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Special Solutions of the Hamiltonian System

on an Elliptic Curve

By Yoshikatsu SASAKI

Abstract. Special solutions of Hamiltonian systems defined on
an elliptic curve are studied; those solutions are reduced to the ordi-
nary differential equation of the first order. The first integral of the
equation is given in terms of a ratio of elliptic theta functions. Two
cases of degeneration of the elliptic curve are also investigated. The
functions describing the first integrals are similar to those given as
solutions of Bruschi-Calogero equation.

Introduction

The present article concerns a Hamiltonian system on an elliptic curve.
This system is obtained in [O2] by means of holonomic deformation of a
linear differential equation defined on an elliptic curve.

The theory of holonomic deformation, or monodromy preserving defor-
mation, has been considered mainly on the projective line CP!. It is well-
known that the Painlevé equations are obtained by holonomic deformation;
cf. [O1]. In particular, a Hamiltonian structure associated with the Painlevé
equations is defined in a natural manner; the sixth Painlevé equation Py

is written in the form :
dg OH

=g =5, -1

dp _ _0H
dt  9q’

with the Hamiltonian function
H = qlqg—1)(¢—t)p°

—{ko(qg —1)(q —t) + Kx1q(q —t) + (0 — 1)g(qg — 1)}p
+r(q —t),

m:i[(/ﬁo—l—m—i-é’—l)g—/igo].
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When « = 0, we obtain special solutions of Pyr, given by:

dg OH
p = 0,

which is reduced to the Riccati equation:

(1) Ut 1)5 = —wola— 1)(g—1) ~ magla — 1) — (0~ alg 1)
Moreover, (1) can be linearized by the use of Gaul Hypergeometric Func-
tions.

The holonomic deformation of a linear ordinary differential equation
of the second order, defined on an elliptic curve E, is also governed by a
Hamiltonian system. We begin with recalling results obtained by [O2].

Let © be the lattice generated by two complex numbers 2w, 2ws such
that Im(ws/wi) > 0. We denote by p(z) Weierstral p-function with the
fundamental periods 2wy, 2ws, and by ((z) Weierstraf§ (-function. By iden-
tifying an elliptic curve E with C/€Q , we represent a linear ordinary differ-
ential equation defined on E as an equation whose coefficients are elliptic
functions.

Consider the linear differential equation

d?y
(2) a2 p(z;t)y
defined on E, such that
(3) p(zit) = v+ aop(z) + arp(z — 1)

3 3
+ Zp(z — A1)+ Zp(z —X2)
+ Hj(z;t) — p13(z; A1) — p23(2; A2)

where 3(\; ) is the function :

3(Asp) = C(A —p) = C(A) + ()
_ 1N+
2 p(\) —p(u)
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Equation (2) is of the Fuchsian type and the Riemannian scheme of (2)
reads:

([ 2=0 z=t z=X (k=1,2) mod.Q

1
(+e) s0+e) 3

DO =

(1— co) %(1 — ) —%

DO | =

\

(002 — 1)70,1 = i(012 — 1).

=

where ag =

We make the following assumption :
(H) none of A\ + 2 (k= 1,2) is a logalithmic singularity.

Considering the holonomic deformation of (2)-(3) under Assumption
(H), we obtain the following result:

ProrosiTION 0.1 ([0O2]). The holonomic deformation of (2)-(3) is
governed by the Hamiltonian system :

AN _OH - dp _ OH

(4) At O, At O

with the Hamiltonian H :
H = M{(1® = p2*) + (i1 + p2) N — P}.
Here we put :
M = {C( =) = (A2 — 1) = C(AM) + (M)}
)

N =3(A1;A2) = (A1 — A2) — (A1) + (A2
P =ao{p(A1) — p(A2)} + ar{p(r — 1) — p(A2 — 1)}

Moreover, consider the linear equation :

d%y
dz2

(5) = q(z;t)y,
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such that
(6) q(zit) = p+1*tPp(2) + it/ (2)
3 3
+ Z@(z — A1)+ Z@(Z —A2)

+ Kp(z) — p3(z; A1) — pe3(2; A2).

(5)-(6) is the linear differential equation with an irregular singularity; we
obtain this by means of coalescence of two singularities of (2)-(3). It is
known that :

ProposITION 0.2 ([O2]). The holonomic deformation of (5)-(6) is
governed by the Hamiltonian system as follows:

oK OK d
7 D\y=72—, Dpy=--— k=12, D=t—_
() k a“k’ /’Lk aAk 7 ) ) dt?

with
K = L{(* — p2°) + (p1 + p2) N — Q}.

Here we put:

L={p(\)—pr)} "
N =3(A1;02)(= C(A1 — A2) — C(A1) + ¢(A2))
Q =10’ t*{p(M)* — p(X2)*} + rit{e' (M) — 9'(A2)}.

The aim of the present article is to consider special solutions of (4) in
the case: ag = a; = 0, and those of (7) with rg = r; = 0. For Hamiltonian



Special Solutions of the Hamiltonian System 673

system (4), we have from Proposition 0.1 the following expressions:

( OH

— = M(2 N

o (241 + N)

oOH

A M(—2us + N
o (—2p2 + N)

OH 0 1 0
N M{(—a—)\lM)H+ (8—)\1]\7)(#1 + p2)

~ang! (M) — a1 (M — t)}

O0H 0 1 0
P M{(—a—)qﬂ)ﬁu‘ (8—)\2]\7)(#1 + 2)

+ aop,()\g) + alp/(Ag — t)}

\

Then, when ag = a; =0, (4) admits particular solutions given by :

_ dpp  dpe
=0 =g =0
and then
d\1 dXe
8 — =—=M(N+h

where h(= 2u1 = —2u2) being a constant.

We will show below (Theorem 1) that (8) admits a first integral
Fi(A1,A2,t). Here we say that F' is a first integral of (8) if the function
takes a constant value along a particular solution of (8). That is, the gen-
eral solution of (8) is given by:

9) A1 — A2 = 2a,
(10) Fi(A1, Ao, t) = b,

where a, b are arbitrary constants.
To give an explicit form of Fi, we fix a moduli of E as follows:

a) (elliptic case) 2wy =1, 2ws =7, Im7 > 0.

Moreover, we will consider equations of the form of (8), also on a rational
curve obtained from the elliptic curve E by the degenerations:
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b) (trigonometric case) Im7 — oo,

c) (rational case) w; — 00, wg — 0.
Then we have the
THEOREM 1. (8) admits a first integrals given as follows:

a).Elliptic case.

Yo(x — ¢)Po(u — ¢)
190(.%‘ + C)??o(u + C)

Fl()\l, )\Q,t) = eﬂlt

b). Trigonometric case.

Fy(A1, Mg, t) = ehiat (627r\/jlw — 7)(@2W\/jlu — )
o (e27V =Tz _ §)(e2mV/~1u _ §)

¢).Rational case.

—d)(u—d)
EF3(Aq, Ao, t :e’“”t(x—
3(A1 de 1) (z + d)(u + d)
Here we introduce variables x,u as follows:
A1+ Ao
T = ,
2
w—t_ AL+ A
2 )

and vy is the elliptic theta function, c,d,~,0, K1, Ko, k3 being constants.

On the other hand, consider a class of integrable dynamical systems
characterized by the equations:

n

k=1

k#j
v being a function. This is called Ruijsenaars-Schneider system ([RS]),
which can be written in the Lax form ([BC1]) :

L =L, M],
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where L and M are the n X n matrices such that:
Ly = 8y + (1= 88)(¢5d0) gy — an),
My, =6, Z GmB(q; — am) + (1 = 8)(4566)* (g5 — ar)-
m=1
m#j

Here the function «(z) satisfies the equation:
1) a(z)d (w) - (2)e(w) = (a(z + w) — a(z)a(w))(n(z) — n(w)),
which is called Bruschi-Calogero equation.

Let a and 1 be holomorphic functions defined on a punctured disk {z €
C;0 < |z] < r} for some r > 0. It is shown recently by [KS] that if they
satisfy Bruschi-Calgero equation, then they are equal to one of the following
functions.

0-1) a(z)=0o0re* (peC),
n :arbitrary,

0-2) a(z)=Ce”* (C,peC,C#0,1),
1 :constant,

1) a(z)= o2 0oV +Az) ( ps i, v, A€ C,\ wi, w3 € C\O, )

o(W)o(p+Az)" \UImws/wi > 0,pu,v ¢ Z(2wr) + Z(2ws3)
n(z) = AC(Az) = AC(Az + p) + A4,

o(w) = o(w;wi,ws) being the o-function of Weierstraf;

a(eQZ//\ —1)+b
c(e2s/A — 1)+ b’

)\,p,a,b,c,AGC,)\#O,
bla—c)#0,a#00rb+#c,c#0ora#b

— 22" ee M A — 1) + b+ A,

2)  a(z) =e”

IN—1e22/A
77(2) = 022/ _ |
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_ pzaz—i—b _
3) alx)=e——m, (pabeAeCbla=c)#0)
(z)—*—i—A
1 ~ z(ez +b) '

Let Fy = F1(A1, A2, t) be the function given in Theorem 1. Since
Po(v) = exp(—2n1w1v2)190(0)03(2w10),
o3(z) = exp(—n3z)o(z + ws)/o(ws),
we have

Fy — emtgean(mtim) 02wz + (w3 — 2cw1))o(2wiu + (w3 — 2cwy))
o(2wix + (w3 + 2cw1))o (2wiu + (w3 + 2cw1))’

where o3 is the Weierstral co-o-function. By putting

V= —2wT — w3 — 2cwi,

= —2wir — w3+ 2cwi,

and then using the pseudo-periodicity of o-function, we obtain the following
expression:

Fl — 6(n1+8cw1n1)ta<ﬂ)a(y + let) )
o(v)o(p+ 2wit)

This shows that a first integral of (8) solves Bruschi-Calogero equation (11).
A mathematical meaning of this fact is not yet clear.

When considering (7) which is the Hamiltonian system of confluent type
with 79 = 1 = 0, we have a special solution of the form:

dpr dpe
= 0 _— e =
[ 1) ) dr dr )
d\; dXo
12 t— =t—=L(N+h
where h(= 2u; = —2pu2) being a constant. We can give an explicit form of

a first integral of (12); in fact we have the
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THEOREM 2. (12) admits first integrals as follows:

a).Elliptic case.

o(x —
Gl()\l,/\g,t) = tO’(I

b). Trigonometric case.

627r\/—1x _ C—l

_ b))
Ga(A1, Ao, t) = 2 T PR

C1 Co
X exp e2ﬂ\/jm —_C-1 - eZﬂJTlx e

+ - + -
(627r\/71x —C-1)2 (e2m/71x — ()2 ’
¢).Rational case.

(z — a)(z + a)
(x — v/=3a)(z + v—3a)’

Here x = %, and o denotes the o-function of Weierstraf, s, a, b, C,
a, ci(i =1,2,3,4) being constants.

G3(A, Ao, t) =1t

We will verify the theorems in the following two sections. In Section 1
we consider (8) and (12) in the elliptic case; Section 2 is devoted to an
investigation of the degeneration cases.

1. First Integrals

In this section, we study differential equations (8) and (12) in the elliptic
case; the degeneration cases are investigated in the next section. Consider
the equation:

dh dhs
(8) dt  dt

where

= M(N +h),

M ={{(M—t) =2 —t) — (M) + ¢,
N =M1 —A2) — C(A1) +C(N2).
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It is clear that

a_)\l—)\2
2

is independent of ¢.
We show:

LEMMA 1.1. (8) has a first integral of this form:

Yoz — ¢)do(u — ¢)
Yo(x + ¢)do(u+ ¢)

F1(>\1, )\Q,t) = e”“t

where Vo(p) is the elliptic theta function. Here we put:

A1+ A2
x = ,
2
u_ti)\l+>\2
- —

K1, ¢ being constants.

PROOF OF LEMMA.

d\;  d)hy  dz
=== =M(N+h
dt dt dt (N +h),

that is, M ~tdx = (N + h)dt, we have:
M~'dz = (N + h)dz + (N + h)dw.
On the other hand, we compute:

N = (A1 = A2) = ¢(A1) + C(A2)
= ((2a) = ((z + a) + ((x —a)
— 3z —aia +a),

3(u;v) being the function defined in Introduction, and then
M~ =N =¢—1) = ¢ = 1) = ((A1 = Xa)

= ((a—u) = ¢(—a —u) = ((2a)
= —((2a) + ((u+a) = ((u —a)
=3(u—a;u+a).
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It follows that:

(13) + —0,

where we put:

3(w) = 3(w—a;w+a).
def.

Using the addition formulae of elliptic functions, we can show

1p"a)  p(a)
2¢/(a) p(z) - p(a)

3(2) =

)

then we have:

where
_ 2¢(a)?
— 2hg/(a) + ¢'(a)’

. 2@,@)2
I =) e + @)

= a+¢/(a).

Now we need some constants, related to the elliptic curve E:

wo = —(wl + wg),
e = p(wy), M =C(wy), v=12,3
p=+e —es k= 27
el — e3

Then we define a constant ¢ by:

ez — 3
P

—k%sn?q =

Here we denote by sng Jacobi elliptic function, which is related to the
Weierstral p as follows:
€1 —e3

9(2)263—'—51127(02)‘
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PrRoPOSITION 1.2. By using the notations given above, we have:

I J—
_dw :d<{1+2g003(c)}w+g010g703(w C)>,
h o3

3(w) — a3(c) (w+¢)
h ! a c=1 (w) being the Weierstraf$ co-o-func
where ¢ = — ,c=—,0 -0- -
L p3k? sng cng dng P 3 g
tion.

Lemma 1.1 follows from the Proposition; in fact, we obtain:

dx . du
3(x) —h  3(u)—h

“a({aig)eem o).

It follows that, if we put;

Fi(A1, Ao, t) = e¥t o3(z — c)os(z — )
Y o3(x +c)os(z+¢)’
1o

Ve e

)

then dFy = 0, along a solution of (8). the Weierstra3 co-o-functions are
related to theta functions as follows:

9, .
0_]()\) — 62”1W1M2M 7j — 17273 s (’190(#) = 194(ﬂ))
Q9J+1(0)
A

2LU1 '

Then, by normalizing as 2wy = 1, we obtain the following expression for the
first integral:

Jo(z — ¢)Jo(u — ¢)

Fi(AL, A, ) = et
1 A, ) = & o (u + o)

)

where k1 = 1) — 4nc(= 2wiyp — 4npc).
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Proposition follows from the following formula on elliptic integrals of the
third kind:

sn?w _loz(x—c) | o3(c)

1 — k2sn?gsnw YT o3(x+c)  o3(c)

w
k? sng cng dng /
0

with w = pzx, ¢ = pc. The left hand side of this formula is often denoted
as II(w, q), called the Jacobi-II-function ([E], [HC]). Lemma 1.1 has been
established.

Next we investigate the equation

Ay d
pAL 42 g
@~ tq - HWN D),

L= {p(A1) = p(X2)} 7",
N =3(A15 A2) (= €A1 = A2) = (A1) + ¢(A2))-
We deduce from (12) the equation

dt  pla+a)—pla—a),

=0
¢ 3(@) —h =0
where we put:
x_)\1+)\2 a_/\1—)\2
o2 T2

Note that a is constant and recall the identity:

_ 29/(e)?
~ 2hg/(a) +¢"(a)’
2¢'(a)”
1 _ _ /
/8 - p (a) 2hp/(a) + p//(a) « + p (a)
By the use of the addition formulae, we have
¢'(a)p'(x)

Pleta) el o) = @
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and then

Then it follows that:
dt dz
t L(N+h)
(i i)
t p(r) =B  p() —pla)
=d (logt — log{p(z) — 8} + log{p(z) — p(a)}) .

We arrived at the first integral of (12):

Gr(M, Mo, t) = (#(2) — pla)

Since

by defining b by p(b) = 3, we have the

LEMMA 1.3. (12) has the first integral

B g(x — a)0(37 —+ CL)
Gi(A1, Ao, t) = Y@ b +b)

2. Degeneration of the Elliptic Curve

Firstly we consider the trigonometric case: 2w; = 1,Im 7 — oco. Put:
v AL+ A2 u—t—)\1+>\2 . Al — A2
o2 2 2
X — e27r\/jlm U— e27r\/—71u A= 627r\/—71a.
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For the trigonometric case, the Weierstrafl p-functions reduce to the func-

tion:

1 1
2

x) = — =0,
pla)=m {sin27m: 3}

COSTTX

sin® 7

o/ (x) = —2

Then we have:

( - ) By _462rﬁ(x—a) _1 By —4AX _1
plr—a)=m (e2mV=1(@—a) _1)2 3 N (X —A)2 3])°
( . ) L, _4€2n¢?1(m+a) B 1 . —4AX B 1
plr—ra)=m (e2rV~I(ata) —1)2 3 -7 (AX —1)2 3]’

m/—1(z—a) —myv/—1(z—a)
o N3 T € +e
© (x a) =8m 1 (ewm(w—a) — e_ﬂ\/jl(x_a))g
AX(X +4)
X AP
ewﬁ(x+a) +6—W\/jl($+a)
(eﬂ\/jl($+a) — 6*77\/7_1(m+a))3

= 8m3v/—1

¢ (x +a) =8r3/—1

AX(AX +1)
=8/ 1— .
m (AX — 1)3
(See [S].)
LEMMA 2.1.  For the trigonometric case, the equation
d\;  dAe
—=—=M(N+h
@~ oar M
has the first integral
X—7)U=-1)
Fy(Aq, Mg, t) = rat
2( 1, 27) € (X*(S)(U*(S) )

Ko,7,0 being constants.

Proor or LEMMA 2.1. Note that
A = o2V =Ta _ 2my/—131522
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is not depending on ¢. Since dX = 2wy/—1Xdz, we obtain

dz dz

i) —h  ((z+a)—((r—a)—((2a) = h
[lg@-—a)+¢z+a) 7
‘{2p<x—a>—@<x+a> h} a
om dX 1+ X2 —¢X
Tory/—1 X 1+ X2 X’

where we put:

B A(1 — A?)
T TORA(L =A%) — 27/ —TA(1 + 42)
1+ A2
$ = AL - A2y
. 2h(1 — A?) + 27/ —1(1 — 6A + A?)

2hA(1 — A?) — 2my/—T1A(1 + A?)

We define constants ~, 7/, 8,6’ by:

£=9"+¢,
n=n~-+6,
v6 =6 =1;
hence we obtain:
(1+X*)-&X (X)X -9)
1+ X2)+nX (X —9)(X -96)
_ 1+(7+6)—(7/+6/) X X
v—206 X—-v X-6)
By putting:
v—20

R RGNSk



Special Solutions of the Hamiltonian System 685

we rewrite the equation as follows:

2wy=1( de | du ) _dX 1 (dX  dX
m i) —h 3u)—hf X ke \X-—7vy X-¢
JWw 1 /v du
U ko \U—~v U-=-96
1, (X=71U=9)
=d|logX —1 .
@ lon X0+ on

We thus obtain the integral:

FQ()\17)\27t) _ engt (X — 7)(U — 7)'

For the rational case: 2w; — o0, 2ws — o0, a first integral of (8) is given
by the following Lemma:

LEMMA 2.2. (8) has the first integral

—d)(u—d)
Fy (0, f) = et
3 de ) = e T d)
Here we put

x—)\1+)\2

= TR

A e

2 )

and define the constants ks, d as follows:

_ V/(ah +1)(2ah - 3) _ [2ah -3 A=
= 2 A=\ oy for es 5

ProOOF OF LEMMA 2.2. In the rational case, we have:

()=
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Then
3(2) = ((z +a) = ((z — a) — ((2a)
1 11
Cz24a z—a 2a
_ 2% 4 3a?
 2a(2%2 —a?)’
therefore
dz 2a 8a3 1
= |- + dz
3(2)—h 1+2ah (14 2ah)? 22 4 3200142
B 2az . 4a3d1 o 1—d 1z
- 1+2ah  (1+2ah)2 ®1+d12)
where
2ah — 3
d= .
N\ 2ah +1
By putting
o 1+ 2ah
37 T 9q2q- 1
we have
dx du
+

2 2 1-%H(1 -4
= (FE e e )
1+2ah  k3(142ah) 7 (1+5A+Y)
from which we have the integral:

_ K3 (z —d)(u—d)
Fy(M o, t) = 0o

We have computed the proof of Theorem. For confluent type equation (12),
Theorem 2 can be established in a similar manner; we do not enter into
detail of verification. [
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