L^2 -estimates and Solvability of the $\bar{\partial}$ System on Weakly q-convex Dihedrons

By Luca Baracco and Pier Nicola Bettiol

Abstract. The weighted L^2 estimates are here exploited to solve the $\bar{\partial}$ problem on q-pseudoconvex dihedrons of \mathbb{C}^n .

Introduction

In this paper we prove local solvability of the $\bar{\partial}$ system in degree $\geq q$ on a weakly q-convex dihedron of \mathbb{C}^n . The basic method in the proof are the a priori L^2 estimates for $\bar{\partial}$ and $\bar{\partial}^*$ which provide both the existence and the regularity of the solutions. This method is very classic and goes back to the celebrated papers by KOHN [7] and HORMANDER [5]. In particular it yields solvability of $\bar{\partial}$ in any degree ≥ 1 on pseudoconvex domains Ω of \mathbb{C}^n . To this end one is lead to introduce a weight $e^{-\phi}$ in the L^2 norms for a strictly plurisubharmonic exhaustion function ϕ of Ω . In the present paper we do not require any more Ω to be pseudoconvex and allow $\partial \partial \phi$, instead, to take negative eigenvalues. Our main contribution consists in finding a q-subharmonic exhaustion function for a non-smooth domain starting from the geometric assumption of q-convexity of its boundary. We owe to ZAMPIERI [8] a part of the techniques exploited in this contest. If, instead of a dihedron, we consider a C^2 half space, our results on solvability of the ∂ system are already stated by HO in [3]. However our approach is original both for a new way of stating the relation of q-convexity of a domain and its boundary and for a simplified use of the L^2 -estimates.

The authors wish to thank the referee for many remarks which improved the general expository quality of the paper.

§1. Basic Definitions

Let $\rho_1, \ \rho_2 : \mathbb{C}^n \to \mathbb{R}$, be functions of class C^2 with \mathbb{C} -transversal differentials that is $\partial \rho_1 \wedge \partial \rho_2 \neq 0$.

²⁰⁰⁰ Mathematics Subject Classification. 32F10, 32F20.

DEFINITION 1. A domain W of \mathbb{C}^n defined by $W = \{z \in \mathbb{C}^n : \rho_1(z) < 0, \rho_2(z) < 0\}$ is said to be a dihedron with edge $S = \{z \in \mathbb{C}^n : \rho(z) = 0, \rho_2(z) = 0\}$.

Note that the edge S is generic. We will often focus our attention at a point $z_o \in S$ and consider wedges which are only defined in a neighborhood B of z_o (that is we require $z \in B$ in Definition 1). In this case we talk about local wedges at z_o . We denote by M_h h = 1, 2 the manifolds defined by $M_h = \{z \in \mathbb{C}^n : \rho_h(z) = 0\}$, and by M_h^+ the closed manifolds with boundary $M_h^+ = \{z \in M_h : \rho_k \leq 0 \text{ for } k \neq h\}$. The latter are the faces of W.

We will consider vectors $w=(w_J)_{|J|=q}$ for multiindices $J=(j_1,\ldots,j_q)$ of total length q, with alternate coefficients. Often we will take, instead, vectors with coefficients having only ordered indices J that is verifying $j_1 < j_2 < \cdots < j_q$. When taking sums over ordered indices we will use the standard notation $\sum_J{}'$. We often play with the alternate and ordered notations. In particular we rewrite vectors of the form $(w_J)_J$ for J ordered of length q, in the form $\frac{1}{q}(w_{iK})_{iK}$, K ordered of length q-1. (Recall that if J and iK are related by a permutation σ , then $w_{iK} = \operatorname{sgn}(\sigma)w_J$.) Let L_{M_h} be the Levi form of M_h that is the Hermitian form $\bar{\partial}\partial\rho_h|_{T^{\mathbb{C}M}}$ where $T^{\mathbb{C}}M$ is the complex tangent bundle to M_h . (For $z \in M_h$ this is defined by $T_z^{\mathbb{C}}M_h = \{u \in \mathbb{C}^n : \langle \partial \rho_h(z), u \rangle = 0\}$.) Let us denote by $\lambda_1^h \leq \lambda_2^h \leq \cdots \leq \lambda_{n-1}^h$ the ordered eigenvalues of L_{M_h} .

DEFINITION 2. A dihedron W is said to be weakly q-convex if for h = 1 and h = 2 we have

(1)
$$\sum_{j=1}^{q} \lambda_j^h(z) \ge 0 \quad \forall z \in M_h^+.$$

It is obvious that condition (1) is invariant under complex orthonormal transformations in \mathbb{C}^n . One can also check (cf. [3. Lemma 2.2]) that

condition (1) is equivalent to

(2)
$$\sum_{|K|=q-1}' \sum_{i,j=1}^n \bar{\partial}_{z_j} \partial_{z_i} \rho_h(z) w_{iK} \bar{w}_{jK} \ge 0 \quad \forall z \in M_h^+,$$

$$\forall (w_{iK})_{iK} \text{ with } |K| = q-1 \text{ and } \sum_{i=1}^n \frac{\partial \rho_h}{\partial z_i} w_{iK} = 0.$$

Indeed the equivalence of the two above condition is immediate once one proves that the second is invariant under orthonormal complex transformation (cf. [3]).) We similarly define the notion of q-subharmonicity for a real function ϕ on \mathbb{C}^n . We denote by $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$ the ordered eigenvalues of $\bar{\partial}\partial\phi$.

DEFINITION 3. ϕ is said to be *q-subharmonic* if and only if

$$(3) \qquad \sum_{j=1}^{q} \mu_j \ge 0.$$

Again, it is possible to check (cf. [3, Lemma 1.3]), that (3) is equivalent to

(4)
$$\sum_{|K|=q-1}' \sum_{i,j=1}^n \bar{\partial}_{z_j} \partial_{z_i} \phi w_{iK} \bar{w}_{jK} \ge 0.$$

We point out the main diffence between the two above Definitions 2 and 3. In the first case only restricted Levi forms such as $\bar{\partial}\partial\rho_h|_{T^{\mathbb{C}}M}$, of size $(n-1)\times(n-1)$ appear, whereas in the second case, the entire Levi form $\bar{\partial}\partial\phi$ of size $n\times n$ enters into play. The main content of subsequent Theorem 5 will consist in relating positivity of forms of such different size.

DEFINITION 4. A real function ϕ defined on W is said an exhaustion function for W when $\phi^{-1}([0,c]) \subset\subset W$ for any positive c.

$\S 2.$ q-convexity of the Boundary and q-subharmonicity of a Defining Function

Let W be a dihedron of \mathbb{C}^n in a neighborhood of a point z_o of its edge S.

THEOREM 5. Let W be weakly q-convex at z_o . Then there exists an exhaustion function ϕ defined on $B \cap W$ (for a suitable spheric neighborhood of z_o) which is q-subharmonic.

PROOF. We shall find two q-subharmonic functions ϕ_1, ϕ_2 defined on $B \cap W$, such that $\phi_h(z) \to +\infty$ for $z \to M_h, h = 1, 2$. If we then take a subharmonic exhaustion function φ for B, it is clear that

$$\phi := \phi_1 + \phi_2 + \varphi$$

will serve the purpose. Let us construct ϕ_1 and ϕ_2 . Let $T_{z_o}M_1^+$ and $T_{z_o}M_2^+$ be the tangent spaces to the manifolds with boundary M_1^+ and M_2^+ respectively. Since $S \subset M_h^+$, h = 1, 2, we have, for suitable v_1, v_2 that $T_{z_o}M_1^+ = T_{z_o}S \oplus \mathbb{R}^+v_1$ and $T_{z_o}M_2^+ = T_{z_o}S \oplus \mathbb{R}^+v_2$ with $\Re e \langle \partial \rho_2(z_o), v_1 \rangle < 0$ and $\Re e \langle \partial \rho_1(z_o), v_2 \rangle < 0$. Set $w = v_2 - \varepsilon v_1$ with $\varepsilon > 0$ small, and consider the map

$$G: M_1^+ \times \mathbb{R}^+ \to \mathbb{C}^n$$

 $(z,\lambda) \mapsto z + \lambda w.$

We show that for a convenient neighborhood V of z_o over M_1^+ and for $\delta > 0$

$$G(V \times (0, \delta]) \supset B(z_o, r) \cap W.$$

To this end it is enough to show that $G'(T_{z_o}M_1^+ \times T_o\mathbb{R}^+) \supset T_{z_o}W$. In fact

$$G'(T_{z_o}M_1^+ \times T_o\mathbb{R}^+) = \{v + \lambda w \text{ such that } \lambda > 0, v \in T_{z_o}M_1^+\}$$
$$= \{s + \lambda w + \mu v_1 \text{ such that } \lambda > 0, \mu > 0, s \in T_{z_o}S\}.$$

On the other hand

$$T_{z_o}W = \{s + \mu_1 v_1 + \mu_2 v_2 \text{ such that } \mu_1, \mu_2 > 0, s \in T_{z_o}S\}.$$

Clearly $T_{z_o}W \subset G'(T_{z_o}M_1^+ \times T_o\mathbb{R}^+)$. It follows that the image of G contains $B \cap W$ for B small.

We can assume, under a unitary change of coordinates, that the direction of w is ∂_{y_1} . Under this assumption we can choose an equation for M_1 of the form $y_1 - g(x_1, z') = 0$; the manifold $G(M_1 \times \{\lambda\})$ will then have equation $y_1 - g(x_1, z') = \lambda$. We set $\rho_1 = -y_1 + g$ and $\phi_1 = -\log(-\rho_1) + C|z|^2$, where C is a big positive constant. We claim that ϕ_1 is q-subharmonic. To see this, we decompose each vector $w = (w_{iK})_{iK}$, with K ordered, as a sum $w = w^t + w^n$ of a tangential and normal component to $\rho_1 = \lambda$ respectively. (This simply means that for each fixed K we take the decomposition in tangential and normal components for the vectors in \mathbb{C}^n : $(w_{iK})_i = (w_{iK})_i^t + (w_{iK})_i^n$, and then take the collection over K ordered for these decompositions.) We also write w_{iK} instead of $(w_{iK})_i$ and so on. We then have for each K

$$\partial \bar{\partial} \phi_1(w_{\cdot K}, \bar{w}_{\cdot K}) = \frac{1}{\rho_1^2} \partial \rho_1 \otimes \bar{\partial} \rho_1(w_{\cdot K}, \bar{w}_{\cdot K})$$
$$-\frac{1}{\rho_1} \partial \bar{\partial} \rho_1(w_{\cdot K}, \bar{w}_{\cdot K}) + C|w_{\cdot K}|^2$$
$$\geq \frac{1}{2\rho_1^2} |w_{\cdot K}^n|^2 - 2\Re e \frac{1}{\rho_1} \partial \bar{\partial} \rho_1(w_{\cdot K}^n, \bar{w}_{\cdot K}^t)$$
$$-\frac{1}{\rho_1} \partial \bar{\partial} \rho_1(w_{\cdot K}^t, \bar{w}_{\cdot K}^t) + C|w_{\cdot K}|^2$$

Since the Levi form at the point $z = (x_1 + iy_1, z')$ coincides with the Levi form at the boundary point $(x_1 + ig(x_1, z'), z')$ (and since $\rho_1 < 0$ on W), we have that

$$\sum_{|K|=q-1}' \left(-\frac{1}{\rho_1} \partial \bar{\partial} \rho_1(w_{\cdot K}^t, \bar{w}_{\cdot K}^t) \right) \geqslant 0$$

(as a consequence of the definition of q-pseudoconvexity). Note now that $\Re e\partial\bar{\partial}\rho_1(w^n_{\cdot K},\bar{w}^t_{\cdot K})\geq -D|w^t_{\cdot K}||w^n_{\cdot K}|$ for some constant $D\geqslant 0$. We then choose our constant C such that $C\geq 2D^2$. Hence the remaining terms in the above expression for $\partial\bar{\partial}\phi_1(w_{\cdot K},\bar{w}_{\cdot K})$ are bounded from below by $C|w_{\cdot K}|^2-\frac{2D}{|\rho_1|}|w^t_{\cdot K}||w^n_{\cdot K}|+\frac{1}{2\rho_1^2}|w^n_{\cdot K}|^2\geq |\frac{1}{\sqrt{2}|\rho_1|}w^n_{\cdot K}-\sqrt{2}Dw^t_{\cdot K}|^2>0$. This implies that ϕ_1 is q-subharmonic. In the same way we construct ϕ_2 . We finally take φ , strictly subharmonic exhaustion function for the sphere, and define ϕ by means of (5). \square

§3. Solvability of the $\bar{\partial}$ Operator on q-convex Dihedrons of \mathbb{C}^n

Let W be a dihedron of \mathbb{C}^n , and z_o a point of its edge. We will deal with the $\bar{\partial}$ -complex over forms with coefficients in $C^{\infty}(W)_{z_o}$ the space of germs at z_o of infinitely differentiable functions on W. We denote by $C^{\infty}(W)_{z_o}^k$ the space of forms $f = \sum_{|J|=k}^{\prime} f_J d\bar{z}_J$ with $f_J \in C^{\infty}(W)_{z_o}$. (It will be understood

all through the paper that the f_J 's are alternate in J whereas the sum $\sum_J{}'$ is taken over ordered indices.) We then consider the $\bar{\partial}$ -complex

(6)
$$\cdots \to C^{\infty}(W)_{z_o}^{k-1} \xrightarrow{\bar{\partial}} C^{\infty}(W)_{z_o}^k \xrightarrow{\bar{\partial}} C^{\infty}(W)_{z_o}^{k+1} \to \cdots$$

THEOREM 6. Let W be a dihedron which is weakly q-convex in a neighborhood of a point z_o of its edge. Then for any form $f \in C^{\infty}(W)_{z_o}^k$ of degree $k \geq q$ which verifies $\bar{\partial}(f) = 0$ there is a form $u \in C^{\infty}(W)_{z_o}^{k-1}$ which solves the equation $\bar{\partial}u = f$.

PROOF. If B is a small sphere with center at z_o , we still denote by W the intersection $B \cap W$. According to Theorem 5, there exists a global q-subharmonic exhaustion function for this new W, that we will still denote by ϕ . We will then prove global solvability of $\bar{\partial}$ on W. Along with forms with $C^{\infty}(W)$ coefficients, we will also consider forms whose coefficients f_J belong to the space $L^2_{\phi}(W)$, that is which have finite integrals $\int_W e^{-\phi}|f_J|^2 dV$. We will adopt the above integrals as norm in the space $L^2_{\phi}(W)$ and also denote it by $||f_J||_{\phi}$. We then switch from the complex (6) to the new complex of closed densely defined operators

(7)
$$\cdots \to L^2_{\phi-2\psi}(W)^{k-1} \xrightarrow{\bar{\partial}} L^2_{\phi-\psi}(W)^k \xrightarrow{\bar{\partial}} L^2_{\phi}(W)^{k+1} \to \dots,$$

where ψ is a new function which will be chosen later on. We write ∂_j and $\bar{\partial}_j$ instead of ∂_{z_j} and $\bar{\partial}_{z_j}$ respectively. We denote by $\bar{\partial}^*$ (resp. δ_j) the adjoint of $\bar{\partial}$ (resp. $\bar{\partial}_j$). The following inequality holds (cf. [3, pages 83-84]):

(8)
$$\sum_{|K|=k-1}' \sum_{i,j=1..n} \int e^{-\phi} (\delta_i f_{iK} \delta_j f_{jK} - \bar{\partial}_j f_{iK} \overline{\bar{\partial}_i f_{jK}}) dV$$

$$+ \sum_{|J|=k}' \sum_{j=1..n} \int e^{-\phi} (\bar{\partial}_j f_J)^2 dV$$

$$\leq 2 \|\bar{\partial}^* f\|_{\phi-2\psi} + \|\bar{\partial} f\|_{\phi}^2 + 2 \|\partial \psi f\|_{\phi}^2 \quad \forall f \in C_c^{\infty}(W).$$

We also have the commutation relations:

(9)
$$\delta_i \bar{\partial}_j - \bar{\partial}_j \delta_i = \bar{\partial}_j \partial_i \phi.$$

Let us denote by (I) the two first double sums in (8). By discarding the second sums which are positive, we get by the aid of (9): $I \ge \sum_{K}' \sum_{i,j} \cdot \int e^{-\phi} \bar{\partial}_{j} \partial_{i} \phi \bar{f}_{jK} f_{iK} dV$. On the other hand, since ϕ is q-subharmonic and therefore satisfies (4), we then have

(10)
$$\sum_{K}' \sum_{i,j} \int e^{-\phi} \bar{\partial}_{j} \partial_{i} \phi \bar{f}_{jK} f_{iK} dV \ge \lambda \|f\|_{\phi}^{2},$$

for some $\lambda \geq 0$. Thus in conclusion: $I \geq \lambda ||f||_{\phi}^2$. This yields, in combination with (8):

(11)
$$\lambda \|f\|_{\phi}^{2} \leq 2\|\bar{\partial}^{*}f\|_{\phi-2\psi}^{2} + \|\bar{\partial}f\|_{\phi}^{2} + 2\|\partial\psi f\|_{\phi}^{2} \quad \forall f \in C_{c}^{\infty}(W)^{k}.$$

We first want to remove the restrain " $f \in C_c^{\infty}(W)$ " in (11). To this end let $D_{\bar{\partial}},\ D_{\bar{\partial}^*}$ be the domains in (7) of $\bar{\partial}$ and $\bar{\partial}^*$ resp. If we choose ψ according to the density Lemma 4.1.3 by [4], then (8) will be true for any $f \in D_{\partial} \cap D_{\bar{\partial}^*}$. Note that for all $K \subset\subset W$ the above ψ can be chosen with the property $\psi_{|K}=0$. Finally we want to put in better form (11). Define $K(=K_t)=\{z\in W; \phi(z)\leq t\}$. We replace ϕ by $\chi\circ\phi+2|z|^2$ where χ has the following properties

$$\begin{cases} \chi(t) \ge 0, \ \chi'(t) \ge 0, \ \chi(t) = 0 \ \forall t \le c \\ \chi'' \ge 0, \ \chi'(t) \ge \frac{\sup_{K_t} 2(|\partial \psi| + e^{\psi})}{\lambda_{K_t}} \end{cases}$$

By this new ϕ we then conclude

(12)
$$||f||_{\phi-\psi}^2 \le ||\bar{\partial}^* f||_{\phi-2\psi}^2 + ||\bar{\partial} f||_{\phi}^2 \quad \forall f \in D_{\bar{\partial}} \cap D_{\bar{\partial}^*}.$$

Once the estimate (12) is established the proof of Theorem 6 follows from classical lines. For reader convenience we give its outline.

Sketch of end of proof of Theorem 6. Let $f \in L^2_{loc}(W)^k$ with $\bar{\partial} f = 0$. We wish to find a form $u \in L^2_{loc}(W)^{k-1}$ such that $\bar{\partial} u = f$ or equivalently:

(13)
$$(\bar{\partial}u,g) = (u,\bar{\partial}^*g) = (f,g) \quad \forall g \in D(\bar{\partial}^*).$$

We define an antilinear functional on $R(\bar{\partial}^*)$, the range of $\bar{\partial}^*$, by:

(14)
$$\bar{\partial}^* g \mapsto (f, g).$$

(14) is well defined and, besides, we have

$$|(f,g)| \le C||f|| \|\bar{\partial}^* g\|,$$

whenever g belongs to $\ker \bar{\partial}$ (this follows from (12)). If g lies in the orthogonal of $\ker \bar{\partial}$, then the inequality trivially holds. Hence we can extend (14) to an antilinear functional on L^2 and thus we get that there exists u such that (13) is satisfied. Note that u can be chosen up to an element of $\ker \bar{\partial}$. In particular, we can choose u in the orthogonal complement of $\ker \bar{\partial}$ namely $\overline{R(\bar{\partial}^*)}$. As $\bar{\partial}^* \circ \bar{\partial}^* = 0$ we can find a solution u such that $\bar{\partial}^* u = 0$. This equation together with $\bar{\partial} u = f$ will yield regularity. It can be proved that if $\bar{\partial} u$ and $\bar{\partial}^* u$ are both L^2 -forms, then $u \in W^1$ the Sobolev space of index 1. By an induction argument we can say that for each $f \in W^s_{loc}(W)$ there exists $u \in W^{s+1}_{loc}(W)$ which solves the Cauchy Riemann system. To get the C^∞ solution, we have just to observe that $\bigcap_{s>1} W^s_{loc}(W) = C^\infty(W)$. \square

References

- [1] Andreotti, A. and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem. Part II: Vanishing Theorems, Ann. Sc. Norm. Sup. Pisa (1972), 747–806.
- [2] Dufresnoy, A., Sur l'operateur ∂ et les fonctions différentiables au sens de Whitney, Ann. Inst. Fourier **29** (1979), 229–238.
- [3] Ho, L. H., $\bar{\partial}$ problem on weakly q-convex domains, Math. Ann. **290** (1991), 3–18.
- [4] Hörmander, L., An introduction to complex analysis in several complex variables, Van Nostrand, Princeton N.J. (1966).
- [5] Hörmander, L., L^2 estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113 (1965), 89–152.
- [6] Hörmander, L., Sur la regularité C^{∞} du $\bar{\partial}$ au bord d'un domaine de C^n dont la forme de Levi a exactement s valeurs propres strictement negatives, Math. Ann. **195** (1993), 131–165.
- [7] Kohn, J. J., Regularity at the boundary of the $\bar{\partial}$ -Neumann problem, Proc. Nat. Acad. Sci. U.S.A. **49** (1963), 206–213.
- [8] Zampieri, G., Solvability of the $\bar{\partial}$ problem with C^{∞} regularity up to the boundary on wedges of \mathbb{C}^N , Israel J. Math. **115** (2000), 321–331.

(Received May 21, 2001) (Revised March 1, 2002)

Luca Baracco Dipartimento di Matematica Universita di Padova via Belzoni, 7 Padova Italy

E-mail: baracco@math.unipd.it

Pier Nicola Bettiol

E-mail: bettiol@math.unipd.it