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Hydrodynamic Limit for the Ginzburg-Landau ∇φ

Interface Model with a Conservation Law

By Takao Nishikawa

Abstract. Hydrodynamic limit for the Ginzburg-Landau ∇φ in-
terface model was established in [5] under the periodic boundary con-
ditions. This paper extends their results to the modified dynamics
which preserve the total volume of each microscopic phase. Nonlinear
partial differential equation of fourth order

∂h

∂t
= −∆ [div {(∇σ)(∇h(t, θ))}] , θ ∈ T

d ≡ [0, 1)d, t > 0

is derived as the macroscopic equation, where σ = σ(u) is the surface
tension of the surface with tilt u ∈ R

d. The main tool is H−2-method,
which is a modification of H−1-method used in [5]. The Gibbs mea-
sures associated with the dynamics are characterized.

1. Introduction

The Ginzburg-Landau ∇φ interface model determines stochastic dynam-

ics for a discretized hypersurface separating two microscopic phases embed-

ded in the d + 1 dimensional space. The position of the hypersurface is

described by height variables φ = {φ(x); x ∈ Γ} measured from a fixed d

dimensional hyperplane Γ. The hyperplane Γ is discretized and considered

as Γ = Z
d or Γ = ΓN := (Z/NZ)d when we introduce periodic boundary

conditions.

Once an interface energy (Hamiltonian) is admitted to φ by the formula

H(φ) =
1

2

∑
x,y∈Γ,
|x−y|=1

V (φ(x) − φ(y)),(1.1)
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the dynamics of the interface can be introduced by means of the Langevin

equation

dφt(x) = − ∂H

∂φ(x)
(φt) dt+

√
2dwt(x), x ∈ Γ,(1.2)

where {wt(x); x ∈ Γ} is the family of independent one dimensional Brown-

ian motions. Funaki and Spohn [5] discussed the large scale hydrodynamic

behavior of the dynamics governed by (1.2) with periodic boundary condi-

tions, namely, by taking Γ = ΓN .

Another dynamics can be associated with the Hamiltonian H by con-

sidering the equation

dφt(x) = ∆
∂H

∂φ(x)
(φt) dt+

√
−2∆dwt(x), x ∈ Γ,(1.3)

where ∆ is the discrete Laplacian, see below. The dynamics determined by

(1.3) have a different feature from those governed by (1.2). Indeed, (1.3)

preserves the total volume
∑

x∈Γ φt(x) of the phase under the interface, al-

though (1.2) doesn’t have such conservation law. Hohenberg and Halperin

[7] called the equation (1.2) model A and (1.3) model B, and studied qual-

itative difference between these two models. The models corresponding to

(1.2) and (1.3) in the particles’ systems are the Glauber dynamics and the

Kawasaki dynamics, respectively. The aim of this paper is to investigate

the hydrodynamic limit of the dynamics determined by (1.3).

From the point of view of the theory of the interfaces, the equation (1.3)

serves as a model of the so-called surface diffusion, which is a model of

the interface for binary arroys, see Spohn [10]. The mass of each arroy is

conserved so that the particles (atoms of each arroy) move around on the

surface separating two phases. To formulate such phenomena microscop-

ically, the integer-valued height variables are introduced by counting the

number of atoms of one type piled up over the fixed hyperplane Γ. The

model studied in this paper is a continuous analog of such SOS type model,

although the spatial structure is kept to be discrete.

Now, it is the position to formulate our problem more precisely. We take

Γ = ΓN and consider the dynamics of the interface φ which are governed
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by the stochastic differential equation (SDE)

dφt(x) =
∑
y∈ΓN ,
|x−y|=1

{Uy(φt) − Ux(φt)} dt+
√

2dw̃t(x), x ∈ ΓN ,(1.4)

where {w̃t(x);x ∈ ΓN} is the family of Gaussian processes with mean 0 and

covariance structure

E[w̃t(x)w̃s(y)] = −∆ΓN
(x, y)t ∧ s.(1.5)

The function Ux(φ) is defined by

Ux(φ) :=
∑
y∈ΓN ,
|x−y|=1

V ′(φ(x) − φ(y))(1.6)

from a potential V : R → R satisfying the conditions (V1)-(V3) stated

below and ∆ΓN
(x, y) is the kernel of the discrete Laplacian ∆ΓN

on ΓN
determined by

(∆ΓN
ψ)(x) ≡

∑
y∈ΓN

∆ΓN
(x, y)ψ(y)

=
∑

y∈ΓN ,|x−y|=1

{ψ(y) − ψ(x)}, ψ ∈ R
ΓN , x ∈ ΓN .

The equation (1.4) is the same as (1.3), but written in more accurate man-

ner. Under the dynamics (1.4), the total volume
∑

x∈ΓN
φt(x) is conserved

in t as we have already pointed out. From the microscopic dynamics deter-

mined by (1.4) by changing scales in space and time properly, we shall derive

a fourth order nonlinear partial differential equation (PDE) of parabolic type

which describes macroscopic phenomena.

We assume the following conditions on the potential V :

(V1) (smoothness) V ∈ C2(R).

(V2) (symmetry) V (η) = V (−η), η ∈ R.

(V3) (strict convexity) There exist two constants 0 < c+, c− < ∞
such that c− ≤ V ′′(η) ≤ c+ for all η ∈ R.
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These assumptions guarantee that the equation (1.4) on ΓN and also on an

infinite lattice Z
d have strong solutions (see Section 2.2) and the method of

energy estimates works (see Section 5.1).

We introduce the macroscopic height processes from microscopic ones

as follows:

hN (t, θ) =
∑
x∈ΓN

N−1φN4t(x)1B(x/N,1/N)(θ), θ ∈ T
d,(1.7)

where T
d ≡ [0, 1)d stands for the d-dimensional unit torus and B(θ, a) =∏d

α=1[θα − a/2, θα + a/2) denotes a box in T
d with center θ = (θα)dα=1 and

side length a > 0. We note that the diffusive scaling is not appropriate for

(1.4) and, indeed, another scaling should be introduced: the factor N for

the spatial scaling, while N4 for the time scaling.

Moreover, we assume the following conditions on the initial data φ0 of

(1.4):

(I1) There exists h0 ∈ L2(Td) such that lim
N→∞

E‖hN (0)−h0‖2
H−1(Td) = 0,

see Section 4.2 for the definition of the H−1-norm ‖ · ‖H−1(Td).

(I2) The sequence {hN (0)} satisfies sup
N≥1

E‖hN (0)‖2
L2(Td) <∞.

Now, we state the main theorem of this article:

Theorem 1.1. Assume (V1)-(V3),(I1) and (I2). Then, for every t >

0, hN (t) converges as N → ∞ to h(t) which is the unique weak solution of

the PDE

∂

∂t
h(t, θ) = −∆

[
div
{

(∇σ)(∇h(t, θ))
}]

≡ −
d∑

α=1

∂2

∂θ2
α

d∑
β=1

∂

∂θβ

{
∂σ

∂uβ
(∇h(t, θ))

}
, θ ∈ T

d, t > 0
(1.8)

with initial data h0, where ∇h = (∂h/∂θα)dα=1. The function σ = σ(u) is

the surface tension of the surface with tilt u ∈ R
d, see Section 3.3. More

precisely, for every t > 0,

lim
N→∞

E‖hN (t) − h(t)‖2
H−1(Td) = 0.(1.9)
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We shall treat not only the height variables φ but also the gradient fields

to study the associated Gibbs measures, and to establish the local equilib-

rium similarly to [5]. The gradient fields on ΓN and Z
d together with their

time evolutions will be introduced in Section 2. In Section 3, we character-

ize the family of all shift-invariant Gibbs measures for the gradient fields.

The method of energy estimates used by [5] doesn’t seem to work straight-

forwardly for this purpose. We therefore use another method: comparison

between our dynamics and non-conservative dynamics studied in [5]. The

local equilibrium is shown in Section 5 for the coupling of the stochastic

dynamics with the discretization of the PDE (1.8). To do this, we study

PDE (1.8) and its discretization in Section 4. After these preparations, we

prove Theorem 1.1 in Section 6. Finally in Section 7, we give some remarks

to our results.

2. Dynamics

In this section, we introduce the dynamics of the height variables on the

infinite lattice Z
d and those for the corresponding gradient (height differ-

ence) fields.

2.1. Basic Notations

Let (Zd)∗ be the set of all directed bonds b = (x, y), x, y ∈ Z
d, |x−y| = 1

in Z
d, and let Γ∗

N be the set of those consisting of sites of ΓN . The bond

b = (x, y) is directed from y to x. We write xb = x and yb = y for b = (x, y).

The bond −b means the bond b reversely directed, that is −b = (yb, xb).

The bond b is called positively directed if (xb − yb) · eα ≥ 0 holds for every

1 ≤ α ≤ d, where eα are unit vectors of direction α in Z
d. We denote the

bond (eα, 0) by eα again if it doesn’t cause any confusion. For every subset

Λ of Z
d, we denote the set of all directed bonds touching Λ by Λ∗, that is

Λ∗ = {b ∈ (Zd)∗; xb ∈ Λ or yb ∈ Λ}.

For ψ = {ψ(x); x ∈ Z
d} ∈ R

Zd
, the gradient ∇ and the discrete Lapla-

cian ∆ are defined by

∇ψ(b) = ψ(x) − ψ(y), b = (x, y) ∈ (Zd)∗,
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∆ψ(x) =
∑

y∈Zd,|x−y|=1

{ψ(y) − ψ(x)}, x ∈ Z
d,

respectively. We denote the kernel of ∆ by ∆(x, y). We can define operators

∇ΓN
on the torus ΓN and ∇Λ on the domains Λ ⊂ Z

d with Γ∗
N and Λ∗ in

place of (Zd)∗, respectively. And the operators ∆ΓN
and ∆Λ are defined by

∆ΓN
ψΓN

(x) =
∑

y∈ΓN ,|x−y|=1

{ψΓN
(y) − ψΓN

(x)}, x ∈ ΓN ,

∆ΛψΛ(x) =
∑

y∈Λ,|x−y|=1

{ψΛ(y) − ψΛ(x)}, x ∈ Λ

for ψΓN
= {ψΓN

(x); x ∈ ΓN} ∈ R
ΓN and ψΛ = {ψΛ(x); x ∈ Λ} ∈ R

Λ,

respectively. In the case without confusion, we omit noting the domains ΓN
and Λ.

A sequence of bonds C = {b1, . . . , bn} is called a chain connecting from

y to x, x, y ∈ Z
d, if yb1 = y, xbi = ybi+1

, 1 ≤ i ≤ n − 1 and xbn = x. The

chain C is called a closed loop if xbn = y1. A plaquette is a closed loop

P = {b1, . . . , b4} such that {xb1 , . . . , xb4} consists of four distinct points.

Now, let X be the family of all η ∈ R
(Zd)∗ which satisfy the plaquette

condition:

(P1) η(b) = −η(−b), b ∈ (Zd)∗.

(P2) For any plaquette P,
∑

b∈P η(b) = 0 holds.

We note that the gradient field η ∈ R
(Zd)∗ defined by η(b) = ∇φ(b), b ∈

(Zd)∗ from the height variable φ ∈ R
Zd

always satisfies the plaquette condi-

tion. Similarly, let XΓ∗
N

be the set of all η ∈ R
Γ∗
N which satisfy the plaquette

condition. Let L
2
r be the set of all η ∈ R

(Zd)∗ such that

|η|2r :=
∑

b∈(Zd)∗

|η(b)|2e−2r|xb| <∞.

We denote Xr = X ∩ L
2
r equipped with the norm | · |r.

2.2. Dynamics on the Infinite Lattice

The SDE (1.4) determines dynamics on the periodic cubic lattice ΓN .

The corresponding dynamics for φt = {φt(x); x ∈ Z
d} ∈ R

Zd
on the infinite
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lattice Z
d can be introduced by the SDE

dφt(x) =
∑
y∈Zd,

|x−y|=1

{Uy(φt) − Ux(φt)} dt+
√

2dw̃t(x), x ∈ Z
d,(2.1)

where the process {w̃t(x); x ∈ Z
d} and the function Ux(φ) are defined sim-

ilarly as before, i.e., {w̃t(x)} is the family of Gaussian processes with mean

0 and covariance structure (1.5) with ∆(x, y) in place of ∆ΓN
(x, y) and

Ux(φ) :=
∑

y∈Zd,|x−y|=1

V ′(φ(x) − φ(y)).

Note that Ux(φ) can be regarded as a function of ∇φ = {∇φ(b); b ∈ (Zd)∗}
and we denote it by Ũx(∇φ), namely,

Ũx(∇φ) :=
∑

b∈(Zd)∗, xb=x

V ′(∇φ(b)).

Then, the first term in the right hand side of (2.1) can be rewritten

as {∆Ũ·(∇φt)}(x). The corresponding dynamics for gradient fields ηt =

{ηt(b); b ∈ (Zd)∗} ∈ R
(Zd)∗ are determined by the SDE

dηt(b) = ∇∆Ũ·(ηt)(b) dt+
√

2d (∇w̃t) (b), b ∈ (Zd)∗.(2.2)

We summarize the relationship between the two dynamics for the height

field φ and the gradient field η. The potential V satisfies the conditions

(V1)-(V3).

Proposition 2.1.

(i) If φt is the solution of (2.1), ηt := ∇φt satisfies the equation (2.2).

(ii) Assume that ηt is the solution of (2.2) and φt is constructed from ηt
and φ0(0) by

φt(x) = φt(0) +
∑
b∈C0,x

ηt(b),

φt(0) = φ0(0) +

∫ t

0
∆Ũ·(ηs)(0) ds+

√
2w̃t(0),

where C0,x is an arbitrary chain connecting 0 and x. Then φt is well-

defined and satisfies the equation (2.1).
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Since the proof is straightforward, it is omitted.

Proposition 2.2. For every η ∈ Xr, r > 0, the SDE (2.2) has a

unique Xr-valued continuous solution ηt starting at η0 = η.

Proof. We can easily see that the drift term of the SDE is globally

Lipschitz continuous on Xr. Hence, the conclusion can be shown by using

standard arguments. �

3. Gibbs Measures

In this section, we focus on Gibbs measures associated with the dynamics

(2.2) of the gradient field ηt. At first, we discuss the identification of them.

[5] treated similar problem for non-conservative system and characterized all

equilibrium states of the dynamics due to the method of energy estimates.

Our method is different. We compare our dynamics with those studied by

[5]. After that, in Section 3.3, we summarize known results on the surface

tension σ = σ(u) introduced by Gibbs measures, which will be useful in the

subsequent sections.

3.1. Definition and Notation

Let P(X ) be the set of all probability measures on X and let P2(X ) be

those µ ∈ P(X ) satisfying Eµ[|η(b)|2] <∞ for each b ∈ (Zd)∗. The measure

µ ∈ P2(X ) is sometimes called tempered.

We introduce the canonical Gibbs measure associated with our model.

Recall that the dynamics (2.1), for instance considered on the torus ΓN (i.e.

the dynamics (1.4)), conserve the total volume
∑

x∈ΓN
φt(x). For every

ξ ∈ X and Λ � Z
d (i.e. finite subset of Z

d), the space of gradient fields on

Λ∗ with given boundary condition ξ is defined by

XΛ∗,ξ =


(η(b))b∈Λ∗ ; η ∨ ξ ∈ X ,

∑′

b∈Λ∗

xbη(b) =
∑′

b∈Λ∗

xbξ(b)


 ,

where
∑′

b∈Λ∗ means the sum over all positively directed bonds b in Λ∗ and

the configuration η ∨ ξ is defined by

(η ∨ ξ)(b) =



η(b), b ∈ Λ∗,

ξ(b), b ∈
(
Λ∗
)c
.
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The quantity
∑′

b∈Λ∗ xbη(b) corresponds to
∑

x∈Λ φ(x) for the associated

height field φ. The uniform measure on the affine space XΛ∗,ξ is denoted by

νΛ,ξ. Then, the finite volume canonical Gibbs measure µΛ,ξ ∈ P(XΛ∗,ξ) is

defined by

µΛ,ξ(dη) = Z−1
Λ,ξ exp (−HΛ(η)) νΛ,ξ(dη),

where HΛ is the restriction of the Hamiltonian H to the finite set Λ, that

is,

HΛ(η) :=
∑
b∈Λ∗

V (η(b))(3.1)

for η ∈ R
Λ∗

and ZΛ,ξ is the normalizing constant. The probability mea-

sure µ ∈ P(X ) is called a canonical Gibbs measure if it satisfies the DLR

equations

µ(·|FΛ)(ξ) = µΛ,ξ(·), µ-a.e. ξ,

where FΛ is the σ-field generated by
{
η(b); b ∈

(
Λ∗
)c}

and
∑′

b∈Λ∗ xbη(b).

We denote by G the family of all shift-invariant canonical Gibbs measures

µ ∈ P2(X ) and by extG those µ ∈ G which are ergodic with respect to shifts.

Moreover, for each u = (uα)dα=1 ∈ R
d we denote by (extG)u the family of

all µ ∈ extG having mean u, i.e., Eµ[η(eα)] = uα, α = 1, . . . , d.

Similarly, we define Gibbs measures without conservation law, see [5].

We call them grand-canonical Gibbs measures. Namely, first define the

finite volume grand-canonical Gibbs measure µ0
Λ,ξ ∈ P(X 0

Λ∗,ξ
) by

µ0
Λ,ξ(dη) = (Z0

Λ,ξ)
−1 exp (−HΛ(η)) ν0

Λ,ξ(dη),(3.2)

where ν0
Λ,ξ is the uniform measure on the affine space

X 0
Λ,ξ =

{
(η(b))b∈Λ∗ ; η ∨ ξ ∈ X

}
and Z0

Λ,ξ is the normalizing constant. Then, µ0 ∈ P(X ) is called a grand-

canonical Gibbs measure if it satisfies another DLR equations

µ0(·|F0
Λ)(ξ) = µ0

Λ,ξ(·), µ0-a.e. ξ,(3.3)
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where F0
Λ is the σ-field generated by

{
η(b); b ∈

(
Λ∗
)c}

. We denote by

G0 the family of all shift-invariant grand-canonical Gibbs measures µ0 ∈
P2(X ) and by extG0 those µ0 ∈ G0 which are ergodic with respect to shifts.

Moreover, for each u ∈ R we denote by (extG0)u the family of all µ0 ∈ extG0

having mean u.

The main result in this section is the following.

Theorem 3.1. For every u ∈ R
d, (extG)u = (extG0)u holds. In par-

ticular, µu ∈ (extG)u exists uniquely.

The theorem tells that the factor of the conserved quantity
∑′

b∈Λ∗ xbη(b)

doesn’t make an apparent contribution. This is because we only discuss the

class of shift-invariant canonical Gibbs measures.

3.2. Comparison with Non-Conservative Dynamics

To prove the uniqueness of tempered shift-invariant and ergodic canoni-

cal Gibbs measure with assigned mean u, it is helpful to compare the dynam-

ics determined by (2.2) with non-conservative one studied in [5]. Such idea

was used by [9]. We shall prove that the tempered shift-invariant canonical

Gibbs measure is reversible under the non-conservative dynamics and then

apply the result of [5].

Let R0 be the family of all shift-invariant µ ∈ P2(X ) which are reversible

under the dynamics governed by the SDE

dη0
t (b) = −∇Ũ·(η

0
t )(b) dt+

√
2d (∇wt) (b), b ∈ (Zd)∗,(3.4)

where {wt(x); x ∈ Z
d} is the family of independent one dimensional Brow-

nian motions. We can define extR0 and (extR0)u in a similar way to extG0

and (extG0)u respectively. Then, we have the following proposition.

Proposition 3.2. G ⊂ R0 holds.

Assuming Proposition 3.2, we prove Theorem 3.1.

Proof of Theorem 3.1. From Theorems 2.1, 3.1 and 3.2 of [5],

(extR0)u = (extG0)u holds and these sets consist of a single element µ0
u.

On the other hand, one can easily show that µ0
u ∈ (extG)u because a grand-

canonical Gibbs measure is also a canonical Gibbs measure by definition.

We therefore get the conclusion from Proposition 3.2. �
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We are going to prove Proposition 3.2.

Proof of Proposition 3.2. We introduce the local version of the

SDE (3.4): For ξ ∈ X and Λ � Z
d, let η0,Λ,ξ be the solution of the SDE



dη0,Λ,ξ
t (b) = −Ũxb(η

0,Λ,ξ
t )(xb)1Λ(xb) dt

+ Ũyb(η
0,Λ,ξ
t )(yb)1Λ(yb) dt

+
√

2d(∇wΛ
t )(b),

b ∈ Λ∗,

η0,Λ,ξ
t (b) = ξ(b), b �∈ Λ∗, t ≥ 0

η0,Λ,ξ
0 (b) = ξ(b), b ∈ (Zd)∗,

(3.5)

where wΛ
t (x) = 1x∈Λwt(x). We denote the generators (acting on the class

of “nice” functions) for the processes determined by (3.5) and (3.4) by L0
Λ

and L0, respectively. For the details, see Section 4 of [5].

For l ∈ N, let Λl = [−l, l]d∩Z
d be a cube of side length 2l+1 with (outer)

boundary ∂Λl = {x = (x1, . . . , xd); |xα| = l + 1 for some 1 ≤ α ≤ d}. Let

C∞
loc,0(X ) be the family of all functions F on X of the forms F (η) =

F̄
(
{η(b)}b∈Λ∗

)
for some Λ � Z

d and F̄ ∈ C∞
0

(
R

Λ∗
)
. The (minimal) set Λ

is called the support of F for F ∈ C∞
loc,0(X ).

Choose Λl as Λ. Using the Dirichlet form given in Section 4.2 of [5], it

holds that every F,G ∈ C∞
loc,0(X ) whose supports are included by Λl−1 and

σ(
∑′

b∈Λ∗ xbη(b))-measurable function J∫
X 0

Λ∗,ξ

JFL0
ΛGdµ

0
Λ,ξ =

∫
X 0

Λ∗,ξ

JGL0
ΛF dµ

0
Λ,ξ.

We therefore obtain that∫
X

Λ∗,ξ

FL0
ΛGdµΛ,ξ =

∫
X

Λ∗,ξ

GL0
ΛF dµΛ,ξ

holds. Noting that L0F = L0
ΛF holds, we get for µ ∈ G

Eµ
[
FL0G

]
= Eµ

[
Eµ[FL0G|FΛ](ξ)

]
= Eµ

[
Eµ[FL0

ΛG|FΛ](ξ)
]

= Eµ
[
EµΛ,ξ [FL0

ΛG]
]

= Eµ
[
EµΛ,ξ [GL0

ΛF ]
]
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= Eµ
[
GL0F

]
.

This shows the reversibility of the generator L0 under µ. Hence we conclude

the proof of Proposition 3.2. �

Remark 3.1. It seems difficult to extend the coupling argument used

for the proof of Proposition 2.1 of [5] directly to our model. Such argu-

ment could characterize all stationary measures of the dynamics (3.4). The

statement of Theorem 3.1 is weaker, since it only characterizes the class of

associated Gibbs measures. However, for the proof of the hydrodynamic

limit (i.e. Theorem 1.1), the result of Theorem 3.1 is sufficient if one uses

the method of [6].

3.3. Surface Tension

Here, we summarize the known results on the surface tension σ = σ(u)

determined from the potential V . Recall that the finite volume surface

tension σΛl
= σΛl

(u), u ∈ R
d is defined by

σΛl
(u) := − |Λl|−1 logZ0

Λl,ξu
,(3.6)

where Z0
Λ,ξ is the normalizing constant appearing in (3.2) and ξu is deter-

mined as follows:

ξu(b) =

{
uα, xb − yb = eα,

−uα, xb − yb = −eα
for 1 ≤ α ≤ d.

Proposition 3.3 ([4] and [5]).

(i) The following limit exists:

σ(u) := lim
l→∞

σΛl
(u).

(ii) σ ∈ C1(Rd) and there exists a constant C1 > 0 such that for all

u, v ∈ R
d

|σ(u)| ≤ C1(1 + |u|),
|∇σ(u) −∇σ(v)| ≤ C1|u− v|,

u · ∇σ(u) ≥ c−|u|2 − 1,

where c− is the constant appearing in the assumption (V3).
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(iii) The function σ is strictly convex in the sense that there exist constants

C2, C3 > 0 such that

C2|u− v|2 ≤ (∇σ(u) −∇σ(v)) · (u− v) ≤ C3|u− v|2.

(iv) The following identities hold for the Gibbs measure µu appearing in

Theorem 3.1:

(a) Eµu [V ′(η(eα))] = ∇ασ(u) (= ∂σ/∂uα).

(b) Eµu

[
d∑

α=1

η(eα)V ′(η(eα))

]
= u · ∇σ(u) + 1.

4. Estimates for Partial Differential Equation

In this section, we introduce the discretization for the PDE (1.8) and

derive various uniform estimates.

4.1. Discretization Scheme

We define the finite difference operators by

∇N
α f(θ) = N(f(θ + eα/N) − f(θ)),

∇N,∗
α f(θ) = −N(f(θ) − f(θ − eα/N)),

∇Nf(θ) = (∇N
1 f(θ), . . . ,∇N

d f(θ)),

divN g(θ) = −
d∑

α=1

∇N,∗
α gα(θ),

∆Nf(θ) = divN ∇Nf(θ),

for f : T
d → R, g = (gα)1≤α≤d : T

d → R
d, 1 ≤ α ≤ d and θ ∈ T

d. With

these notations the discretized PDE of (1.8) reads

∂

∂t
h̄N (t, θ) = AN (h̄N (t))(θ)

:= −∆N

[
divN

{
(∇σ)(∇N h̄N (t))

}]
(θ), θ ∈ T

d.
(4.1)

The equation (4.1) will be solved with the initial data given by

h̄N0 (θ) = Nd

∫
[[θ]]N

h0(θ
′) dθ′,
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where [[θ]]N denotes the box with center in T
d
N :=

{
θ ∈ T

d; Nθ ∈ ΓN
}

and

side length 1/N containing θ ∈ T
d and h0 ∈ L2(Td) as in the assumption

(I1). We note that the assumption (I1) implies

sup
N≥1

‖h̄N0 ‖L2(Td) <∞.(4.2)

Since the initial data h̄N0 is a step function, the solution h̄N (t, θ) is also a

step function over T
d, that is,

h̄N (t, θ) = h̄N (t, [θ]N )(4.3)

holds, where [θ]N denotes the center of [[θ]]N .

4.2. Notations and Definition

We will consider the PDE (1.8) and its discretization (4.1) in the Sobolev

space H−1(Td). Let � be the space C∞(Td) with the usual topology and

let �′ be the dual space of �. We denote the duality relation between �′

and � by �′〈·, ·〉�. For m ∈ N, the Sobolev space H−m(Td) is defined by

H−m(Td) :=


h ∈ �′; ‖h‖H−m(Td) := sup

‖J‖
Hm(Td)

=1
|�′〈h, J〉�| <∞


 .

Here, ‖ · ‖Hm(Td) is the usual Hm-norm, i.e.,

‖f‖2
Hm(Td) :=

∑
|γ|≤m

∫
Td

|∂γf(θ)|2 dθ,

where the summation is taken over all multi-indices γ = (γ1, . . . , γd) ∈
(N ∪ {0})d satisfying |γ| :=

∑d
i=1 γα ≤ m and ∂γ is a differential operator

defined by

∂γ :=
∂γ1

∂θγ1
. . .

∂γd

∂θγd
.

We easily see that H−1(Td) is the Hilbert space with the inner product

〈h1, h2〉H−1(Td) =

∞∑
i=1

1

1 + λi
�′〈h1, Ψi〉��′〈h2, Ψi〉�, h1, h2 ∈ H−1(Td),
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where {λi > 0; i ∈ N} is an increasing sequence of eigenvalues of continuum

Laplacian −∆ on T
d and {Ψi; i ∈ N} is a family of the corresponding

eigenfunctions which consist of complete orthonormal system of L2(Td).

We note that λ1 = 0, Ψ1 ≡ 1 and λi > 0 for i ≥ 2. Moreover, we can take

another inner product:

〈〈h1, h2〉〉H−1(Td) =

∞∑
i=2

1

λi
�′〈h1, Ψi〉��′〈h2, Ψi〉�

+ �′〈h1,Ψ1〉��′〈h2,Ψ1〉�, h1, h2 ∈ H−1(Td).

We can obtain 〈·, ·〉H−1(Td) and 〈〈·, ·〉〉H−1(Td) are equivalent. For h ∈
H−1(Td), we denote 〈h, h〉H−1(Td) and 〈〈h, h〉〉H−1(Td) by ‖h‖H−1(Td) and

|||h|||H−1(Td), respectively. Formally, ‖ · ‖H−1(Td) and ||| · |||H−1(Td) are writ-

ten as follows:

||h||2H−1(Td) =

∫
Td

h(θ) (I − ∆)−1h(θ) dθ,

|||h|||2H−1(Td) =

∫
Td

(h(θ) − 〈h〉) (−∆)−1 (h− 〈h〉) (θ) dθ + 〈h〉2,

where 〈h〉(= �′〈h,Ψ1〉�) is the average of h over T
d, that is, 〈h〉 =∫

Td h(θ) dθ.

We need to state the discretized H−1-norm. For step functions hN1 , h
N
2

with mesh size 1/N (i.e. hNi satisfies hNi (θ) = hN ([θ]N ) for i = 1, 2), we

define 〈hN1 , hN2 〉−1,N and 〈〈hN1 , hN2 〉〉−1,N respectively by

〈hN1 , hN2 〉−1,N := N−d−2
∑
x∈ΓN

φ1(x) (I −N2∆ΓN
)−1φ2(x),

〈〈hN1 , hN2 〉〉−1,N := N−d−2
∑
x∈ΓN

(φ1(x) − 〈φ1〉N ) (−N2∆ΓN
)−1

× (φ2 − 〈φ2〉N ) (x)

+N−2d−2〈φ1〉N 〈φ2〉N ,

where φ1 and φ2 are corresponding microscopic height variables, that is,

φi(x) = hNi (x/N) for x ∈ ΓN , i = 1, 2 and 〈φ〉N =
∑

x∈ΓN
φ(x) is the

average of φ ∈ R
ΓN . Here, we note that the inverse operator (−∆ΓN

)−1

acting on R
ΓN is defined only for height variables with average 0. For a step
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function hN with mesh size 1/N we denote 〈hN , hN 〉−1,N and 〈〈hN , hN 〉〉−1,N

by ‖hN‖−1,N and |||hN |||−1,N , respectively. We can see that these norms as

well as ‖hN‖H−1(Td) are mutually equivalent uniformly in N , i.e.,

c1‖hN‖−1,N ≤ |||hN |||−1,N ≤ c2‖hN‖−1,N ,

c3‖hN‖−1,N ≤ ‖hN‖H−1(Td) ≤ c4‖hN‖−1,N ,

hold for every N > 0 and every step function hN with the mesh size 1/N

with constants c3, c4 > 0 independent of N .

4.3. Uniform Lp bound for {∇h̄N}
To guarantee the uniform integrability of the function u · ∇σ(u) with

respect to coupled measure pN in (5.8), we need several uniform moment

estimates for the solution h̄N (t) of (4.1).

We introduce several notations. For 1 ≤ p < ∞ and step functions hN

with mesh size 1/N , define ‖∇NhN‖Lp(Td) and ‖∇N∇NhN‖Lp(Td) by

‖∇NhN‖p
Lp(Td)

:=

d∑
α=1

‖∇N
α h

N‖p
Lp(Td)

,

‖∇N∇NhN‖p
Lp(Td)

:=

d∑
α,β=1

‖∇N
α ∇N

β h
N‖p

Lp(Td)
,

respectively. Similarly as above, we define |||∇NhN |||−1,N by

|||∇NhN |||2−1,N :=

d∑
α=1

|||∇N
α h

N |||2−1,N .

To simplify notations, we sometimes omit the domain T
d.

Theorem 4.1. The following estimates hold for the solution h̄N (t) of

(4.1):

(i) sup
N≥1

sup
0≤t≤T

‖h̄N (t)‖L2 <∞.

(ii) sup
N≥1

∫ T

0
‖∇N∇N h̄N (t)‖2

L2 dt <∞.
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(iii) For some p > 2, sup
N≥1

∫ T

0
‖∇N h̄N (t)‖pLp dt <∞.

Proof. Differentiating
∣∣∣∣∣∣h̄N (t)

∣∣∣∣∣∣2
−1,N

in t and noting that 〈hN (t)〉 is

constant in t, we get from (4.1)

d

dt

∣∣∣∣∣∣h̄N (t)
∣∣∣∣∣∣2
−1,N

= 2N−d ∑
x∈ΓN

h̄N (t, x/N) divN ∇σ(∇N h̄N (t))(x/N)

= −2N−d ∑
x∈ΓN

∇N h̄N (t, x/N) · ∇σ(∇N h̄N (t, x/N))

≤ −2C2

∥∥∇N h̄N (t)
∥∥2

L2 .

We have used (iii) of Proposition 3.3 and ∇σ(0) = 0 in the last line. Inte-

grating in t, we obtain

∣∣∣∣∣∣h̄N (t)
∣∣∣∣∣∣2
−1,N

+ 2C2

∫ t

0

∥∥∇N h̄N (s)
∥∥2

L2 ds ≤
∣∣∣∣∣∣h̄N (0)

∣∣∣∣∣∣2
−1,N

.(4.4)

It therefore follows from (I1) that

sup
N≥1

sup
0≤t≤T

∣∣∣∣∣∣h̄N (t)
∣∣∣∣∣∣2
−1,N

<∞(4.5)

and

sup
N≥1

∫ T

0

∥∥∇N h̄N (t)
∥∥2

L2 dt <∞.(4.6)

Similarly as above, differentiating
∣∣∣∣∣∣∇N

α h̄
N (t)

∣∣∣∣∣∣2
−1,N

in t,

d

dt

∣∣∣∣∣∣∇N
α h̄

N (t)
∣∣∣∣∣∣2
−1,N

= 2N−d ∑
x∈ΓN

∇N
α h̄

N (t, x/N)∇N
α divN ∇σ(∇N h̄N (t))(x/N)

= −2N−d ∑
x∈ΓN

d∑
β=1

∇N
β ∇N

α h̄
N (t, x/N)∇N

α ∇βσ(∇N h̄N (t))(x/N)

= −2N−d+2
∑
x∈ΓN

{
∇N h̄N (t, (x+ eα)/N) −∇N h̄N (t, x/N)

}
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·
{
∇σ(∇N h̄N (t, (x+ eα)/N)) −∇σ(∇N h̄N (t, x/N))

}
≤ −2C2N

−d+2
∑
x∈ΓN

∣∣∇N h̄N (t, (x+ eα)/N) −∇N h̄N (t, x/N)
∣∣2

= −2C2

d∑
β=1

∥∥∇N
α ∇N

β h̄
N (t)

∥∥2

L2 .

Integrating both sides in t and summing up in α, we get

∣∣∣∣∣∣∇N h̄N (t)
∣∣∣∣∣∣2
−1,N

+ 2C2

∫ t

0
‖∇N∇N h̄N (s)‖2

L2 ds ≤
∣∣∣∣∣∣∇N h̄N (0)

∣∣∣∣∣∣2
−1,N

.

By
∣∣∣∣∣∣∇NhN

∣∣∣∣∣∣2
−1,N

= ‖hN‖2
L2 and (4.2), we obtain (i) and (ii).

For (iii), applying discretized version of Theorem 4.17 of [1],

∥∥∇NhN
∥∥
L2 ≤ K

(∥∥∇N∇NhN
∥∥2

L2 +
∥∥∇NhN

∥∥2

L2 +
∥∥hN∥∥2

L2

)1/4 ∥∥hN∥∥1/2

L2

and ab ≤ ap/p+ bq/q if a, b ≥ 0 and 1/p+ 1/q = 1, we get

∥∥∇NhN
∥∥r
L2 ≤ Krp−1

(∥∥∇N∇NhN
∥∥2

L2 +
∥∥∇NhN

∥∥2

L2 +
∥∥hN∥∥2

L2

)rp/4
+Krq−1

∥∥hN∥∥rq/2
L2 .

for r > 0. For every 2 < r < 4, choose 1 < p < 2 such that rp = 4 and take

hN = h̄N (t) in the above estimate. Then, integrating its both sides in t, we

obtain∫ T

0

∥∥∇N h̄N (t)
∥∥r
L2 dt

≤ Krp−1

∫ T

0

(∥∥∇N∇N h̄N (t)
∥∥2

L2 +
∥∥∇N h̄N (t)

∥∥2

L2 +
∥∥h̄N (t)

∥∥2

L2

)
dt

+Krq−1T

(
sup

0≤t≤T

∥∥h̄N (t)
∥∥
L2

)rq/2

.

Using (i), (ii) and (4.5), we get

sup
N≥1

∫ T

0

∥∥∇N h̄N (t)
∥∥r
L2 dt <∞(4.7)
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for every 2 < r < 4. Now,we use the discretized version of Sobolev’s lemma

stated in the proof of Proposition I.4 of [5], that is,

‖fN‖2
L2∗ ≤ C(‖∇NfN‖2

L2 + ‖fN‖2
L2)(4.8)

holds for every step function fN with mesh size 1/N and for some constant

C > 0 which is independent of N . Here, 2∗ is the Sobolev’s conjugate of

2 which is defined by 2∗ = 2d/(d − 2) if d ≥ 3, 2∗ is an arbitrary number

larger than 1 if d = 2 and 2∗ = ∞ if d = 1. If d = 1, choose p = 5/2. Then,

since

‖fN‖pLp ≤ ‖fN‖L∞‖fN‖p−1
Lp−1

holds, by Hölder’s inequality and (4.8) we get

∫ T

0
‖∇N h̄N (t)‖pLp dt ≤

1

2

∫ T

0
‖∇N h̄N (t)‖2

L∞ dt+
1

2

∫ T

0
‖∇N h̄N (t)‖2p−2

Lp−1 dt

≤ 1

2
C

∫ T

0

(
‖∇N h̄N (t)‖2

L2 + ‖h̄N (t)‖2
L2

)
dt+

1

2

∫ T

0
‖∇N h̄N (t)‖3

L2 dt.

Combining (ii), (4.2) and (4.7), the case of d = 1 is shown. Next, we consider

the case d ≥ 2. By Hölder’s inequality, we get

‖fN‖Lp ≤ ‖fN‖1−τ
L2 ‖fN‖τ

L2∗(4.9)

for 2 < p < 2∗ and τ ∈ (0, 1) such that 1/p = (1 − τ)/2 + τ/2∗. Choosing

p = 3 − 2/2∗ > 2, τ = 1/p, r = 2p − 2 < 4 and combining (4.8) and (4.9)

for fN = ∇NhN , we get

‖∇NhN‖pLp ≤ ‖∇NhN‖p(1−τ)
L2 ‖∇NhN‖pτ

L2∗

≤ ‖∇NhN‖rL2 + C(‖∇N∇NhN‖2
L2 + ‖∇NhN‖2

L2)

and therefore, by (ii), (4.2) and (4.7), we have shown (iii) in the case of

d ≥ 2. �

4.4. Existence and Uniqueness for Partial Differential Equation

In this section, we establish existence and uniqueness for the PDE (1.8).

We introduce a triple of separable Hilbert spaces V ⊂ H = H∗ ⊂ V ∗ byH =

H−1(Td) with inner product 〈〈·, ·〉〉H−1(Td), V = H1(Td) and V ∗ = H−3(Td).
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These spaces are equipped with their norms denoted by ||| · |||H−1(Td), ‖ · ‖V
and ‖ · ‖V ∗ , respectively. We denote the duality relation between V and V ∗

by V 〈·, ·〉V ∗ such that V 〈f, g〉V ∗ = 〈〈f, g〉〉H−1(Td) if g ∈ H−1(Td).

The nonlinear fourth order differential operator A : V → V ∗ is defined

by

A(h) := −∆ [div {(∇σ)(∇h)}] .(4.10)

for h ∈ V ∗(Td).

We call h(t) a (weak) solution of (1.8) with initial data h0 ∈ L2(Td) if

h(t) ∈ D and

h(t) = h(0) +

∫ t

0
A(h(s)) ds, in V ∗

holds for a.e.t ∈ [0, T ], where

D = C([0, T ], H−1(Td)) ∩ L2([0, T ], H1(Td)).

Let us first discuss the uniqueness of the solution.

Theorem 4.2. The solution of the PDE (1.8) with the initial data h0 ∈
H−1(Td) is unique if it exists. Moreover, there are constants K1,K2 > 0

such that the solution satisfies the following inequality:

sup
0≤t≤T

|||h(t)|||2H−1(Td) +K1

∫ T

0
‖h(t)‖2

H1(Td) dt ≤ K2 |||h0|||2H−1(Td) .(4.11)

Proof. Assume that h(t) and ĥ(t) are two solutions of (1.8) with

initial data h0 and ĥ0 respectively. Noting 〈h(t)〉 and 〈ȟ(t)〉 are constants

in t, we obtain∣∣∣∣∣∣∣∣∣h(t) − ĥ(t)
∣∣∣∣∣∣∣∣∣2
H−1

=
∣∣∣∣∣∣∣∣∣h(0) − ĥ(0)

∣∣∣∣∣∣∣∣∣2
H−1

− 2

∫ t

0

∫
Td

{∇h(s, θ) −∇ĥ(s, θ)}

· {∇σ(∇h(s, θ)) −∇σ(∇ĥ(s, θ))} dθ ds

≤
∣∣∣∣∣∣∣∣∣h(0) − ĥ(0)

∣∣∣∣∣∣∣∣∣2
H−1
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− 2C2

∫ t

0

∫
Td

∣∣∣∇h(s, θ) −∇ĥ(s, θ)
∣∣∣2 dθ ds,

where C2 is the constant appearing in (iii) of Proposition 3.3. In the third

inequality, we have used (iii) of Proposition 3.3. Now, we note that the

Laplacian ∆ on T
d has a spectral gap c > 0, that is, for every f ∈ H1(Td)

c‖f − 〈f〉‖2
L2 ≤ ‖∇(f − 〈f〉)‖2

L2 = ‖∇f‖2
L2(4.12)

and therefore

c‖f‖2
L2 ≤ ‖∇f‖2

L2 + c〈f〉2.(4.13)

Letting f = h(s) − ĥ(s), we conclude

sup
0≤t≤T

∣∣∣∣∣∣∣∣∣h(t) − ĥ(t)
∣∣∣∣∣∣∣∣∣2
H−1

+ min{c, 1}C2

∫ T

0
‖h(t) − ĥ(t)‖2

H−1 dt

≤ (1 + cC2)
∣∣∣∣∣∣∣∣∣h0 − ĥ0

∣∣∣∣∣∣∣∣∣2
H−1

.

(4.14)

This shows the uniqueness of the solution of the PDE (1.8). Since ĥ(t) ≡ 0

is the solution of the PDE (1.8), we obtain (4.11) by letting ĥ(t) ≡ 0. �

We discuss the convergence of solutions h̄N (t) of the discretized PDE

(4.1) to the solution h(t) of the PDE (1.8). The following theorem guaran-

tees for the existence of the solution of (1.8), too.

Theorem 4.3. The sequence of solutions {h̄N (t)} of the discretized

PDE (4.1) with initial data h̄N0 converges to the unique solution of PDE

(1.8) with initial data h0 in H−1(Td) strongly. Namely,

lim
N→∞

‖h̄N (t) − h(t)‖H−1 = 0(4.15)

holds for every t > 0.

Proof. Step 1: We recall the statement of Theorem 4.1:

sup
0≤t≤T

‖h̄N (t)‖2
L2 +

∫ T

0
‖∇N h̄N (t)‖2

L2 dt ≤ C,
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where C is a constant independent of N .

Step 2: Let {N} ⊂ N be an arbitrary sequence such that

h̄N (t) → h̄(t) weakly in L2([0, T ], L2(Td)),

∇N h̄N (t) → g(t) weakly in L2([0, T ], (L2(Td))d),

AN (h̄N (t)) → Ā(t) weakly in L2([0, T ], V ∗),

h̄N (T ) → h̃(T ) weakly in L2(Td),

for some h̄(t), g(t), Ā(t) and h̃(T ) as N → ∞, where AN is same as in

(4.1). However, we easily see that ḡ(t) = ∇h̄(t) holds for a.e.t. Hence

h̄(t) ∈ H1(Td) a.e.t and h̄ ∈ L2([0, T ], H1(Td)). Moreover, using the integral

form of the discretized PDE (4.1) and letting N → ∞, we obtain

h̃(T ) = h0 +

∫ T

0
Ā(s) ds, in V ∗

and for a.e.t,

h̄(t) = h0 +

∫ t

0
Ā(s) ds, in V ∗.

We can therefore take the continuous modification of h̄ and denote it by h̄

again. Then, from

∣∣∣∣∣∣h̄N (T )
∣∣∣∣∣∣2
−1,N

−
∣∣∣∣∣∣h̄N0 ∣∣∣∣∣∣2−1,N

= 2

∫ T

0
〈〈h̄N (t), AN (h̄N (t))〉〉−1,N dt(4.16)

we get

∣∣∣∣∣∣h̄(T )
∣∣∣∣∣∣2
H−1 = |||h0|||2H−1 + 2

∫ T

0
V 〈h̄(t), Ā(t)〉V ∗ dt.(4.17)

Step 3: Let y(t, θ) ∈ C∞([0, T ] × T
d) and yN (t, θ) := Nd

∫
[[θ]]N

y(t, θ′) dθ′.
Then, by convexity of σ,

0 ≥
∫ T

0
〈〈h̄N (t) − yN (t), AN (h̄N (t)) −AN (yN (t))〉〉−1,N dt

=

∫ T

0
〈〈h̄N (t), AN (h̄N (t))〉〉−1,N dt−

∫ T

0
〈〈yN (t), AN (h̄N (t))〉〉−1,N dt
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−
∫ T

0
〈〈h̄N (t), AN (yN (t))〉〉−1,N dt+

∫ T

0
〈〈yN (t), AN (yN (t))〉〉−1,N dt

=: IN1 − IN2 − IN3 + IN4 .

For IN1 , from (4.16) and (4.17) we obtain

lim inf
N→∞

IN1 ≥ 1

2
{|||h(T )|||2H−1 − |||h0|||2H−1} =

∫ T

0
V 〈h̄(t), Ā(t)〉V ∗ dt.(4.18)

For IN2 , since y ∈ C∞([0, T ] × T
d) and therefore∣∣∣〈〈yN (t), AN (h̄N (t))〉〉−1,N −V 〈y(t), AN (h̄N (t))〉V ∗

∣∣∣ ≤ ε(N)

holds with ε(N) > 0 which goes to 0 as N → ∞, we obtain

lim
N→∞

IN2 =

∫ T

0
V 〈y(t), Ā(t)〉V ∗ dt.(4.19)

Next, we note that IN3 and IN4 are represented as follows:

IN3 =
d∑

α=1

∫ T

0

(
∇N
α h̄

N (t),∇ασ(∇NyN (t))
)
L2 dt,

IN4 =
d∑

α=1

∫ T

0

(
∇N
α y

N (t),∇ασ(∇NyN (t))
)
L2 dt,

where (·, ·)L2 is the inner product of the space L2(Td). Then, since for every

1 ≤ α ≤ d, ∇ασ(∇NyN (t)) conveges to ∇ασ(∇y(t)) strongly in L2(Td) as

N → ∞, we get

lim
N→∞

IN3 =
d∑

α=1

∫ T

0

(
∇αh̄(t),∇ασ(∇y(t))

)
L2 dt(4.20)

=

∫ T

0
V 〈h̄(t), A(y(t))〉V ∗ dt

and

lim
N→∞

IN4 =

d∑
α=1

∫ T

0
(∇αy(t),∇ασ(∇y(t)))L2 dt(4.21)
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=

∫ T

0
V 〈y(t), A(y(t))〉V ∗ dt.

From (4.18)-(4.21), we conclude

0 ≥
∫ T

0
V 〈h̄(t) − y(t), Ā(t) −A(y(t))〉V ∗ dt.(4.22)

Now, since C∞([0, T ]×T
d) is densely embedded in L2([0, T ], H1(Td)), we get

(4.22) for every y(t) ∈ L2([0, T ], H1(Td)) also. Letting y(t) = h̄(t) − λx(t)

for x ∈ L2([0, T ], H1(Td)) and λ > 0,

0 ≥ λ

∫ T

0
V 〈x(t), Ā(t) −A(h̄(t) − λx(t))〉V ∗ dt.

Dividing λ and letting λ→ 0, we get

0 ≥
∫ T

0
V 〈x(t), Ā(t) −A(h̄(t))〉V ∗ dt.

Since x(t) is arbitrary, we conclude Ā(t) = A(h̄(t)) a.e.t. This shows that

h̄(t) is the solution of (1.8).

Step 4: From (i) of Theorem 4.1, the sequence {h̄N (t)} is strongly relative

compact in H−1(Td). Using this fact, we can conclude that {h̄N (t)} con-

verges to h(t) strongly in H−1(Td) as N → ∞. �

5. Local Equilibrium

In this section, we establish the local equilibrium (Proposition 5.3) for

the dynamics of the gradient field associated with the height process φ(t) =

{φt(x); x ∈ ΓN} determined by (1.4).

5.1. Uniform L2-bounds

Let µNt be the distribution of ηt ≡ ∇φt on XΓ∗
N

and let AvT (µN ) be its

space-time average over [0, N4T ] × ΓN :

AvT (µN )(dη) = N−d ∑
x∈ΓN

(N4T )−1

∫ N4T

0
µNt ◦ τx(dη) dt,
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where τx is the spatial shift by x on ΓN . We define the probability measure

µN ∈ P(XΓ∗
N

) by

µN (dη) = Z−1
N exp(−HΓN

(η)) νN (dη),

where νN is the uniform measure on XΓ∗
N

and ZN is the normalizing con-

stant.

To obtain the uniform L2-bounds on the measures AvT (µN ) ∈ P(XΓ∗
N

),

we use the coupling method as in Section 4 of [5]. We assume that two

initial data φ0 and φ̂0 are given and let φt and φ̂t be the corresponding two

solutions of SDE (1.4) on ΓN with common Gaussian process. We denote

the macroscopic fields which come from φt and φ̂t by scaling in space and

time by hN (t, θ) and ĥN (t, θ), respectively.

Proposition 5.1.

(i) We have

E
∣∣∣∣∣∣∣∣∣hN (t) − ĥN (t)

∣∣∣∣∣∣∣∣∣2
−1,N

≤ E
∣∣∣∣∣∣∣∣∣hN (0) − ĥN (0)

∣∣∣∣∣∣∣∣∣2
−1,N

.

(ii) Assume the condition (I1) on the distribution µN0 of φ0. Then,

sup
N≥1

EAvT (µN )[η(b)2] <∞, b ∈ (Zd)∗.

(iii) Moreover, assume

sup
N≥1

EµN
0


N−d ∑

b∈Γ∗
N

η(b)2


 <∞.(5.1)

Then,

sup
N≥1, 0≤t≤T

EµN
t


N−d ∑

b∈Γ∗
N

η(b)2


 <∞, T > 0,(5.2)

sup
N≥1

N4E
∣∣∣∣∣∣hN (N−4t) − hN (0)

∣∣∣∣∣∣2
−1,N

<∞, t > 0.(5.3)



506 Takao Nishikawa

Proof. Let h̃N (t, θ) = hN (t, θ)− ĥN (t, θ), φ̃t = φt − φ̂t and η̃t = ∇φ̃t.
Then,

d

ds

∣∣∣∣∣∣∣∣∣h̃N (s)
∣∣∣∣∣∣∣∣∣2
−1,N

= −N−d ∑
b∈Γ∗

N

η̃N4s(b){V ′(ηN4s(b)) − V ′(η̂N4s(b))}

By integrating both sides in s, we get∣∣∣∣∣∣∣∣∣h̃N (t)
∣∣∣∣∣∣∣∣∣2
−1,N

−
∣∣∣∣∣∣∣∣∣h̃N (0)

∣∣∣∣∣∣∣∣∣2
−1,N

= −N−d−4

∫ N4t

0

∑
b∈Γ∗

N

η̃s(b){V ′(ηs(b)) − V ′(η̂s(b))} ds.
(5.4)

Now, we take a special initial data for φ̂0: Let η̂0 be an XΓ∗
N

-valued random

variable distributed under µN and let φ̂0 be defined by

φ̂0(x) =
∑
b∈C0,x

η̂(b),

where C0,x is a chain in Γ∗
N connecting from 0 to x. Then, for every b ∈ Γ∗

N

EAvT (µN )[η(b)2] ≤ (2d)−1N−d ∑
b′∈Γ∗

N

(N4T )−1

∫ N4T

0
E[(∇φt(b′))2] dt

≤ d−1N−d ∑
b′∈Γ∗

N

(N4T )−1

∫ N4T

0
E[(∇φ̃t(b′))2] dt

+ 2d−1
d∑

α=1

EµN [η(eα)2].

In the second inequality, we have used that µN is the stationary measure of

∇φt which is shift-invariant. However, (5.4) implies that

N−d−4

∫ N4T

0

∑
b∈Γ∗

N

(∇φ̃t(b))2 dt ≤ c−1
−

∣∣∣∣∣∣∣∣∣h̃N (0)
∣∣∣∣∣∣∣∣∣2
−1,N

,

where c− is the constant appearing in the assumption (V3). Therefore, we

get

EAvT (µN )[η(b)2] ≤ 2c−1
− T−1d−1E

[∣∣∣∣∣∣∣∣∣hN (0)
∣∣∣∣∣∣∣∣∣2
−1,N

+
∣∣∣∣∣∣∣∣∣ĥN (0)

∣∣∣∣∣∣∣∣∣2
−1,N

]
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+ 2d−1
d∑

α=1

EµN [η(eα)2].

By the assumption (I2), we have supN≥1E|||hN (0)|||2−1,N < ∞. Therefore,

the statement (ii) is shown, once one proves supN≥1E|||ĥN (0)|||2−1,N < ∞.

We choose the chain C0,x as follows: First we connect 0 and (x1, 0, . . . , 0)

through changing only the first coordinate one by one. Next, we connect

(x1, 0, 0, . . . , 0) and (x1, x2, 0, . . . , 0) through changing the second coordi-

nate, and so on. With this choice, we obtain

E
∣∣∣∣∣∣∣∣∣ĥN (0)

∣∣∣∣∣∣∣∣∣2
−1,N

≤ E
∣∣∣∣∣∣∣∣∣ĥN (0)

∣∣∣∣∣∣∣∣∣2
L2

= N−d−2
∑
x∈ΓN

E

[(
φ̂0(x)

)2
]

≤ N−d−2
∑
x∈ΓN

EµN




 ∑
b∈C0,x

η(b)




2


≤ dN−d−1
∑
x∈ΓN

∑
b∈C0,x

EµN
[
η(b)2

]

≤ C

d∑
α=1

EµN
[
η(eα)2

]
.

Since the right hand side is bounded in N , we have shown (ii).

Applying Itô’s formula to
∑

b∈Γ∗
N
ηt(b)

2, we get

E


∑
b∈Γ∗

N

ηt(b)
2


 ≤ E


∑
b∈Γ∗

N

η0(b)
2


+ C

∫ t

0
E


∑
b∈Γ∗

N

{
ηs(b)

2 + 1
} ds

for some C > 0 independent of N . Now, we have used that V ′ is linearly

growing. Multiplying both sides with N−d and using Gronwall’s lemma, we

obtain (5.2). Applying Itô’s formula also to |||hN (N−4t) − hN (0)|||2−1,N , we

get

E
∣∣∣∣∣∣hN (N−4t) − hN (0)

∣∣∣∣∣∣2
−1,N

≤ C ′
∫ t

0

{
E|||hN (N−4s) − hN (0)|||2−1,N

+N−d−4E
∑
b∈Γ∗

N

{
ηs(b)

2 + 1
}}

ds
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for some C ′ > 0 independent of N . Multiplying both sides with N4 and

using Gronwall’s lemma again, we obtain (5.3). �

5.2. The Generator and Dirichlet Form

We define the differential operators ∂x for x ∈ Z
d acting on C2

loc(X ) by

∂x :=
∑

b∈(Zd)∗,xb=x

∂

∂η(b)
.

For x ∈ ΓN , we can regard ∂x as an operator acting on C2
b (XΓ∗

N
). We define

the differential operator LN acting on C2
b (XΓ∗

N
) by

LN = −4
∑
x∈ΓN

∂x (∆ΓN
∂·) (x) + 2

∑
x∈ΓN

(
∆ΓN

Ũ·(η)
)

(x)∂x.

Then, LN is the generator of the dynamics governed by SDE

dηt(b) = ∇∆ΓN
Ũ·(η)(b) dt+

√
2d(∇w̃t)(b), b ∈ Γ∗

N .(5.5)

Note that ηt is the gradient fields associated with φt on ΓN determined by

the SDE (1.4). For Λ � Z
d, we define the differential operator LΛ by

LΛ = −4
∑
x∈Λ

∂x (∆Λ∂·) (x) + 2
∑
x∈Λ

(
∆ΛŨ·(η)

)
(x)∂x.

Then, LΛ is the generator corresponding to the SDE


dηΛ,ξ
t (b) = ∆ΛŨ·(η

Λ,ξ
t )(xb)1Λ(xb) dt

− ∆ΛŨ·(η
Λ,ξ
t )(yb)1Λ(yb) dt

+
√

2d(∇w̃Λ
t )(b),

b ∈ Λ∗,

ηΛ,ξ
t (b) = ξ(b), b �∈ Λ∗, t ≥ 0

ηΛ,ξ
0 (b) = ξ(b), b ∈ (Zd)∗,

(5.6)

where the processes {w̃Λ
t (x); x ∈ Z

d} is defined as follows: {w̃Λ
t (x); x ∈ Λ}

is the family of Gaussian processes with mean 0 and covariance structure

(1.5) with ∆Λ(x, y) in place of ∆ΓN
(x, y) and wΛ

t (x) ≡ 0 if x �∈ Λ. The

dynamics ηΛ,ξ
t determined by (5.6) is the gradient fields of the solution φΛ,φ̄

t
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of the following SDE, which is the local version of (2.1):



dφΛ,φ̄

t (x) = ∆ΛU·(φ
Λ,φ̄
t )(x) dt+

√
2dw̃Λ

t (x), x ∈ Λ,

φΛ,φ̄
t (x) = φ̄(x), x �∈ Λ, t ≥ 0

φΛ,φ̄
0 (b) = φ̄(x), x ∈ Z

d

(5.7)

with ∇φ̄ = ξ. Here, we note that the boundary condition ξ is contained in

the space XΛ∗,ξ and ξ does not appear in the generator LΛ.

Noting that the dynamics governed by (5.7) is ergodic on the affine space

{
φ ∈ R

Λ;
∑
x∈Λ

φ(x) =
∑
x∈Λ

φ̄(x)

}
,

we can see that the dynamics governed by (5.6) on XΛ∗,ξ is also ergodic.

Moreover, we can see that its unique stationary measure is µΛ,ξ. Similarly,

the dynamics governed by (2.2) on Γ∗
N is ergodic and its unique stationary

measure is µN . Performing integration by parts, Dirichlet forms of these

dynamics are given by∫
XΓ∗

N

F LNGdµN

= 4
∑
x∈ΓN

∫
XΓ∗

N

{∂xF} {(∆ΓN
∂·)(x)G} dµN , F,G ∈ C2

b (XΓ∗
N

),

∫
X

Λ∗,ξ

F LΛGdµΛ,ξ

= 4
∑
x∈Λ

∫
X

Λ∗,ξ

{∂xF} {(∆Λ∂·)(x)G} dµΛ,ξ, F,G ∈ C2
b (XΛ∗,ξ),

respectively. For ν ∈ P(XΓ∗
N

), let IN (ν) be the entropy production defined

by

IN (ν) = −4

∫
XΓ∗

N

√
fNLN

√
fNdµN ,

where fN (η) = dν/dµN .
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5.3. Local Equilibrium

Here, we shall prove the following lemma. Note that we can regard

µ̃N ∈ P(XΓ∗
N

) as an element of P(X ) by extending periodically.

Lemma 5.2. Assume that the sequence of measures {µ̃N ∈ P(XΓ∗
N

)} is

tight in P(X ) and satisfies

lim
N→∞

N−dIN (µ̃N ) = 0.

Then, every limit point µ of {µ̃N ∈ P(XΓ∗
N

)} is a canonical Gibbs measure.

Proof. We introduce the entropy production on infinite lattice. For

µ ∈ P(X ) and Λ � Z
d, we define IΛ(ν) by

IΛ(ν) = −4

∫
X

√
fΛLΛ

√
fΛ dµ,

where fΛ = dν/dµ|F
Λ∗ and µ = µ0. We obtain

IΛ(µ̃N ) = sup

{
−
∫
X

LΛu

u
dµ̃N ; u is positive, FΛ∗-measurable

}

≤ sup

{
−
∫
XΓ∗

N

LΛu

u
dµ̃N ; u is positive on XΓ∗

N

}

=
|Λ|
|ΓN |

IN (µ̃N ).

Therefore, by assumption, limN→∞ IΛ(µ̃N ) = 0. This implies, using lower

semicontinuity of IΛ, that

IΛ(ν) ≤ lim inf
N→∞

IΛ(µ̃N ) = 0

for every limit point ν of {µ̃N}. Now, for FΛ∗-measurable ψ ∈ C2
loc,b(X ), we

get ∣∣∣∣
∫
X
LΛψ dν

∣∣∣∣ =
∣∣∣∣
∫
X
LΛψfΛ dµ

∣∣∣∣
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= 4

∣∣∣∣∣
∑
x∈Λ

∫
X
{∂xψ} {(∆Λ∂·)(x)fΛ} dµ

∣∣∣∣∣
≤ 2

√∑
x∈Λ

∫
X
{∂xψ} {(∆Λ∂·)(x)ψ} dν ×

√
IΛ(ν) = 0.

This shows that ν|F
Λ∗ is stationary measure of LΛ which is the generator

for the SDE (5.6) when the boundary condition ξ is fixed. Since the unique

stationary measure of this dynamics is the finite volume Gibbs measure µΛ,ξ,

decomposing ν with respect to boundary conditions and assigning conserved

quantity, we get DLR equations for ν,

ν(·|FΛ) = µΛ,ξ(·), ν-a.e.ξ.

This shows that ν is a Gibbs measure. �

5.4. Coupled Local Equilibrium

We define the probability measure pN (dη du) on XΓ∗
N
× R

d by

pN (dη du) = t−1

∫ t

0
N−d ∑

x∈ΓN

δuN (s,x)(du)µ
N
N4s ◦ τx(dη) ds,(5.8)

where uN (s, x) = ∇N h̄N (s, x/N). This means that we have coupled the

distribution of stochastic dynamics and the solution of the discretized PDE.

Theorem 4.1 and Proposition 5.1 show that there exists p > 2 such that

sup
N≥1,b∈(Zd)∗

∫
{η(b)2 + |u|p}pN (dη du) <∞.(5.9)

Therefore, the sequence {pN (dη du)} is tight and we can choose a subse-

quence N ′′ → ∞ from an arbitrary sequence N ′ → ∞ such that pN
′′

con-

verges weakly to some p̄ on X × R
d as N ′′ → ∞.

To characterize the limit p̄, we impose the following entropy bound on

the initial distribution µN0 of φ0:

lim
N→∞

N−(d+4)HN (µN0 ) = 0.(5.10)
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We first prove the main theorem assuming (5.10) and remove it later. Here,

HN (ν) denotes the relative entropy of ν ∈ P(XΓ∗
N

) with respect to µN , that

is,

HN (ν) =

∫
fN log fN dµN ,

where fN = dν/dµN .

Proposition 5.3. Under the condition (5.10), for every limit point

p̄(dη du) of {pN (dη du)}, there exists λ(dv du) ∈ P(Rd × R
d) such that p̄ is

represented as

p̄(dη du) =

∫
R

µv(dη)λ̄(dv du).

We can obtain Proposition 5.3 in a quite parallel manner to the proof

of Theorem 4.1 of [5] under the conditions (5.9) and (5.10). Hence, we omit

the proof.

6. The Proof of Main Theorem

We shall prove Theorem 1.1 first under the condition (5.10) on the en-

tropy. Then, we remove it. The assumption (I2) is necessary only for the

second step.

6.1. Derivation of PDE (1.8)

We assume under the condition (5.10). From

‖hN (t) − h(t)‖2
H−1(Td) ≤ 2‖hN (t) − h̄N (t)‖2

H−1(Td)

+ 2‖h̄N (t) − h(t)‖2
H−1(Td)

and Theorem 4.3, the proof of Theorem 1.1 is completed once we can prove

that the first term of the right hand side tends to 0 as N → ∞. Moreover,

by the uniform equivalence of ‖ · ‖H−1(Td) and |||·|||−1,N , this follows from

lim
N→∞

E
∣∣∣∣∣∣hN (t) − h̄N (t)

∣∣∣∣∣∣2
−1,N

= 0.(6.1)
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Using Itô’s formula, we get

E
∣∣∣∣∣∣hN (t) − h̄N (t)

∣∣∣∣∣∣2
−1,N

= E
∣∣∣∣∣∣hN (0) − h̄N (0)

∣∣∣∣∣∣2
−1,N

+ 2E

∫ t

0

∑
x∈ΓN

(
N−1φNs (x) − h̄N (s, x/N)

)
×
{
−NUx(φNs ) −∇N,∗∇σ(∇N h̄N (s, x/N))(x)

}
ds+ 2t

= E
∣∣∣∣∣∣hN (0) − h̄N (0)

∣∣∣∣∣∣2
−1,N

+ 2

∫ t

0

(
IN1 (s) + IN2 (s) + IN3 (s) + IN4 (s)

)
ds,

where INi (s), 1 ≤ i ≤ 4 are given by

IN1 (s) = −
∑
x∈ΓN

d∑
α=1

∇αφ
N
s (x)V ′(∇αφ

N
s (x)) + 1,

IN2 (s) =
∑
x∈ΓN

d∑
α=1

∇N
α h̄

N (s, x/N)V ′(∇αφ
N
s (x)),

IN3 (s) =
∑
x∈ΓN

d∑
α=1

∇αφ
N
s (x)∇ασ(∇N h̄N (s, x/N)),

IN4 (s) = −
∑
x∈ΓN

d∑
α=1

∇N
α h̄

N (s, x/N)∇ασ(∇N h̄N (s, x/N)),

respectively. Using pN (dη du) introduced in Section 5.4, we can rewrite

these terms as follows:∫ t

0
IN1 (s) ds = −t

d∑
α=1

∫
X×Rd

{
η(eα)V ′(η(eα)) − 1

}
pN (dη du),

∫ t

0
IN2 (s) ds = t

d∑
α=1

∫
X×Rd

uαV
′(η(eα)) pN (dη du),

∫ t

0
IN3 (s) ds = t

d∑
α=1

∫
X×Rd

η(eα)∇ασ(u) pN (dη du),
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∫ t

0
IN4 (s) ds = −t

d∑
α=1

∫
X×Rd

uα∇ασ(u) pN (dη du).

Recall that we chose the subsequence N ′′ → ∞ from an arbitrary sequence

N ′ → ∞ such that pN
′′

converges to some p̄. Now, since

|u · ∇σ(u)|p/2 ≤ C (|u|p + 1) ,

|η(eα)∇ασ(u)|q ≤ C
(
1 + |u|p + |η(eα)|2

)
∣∣V ′(η(eα))uα

∣∣p/2 ≤ C
(
1 + |u|p + |η(eα)|2

)
for p > 2, q = 2p/(2 + p) > 1 and some constant C > 0, the integrands of

IN2 , I
N
3 , I

N
4 are uniformly integrable with respect to the probability measures

{pN} because of (5.9). Moreover, Proposition 5.3 gives the representation

of the limit p̄ in term of λ̄(dv du). Hence, by Proposition 3.3, we obtain

lim
N ′′→∞

∫ t

0
IN

′′
2 (s) ds = 2t

∫
R2d

u · ∇σ(v) λ̄(dv du),

lim
N ′′→∞

∫ t

0
IN

′′
3 (s) ds = 2t

∫
R2d

v · ∇σ(u) λ̄(dv du),

lim
N ′′→∞

∫ t

0
IN

′′
4 (s) ds = −2t

∫
R2d

u · ∇σ(u) λ̄(dv du).

For IN1 , since ηV ′(η) ≥ c−η2 ≥ 0, we get

lim sup
N ′′→∞

∫ t

0
IN1 (s) ds ≤ −2t

d∑
α=1

∫
X×Rd

u · ∇σ(u) λ̄(dv du)

by applying Fatou’s lemma. Summarizing these results and from the as-

sumption (I1), we get

lim sup
N ′′→∞

E
∣∣∣∣∣∣hN (t) − h̄N (t)

∣∣∣∣∣∣2
−1,N ′′

≤ lim sup
N ′′→∞

E
∣∣∣∣∣∣hN (0) − h̄N (0)

∣∣∣∣∣∣2
−1,N ′′

− 2t

∫
R2d

(u− v) · (∇σ(u) −∇σ(v)) λ̄(dv du)

≤ 0.
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We have used the convexity of the surface tension σ. Since the subsequence

N ′ is arbitrary, we obtain without choosing subsequences

lim
N→∞

E
∣∣∣∣∣∣hN (t) − h̄N (t)

∣∣∣∣∣∣2
−1,N

= 0.

This shows (6.1) and therefore the conclusion of Theorem 1.1.

6.2. Removal of the Entropy Bound

We have proved Theorem 1.1 under the entropy bound (5.10). Here, we

are going to remove it.

We take 0 < a < 1 as an approximation parameter. Let

φa0(x) :=
1

|Λ[Na]|
∑

y∈x+Λ[Na]

φ0(y), x ∈ ΓN ,

and φat be the solution of the SDE (1.4) with the initial data φa0. We define

the corresponding macroscopic field hN,a by

hN,a(t, θ) =
∑
x∈ΓN

N−1φaN4t(x)1B(x/N,1/N)(θ), θ ∈ T
d.(6.2)

Here, note that hN,a(0, θ) = hN (0, ·) ∗ ψa(θ) with ψa(u) = a−d1[−1,1](u/a),

u ∈ R
d. We denote by µN,at the distribution of ∇φat .

Lemma 6.1. Assume (I1) and (I2). Then, for fixed 0 < a < 1,

(i) µN,a0 satisfies (5.1).

(ii) For t ≥ 0, (I1) holds with µN,at and h0 ∗ ψa in place of µNt and h0,

respectively.

We can prove this lemma quite similarly to Lemma 5.1 of [5] by replacing

L2-norm with H−1-norm and using Proposition 5.1. Hence, we omit the

proof.

Lemma 6.2. Suppose that the sequence {µN0 } satisfies (I1) and (5.1).

Then, for t > 0 there exists a constant C > 0 such that

HN (µNt ) ≤ CNd.(6.3)
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Since the proof runs quite parallel to the argument in [8], we omit the

proof. In the proof, we have used the bound (5.1).

Lemmas 6.1 and 6.2 imply the entropy bound (5.10) and (I1) for

{µN,a1 ; N ≥ 1} with h0 ∗ ψa in place of h0. Therefore, we can apply the

results obtained in the last section and we conclude

lim
N→∞

E‖hN,a(t+N−4) − ha(t)‖2
H−1 = 0,

where ha is the solution of PDE (1.8) with the initial data h0 ∗ ψa. Let

ĥN (t) be the macroscopic field obtained from the solution of the SDE (1.4)

on ΓN with Gaussian process {ŵt(x) := w̃t+N−4(x) − w̃N−4(x)} and initial

data φ0. Here, we note that hN and ĥN have the same distributions. Then,

using (i) of Proposition 5.1 we obtain

E‖hN,a(t+N−4) − ĥN (t)‖2
H−1

≤ E‖hN,a(N−4) − hN (0)‖2
H−1

≤ 2E‖hN,a(N−4) − hN,a(0)‖2
H−1 + 2E‖hN,a(0) − hN (0)‖2

H−1 .

(6.4)

The first term on the right hand side of (6.4) goes to 0 as N → ∞ for fixed

a > 0 by (iii) of Proposition 5.1. The second term tends to 0 as N → ∞
and then a→ 0 by (ii) of Lemma 6.1. By (4.14) of Theorem 4.2, we get the

conclusion.

7. Concluding Remarks

(i) The total surface tension of the macroscopic hypersurface h ∈ C1(Td)

is defined by

Σ(h) :=

∫
Td

σ(∇h(θ)) dθ.

Its (formal) functional derivative is then given by

δΣ

δh(θ)
= −div{(∇σ)(∇h(θ))},

in the sense that

d

dε
Σ(h+ εg)

∣∣∣∣
ε=0

=

∫
Td

δΣ

δh(θ)
g(θ) dθ

(
=

(
δΣ

δh
, g

)
L2

)
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holds for every g ∈ C1(Td). As explained in [5], the macroscopic equation

derived from the microscopic dynamics determined by (1.2) is the gradient

flow which relaxes the total energy Σ:

∂h

∂t
= − δΣ

δh(θ)
.

In our case, the basic (Riemannian) structure should be introduced to the

space of heights based on the H−1-inner product. Accordingly, the func-

tional derivative of Σ would be changed into

δ̃Σ

δ̃h(θ)
= ∆[div{(∇σ)(∇h(θ))}],

since we have

d

dε
Σ(h+ εg)

∣∣∣∣
ε=0

=

(
δ̃Σ

δ̃h
, g

)
H−1

,

where (f, g)H−1 = ((−∆)−1f, g)L2 . In terms of the functional derivative in

this sense, the PDE (1.8) can be written as

∂h

∂t
= − δ̃Σ

δ̃h(θ)
.

(ii) The microscopic dynamics determined by the SDE (1.4) preserve the

total volume so that the macroscopic equation (1.8) also has the same prop-

erty. In particular, as the time t goes to ∞, the solution h(t) of the PDE

(1.8) tends to the minimizer of the total surface tension Σ(h) in the class of

all h’s satisfying the condition
∫
Td h(θ) dθ = c(=

∫
Td h0(θ) dθ). Under the

periodic boundary conditions, however, the minimizer h is simply a con-

stant function. Moreover, although the microscopic dynamics studied by [5]

have no conservation law, the corresponding macroscopic PDE preserves the

total volume if one imposes the periodic boundary conditions. To observe

the apparent differences between these two PDEs, it is required to discuss

the problems in a bounded domain in R
d imposing proper boundary con-

ditions. The corresponding static problem was studied by [4], which gave

the mathematical foundation to the derivation of the Wulff shapes from the

∇φ-interface model.
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(iii) [2] investigated the problem of the hydrodynamic limit and derived the

nonlinear fourth order PDE as the macroscopic equation. In the case of

d = 1 the microscopic dynamics studied by that paper are the same as the

gradient fields associated with φt on ΓN determined by SDE (1.4). However,

if d ≥ 2, our model is quite different from [2]. Indeed, the Gibbs measures of

their model are product measures, while the Gibbs measures of our model

have long-range correlations.
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