For every closed interval J C I, there exist positive
constants M = M(f, h,J) and n = n(f, h, J) satisfying
[o™ ()l < Ma™nl, neN, se . (1.17)
Indeed we will prove that we can choose M = M(f,h,I) and n = n(f, h,I)
which are 1ndependent of the interval J.

By induction, we will show that v(s) is n-times differentiable for all n € N in

s € I, and the function v™(s) solves the following initial-boundary value problem:

o™ (s)(z, 1) = sAV™ (5)(z, t) + nAV™V(s)(z, 1), z€Q, te (0,T), (1.18)
v™(s)(z,0) =0, €, | (1.19)
v™(s)(z,t) =0, €90, te(0,T), | (1.20)

and that v(™(s) satisfies (i) with n = C; which is the constant in (1.6).
First of all, by (1.6), we see that for all s € I, the solution v(s) satisfies

||U(S)||H2'1(QX(0 T)) S Cl”fh”L2(Q><(0 T)) = M (121)

We take a sufficiently small § such that s + 8, s — 6 € I. Then v(s + d) is the

solutlon to the following equations:

vt(s +6)(z,t) = (s + 5)Av(s +0)(z,t) + f(z)h(z,t), z€Q,te(0,T)

| | (1.22)
v(s+ 6)(z,0) =0, z €, (1.23)
v(s+9)(z,t) =0, z e, te(0,T). (1.24)
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We show that v(s) is continuous with respect to s € I. By (1.14) - (1.16) and
(1.22) - (1.24), we see that v(s + ) — v(s) solves the following equations:

(v(s +6) = v(s))e(z,t) = sA(v(s + ) — v(s))(z,t)

+0Av(s+9), ze€Q, te(0,T), (1.25)
(v(s+9) —v(s))(z,0) =0, €, ' , (1.26)
((s+68) —v(s))(z,t) =0, ze€aQ, te(0,T). 27

Therefore by (1.21), we obtain

lv(s +8) — v(s) | 21 @x0,y) < C1l|0AV(s + 6)|| L2 (0,1))
<CiM|§| =0 as §—0, (1.28)

which implies that v(s) is continuous in s € I with the norm in H2(Q x (0,7)).
By wi(s) € H*'(Q x (0,T)) we denote the solution to (1.18) - (1.20) with
n = 1. Now we will show v®(s) = w;(s) and continuity of w;(s) in s € I with
the norm in H?(Q2 x (0,T)).
We set g(s + 6) = v(s + d) — v(s) — dwi(s). Then by (1.14) - (1.16), (1.18) -
(1.20) with n = 1, and (1.22) - (1.24), we see that g(s + d) solves the following

equations:

gi(s + 6)(z,8) = sAg(s + 8)(@,t) + SA (s +8) — v(s))(z,8), T € Q, t € (0,T),

(1.29)
g(s+6)(z,0) =0, zeQ, ~ v (1.30)
g(s+6)(z,t) =0, ze€d, te(0,T). (1.31)

By (1.6) and (1.28), we obtain

llg(s + )z @xo,r)) < CilldA(v(s + 8) — v(s))|lL2@x(0,))
< C1l6|||v(s + 8) — v(s) || g2 ax (o)) < CMIS)%

Therefore we have v(M(s) = wy(s). Furthermore by (1.18) - (1.20) with n = 1,

we obtain

[v® ()| 221 @x 01y < Call Av(s)l|2@x oy < C1M. (1.32)
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Next, we prove the continuity of v@(s) for s € I with the norm in H2! (2 x
(0,7)). By (1.18) - (1.20) with n = 1, the function v()(s + §) gives the solution

to the following equations:

v (s +8)(2,t) = (s + 6)AvV (s + 8)(,8) + Av(s + 8)(z,8), z€Q, te(0,T),
v®(s +6)(=,0)
v (s + 0)(x,t)

T €,
€0, te(0,T).

0,
0,
Therefore (v (s + §) — v((s)) is the solution to the following equations:

(WD (s +8) — v (s))y(x, 1) = sA@WD (s + 8) — v W (8))(z, 1)

+A(v(s +8) — v(s))(z, ) + 6AvD (s +8)(2,t), z€Q, te(0,T),
WO (r +6) —vD(s))(z,0) =0, z €Q,
(WO (s+8) —vD(s))(2,£) =0, z€d, te(0,T).

By (1.6), (1.28) and (1.32), we obtain

[ (s + 8) = v @ (8) | 200,19 |
< Gil|A(v(s + 6) — v(s)) + AN (s + 6)|| L2ax0.1))
< Ci(Jlo(s +8) — v(s) || m2aaxory + [6|CiM) -0  as § — 0.
Therefore v()(s) is continuoué in s € I. Thus we have verified that v (s) is
given by (1.18) - (1.20). .
Next, we assume that for n = m, the function v(™(s) satisfy (1.18) - (1.20)

and (1.17) with n = C;. By wm41(s) we denote the solution to (1.18) - (1.20)
withn =m+ 1. For s+4,s — 6 € I, we set

§(s + 6)(2,1) = v (s + 8)(2,£) — 0™ (5) (2, £) — b (s)(z, 1)
Then g(s + 0) solves the following equatiofis:
(s +6)(x,t) = sAG(r + 6)(z, t) + MA@ D (s + §) — o™V (s) — 60(™ (s))(z, 1)
+6AW™ (s +8) — 0™ (s))(z,t), TEQ, te (0,7),

g(s+6)(z,00=0, z€Q,
g(s +9)(z,t) =0, redf, te(0,T).
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Therefore By (1.6) we obtain

19(s + )| z21 (@x(0,1)
< CilmA @™ D (s + 8) — o™V (5) — u™ (s))
+8A @™ (s +6) — 0™ (5))l| 2@ 0.17)
< Ci{mlo™ V(s + 8) = vV (s) — 60 (8)) | 122 @017
+181[[v™ (s + 8) = 0™ (8) | 2207 }- |

=o0(1)asd — 0.

g(s+h) ‘
H21(Qx(0,T))

By the assumption in the induction, we have ’

Therefore v™ D (s) = w41 (s).

Moreover by (1.6) and (1.17) with n = m, we can obtain

[ () |2 @x 0.1y < Call(m+ 1) Av™ (5) | 20 01
< Ci(m+ 1)][v™ ()| 21 @x0,1)) /
< MCP*(m+ 1)\

In the same way as (1.28), we obtain
[vT*D (s + 8) — ™ (5) | 22 @ 0,1
< G[|6Av™ D (s + 8) + (m + DA™ (s + 8) — 0™ ()| 2x 0.1y

< Ci([8[lv ™ (s + 6) | e ax o,y + (M + 1) o™ (s + 6) — v(m’(s)llm,lmx(o,r»)
< CL(|6| MO (m 4+ D) + (m 4+ 1) o™ (s + 6) — o™ ()| gzaaxry) — 0, as 6 — 0,

which implies the continuity of v(™*+1(s) for s € I.
Thus the proof of Lemma 1.4.2 is completed. 3
Proof: (Proof of Lemma 1.4.1.) By (1.10) and (1.13), we note

K.f=M- / A ui(r, 1) (0.
Therefore, for every arbitrary bounded closed interval J C I, we have
1) ™|z
< Ol M AT | 2cza@), m20)) / o) lwaee oy lus™ (r, £)(8) | 2yt

< Cro|| M| A~ 1|I£(L2(Q JH? Q))”p”L2(0,T;W2’°°(Q))Mcl nl, neN, redJ,
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which implies that K, f is real analytic in r € I.

Second Step

Lemma 1.4.3 K, : L*(Q) — L*(Q) is compact forr € I.

Proof: Let f, — fo weakly in L2(Q). Since R(e~5) C D(A) for t > 0 and the
embedding D(A) — L*(Q) is compact, we see that e™5 : L2(Q) —> L(Q) is

tA

compact for ¢ > 0. Therefore e~ (h (0)fn) — e+ (h(0) fo) in L2(Q2). Moreover
A1 L2(Q) — H?(R) is bounded, so that for ¢ > 0 we have

PO A7 e (h(0) f2) — p(H)A~ e (R(0)fo) n HA(Q).
On the other hand, by p € L?(0,T; W?*°(1Q2)), we have

_ _tA
o)A e (h(0) fu) | 2(@) < Ciallo(-+ ) lwae(q) sup [l (R(0) fa)ll 2 ()
0<t<T
< Cusllp(-, )|lweee (o)

by sup,ey || fnllz2(@) < 0. The Lebesgue theorem yields that
T tA
M [ a0 a7 e R o) i — i [ o047 o) s
o

in L?(12). Similarly we can prove that

M- / ( / - “l(h’(s)fn)ds) dt
— M /0 p(t) ( /0 e t_rs)AA"l(h’(s)fo)ds) dt in L*(9).

Thus the proof of Lemma 1.4.3 is completed.

Third Step
Lemma 1.4.4 For'f € L2(Q) and r > 0, we have

we(r, £ )|l 2 < Cuale ! + VOS2, t € (0,7). (1.33)
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Proof: For simplicity we set u(r, f)(z,t) = u(t). We note that there exist con-
stants Cy5 > 0 and \ > 0 such that

“e_tAa“Lz(Q) < 0156—)\t,,a||L2(Q), a e L2(Q)

(e.g., Pazy [38]). Since u; € C([0, T]; L*(2)) is given by (1.13), we have

t
Ol < e FhO)zz + [ e 92 10 (5) |y
0

A t _A(t—s)
< Cise 't||h(0)”L°°(9)||f”L2(Q)+C'15/0 e 7 |W(s)llze@ds| 2@

_2
< 0156 Tt”h(o)”L‘x’(Q)“f“Lz(Q)

t _2X(t—s % ’
+ Cis e ds| ||W|zeorize@nllfllzze

r

_2 : 3
< Cus (€ IHOlimier + (37) Whizamamon ) Wiz

for t € (0,T). Thus the proof of Lemma 1.4.4 is completed.

Lemma 1.4.5 There exists a small v* > 0 such that for 0 < r < r*, there exists

a constant 0 < 6(r) < 1 satisfying

|Krfllzz@) < 0 fllz2),  f € LP(Q).

Proof: For f € L?(Q), by (1.10), (1.13) and (1.33), we have
o .
1K S llz2@) < CieHM_lll||||A_1||L(L2(9),H2(9))/0 lo@)llw2oe @ llue ()| 22y dt

<G [ 1o@hwmi(e 3+ VR,
Since
Tim [lp(8) (@) (677 + V) = 0
for t # 0 and

_a ‘
o) lwaee(@)(e™* + v/r) < Cuallp(t) |wae(@), 0<t<T,
and ||p()||lwae(a) € L*(0,T), we see by the Lebesgue theorem that
T
A
| 10O llwemioy(e 4 V)t = o)
as r — 0. Thus the proof of Lemma 1.4.5 is completed.
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-Fourth Step

Now Wé complete the proof of Theorem 1.2.1. By Lemma 1.3.1, it is sufficient
to prove that (1.11) is uniquely solvable. By Lemmata 1.4.1 and .1.4.3, we can
apply the result on analytic perturbation to the operator K, : L?(2) — L?*()
(e.g., Theorem 1.9 on p.370 in Kato [20]). ~

Then the following alternative holds.

(i) There exists a finite set £ = E(h, p, I) C I such that 1 € o(K,) for all
rel\E. '

or ‘

(i)l € o(K,) forallr € I.

Lemma 1.4.5 implies that 1 can not be an eigenvalue of K, for small r. Con-
sequently the second alternative (ii) can not occur. We see that E is the set
described in Theorem 1.2.1. - |

Finallylwe prove (1.7). Let 7 € I\ E. By Lemma 1.4.3, we can apply the

Fredholm alternative in L?(Q), and obtain

I £1lz20) < Cis

< Cusllel| m2()-
L2(Q) .

We apply Theorem 3.5 (ii) (p.114) in [38], and obtain (1.7).
Thus the proof of Theorem 1.2.1 is completed. '

19



Chapter 2

Inverse source problem from
instantaneous time distributing
overdetermination

2.1 Introduction

Let us consider an initial-boundary value problem for a parabolic equation:

u(z,t) = Au(z, t) + f(z)h(z,t), zeQ, te(0,7T), (2.1)
u(z,0) =0, z €, (2.2)
u(z,t) =0, " zed, te(0,T), (2.3)

where © C R¢ is a bounded domain and 0 is its boundary. Here A is the
Laplacian, T > 0 is a constant and & is a given function on Q x [0, T].

We discuss the following inverse problem:

~Inverse Problem. Let v(z) be given. Determine u(z,t) = u(f)(z, ) and f(z),
z €Q, t €[0,T] satisfying (2.1) - (2.3) and '

u(z,y(z)) = ¢(z), z € Q. (2.4)

Here the data ¢ is derived from an instantaneous time distributing observation

on €. this observation is compared to the observation in Chapter 1:

/0 p(m,t)u(x,t)dt‘ = ¢(z), z €,
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where p(z,t) is given function. The data @(x) is interpreted as the average data
‘of the solution u(z,t) on each time interval for each pbint z € Q, whereas the
data ¢(r) means the instantaneous time data of the solution u(z,t) for each
point z € Q. In the case of y(x) = T, the inverse problem has been studied by
different author as an inverse problem with a final overdetermination. Concerning
these inverse problems, we can refer to Choulli and Yamamoto [5], [6], Hoffmann
and Yamamoto [15], Isakov [17], [18], Prilepko, Orlovsky and Vasin [42] and the
references therein. In Homberg and Yamamoto [16], the inverse pfoblem for a
time dependent source term from the observation u(5(t), t) has been studied.

In this chapter, we prove that the inverse problem has the following alterna-
tive: »

(i) For an arbitrary data u(z,v(z)) = ¢(z), there exist a unique solution
{ulf), £} o (2.1) - (24)

(ii) For the data u(z,v(x)) = 0, there exist a nontrivial solution {u(f), f } to
2.1) - (2.4).

Our main tools are the a priori Holder estimates, a semigroup approach and
the Fredholm alternative theorem. '

The remainder of this chapter is composedbof two sections. In Seqtion 2, we

state our main result. In Section 3, we complete the proof of the main result.

2.2 Main results

In what follows, A € (0,1) and Q C R? is assume to be C?** -smooth. We denote
the Halder space by C?*1+3(Q x [0,T]) (C»2 (8 x [0,T)), etc.) with A € (0, 1)
(e.g., Adams [1], Ladyzenskaja, Solonnikov, Ural’ceva [25]).

Throughout this chapter, we assume that the given functions A and ~ satisfy

h, hy, hy € CY2(Q x [0,T7),

h(z,0) = hy(z,0) =0, x € Q, hy(z,0) =0, z € 99, (2.5)
v € C3(Q), 0<v(z)<T, zeq, (2.6)
Ih(z,7(2))| > 0, z € 0. | @27
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Here and henceforth C; denotes positive constants which are independént of f in
(2.1), but may depend on & and ~. X

For f € CX(12), there exists a unique solution u(f) € C**1+2(Q x [0, T]) to
(2.1) - (2.3) satisfying the inequality:

()l goonsed oy < Cilflora (28)

(e.g., Ladyzenskaja, Solonnikov, Ural’ceva [25]).

Now we are ready to state our main theorem.

Theorem 2.2.1 The followz'yng alternative holds:

(i) For ¢ € C**(Q) with p|sq = 0, there exists a unique solution

{u(f), f} € C* 2@ x [0,T)) x CA(Q) to (2.1) - (2.4),

(i) For o =0, there ewists a solution {u(f), f} € C**M1*2 (Qx

[0,T]) x CMQQ) such that u Z 0 and f # 0 to (2.1) — (2.4).
Remark 2.2.2 If the uniqueness holds for the inverse problem (2.1) - (2.4), we
can see that (ii) does not hold. Then the above theorem assures us that (i) is true.

That is, the uniqueness of the solution {u(f), f} € C2* 12 (Q x [0, T]) x C(Q)
implies the existence of the solution to (2.1) - (2.4).

Remark 2.2.3 If the domain  is sufficientlly small (e.g., the smallness of di--

ameter of (2), we can prove that (i) is true. However, we omit the details here.

Remark 2.2.4 By setting a diffusion parameter in the equation (2.1), we can

prove the analogous theorem to that of Chapter 1.

2.3 Proof of Theorem 2.2.1

For some fixed A € (0,1), we choose p > 1 such that |
, / N
1—-A>—. 2.9
p (2.9)
We define an operator —A in L?(Q) by

(—Au)(z) = Au(z), 1€Q,  D(A) = {u € W2P(Q);uloq = 0},
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where W?2P(Q) is the Sobolev space. Then —A generate an analytic semigroup

in LP(£2) and we have the semigroup e~*4.

Lemma 2.3.1 For f € C*(Q), the unique solution u(f) € C* 13 (Q4x [0, T)) to
(2.1) - (2.3) has the properties uy(f), ux(f) € C*31+2(Q x [0, T]) with Utlon =0

and ug|aq = 0 respectively. Moreover, the following inequality holds:

| Ilut(f)”C2+>\,1+%(§X[O’T]) + ”utt(f)||C2+>"1+%(§X[O,T]) S C2||f||C’\(§) (210)

Proof: For simplicity we denote u(f)(-,t) and h(,t) by u(t) and h(t) respectively.
For f € C*(f2), the unique solution u is represented in the sense of the evolution
equations in LP(Q) (e.g., Pazy [38]):

, {%(t) = —Au(t) + fh(t), te(0,T), (2.11)
u(0) =0,
and this solutin u € C([0,T]; L*(2)) N C1((0, T]; LP(R)) is given by
u(t) = /0 efA(t"’)fh(n)dn. (2.12)

On the other hand, since fh; € C”\’%(ﬁ x [0,T7]), there exists a unique solution
v € O*HA1+3 () x [0,T)) to the following equations:

vz, t) - Av(z,t) + f(z)hi(z, ), z e, te(0,7), (2.13)
v(z,0)=0, z€Q, | | (2.14)
v(z,t) =0, z €, te(0,T). (2.15)

Moreover, by hy € C*2 (1 x [0, T1), the solution v satisfies

“0”02“’”%(@40,71) < C3“f||o>\(§)- ) (2.16)

Since h(0) = 0, this solution v € C([0, T]; LP(Q2)) N C*((0, T]; LP(2)) is given by

o0 = [ 40 Gy, (217)

in the sense of evolution equations:

{g_g(t)‘ = —Av() + fh(t),  te€(0,T),

0 —o. ©(2.18)
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We will show that u:(t) = v(t),t € (0,T). Let us set
du .
H?(t) = v(t) (2.19)

Then (2.11), (2;12) and (2.19) imply

B(t) = — /0 t Ae~ A=) fh’(n)dn + fh(t). | (2.20)

For sufficiently small € > 0, we obtain

t—e ‘ t-e
— | Ae A fa(n)dn = — / (e 40=) f )y
o o dn

= —e € fh(t —e) + e fh(0) + /tﬂs e~ A= fh, (n)dn, (2.21)
0

by integration by parts since fh, fh; € C”\’%(ﬁ x [0,T7]). Since h(0) = 0 and
h € C»3(Q x [0,T]), we can make ¢ tend to 0 and obtain '

~ [ A phimyan = @)+ [ A phtryan. (2.22)
0 ‘ : 0

Consequently we see that (u;(t) =)(t) = v(t),t € (0,T) by the uniqueness of the
solution. Similarly, we can prove that this property is true for the function wu.

Thus the proof of Lemma 2.3.1 is completed.

Lemma 2.3.2
(i) For ¢ € C*X(Q) with ¢lag = 0, {u(f), [} € CHMFE(@ x [0,T]) x CA (@)
satisfies (2.1) - (2.4) if and only if there exists a solution f € C*(Q) to the linear

equation:

f=Kf+®, : (2.23)
where
(K@) = gy (e 1(0) + V(e 1(2) - T
@ @) V)R + w(@ @) @)}, (224)
o(z) = 2P0 - \ ' (2.25)

h(z,v(x))’

(1) For ¢ € C*™(Q) with plog = 0, there ezists a unigue solution {u(f), f} =
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CZHAH3(Q x [0,T]) x C*@) to (2.1) - (2.4) if and only if (2.23) possesses a
unique solution f € C*(Q).

Proof: (i) Let us assume that {u(f), f} € C2*+3(Q x [0, T)) er"(ﬁ) satisfies
(2.1) - (2.4). By (2.4), we obtain

Ap(x) =Au(z,7(2)) + 2Vur(z,1(2)) - V(a)
+ n(2,7(2))| V(@) + wi(z, (2)) Ay (). (2.26)

Therefore the equation (2.1) is reduced to

w(z,7(2)) = Ap(x) — 2Vuy(z,7(z)) - V() |
= un(#,7(@) V(@) = w2, (2))Av(z) + f(2)h(z,7(z)). (2.27)

By (2.7), we can divide by h(z,y(z)) both sides of (2.27). From this, it follows
that f € C*(Q) is the solution to (2.23). »

Next let us assume that there exists a solution f € C*(Q) to (2.23). We substi-
tute the solution f into (2.1) and obtain the unique solution u(f) € C* 1+3 (Qx
[0,T7) to (2.1) - (2.3). We have to prove that the solution u(f) satisfies (2.4). We
set u(f)(z,7(z)) = ¢1(2),z € Q. By u(f), wi(f), ua(f) € C*+2(Q x [0, T]),
we can see p1 € C*(Q) with ¢1]so = 0. The equation (2.27) is valid for u(f)
and ¢; by similar computations. From this and (2.23), we can see that ¢; and ¢
satisfy v

Alpr —)(z) =0, z€Q, (p1—)(x) =0, z €.
Accordingly, we derive
oi(z) = p(z), z€0Q,
which implies {u(f), f} is the solution to (2.1) - (2.4).

(ii) We assume that the solution {u(fl), fi} to (2.1) - (2.4) exists uniquely.
Then by the part (i), the function f; gives the solution to (2.23). Seeking a contra-
diction, we assume that f, (# f1) gives the solution to (2.23). Then there exists
a solution {u(f2), f2} to (2.1) - (2.4). However, this contradicts the assumption.
Conversely, let us assume that (2.23) possesses a unique solution f;. Then by

‘the part (i), there exists a solution {u(f1), f1} to (2.1) - (2.4). We suppose that
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both {u(f1), f1} and {u(f2), fo} are distinct solution to (2.1) - (2.4). Let f; = fo.
Then u(f1) = u(f2) because of the unique solvability of the direct problem (2.1)
- (2.3). If fi # fa, then f; and f; are solutions to (2.23) from the part (i), which
contradicts the unique 501vability of (2.23). Thus the proof of Lemma 2.3.2 is

completed.

Lemma 2.3.3 K : C*(Q) — C*(Q) is compact.

Proof: By Lemma 2.3.1, for an arbitrarily fixed f € C*(Q), the unique solution
u(f) € C*M+3(Q x [0,T)) to (2.1) - (2.3) has u(f) and ut(f), which belong to
CHAHE(QY x [0,TY)).

Let us set

(Kf)() = bz, 7(@))(Kf)(=)
= u(2,7(2))(1 + Ay(z)) + 2Vu(z, 7(2)) - V(2)
+un(z,7(2))|V(2)* (2.28)

Since y € C3(Q), both us(-,v(-)) and ug (-, v(+)) are belong to C1+2 (Q). There-
fore by (2.10), we have '

IE Dl gy < Call fller:

Namely,

1Kl s < Csllf oy (2.29)
ctz(@)

By Sobolev embedding theorem and the choice of X’ > X such that 1 — X > n/p
(e.g., Adams [1]), we obtain

1&g < Coll Kflwisey < CHlE fll iy g < Collflorey  (230)

Since the embedding C*' (Q0) — C*(Q) is compact for X > ), the operator K is
compact from C*(Q) to C*(Q). Furthermore by (2.7), the division operator by
h(-,7(-)) € C*(Q) is bounded from C*(Q) to C*(f)). As a result, we see that K

is compact. Thus the proof of Lemma 2.3.3 is completed.
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Now we complete the proof of Theorem 2.2.1. By Lemma 2.3.3, we have the
following alternative:

(i) For an arbitrary ® € C*(9), there exists a unique solution f € C*(Q) to
(2.23). ' '

(ii) There exists a nontrivial solution to the following equation:
Kf=Ff (2.31)

By Lemma 2.3.2, (i) implies that the inverse problem (2.1) - (2.4) has a
unique solution {u(f), f}. In case that (ii) holds, Lemma 2.3.2 implies that for
®(x) = 0,z € Q (which is equivalent to ¢(z) = 0,z € Q), the inverse problem
(2.1) - (2.4) has a solution {u(f), f} such that f # 0. We can see that u Z 0
is also valid. In fact, when we assume that v = 0, since Kf = 0 by (2.23), we
obtain f = 0 by (2.31). However, this contradict the assumption f # 0. Thus
the proof of Theorem 2.2.1 is completed. |
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Part II

Inverse Source Problems for
Fractional Diffusion Equations
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‘Chapter 3

A fractional diffusion equation
and a fractional diffusion-wave
equation in a bounded domain
and applications to inverse
problems

3.1 Introduction

Let © be a bounded domain in R? with sufficiently smooth boundary 9. Wev

consider a time fractional equation:
*Diu(z,t) = (Lu)(z,t) + F(z,t), z€Q,te(0,T), 0<a<2, (3.1)

where °D* denotes the Caputo fractional derivative with respect to t. The Caputo

fractional derivative of order o is defined as

1 /t o
= [ (t=7)" % ——g(r)dr, n—1<a<n, n€N,
CDf‘g(t) — ];SLTL - Oé) 0 ‘ dr
%g(t), a=nec N.

where I' is the Gamma function. Here the operator L is symmetric, F is a given
function on © x [0,T] and T > 0 is a fixed value. Note that ifa =1and a =2,
the equation (3.1) represent the parabolic equation and the hyperbolic equation

respectively. Since our concern is the fractional cases in this chapter, we restrict
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the order o to the two cases 0 < @ < 1 and 1 < @ < 2. We will solve the equation

(3.1) satisfying the following initial-boundary value conditions:

u(z,t) =0, z€dQ te(0,T), | (3.2)
u(z,0) = a(z), reQ. (3.3)

For 1 < a <2, we add in the condition
u(z,0) = b(z), z €. ’ (3.4)

In the case such that L = A, the equation (3.1)‘is called a fractional diffu-
sion equation in the case 0 < a < 1, while the equation is called a fractional
diffusion-wave equation or a fractional wave equation in the case 1 < a < 2.
The fractional diffusion equation has been explicitly introduced in physics by
Nigmatullin [36] to describe diffusion in media with fractal geometry. Metzler
and Klafter [33] have demonstrated that fractional diffusion equation describes a
non-Markovian diffusion process with a memory. Roman and Alemany [43] have
investigated a continuous time random walks-on fractals and showed that the av-
erage probability density of random walks on fractals obeys a diffusion equatidn
with a fractional time derivative asymptotically. Ginoa, Cerbelli and Roman [13]
have presentedr a fractional diffusion equation describing relaxation phenomena
in complex viscoelastic materials. Mainardi [28] has pointed out that the frac-
tional wave equation governs the propagation of mechanical diffusive waves in
viscoelastic media. ' v

As for the mathematical treatments for the equation (3.1), we can refer, for
example, Wyss [47], Schneider and Wyss [45], Kochubei [22], [23]. Wyss [47] and
Schneider and Wyss [45] have used Mellin transforms and Fox H-functions for an
~ integrodifferential equation which is equivalent to the fractional diffusion equation
(3.1). Kochubei >[22], [23] has used semigroup theory in Banach spaces. However,
these mathematical treatments are made in the unbounded domain. Addition-
ally, these mathematical results seem not easy for application because of their
high level of generality. Mainardi [30], [31] has solved a fractional diffusion-wave

equation using the method of the Laplace trnsform in a 1-dimensional bounded
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domain, which seems easy for appliéation. Gejji and Jafari [11] has also solved
a nonhomogeneous fractional diffusin-wave equation in a 1-dimensional bounded
domain. Fujita [9], [10] has solved an Integrodifferential equation which interpo-
lates the heat equation and the wave equation in an unbounded domain. Agrawal
[2] has solved a fractional diffusion equation using finite sine transform technique
and presented numerical results in a 1-dimensional bounded domain.

In this chapter, we solve the equation (3.1) using the separation of vari-
ables and prove the unique solvability of the solution to (3.1) in a n-dimensional
bounded domain. The asymptotic behaviors of the solution are also derived.
Moreover, we apply the solution described in the eigenfunction expansion to in-
verse problems.

As for the other references, we can refer the following. An encyclopedic treat-
ment of fractional calculus can be found in [44]. Additional background, survey,
and application of this field in science, engineering, and mathematics can be found
in [27], [37], [34], [14], [39]. In [21], a lot of surveys of a variety of applications
of fractional differential equations are treated brieﬂy and the reviews of some
important applications involving fractional models is presented systematically.
This also included a large number of and up-to-date bibliography.

The remainder of this chapter is composed of three sections. In Section 2, we
state our main result. In Section 3, we complete the proof of the main result. In

Section 4, we apply the results to inverse problems.

3.2 Main results

We denote the Sobolev spaces by H' () with [ > 0 (e.g., Adams [1]). In what

follow, the operator L is symmetric so that it can be written as

"\ 0 [ 0
Lu = Z o2 (; Ai(z) 8_xJu> +C(z)u,

i=1

where Aij = Aj; (1 <4, < n). Moreover, we assume that the operator L is

uniformly elliptic in Q and that its coefficients have some smoothness; that is,
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there exists v > 0 such that
n n '
I/Zé? < Z Ayj(7)&:&;
i=1 i,j=1

for all z € Q, € € R?, and the coefficients satisfy
A; €CHQ), CeC°@), Clz) <o,

for all z € ). ’
'Here and henceforth C; denotes positive constants which are independent of
~ Fin (3.1), but may depend on « and the coefficients of the operator L.

We are ready to state our main theorems and corollaries.

Theorem 3.2.1 Let 0 < oo < 1, a € L*(Q) and F € C'([0,T]; L*(Q)). Then
there exists a unique solution u € C([0,T]; L3(2)) N C((0,T); HX(Q) N HA(Q)) to
(3.1) - (3.3), and the Caputo fractional derivative D{u belongs to C((0, T]; L*(2)).

Moreover, there exists a constant C; > 0 such that

lulleqom;zz@) < Cilllallzz @) + | F |l a2or.c2))- (3.5)

Theorem 3.2.2 In addition to the assdmptions of Theorem 8.2.1, we assume
that a € H{(Q). Then the um’que‘solution u belongs to L*(0,T; H2(Q) N H (),
the Caputo fractional derivative *Du belongs to L?(Q2 x (0,T)) and there exists
a constant Cy > 0 satisfying the following inequality:

lull 2.y + 1°Diull2@xo,m) < Colllallai@) + IFllz2@xory)-  (3-6)

Moreover, we assume that a € H*(Q)NHg (), then the unique solution u belongs
to C([0,T]; H*(Q) N H{(RY)), the Caputo fractional derivative *Du belongs to
C([0,T]; L*(2)) N C((0,T); HA(Q)) and the following inequality holds:

lulleqoimz@) + 1°Dfulloqomz2@) < Cs(llallaz@) + | Fllaroziz@))  (3-7)

Theorem 3.2.3 Let 1 < a < 2, a € H2(Q) N HY(Q), b € HYD) and F €

C*([0,T}; L*(Q2)), then there ezists a unique solutionu € C([0, T]; H*(Q)NHZ (Q))N
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CH([0,T] : L*(Q)) to (3.1) - (3.4) and the Caputo fractional derivative ¢ Dy be-
longs to C([0, T]; L*(Q)). Moreover, there exists a constant Cy > 0 satisfying the

inequality:

lullor qomyizacy) + lulleqorym @) + 11°Dfulloqo.mz2 @)
< Cdllallzz (@) + bl @) + I1F || 20,7 22(02)) }- (3.8)

Corollary 3.2.4 Let 0 < a < 1, a € L*(Q) and F = 0. Then for the unique
solution w € C([0,T]; L*(Q)) N C((0,T}; H2(2) N H(Q)) to (3.1) - (3.3), the
Jollowing asymptotic behavior holds. There exists constants Cs>0and \; >0
satisfying the inequality: o v

Cs :
. < t>0. .
leC Ol < T3 allallze for 120 (3.9)

Corollary 3.2.5 Under the assumptions of Corollary 3.2.4,
we have u € C=((0,T); L*(Q)).

Corollary 3.2.6 Let 1 < o < 2, a € H*(Q) N H}(Q), b € H}(Q) and F = 0.
~ Then for the unique solution u € C([0,T]; H*(Q) N HL(Q)) N C([0,T] : LX)
to (3.1) - (3.4), the following asymptotic behaviors hold. There exist constants
Cs > 0 and Cs > 0 satisfying the inequalities:

o .
lu( Ollze@ < sz {llalle + tlbllia@}  for ¢>0, (3.10)

. T 14 Ate

07’
o1 <
e Dl < T4

{ta_ll|a“H2(Q) -+ ”b“Lz(Q)} for t Z O. (3.11)

Corollary 3.2.7 Under the assumptions of Corollary 3.2.6,
we have u € C*((0,T); L3(Q)).

Corollary 3.2.4 show that the solution to (3.1) - (3.3) in the case 0 < a < 1
is likely to decay slowly compared with the solution of the standard diffusion
equaton (a = 1)’. In Section 4, we will see that the slow decay certainly happen.
Corollaries 3.2.6 and 3.2.7 indicate that the solution to (3.1) - (3.4) in the case
1 < a < 2 has also asymptotic decay and smoothing which differ from the

standard wave equation (a = 2).
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3.3 Proof of the main results

The two-parameter function of the Mittag-Lefller type is defined by

Eop(2) : Z F(ak vt - z€C, (3.12)

where a > 0 and 3 € R are arbitrary constants. E, g(z) is an entire function of
z € C. In particular, it follows from the definition that Ey;(z) = €. In detail,
we can refer in Kilbas, Srivastava and Trujillo [21], Podlubny [39] and Mainardi
[27].

Lemma 3.3.1 Let 0 < o < 2 and § € R be arbitrary. We suppose that p is such
that Ta/2 < 1 < min(7, 7a). Then there exists a constant Cy = Cg(a, 3, 1) >
- such that

Cs
1+ 2|’

|Eas(2)| < p<larg(z) <7 (313)

Proof: The proof can be found in Podlubny [39].

Lemma 3.3.2 Let A > 0. For a > 0 and positive integer m € N, we have

i—mEa,l(—Ata) —MOTEL L (<M®) for £30, (3.14)
;t(tEaz( M) = Bar(=M®)  for £3>0. (3.15)

~ Proof: E, s(2) is an entire function of z and a polynomial series. Therefore when
we restrict the domain in R, E, g(z) is real analytic and termwise differentiable
in R. Since t* is also real analytic in ¢t > 0, so is E, g(—At®) in ¢t > 0. Therefore

the equations above obtained by differentiating termwisely are valid.

We formaly solve the time fractional diffusion equation (3.1) - (3.3) for 0 <
a < 1 and the time fractional diffusion-wave equation (3.1) - (3.4) for 1 < a < 2
respectively. | | ,

Since‘ L is symmetric, The spectrum of L is discrete and the each eigenvalue of

L is real and has finite multiplicity such that 0 > —X\; > -y > -, =\, —» —00
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as n — oo. We set the sequence {—\,} of eigenvalues of L, counted according to
multiplicity and by ¢, € H2(Q)NHE(Q2) we denote the orthonormal eigenfunction
corresponding to —A,. Then the sequence of functions {¢,}32, is orthonormal
basis of L%(Q).

Let us multiply both sides of (3.1) by the function ¢,(z) and integrate the
equation with respect to z. Using Green’s formula, Fubini’s theorem and bound-

ary condition of ¢,(x), we obtain
“Diun(t) = —Aun(t) + Fo(t), t>0, (3.16)

where u,(t) = (u(,t),¢n) and F,(t) = (F(-,t),n). Here (-,-) is the inner
product in Lz(Q). We set a, = (a, ) and b, = (b, p,). From the theory of the
ordinary fractional differential equation (e.g., Podlubny [39], Kilbas, Srivastava,
Trujillo [21] ), we have

Un(2,t) = anEy1(—Ant®) + /o Fo(r)(t = 7)* ' Bya(=Mu(t — 7)*)dr,  (3.17)

anEo1(— )\ t*) —I-fo T)(t = 7)* ' Eaa(=Mn(t —7)*)dr, 0<a<l,

un(t) = anFEq, ( = t°‘) +b tEa2( —Ant®)) :
+ [T (1)t = 7)*  Bga(~M(t — 7)%)dr, 1<a<2.

" (3.18)

Then the solutions to (3.1) - (3.3) and (3.1) - (3.4) have the form respectively:

o0

u(z,t) = Z{(a, @n) Ea1(—Ant®)

n=1

+ At(F('>7)?¢n)(t - T)a_lEa,a(_)‘n(t - T)a)dT}SOn(x), O<ax<l, (3-19)

o0

u(z,t) = Z{(a, cpn)Ea,l(—An‘if’) + (b, pn)tEga(—Ant®))

n=1

+ /Ot(F(-,T), on)(t — %)a_lEa,a(;)\n(t — T)"‘)dT}gon‘(x), l<a<2 (3.20)

Proof: (Proof of Theorem 3.2.1.) First, we will show that the formally derived
solution (3.19) certainly give the solution to (3.1) - (3.3).
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We introduce a new scalar product into H}(£2):

[u,0] = / {ZAM u(,;%v—c*(x)uv}dx. o (3.21)

1,7=1

Then the norm [u,u]? is equivalent to [ull i) in Hg(§2). Likewise, another
scalar product into H?(2) N H; () is given by
{u,v} = (Lu, Lv).

Then the norm {u,u}? is equivalent to lul| g2y in H?(Q) N H}(Q) (e.g., La-
dyzhenskaya [24]). Note that the eigenfunctions {¢}$2, are mutually orthogonal

in the following ways:

[k, 1) = Ak, {0, &1} = Xow,

where dy; is Kronecker’s delta. Since
. .
/ (F(,7), 0n)(t = 7)* B (— At — 7)%)dr
0 «

= [(Fe e L (LBt =) )dr
| #(x |

= _A_ln{ (F(-,0), on)Eai(—Ant®) — (F(-, 1), n)

t .
+ / (Fr(-, 1), on) Eaa(—An(t — T)a)d’i’}, (3.22)
0 o
by Lemma 3.3.1, we have
ey = Y (@ o) B2t
n=1

= [ F T en) ¢ = 1 Bl - T>°‘>df} |
< 42{08 CL QOH)Q )\2{08( ( ) n)2 + (F(-,t),gon)Z

n=1

+ (/ot(Ff(g ™) B (=An(t = T)a)dT)z}}

< 09{“‘1”%2(9) + ”F“%‘X’(O,T;Lz(ﬂ)) + ||E||%2(QX(O,T))}'
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Therefore the ineqﬁality (3.5) is valid. Moreover, we have

{u(, 1), u( )} < CrofllallZayt ™™ + |F |2 o.riz20)) + 1 Filli2@xory} for t>0.
(3.23)

The right side of (3.23) is uniform convergence in the wider sense with respect to

t > 0. Therefore we get u € C([0, T]; L*(Q)) N C((0, T]; H*(R) N H} ().

Next, we will show that Dfu € C((0,T] : L*(Q)). By D2E,1(—Xpt%) =
—AnEoi(—Ant?) and (3.22), we have

R e N N e e

— (F(,0), 0n) Eas (—Mt®) + / (B (o7 o) Baa (Mt — 7)), (3:24)

Therefore we get

o0

I°Dfu:, )2 = Z{(a, ¢n)(=An) Ea1(=Ant®) + (F(-,0), on) Ea1 (= Ant®)

n=1
2

¢

+/ (FT(',T),QDn)Ea,l(—)\n(t—T)a)dT}

0 ;

< Cu{llalZagyt ™ + I1F(,0)lZ20) + 1El 2@y}, for >0,
| | (3.25)

which implies Dgu € C((0, T]; L%(Q)).

Next, we prove the uniqueness of the solution to (3.1) - (3.3). Under the
conditions a = 0 and F' = 0, we prove the system (3.1) - (3.3) has a trivial solution

only. Since ¢,(z) is the eigenfunctions to the following eigenvalue problem:
(Lon)(2) = —Aapn(z), T€Q,  @n(@)=0, z€dQ, (3.26)
multiplying both sides of (3.1) by ¢, (z), we obtain

Diun(t) = = Aqun(t), t>0 - (3.27)

By (3.2), we have u,,(0) = 0. Due to the existence and uniqueness of the ordinary
fractional differential equation (Kilbas, Srivastava, Trujillo [21]), we get un(t) =

0, n=1,2,3---. Since {¢,(z)} are complete orthonormal system of L%((2), the

o0
n=

solution u(z,t) is given by u(z,t) = 3°°°  u,(t)@n(z). So we have u = 0.
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Thus the proof of ‘Theorem 3.2.1 is completed.
Proof: (Proof of Theorem 3.2.2.) Since fOT 7 Ega(—=At®)dt = 3= (1= Eo 1 (— X T)),

by Lemma 3.3.1 and the Young’s inequality for convolution, we have

| ol = / ;{<a,%>E;,1<—Anta>
+ /0 (F(-,7),0n)(t — T)“_lEa,a(—)\n(t — 7')°‘)d7'} dt
< zi / T(a, On)? Bt (—Ant®)2dt |

S +2 Z ( / gon)zdt) ( /0 i talEa,a(—/\\nt“)dty

2(1 + Cg)?

< 2CG5TlalZ2() + =—5——IIF I Z2(ax0.1):
A

/{u ECOUEY D R CXSCNERS
+ [ (Fr) o) = 7 Bl - T)“)df}z)\idt

20271~ & ) 21 12
ST Z(a’ ©n)"An + 2(1 + Cs)*|| Fl| 720 (0,1
n=1

< 012(”“”1%11(9) + ”F”%?(QX(O,T)))‘

Therefore we have u € L2(0, T; H*(Q) N HE(Q)).
Next we will show that “Dfu € L*(Q x (0,T)). Since °D$E, ;(—Ant®) =
AnEar(=Ant®) and

i( (Flr) o)t ) (-2 At = 7)%)dr)

- _)\ / Qpn (t_T)a lEaa( A (t—T)a)d";'F (F(-,t),(pn),
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we have

. C2T1fa ot
[ Dt it < 5{ B S g,

n=1
[eS) . T .
+Yy (- Ea,l(—/\nT“))zl) (F(-,t), pn)?dt + IIFlliz(gx(o,T))}
n=1

< Cis(llallq) + ”F||%2(Qx(o,:r)))-

Therefore we have °D¢u € L?(2 x (0,T)) and the ihequality (3.6) is valid.
In the additional case such that a € H(Q) N H}(Q), By (3.22), we have

{uC,1),u(0)) < 42{ o0 Bas (et + 5 { (.0, 0

n

H(F(,0), 6n) Ban(—Anl®)? + C2T / (B b

< 014{”@”%{2(9) + “'F”%W(O,T;LZ(Q)) + “Ft“iZ(Qx(O,T))}’ for t>0.

Moreover, by (3.24), we have
| DEuC, ) ao <Z{ 0, 20) (M) Ear(~Mal) £ (F(,0), ) Bug (~at?)

/ (B o) B (Al —T>a>df}2

< 015{||a||H2(Q) + 1 Fl 2w omsz20y) + 1 Felliz@x oy}, for ¢>0.
(3.28)

Therefore we get (3.7). Furthermore, we have
DFu(, 6, Dfal 1<Z{a% (=2t

+ (F(0), 0n) Bay (—Ant®) + / (Fo(,7), 0n) Bun (— An(t—T)o‘)dT} A,

< Cis(llallzn @t >+ “F||L°°(0,T;L2(Q))t *+ ||F¥||%2(Qx(o,T)))a for ¢>0.
(3.29)

Therefore we have u € C([O,‘T]; H?(Q) N H}(N)) and °D2u € C([0,T); L>@)n
C(0,T); ().
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Proof: (Proof of Theorem 3.2.3.) Similar to the proof of Theorem 3.2.1, we have

co -

”u(>t)”%2(ﬂ) = Z{(aa Son)Ea,l(—)‘nta) + (b7 (pn)tEa,Z(_/\nta)

n=1

o /O t(F(-, ) @)t = 1) By (At — T)")df}
S3{§:(“’%)2(1+A ta) +§ (Fcf\i?f

n=1

Cir2%1 ot L
e 2, FeTh e

< Cir{llallZz() + Ibll72) + IF 132 @x 0.} v - (3.30)

2

Moreover, we have
< / (F(,7), 0n)(t = 7)* B (=An(t — 7)%)dr

- / (P75 (6= Bl = 7))
,0), on)t*” 1Eaa( Ant®)
/(F ), 0n)(t — T)* By o (= An(t — 7)%)dr.

By Lemma 3.3.2, we have

e e}

”ut(’ t)”%Z(Q) = Z{(CL, <pn)(‘)‘n)?a_1Ea,a(_)\;zta) + (b7 (Pn)Ea,l(—Anta)

n=1

+ (F(7 0)7 Qon)ta‘lEa,a(_)‘nta)

+ /Ot(FT(-, 7 @n)(t =7)*7 Baa(=An(t = 7)7) dT}
<4 i{ (a, on) X212 (1 +C§nt°‘ ) 2-l-(b, s‘on)2 (_gﬁi_) 2

—~ 1+ At

2

+ OV 0) 0+ [ (B ), u)Pdlr / e r)’“a-“df}

< 4{ ATl + BBl

G NEC Ol + E o ) 631
Therefore we obtain u € C([0,T7; LZ(Q)).
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Furthermore, by (3.22), we have

| {u(’ t)a u(') t)} = Z{(av Son)Ea,i(_)\nta) + (ba (Pn)tEa,2(")\nta)

n=1

— )\l—n((F(, 0), QDn)Ea,l(_)\nta) - (F('vt)ﬁoﬁ)v

t 2
+ / (F.,-(~, T)) Qpn)Ea,l(“')\n(t - T)a)dT> } )‘721 :
0
< Co{llallirzy + T*2Ibl3 0y + (-, 0) 22y

+ ||F(‘»t)||%2(9) + T||Ft”%2(9x(o,r))}
< Cis{llallzz) + 16l @) + 1F 13 01,220 }- (3.32)

Therefore we have u € C([0,T]; H2(Q) N H}(Q)).
Likewise, by (3.24), we have

oo

”D?UH%P(Q) = Z{(a> ‘Pn)(_)\nEa,lv(—)‘nta)) + (b7 Qon)('—)‘ntEa,Z(_)\nta)) |
n=1
. : t . 2
+ (F(v 0)7 ¢n)Ea,1(+Anta) + / (FT('a T)’ QOn)Ea,l(—)\n(t - T)a)d’r}
< 4Cs{llallf20y + T**|Ibll3 () + IIF (-, 0172 + Tl FNZ2 0. }-
' (3.33)
Therefore we obtain Dgu € C([0,T]; L*(2)) and the inequality (3.8) is satisfied.
The proof of the uniqueness is similar to that of Theorem 3.2.1.
Proof: (Proof of Corollary 3.2.4.) By Lemma 3.3.1, we have

[u(, t)132q) =

NE

(a> ¢n)2Ea,l(“/\nta)2

Il
-

n

ok

, Cs \°
< 2
a n=1 (a, Son) (1 + )\nta)
. ) CS 2
< | — for t>0. \ 34
<7 +)\1ta,||a||Lz(Q)) , for t>0 (3.34)

Proof: (Proof of Corollary 3.2.5.) Since the Mittag-Leffler function Eq1(—\t%)
is infinitely differentiable with respect to ¢ > 0 and given by Lemma 3.3.2., we
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can estimate with an arbitrary positive integer m € N,

o™ o dqm N 2
gDl = D (o) a2t
n=1 '

< Cgt._zm“a”%ﬁ(n),

which implies u € C*((0,T); L*(Q2)).
Proof: (Proof of Corollary 3.2.6.)
By the estimations of (3.30) and (3.31), we can see (3.10) and (3.11).

Proof: (Proof of Corollary 3.2.7.)
By Lemma 3.3.2, for m > 2, we have

o™ o o N
” mu('a‘ t)”L2(Q) = {_)\n(a) Qon)ta Ea,a—m—!—l(—)‘nt )
ot , v

n=1

- )\n(ba So'n)tO‘—(m_1)lgoz,oz—(m—l)-ll-l‘(_>\7L1€()[)}2
< Ce{llalZaiyt ™™™ + [Ibll72 )t 2™V},

which implies v € C*((0,T); L*(Q2)).

3.4 Applications of the eigenfunction expansion

We apply the eigenfunction expansion of the solution only in the case of 0 < a; <
1. The arguments in the case of 1 < o < 2 are similar. Let L be the same ellitpic

operator defined in Section 2.

3.4.1 Backward problem in time

Theorem 3.4.1 Let T > 0 be arbitrarily fized. For any given a; € H*(Q) N
H;(Q), there exists a unique solution u € C([0,T]; L*()) N C((0,T]; H2(Q) N
H;(Q)) such that u(-,T) = a; to (3.1) with F = 0 and (3.2). Moreover there

exist constants Cig, Cog > 0 such that ‘
Chollu(-, 0)llz2@) < llul, T)lm2@) < Coollul:, 0)||L2(e)-

Proof: The proof is seen from (3.9) and the asymptotic formula of the Mittag-
~ Leffler function (e.g., Theorem 1.4 (pp. 33-34) in [39)).
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3.4.2 Uniqueness of solution to a boundary-value problem

We note that —L defines the fractional power (=L)? with 8 € R and
lull 720 @) < Coul (= L) ul| 2o
(e.g., Section 15 of Chapter 1 in [46]).

Theorem 3.4.2 Let a € D((—L)*) with 8 > 4. Let u e C([0,T]; L*(Q)) N
C((0,T]; H*(Q) N HY () satisfy (3.1) with F = 0 and (3.2). Let w C be an
arbitraily chosen subdomain and let T > 0. Then u(z,t) =0, r €w, 0<t < T,
implies u = 0 in Q-x (0,T).

Remark 3.4.3 We do not know if the uniqueness holds without (3.2).
Proof: By \, = O (n%) and a € D((—L)%) and the Sobolev embedding theo-
rem, we have ‘

lnllo@) < Coillenllmes) < Cotll(=L)P¢nl|r2@) < Coa|Anl?

and

Y@ en)llenllze@ < Cor D l(@, @)l Anl® = Co 3 (@, 00) || Anf? | An] 2
n=1 n=1 n=1

1

<G (Z @ cpn>|2|An|4ﬂ> (Z ﬁ)

n=1 n=1

<Ciy (Zf:) (Zl(a,wn)lz(lx\nlm)z) <o (3.35)

n=1

Nl

Then, by Lemma 3.3.1, 3> . (a, @n)Ea,l(—Anta)gon(a:) can be analytically in ¢ to
{z€C;2+#0, |arg 2| < o} with some po > 0. Therefore, since

w(@,t) = > (@, pn) Bat(—Mnt)pn(®) =0, z€w, 0<t<T,
n=1
we have o
> (@, 0n) Eai (—Aat*)pn(z) =0, z€w,t>0. (3.36)
n=1 '

43



We set o(L) = {—p}ren and by {¢k; }1<j<m, We denote an orthonormal basis of

Ker (—uy — L). Therefore we can rewrite (3.36) by

k=1 \j=1

> (i(a s%)%(ft)) A(—ut®) =0, zE€w, t>0. (3.37)

By (3.35) and Lemma 3.3.1, we have

oo My oo Mg
DD 10 0r) ki (@) | Bt (—11at®)| <02 > 3 (@, o) 05 2002 < 00
k=1 j=1 . k=1j=1-

Hence the Lebesgue convergence theorem yields that

/0 (Z Zk(a k) Pri(T) a1 (— ,ukto‘)> dt

k=1 j=1
o0 Mg 5
—ZZ a, Prj / ZtEa,l(—ukta)dtgokj(x), r€w,Rez>0  (3.38)
k=1 j=1

We take the Laplace transform to have
a—1

2%+

/ e—ZtEa;l(—ukta)dt = Rez>0. (3.39)
0

In fact, we can take the Laplace transforms termwise in (3.12) to obtain

a—1

1
, Rez>upg

o
—zt a
e " Ey1(—uxt®)dt =
/o a1 (=t 2%+ pk

(cf. formula (1.80) on p.21 in [39]). Since supg|Eq1(—ut®)| < co by Lemma
3.3.1, we see that Js” €7 Eq1(—puxt®)dt is analytic with respect to z in Re z > 0.
Therefore the anélytic continuation yields (3.39) for Re z > 0.

Hence (3.38) and (3.39) yield

o Mk a—1
ZZ(CL, (IDICJ) j+ on]( ) 0, z€w,Rez>0,
k=1 j=1 5T Pk :
| thatiis,
oo mg : 1
>0 a, ox) orj(z) =0, z€w,Ren>0. (3.40)
=1 Gl N+ Mk
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By (3.35), we can analytically continue the both sides of (3.40) in 7, so that (3.40)
holds for € C\ {—p}ren. We can take a suitable disk which includes —pe and
does not include {—pu }x2e. Integrating (3.40) in a disk, we have

mye

w(z) = Z(a, ©ej)pei(z) =0, zEW.
j=1
Since (L + pe)ue = 0 in Q, and u; = 0 in w, the unique continuation (e.g., Isakov
[18]) implies u; = 0 in 2 for each £ € N. Since {¢y; }1<j<m, is linearly independent
in 2, we see that (a, ;) =0 for 1 < j <my, £ € N. Thus u=01in Q x (0,7).
Thus the proof of Theorem 3.4.2 is completed. \

3.4.3 Decay rate at t = oo

We state a different version of Corollary 3.2.4. In fact, the following theorem
ésserts that the solution can not decay faster than th with any m € N if the
solution does not vanish identically. It is a remarkable property of the fractional
diffusion equation because the classical diffusion equation with o = 1 admits
non-zero solutions decaying exponentially. This is one description of the slower

diffusion than the classical one.

Theorem 3.4.4 Let a € D((—L)*) with 8 > ¢ and let w C Q be an arbitrary
- subdomain. Let u € C([0,T]; L*(Q)) N C((0, T}; HX(Q2) N Hi(Q)) satisfy (3.1)
with F = 0 and (3.2). We assume that for any m € N, there exists a constant
C(m) > 0 such that

luC, )o@y < C%Q as t — oo. (3.41)
Then w =0 in Q x (0,00).
Proof: By (3.35), we have
oo Mg
w(@, t) =Y (6, ¢1) Bap (—uat®) prs ()
k=1 j=1



converges uniformly for z € Q and 0 <t < T with any 6,7 > 0. By Theorem 1.4
(pp. 33-34) in [39], for any p € N, we have

oo Mg

== Z ag),ultae( s Pki)Pri (T)

k=1 j=1 £=1

oo mg

+ZZ ( p+1ta(p+1)) (@, prj)prj(z) ast — oo.

k=1 j=1

Setting m =1 in (3.41) and p = 1, multiplying t* and 1etting t — 00, we have

o0 My

ZZ 1_ QDkJ)SOk]() 0, ze€ew.

k=1 j=1
Setting p = 2,3, ..., applying (3.41) and repeating the above argument, we can
find 4; € N satisfying lim;_,, ¢; = 0o such that

Z na (Z(‘% Sokj)sokj(w)) =0, rz€w, N

k=1 "k \j=1
Hence
m1 e} I £; Mg
> @@+ () S @ nen) =0, zew hen
Jj=1 k=2 \Hk j=1

By (3.35) and 0 < py < g < ...., we have

oo mp £; oo my ) £;
ZZ( ) (@, o1y (@) B @ o)l e llom
k=2 j=1 Loo(Q) k=2 j=1

£; oo mg

ZZ |(a, ¢r; |”90kg||L°°(Q) < Cz3

k=2 j=1

4;

IN

mi
Z(a, 1)p1(z) =0, z€w.
=1 |
Similaﬂy we obtain
mg
> (o, ¢5)¢ri(2) =0, zEW, kEN.
j=1

Similarly to the end of the proof of Theorem 3.4.2, we can conclude that u = 0
in Q x (0,00). Thus the Iﬁroof of Theorem 3.4.4 is completed.

\
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Chapter 4

Inverse source problem with a
final overdetermination for a
fractional diffusion equation

‘4.1 Introduction

- Let Q be a bounded domain in R¢ with sufficiently smooth boundary 8. We

consider an initial-boundary problem for a time fractional parabolic equation:

‘Dyu(z,t) = ra(Lﬁ)(x, t)+ f(z)h(z,t), T€Q, te (O,‘T), O<a<l1, (41)
u(z,0)=0, z€Q . (4.2)
u(z,t) =0, z€d, te(0,T). (4.3)

where °Dy* denotes the Caputo fractional derivative with respect to ¢. The opera-
tor L is symmetric, 7 > 0 is the parameter, & is a given function on Qr =0x[0,T]
and T > 0 is a fixed value. Note that if o = 1, the equation (4.1) represents the
’parabolic equation. Since our concern is the fractional cases in this chapter, We‘
restrict the orderato 0 <o < 1. .
We discuss the foﬂowing inverse problem:

Inverse Problem. Let r > 0 be fixed. Determine u(z,t) = u(r, f)(z,t) and
f(z),; € Q,te(0,T) satisfying (4;1) - (4.'3) and

u(z,T) = p(x), e ‘ (4.4)

For a = 1 and r = 1, similar kinds of inverse problem has been studied by
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different author. As for inverse problems with final overdetermining observations,
see Choulli and Yamamoto [4], [5], [6], Hoffmann and Yamamoto [15], Isakov [17],
[18], Prilepko, Orlovsky and Vasin [42] and the references therein.

We prove that the inverse problem is well-posed in the sense of Hadamard
‘except for a finite set of r > 0. This idea of parametalizing is based on Choulli
and Yamamoto [5], [6] and Hoffmann and Yamamoto [15], which treat inverse
problems of determination of a coefficient of lower-order term. ,

Our main tools are the unique solvability of the fractonal diffusion equation,
the theory of analytic perturbation of linear operators and uniqueness in the
inverse problem (4.1) - (4.4) for large r > 0.

The reminder of this paper is composed of two sections. In Section 2, we state

our main result. In Section 3, we give a proof of our main result.

4.2 Main results

We denote the Sobolev spacés by H'() with [ > 0 (e.g., Adams [1]). In what
follow, the operator L is the same elliptic one defined in Section 2 of Chapter 3.
Here and henceforth C; denotes pdsitive constants which are independent of f in
(4.1), but may depend on a, h and the coefficients of the operator L.
Throughtout this paper, we assume:
(i) h e C*([0,T}; L°°(Q)).
(i4) There exists a constant § > 0 satisfying
|h(z,T)| > 6 >0, for z €. (4.5)
We set an arbitrarily fixed open interval I C (0,00). Then for arbitrarily
fixed r € I and f € L?*(Q2), by Theorems 3.2.2 in Chapter 3, there exists a
unique solution u = u(r, f) € C([0,T]; H*(Q) N H}(Q)) which satisfies Dy €
 C([0,T]; L) N C((0, T); H3(2)) to (4.1)-(4.3) and by (3.19) in Chapter 3, this

solution is given by

u(r, f)(,1) {/ (f() son)(t;f)“ "Eaa(—A r"(t—T)")dT}son(:v)~
(4.6)
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Here the sequence {—\,} are eigenvalues of L and by ¢, € H?(Q) N HX(Q)
we denote the orthonormal eigenfunction corresponding to —\,. {©,}%; is or-

thonormal basis of L?(£2). Moreover, there exists a constant Cy > 0 such that
lu(r, Dlleqozz@) + I°Dfulr, Hllowomrxen < CGillhlmer@).  (47)
- We are ready to state our main theorem.

Theorem 4.2.1 There ezists a finite set E = E(a,h,I) C I satisfying: For
r € I\ E and ¢ € H*(Q) N H}(QY), there ezists a unique solution {u(r, f), f} €
C([0,T); H*(Q)NHF(Q)) x L3(2) to (4.1) - (4.4). Moreover there exists a constant
C2 > 0 satisfying T

1 fllz2) + llu(r, f)“cqo,T];m(n))_ + 1°Dgulr, fllcqorscz@y < Collellaz@). (4.8)

4.3 Proof of Theorem 4.2.1

We set
(@) =2l e -SRI g
and
Afid=]. (4.10)

Lemma 4.3.1 Let r € I be arbitrarily fized.

(i)Equation (4.10) possesses a solution f € L*(Q) if and only if {u(r, f), f}e
C([0,T]; H*(2) N H () x L2(Q) satisfies (4.1) - (4.4).

(i) Equation (4.10) possesses a unique solution if and only if there exists a
unique solution {u(r, f), f} to (4.1) - (4.4).

Proof: (i) First, we assume that (4.10) possesses a solution f € L2(2). Substi-
tuting the solution f into (4.1), then by Theorems 3.2.2 in Chapter 3, we have a
unique solution u(r, f) € C([0, T]; H*(2) N HZ()) to (4.1) - (4.3). It is sufficient
to prove that the solution u(r, f) satisfies (4.4). We set

uw(z, T) = ¢1(x), z €.

49



Then we can see ;1 € H*(Q) N H}(Q2). From (4.10), we have (L(p; — ¢))(z) =
0, z € (2. Since 0 is not the eigenvalue of L and (¢; — ¢)|aq = 0, we get

pl@) =p(z), zeQ

Next converse assertion of (i) is directly seen in transforming (4.1) into (4.10).

(ii) Next, we prove part‘ (ii). Let us assume that (4.10) possesses a unique
solution f € L2(9). Seeking a contradiction, we éuppose that both {d(r, fi), fi}
and {u(r, f2), f2} are distinct solutions to (4.1) - (4.4). Let fl = f,. Then we have
u(r, f1) = u(r, f2) because of the unique solvability of the direct problem to (4.1)
- (4.3). If f1 # f, then both f; and f, are solutions to (4.10) from the part (i),
which contradicts the uniqué solvability of (4.10). Conversely, we assume that the
solution to (4.1) - (4.4) exists uniquely, say {u(r, f), f}. If f; and f, are distinct
solution to (4;10), then by the part (i), there exist the solutions {u(r, f1), fi} and
{u(r, f2), f2} to (4.1) - (4.4), which contradicts the unique solvability to (4.1) -
(4.4). Thus the proof of Lemma 4.3.1 is completed.

Lemma 4.3.2 For an arbitrarily fized f € L*(9),
Af T — I3(Q)

15 real analytic inr € I.

Proof: For simplicity we set u(r, f) = u(r). For the real analyticity in r € I, it
is sufficient to prove the following two things (e.g., pp.65-66 in John [19]):

() “DFu(r)( ler € C=((0, 00); L (D).

(ii) For every closed interval J = [rg, Ro] C I where 0 < ry < Ry,

there exist positive constants M = M (f, h,J) and n- =n(f,h,J) satisfying
||CD?u(m)(r)(-,t)lt=T||Lz(Q) < Mn™m! meN, red. (4.11)

We set M = \/2C§{||h(-, 0)||%°°(Q) + THht||iw(QX(O’T))}||f||L2(Q), where the co-
efficient Cs is equal to Cg in Chapter 3. '
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For an arbitrary fixed f € L*(2), by (4.6) and Lemma 3.3.1 in Chapter 3, we

have

¥D8u(r) (- ) ey = Z{(f()( 0), ) Eorn (—Aar 1)

n=1
2

t
+ [ GOR ), o) Baa (At - r>a>df}
0
< 2C3{If(-)R(, 0)“22(9) + T frellZ2ax 0y }
< 2GR, 02y + Tl e oy} 1oy

hence
I°Dfu(, )=zl 2(0) < M. (4.12)

Since %Ea,l(—knraTa) = =AM " T*Ey o—m+y1(—Aer®T®) by Lemma 3.3.2
in Chapter 3, we have

oo

:mc‘Da ( )( at)|t=T = Z{(f()h(7 O)’ Son)(_An)ra_mTaEa,a—m—hlt_xnraTa)

n=1

+/0 (fOR (7)) (= An)r®™™(T — 7)*Eoa-mi1(=Anr*(T — T)a)d'r}@n(l');

(4.13)
Therefore we get
dm c o 212, .2(a—m)2a | 03 ?
I <D2u(r) (- Oler e <2Z{ R
T 242 ,.2(a—m) H. 20 Cs 2
2C§ 2 2
< 7,2m A IF R, 0) |72 () + T|| fhellz20x (0,7 }
< M?%r—2m, (4.14)
As a result, we have
dm 1—m
' ||dr—m(Arf)“%2(Q) < Mo~lrg™. (4.15)

Thus the proof of Lemma 4.3.2 is completed.
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Lemma 4.3.3 There exists a large R* > 0 such that for R* < r, there exists a
constant 0 < 6(r) < 1 satisfying ‘

NArfllze@ < 0 flley,  f € LX(9).

Proof:
IA-f II%z@ | | | (4.16)
< 525:_01{<f<~>h(-,0>,%)2 (%—)2
- { / PO e 7)) B (At (T Tyv)dr}z}
=5 i{,\%za:ma(f() (, 0)790n)2+%%/:(f(')hf(w),son)zdf}
< T S I O + s Wl ey (417

The coefficient of || f ||22(Q) can be less than 1 for large 7 > 0. Thus the proof of

Lemma 4.3.3 is completed.
Lemma 4.3.4 A, L¥(Q) — L*(Q) is compact for r € 1.

- Proof: For arbitrarily fixed r € I and f € L?*(£2), we can solve (4.1) --(4.3) and
the solution u(r, f) € C([0, T]; H*(Q) N H(£2)) is unique. Moreover this solution
satisfies *Dju(-, t)|s=r € Hg(Q). In fact, by using the equivalent norm to |- || z1(q) -

in Chapter 3, we have

[*Dgu(-, t)|s=r, *D§u(-, t)|t=r] QZ{(f n)zEé,l(—AnraTajz
+( /OT(fc)hT(-,T),sonwa,l(—xnra(fr—T>a>df)2}An
<22)\{ (TR0, 002

K [ e [ Gmtm. e

, 1 T
<30 sl OMC Ol + sy o}
< Cull fllZ2e)- ' | ' (4.18)
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Since the enbedding Hj(Q) — L*(2) is compact, h(-,T)A, is a compact
operator. Furthermore since |h(z,T)| > 6 > 0 for z € Q, the division operator
by h(-,T) is bounded from L*(Q) to L*(Q2). As a result, A, : L*(Q) — L*() is
compact for r € I. Thus the proof of Lemma 4.3.4 is chpleted.

Now we complete the proof of Theorem 4.2.1. By Lemma 4.3.1, it is sufficient
to prove that (4.10) is uniquely solvable. By Lemmata 4.3.2 and 4.3.4, we can
apply the result on analytic perturbation to the operator 4, : L?(Q) — L?(Q)
(e.g., Theorem 1.9 on p.370 in Kato [20]). Then the following alternative holds.

(i) There exists a finite set £ = E(a,h,I) C I such that 1 ¢ o(4,) for all
rel\E.

or

(i)l € o(A,) for all r € I.

Lemma 4.3.3 implies that 1 can not be an eigenvalue of A, for large r > 0.
Consequently the second alternative (ii) can not occur. We see that E is the set
described in Theorem 4.2.1. Let r € I \ E. By Lemma 4.3.4., we can apply the
Fredholm alternative in L?(2) to (4.10), and obtain

r*(Ly)

Applying the solution f to (4.1), by (4.7) we obtain the inequality of Theorem
4.2.1. Thus the proof of Theorem 4.2.1 is completed.

< Crllo|l 2
L2(Q)

1fllz2@) < C7
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Chapter 5

Inverse source problem from time
distributing overdetermination
for a fractional diffusion equation

5.1 Introduction

Let 2 be a bounded domain in R? with sufficiently smooth boundary 0Q2. We

consider an initial-boundary problem for a time fractional parabolic equation:

*Diu(z,t) = r*Au(z,t) + f(z)h(z,t), (z,t) €Qr=Qx (0,T), 0<a <1,

, A (5.1)
w(z,0)=0, z€Q 52
u(z,t) =0, zed, te(0,T). (5.3)

r > 0 is the parameter, h is a given function on Q x [O,T] and T > 0 is fixed
value. We note that r* is a diffusion coefficient.
-We discuss the following inverse problem:
Inverse Problem.  Let r > 0 be fixed and let p(z,t) be given. Determine
u(z,t) = u(r, f)(z,t) and f(z), z € Q, t € (0, T) satisfying (5.1) - (5.3) and
T
/ p(z, t)u(z, t)dt = o(z), T €. (5.4)
0

This observation is same in Chapter 1. We will show that the inverse problem in
Chapter 1 is valid for the above fractional diffusion equation.

The remainder of this paper is composed of two sections. In Section 2, we

state our main result. In Section 3, we complete the proof of the main result.
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5.2 Main results

In what follow, the operator A in L?*(Q) is same in Chapter 1 so that A~! exists
and A™! € L(L*(Q), H2(Q) N HL(Q)) is valid.

Throughout this chapter, we assume:

(1) helN0,T];L2(Q), pe L*0,T;W*(Q)), »
(i) M™'eL(H*Q)NHNQ),L*Q). (5.5)

Here we set
M= / h(-,)f)dt.

We note again that M € L(L*(Q), H%(Q) N H}(2)). We arbitrarily choose ro > 0
such that 0 < 79 < R and set I = (ry, R). Here and henceforth C; denotes
positive constants which are independent of choices of r € I and f in (5.1), but
may depend on a, h, p and 1.

Then for every arbitrary fixed r € I and f € L%(2), by means of h €
C*([0,T]; L>(R2)) and Theorem 3.2.2 in Chapter 3, there exists a unique solu-
tion C([0, T]; H*(Q2) N H}(R2)) to (5.1) - (5.3) and this solution is given by

u(r, f)(z, ) {/ (FOR(CT),0n)(t = 7)*  Ega(— /\nr"(t—T)"‘)dT}son( )-
(5.6)

Here the sequence {—A\,,} are eigenvalues of the Laplacian A and by ¢, € H3(Q)N
H;(§2) we denote the orthonormal eigenfunction corresponding to —\,. {en},
is orthonormal basis of L*((2). Moreover, by Theorem 3.2.2 in Chapter 3, there

exists a constant C; > 0 satlsfymg
||u||0([o,T];H2(n)) +|1°Dy U”C([O;’H;LZ(Q)) < Cil| fRll o2 () (5.7)
We are ready to state our main theorem.
Theorem 5.2.1 There exists a finite set E = E(a, h,p,I) C I satisfying: For

r €I\ E and p € H*(Q) N H(Q), there exists a unique solution {u(r, f), f} €
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C([0, T]; H*(Q)NH(Q)) x L2(2) to (5.1) - (5.4). Moreover there exists a constant
Ca > 0 satisfying

1fllz2@) + llullcqoryaz@) + 1°Deulleqomszz@) < Collell - (5.8)

5.3 Proof of Theorem 5.2.1

Similar to the computation of section 3 in Chapter 1, we reduce the inverse

problem to a Fredholm equation of second kind:
f=K.f+2,. (5.9)
where we set

K.f =M~ / { ((f()( 0), ) o (~Ar®)
/ (FOh 7)) a,1<—Anra<t—r)%drdt)son(x)}, (5.10)

and
L0, =r*M . (5.11)

Lemma 5.3.1 Let r € I be arbitrarily fized.

(i) Equation (5.9) possesses a solution f € L*(2) if and only if {u(r, f), f} €
C([0,T]; H2(Q) N HY(Q)) x L*(Q) satisfies (5.1) - (5.4).

(i4) Equation (5.9) possesses a unique solution if and only if there ezists a unique
solution {u(r, f), f} to (5.1) - (5.4).

Proof: The proof is similar to that of Lemma 1.3.1 in Chapter 1.
Lemma 5.3.2 For an arbitrary fived f € L*(Q),
K.f: I — L*Q)

is real analytic inr € I.

56



It is sufficient to prove that ¢Dfu(r) is real analytic in 7 € I with the norm in

L?(Q x (0,7)), that is, the following two things hold:

(i) °Dffu(r) € C=(I; L*(2 x (0,T))).

(ii) For every closed interval J C I, there exist positive

constants M = M(f,h,J) and n = n(f, h, J) satisfying
”Dtau(m)(r)”L2(Qx(0’T)‘) < Mnp™m!;, meN, relJ, (5.12)

For an arbitrary fixed f € L?*(Q2), by (3.24) and Lemma 3.3.1 in Chapter 3, we

have
I°Dgu(r) (t)[1 220y
= Z{(f(')h(» 0), ¢n) Bt (~Aar ) + / (FOhe (), ) g (~Aar*(t — T)a>dr}

< 2C3{ ||, 0) | F ooy + Tl hallZ e 0.0 HIf 1 20

2

Therefore we have
1D u(r)IZ2@x 0.1y < &5

where we set

K = \/2C§T{Nh(., 0) 130 0y + Tlel12 o 0.1 HIF 22600 -

By Lemmata 3.3.1 and 3.3.2 in Chapter 3, We have

o0

“cD?u(m) (T) (t)lliz(ﬂ) = Z{(f()h(? O)a Qon)(_)‘nta"'a_m)Ea,a,—m+1(_)‘nrata)

n=1
t N 2
+/ (R (5 7), o) (= At = T)*r*™™) Eg o mi1 (= Aar®(t — T)a)dT}
o ,
< 20§T—2m{||h(.,0)||%m(m + T”ht“%W(Qx(O,T))}”f“%2(9)7

hence

|°Dy* u(™ ||%2(Qx(o,:r)) < 527"_2m-

Thus the proof of Lemma 5.3.2 is completed.
Lemma 5.3.3 K, : L*(Q) — L%(Q) is compact for r € I.
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Proof: Let f, — fo weakly in L*(Q). For every f,, € L?(2), there exists a

unique solution u = u(r, f,,) to (5.1) - (5.3) and this solution satisfies

o]

“Deu(f)(- >—Z((fm(>< 0), ) Baa(~Ar®t%)

[ e, o) Bas (st~ r>a>dfdt) oul@).

By (5.10), we have

T
Kyf = M / p(t) A1 DRu(f,,) (-, t)dt.

By Theorem 3.2.2 in Chapter 3, we have °Dfu(fm) (5 ) 2y < Call fmllz2)-

Since supen || fmllz2(@) < 0o, the Lebesgue theorem yields that
Jim (1D u(fm) (- D)llz2@) = [1°Dfu(fo) (5 )l 2y, ¢ € [0, T).
Since *Dgu(fm)(-,t) — °Du(fo) (-, t) Weakly in L?(Q), t € [O T], we get
D u(fm) (-, 8) = “Dgu(fo) (-, )13y
= 1" Du(fm) (-, Ol Z2(0) + I°Dfu(fo) (-, )20y — 2 Dgu( fn) (-, 1), “Diu( fo) (-, )

—0, as m— oo.

On the othe hand, since A : L*(Q) — H?(() is bounded and ,0 € L*(0,T; W»*(Q)),
we have p(t) A~ *Diu(fm)(-,t) = p(t) A" *Dgu(fo)(-,t) in H2(Q) N H(Q), t €

(0,T). Moreover we have
lo() A7 Dfu( fm) (-, Ol 20y < C5l1° D fon) (- )22y < Cs
by sup,,ey | fmllz2(@) < 00. By the Lebesgue theorem, we have
T
[ a7 Dzutz) s = [ oA Dputs)par
0

in H*(Q)NHg(Q). Furthermore, since M~ : H2(Q)NHL(Q) — L2(€) is bounded,

we have
M~ / cha fm) dt — M- / cha fO)( )
in L?(2). Thus the proof of Lemma 5.3.3 is completed.

58



Lemma 5.3.4 There exists a large R* > 0 such that for R* < r, there ezists a
constant 0 < 6(r) < 1 satisfying

1K fllz2@) < 0)Ifllz2@,  f € LA(9).
Proof: We have |
K- fllz2@) < Cslloll 2. riw2o= @) lI°Diul| L2x 0,1 - (5.13)
On ther othe hand, by Lemmata 3.3.1 and 3.3.2 in Chapter 3, we have
HCD" H)IZ2@)

(

- {(f (VA1 0), ) B (— A2 + /0t<f<~>hf<-,7>‘,sonwa,l(—xnra(t—T>a>dr}
i{ s 0n) Bap (= Aar®t)?

=[Ok, par [ Bt~ reyar

2

3

IN
o

oo

1
<203 3 {OR 0
n=1 .
Lt /(f( Vo (-, 7), o) 2drd
)\lra _ ) SDTL T
Hence
HCD?UH%Q(QX(O T))
) Tl a 5 T2—a o
< 205 m”fh( )”LZ(Q)+'T_a)”fht”L2(Qx(O,T))
202 Tl a 9 T2 a
< S\ T Mmooy J T

For large r > 0, the operator K, is contra,ctlble operator. Thus the proof of
Lemma 5.3.4 is completed. '

Now we complete the proof of Theorem 5.2.1. By Lemma 5.3.1, it is sufficient
to prove that (5.9) is uhiquely solvable. Similar to Chapter 1, by Lemmata 5.3.2

and 5.3.3, we have the following alternative holds.
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(i) There exists a finite set E = E(a, h,p,I) C I such that 1 ¢ o(K,) for all
rel\E.

or ,

(i)l € o(K,) for allr € I.

Lemma 5.3.4 implies that 1 can not be an eigenvalue of K, for large r > 0.
As a result, the second alternative (i) can not occur. We see that E is the set
described in Theorem 5.2.1. Let r € I \ E. By Lemma 5.3.3, we can apply the

Fredholm alternative in L?(2), and obtain

I£lz2@) < G [[r*M ™| o) < Celloll 20 -

We apply (5.7) and obtain (5.8). Thus the proof of Theorem 5.2.1 is completed.
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