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L?-estimates and Solvability of the 0

System on Weakly q-convex Dihedrons

By Luca BARACCO and Pier Nicola BETTIOL

Abstract. The weighted L? estimates are here exploited to solve
the 0 problem on g—pseudoconvex dihedrons of C™.

Introduction

In this paper we prove local solvability of the 0 system in degree > ¢ on
a weakly g-convex dihedron of C". The basic method in the proof are the a
priori L? estimates for 0 and 0* which provide both the existence and the
regularity of the solutions. This method is very classic and goes back to
the celebrated papers by KOHN [7] and HORMANDER [5]. In particular
it yields solvability of @ in any degree > 1 on pseudoconvex domains € of
C™. To this end one is lead to introduce a weight e~? in the L? norms for a
strictly plurisubharmonic exhaustion function ¢ of 2. In the present paper
we do not require any more € to be pseudoconvex and allow 09¢ , instead,
to take negative eigenvalues. Our main contribution consists in finding
a g-subharmonic exhaustion function for a non-smooth domain starting
from the geometric assumption of ¢-convexity of its boundary. We owe to
ZAMPIERI [8] a part of the techniques exploited in this contest. If, instead
of a dihedron, we consider a C? half space, our results on solvability of the
0 system are already stated by HO in [3]. However our approach is original
both for a new way of stating the relation of ¢g-convexity of a domain and
its boundary and for a simplified use of the L2-estimates.

The authors wish to thank the referee for many remarks which improved
the general expository quality of the paper.

§1. Basic Definitions

Let p1, po : C* — R, be functions of class C? with C-transversal differ-
entials that is dp; A Opa # 0.
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DEFINITION 1. A domain W of C" defined by W = {z € C" : p1(z) <
0, p2(2z) < 0} is said to be a dihedron with edge S = {z € C" : p(z) =
0, p2(z) = 0}.

Note that the edge S is generic. We will often focus our attention at a
point z, € S and consider wedges which are only defined in a neighborhood
B of z, (that is we require z € B in Definition 1). In this case we talk
about local wedges at z,. We denote by My h = 1,2 the manifolds defined
by My = {z € C" : py(z) = 0}, and by M," the closed manifolds with
boundary M, = {z € My, : py <0 for k # h}. The latter are the faces of
w.

We will consider vectors w = (wy)| =, for multiindices J = (ji, ..., jq)
of total length ¢, with alternate coefficients. Often we will take, instead,
vectors with coefficients having only ordered indices J that is verifying
J1 < j2 < --+ < jg- When taking sums over ordered indices we will use
the standard notation _;'. We often play with the alternate and ordered
notations. In particular we rewrite vectors of the form (wy); for J ordered
of length ¢, in the form q(sz)zKa K ordered of length ¢ — 1. (Recall
that if J and i K are related by a permutation o, then w; g = sgn(o)wy.)
Let Ly, be the Levi form of Mj that is the Hermitian form 00pp|7cy,
where TCM is the complex tangent bundle to My,. (For z € Mj, this
is defined by TCM;, = {u € C" : (9pp(z = 0}.) Let us denote by
A< \B < ... < AP the ordered elgenvalues of Ly, -

DEFINITION 2. A dihedron W is said to be weakly q-convez if for h =1
and h = 2 we have

(1) ZAh )>0 Vze M.

It is obvious that condition (1) is invariant under complex orthonormal
transformations in C". One can also check (cf. [3. Lemma 2.2]) that
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condition (1) is equivalent to

n
/ _
(2) Z Z 02,0z, pn(2)wikwix >0 Vz e M,
|K|=¢—1 %,j=1

Z” 0
Zq
i=1

Indeed the equivalence of the two above condition is immediate once one
proves that the second is invariant under orthonormal complex transfor-
mation (cf. [3]).) We similarly define the notion of g—subharmonicity for
a real function ¢ on C". We denote by pu; < puo < --- < up the ordered
eigenvalues of 00¢.

DEFINITION 3. ¢ is said to be g-subharmonic if and only if

(3) > ni>0.
j=1

Again, it is possible to check (cf. [3, Lemma 1.3]), that (3) is equivalent to

(4) Z / i 8ZjaziQZbU)inUjK > 0.

|K|=q—1 ij=1

We point out the main diffence between the two above Definitions 2 and
3. In the first case only restricted Levi forms such as 00pp|pcyy, of size
(n —1) x (n — 1) appear, whereas in the second case, the entire Levi form
00¢ of size n x n enters into play. The main content of subsequent Theorem
5 will consist in relating positivity of forms of such different size.

DEFINITION 4. A real function ¢ defined on W is said an exhaustion
function for W when ¢~1([0,c]) cC W for any positive c.
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§2. g—convexity of the Boundary and g—subharmonicity of a
Defining Function

Let W be a dihedron of C™ in a neighborhood of a point z, of its edge
S.

THEOREM 5. Let W be weakly g-convexr at z,. Then there exists an
exhaustion function ¢ defined on BOAW (for a suitable spheric neighborhood
of z,) which is q-subharmonic.

Proor. We shall find two g-subharmonic functions ¢;, ¢ defined on
BN W, such that ¢p(z) — +oo for z — My, h = 1,2. If we then take a
subharmonic exhaustion function ¢ for B, it is clear that

(5) ¢=01+p2+ ¢

will serve the purpose. Let us construct ¢; and ¢o. Let T, M1+ and T, M2+
be the tangent spaces to the manifolds with boundary M;" and M, re-
spectively. Since S C M};L , h = 1,2, we have, for suitable v, vy that
T, M; =T, S®R v and T,, My = T,, S ® Rt vy with Re(0p2(z,),v1) < 0
and Re(0p1(2o),v2) < 0. Set w = vy — ev; with € > 0 small, and consider

the map
G: M{ xRt — C"
(z,A) —  z4+ Aw.

We show that for a convenient neighborhood V of z, over M 1+ and for 6 > 0
G(V % (0,6]) D B(zp,7) N W.
To this end it is enough to show that G'(T,, M;" x T,R*) D T,, W. In fact

G'(T,,M;" x T,R") = {v + Aw such that A > 0,v € T,, M;"}
= {s+ A\w + pv; such that A > 0,u > 0,s € T, S}.

On the other hand

T. W = {s+ pujv1 + povy such that pq, ue > 0,s € T, S}.
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Clearly T,,W C G/(T,,M;"* x T,R™). It follows that the image of G contains
BN W for B small.

We can assume, under a unitary change of coordinates, that the direction
of w is dy,. Under this assumption we can choose an equation for M; of the
form y; — g(x1,2") = 0; the manifold G(M; x {\}) will then have equation
y1—g(r1,2") = X\. Weset p1 = —y1 +g and ¢1 = — log(—p1) + C|z|?, where
C is a big positive constant. We claim that ¢ is g-subharmonic. To see this,
we decompose each vector w = (w; i )ik, with K ordered, as a sum w =
w'+w" of a tangential and normal component to p; = A respectively. (This
simply means that for each fixed K we take the decomposition in tangential
and normal components for the vectors in C": (w; i )i = (w; g) + (wi k)F,
and then take the collection over K ordered for these decompositions.) We
also write w. i instead of (w; g ); and so on. We then have for each K

_ 1 _
00¢1 (w.K, ﬂ/.K) = ?8;)1 & (9[)1(21).[(, W. )
1

1 -
— E@apl (le, I_U.K) + C|w.[{’2

1 1
> | |? — 2Re—08dpy (W, W'
_QP%’ K| o ,01( K K)

1, - _
E@apl(w?K, ')+ Clw. g

Since the Levi form at the point z = (21 + iy1, ') coincides with the Levi
form at the boundary point (z1 + ig(x1,2’),2’) (and since p; < 0 on W),
we have that

!

1 -
S (oot aty) 20
P1

|K|=¢—1

(as a consequence of the definition of ¢-pseudoconvexity). Note now that
RedOp1 (W, W' ) > —D|w' i ||w™| for some constant D > 0. We then
choose our constant C such that C' > 2D?. Hence the remaining terms
in the above expression for 90¢;(w. g, W. ) are bounded from below by

2 _ 2D 1 2 1 2 -
implies that ¢; is g-subharmonic. In the same way we construct ¢2. We
finally take ¢, strictly subharmonic exhaustion function for the sphere, and
define ¢ by means of (5). O
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63. Solvability of the 0 Operator on ¢—convex Dihedrons of C"

Let W be a dihedron of C™, and z, a point of its edge. We will deal with
the O-complex over forms with coefficients in C°°(W),, the space of germs
at z, of infinitely differentiable functions on W. We denote by C*°(W)* the
space of forms f = Y f;dz; with f; € C®°(W),,. (It will be understood

\T|=k
all through the paper that the f;’s are alternate in J whereas the sum » J/
is taken over ordered indices.) We then consider the 0—complex
k—1 é) COO(W)k i Coo(W)k+1 -

Zo Zo %o

(6) = CF(W)

THEOREM 6. Let W be a dihedron which is weakly g—convez in a neigh-
borhood of a point z, of its edge. Then for any form f € C’OO(W)IZCO of degree

k > q which verifies O(f) = 0 there is a form u € C°°(W)*~1 which solves
the equation Ou = f.

ProoF. If B is a small sphere with center at z,, we still denote by W
the intersection B N W. According to Theorem 5, there exists a global ¢—
subharmonic exhaustion function for this new W, that we will still denote by
¢. We will then prove global solvability of @ on W. Along with forms with
O (W) coefficients, we will also consider forms whose coefficients f; belong
to the space Li(W), that is which have finite integrals [}, e 0| f72dV. We
will adopt the above integrals as norm in the space Li(W) and also denote
it by ||fs||¢- We then switch from the complex (6) to the new complex of
closed densely defined operators

(7) o L2 (WRE 2wk D p2 )kt o

where 1) is a new function which will be chosen later on. We write d; and 5j
instead of 0., and @j respectively. We denote by 0* (resp. §;) the adjoint
of 0 (resp. 9;). The following inequality holds (cf. [3, pages 83-84]):

(8) Z , Z /e¢(6ifiK6jijajfiKaiij)dV

|K|=k—1 4,j=1..n
+ Z' > /e¢(ajfj)2dv
[J|=k j=1.n
< 2010* fllg—20 + 10F13 + 2100 f15  Vf € CE(W).
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We also have the commutation relations :
(9) 625] — 5]61 = @&qﬁ

Let us denote by (I) the two first double sums in (8). By discarding the
second sums which are positive, we get by the aid of (9): 1> Y,/ S

f e‘d’i_?j@i(ﬁj k fikdV. On the other hand, since ¢ is g—subharmonic and
therefore satisfies (4), we then have

(10) Z/Z/€_¢8jai¢}ijinV > AlfII3,
K iy

for some A > 0. Thus in conclusion: I > A|| f ||35 This yields, in combination
with (8):

(11) MIFIG < 200" FIF -0 + OFNZ + 2000 £ Vf € CZ(W)-.

We first want to remove the restrain “f € C2°(W)” in (11). To this end let
Dy, Dg. be the domains in (7) of 9 and 0* resp. If we choose 9 according to
the density Lemma 4.1.3 by [4], then (8) will be true for any f € Dy N Dj..
Note that for all K CC W the above 1 can be chosen with the property
Yk = 0. Finally we want to put in better form (11). Define K(= K;) =
{z € W;¢(z) < t}. We replace ¢ by x o ¢+ 2|z|> where x has the following
properties
{ x(t) 20, X'(t) >0, x(t) =0Vt <c
>

X' >0, ¥(t) sup, 2(|0¢|+e?)

e,
By this new ¢ we then conclude
(12) 15—y < 10" fl3—2p +10F13 Vf € DgN Dy..

Once the estimate (12) is established the proof of Theorem 6 follows from
classical lines. For reader convenience we give its outline.

Sketch of end of proof of Theorem 6. Let f € L2 (W)* with 9f = 0.
We wish to find a form u € L2 _(W)*~! such that du = f or equivalently:

loc

(13) (Ou,g) = (u,0"g) = (f,9) Vg€ D).
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We define an antilinear functional on R(0*), the range of 9%, by:

(14) g~ (f.9)

(14) is well defined and, besides, we have

(£, 9l < ClIfllllo"gll,

whenever g belongs to ker 0 (this follows from (12) ). If g lies in the orthogo-
nal of ker 9, then the inequality trivially holds. Hence we can extend (14) to
an antilinear functional on L? and thus we get that there exists u such that
(13) is satisfied. Note that u can be chosen up to an element of ker 0. In
particular, we can choose v in the orthogonal complement of ker 9 namely
R(0%). As 0" 0 9* = 0 we can find a solution u such that 0*u = 0. This
equation together with du = f will yield regularity. It can be proved that
if Ou and 0*u are both L?-forms, then u € W1 the Sobolev space of index
1. By an induction argument we can say that for each f € W (W) there
exists u € WH (W) which solves the Cauchy Riemann system. To get the
C® solution, we have just to observe that (-, W (W) =C>(W). O
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