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Chapter 1

Inverse Scattering Problem for
Non-symmetrical Operator

1.1 Introduction and the main result

‘We consider the following equation :

Apu= Bg—z +Pxlu=Iu =z G‘R,

where

(0! oo [ Pun@ Pa@ )
B—<1 0>’ P()—(Pm(z;) P22(x)>'

Here we assume that Pj; € C}(R). Furthermore, the operator Ap in {L?(R)} is defined by

D(Ap) = {Hi(R)}?, |
Apu=B% + P(z)u.

(1.1.1)

(1.1.2)

For A € R with Re X = 0, let us define o) (z, \), (=) (z, X), ¥ (z, A), (=) (z, \) as the solutions to (1.1.1)

which satisfies

Az
oM (z, A) ~ 6/\$ , T — 00,
; e
) e~z B
14 (SIJ, /\) ~ Az s T — 00
. —e
’ AT
'l/)(+)($, A) ~ ( e}\x ) ) T — —0Q,
e
-z
¢(—)($, >‘) ~ ( ° -z ) ’ T— =0
—e

(1.1.3)

(1.1.4)

(1.1.5)

(1.1.6)



‘We call these solutions the Jost solutionsf\

Then, we can prove that there exists unique coefficient a()()), 89 (}), j = 1,2, 3,4 such that

M (z,2) = aD AP (2, 1) + BN (z, V),
¢ (z,2) = a@ NP D (2, A) + BB (N9 (z,N),
P (z,2) = a® WM (2, 1) + BB X)) (z, N),

P (2,0 = PN (2, 2) + B M) (2, ),

(See Lemma 1.2.3 beiow). Here we call these coefficients the scattering coefficients.
Now we will consider

Inverse scattering problem. '

Determine the coefficient matirix P(z) from o) ()\), B3 (N) (j = 1,2,3,4).

In this paper, we will establish the uniqueness in the inverse problem.

(1.1.7)
(1.1.8)
(1.1.9)

{1.1.10)

As for works concerning inverse spectral problems for the nonsymmetric operator (1.1.2) in a finite interval,

see Ning [38], Ning and Yamamoto [39], Trooshin and Yamamoto [52],[53], and Yamamoto [55]. In Trooshin

and Yamamoto [52], it is proved also that the spectrum of Ap consists only of eigenvalues and that the set

of generalized eigenfunctions forms a basis. In these papers, the uniqueness and the reconstruction results

are proved based on the transformation formula. In [53], the inverse problem for the hyperbolic equation

%u(t, z) = Apu(t, x) are discussed.

To my best knowledge, there were no works for the scattering problem for a nonsymmetric operator, and

our uniqueness result for the inverse problem with the nonsymmetric operator is the first result. The results



for direct scattering problem for the nonsymmetric operator (Theorem 1.4.3, Theorem 1.5.6) is also the first
result and may have independent interest. On the other hand, there are many results on the scattering
problem’ for the Schrodinger operator and readers can consult Chadan and Sabatier [8], Deift and Trubowitz
[9], Faddeev [11],[12], Agranovich and Marchenko [2], and Marchenko [31] as monographs.

We denote the scattering coefficients for the coefficient matrix P(z) by ag).()\), g)()\) (j =1,2,3,4)
resioectively.

In general, the uniqueness does not hold, as the following example shows.

Example ‘

Let

_(00 I )
o=(8 ) aw=( 2, %)

Here, ¢ € Cj(R) satisfy [*_q(s)ds = 0. Now we denote the Jost solutions to B% + P(z)u = \u by
gog,i),l ](f) and denote the Jost solutions to B g—;f + Q(z)u = Au by gog),wgz). Furthermore, we denote
the scattering coefficients for coefficient matrix P(z) as ag)(/\), ﬂg)(/\) (j =1,2,3,4) and we denote the

scattering coefficients for coefficient matrix Q(z) as ag)()\), ﬁg ) ) (=1,2,3,4).

Then we obtain

eAa: _ e——)\:c
o (x, ) = ( e ) ¢§:)($7>\)=< i

Az
e = ( e ) N = ( S

’(pgi-)(x, A) :expl</:° q(s)ds) X < Zi: ) , wg')(x,,\) = e>;p </:o q(s)ds) X ( fe_‘/\; ) ,
v (@) =exp.<— /_ ; \(s)ds)x ( Ziz ) ¥5 7 (a, A) = exp (— /_ ; q(s)ds) x ( _e;jz )



Therefore we have
P =) =1, PN =850 =0,
o) =0l N =0, FPN =870 =1,
PN =P =1, YN =80 =0,

o) =aP M) =0, BON) =P M) =1.

Consequently the uniqueness does not hold. [J

Our main result is the following theorem.

Theorem 1.1.1 We assume that the coefficient matrices P(z) and Q(z) are in C(R). Then, for all X with
ReA =0,

af ) =ad M), BN =80, =1,23.4



if and only if the following equations hold :

(Qu@) + Qua(e) ~ Qa1(x) — Qaala) — Pra(x) + Pra@) — Ps(z) + Pra(s))
b ( [ @+ Qus) - Puts) - Pzg(s))ds)
 (@n(&) - Qualo) + Qna(0) ~ Quale) — Pis(s) — Pra(e) + Pua(e) + Pra(a)) =,
z €R. (1.1.11)
(@u1(2) + Quslz) — @ (&) — @on(e) + Pu(z) ~ Pre) + Poa(a) — Pus(e))
ron ([ (@n(s) + Qn(9) - Pu(s) - Pua(o)ds)

X (=Q11(x) + Q12(x) — Q21(x) + Q22(z) — Pi1(z) — Pi2(z) + Por(z) + Paa(x)) =0,

zeR. (1.1.12)
/_°° (Q12(s) + Q21(s) — Pi2(s) — Pa1(s))ds = 0, o (1.1.13)
, /—00 (Q11(s) + Q22(s) — Pr1(s) — Paz(s))ds = 0. ‘ : (1.1.14)

The theorem gives the uniqueness for some components. For example, the following corollary holds.

Corollary 1.1.2 If we restrict a class of coefficient matrices to matrices in the form

{( a(Ox) b((:)c) ) ;a,b€e Cg(R)},,

then the solution to the inverse problem is unique.



1.2 Jost solution

In this section, we investigate the properties of the Jost solution, that is, the solution to (1.1.1) with

(1.1.3) — (1.1.6). Here and henceforce, for R%-valued function ¢, by ¢; we denote the j-th component :

p1(z
oa)= [ 9112
p2(z)
and |p(z)| = max;—12|¢;(z)| Using variation of constants method, we can directly prove the following

integral equations.

Lemma 1.2.1

e/\af [ cosh(=A)(t —z) sinh(=A)(t — z) ,
T ) + /z ( sinh(—A)(t —z) cosh(=A)(t — ) ) BP(t)gé("')(t, A)dt, | (1.2.1)

_ _ e_)@ oo cosh(—=A)(t —z) sinh(—\)(t — z) _
PN = ( A ) +/z ( sinh(=A)(t —z) cosh(=\)(t — z) ) BB (¢, )du(1.22)

e B z coshA\(z —t) sinhA(z —1t) ) .
e ) / ( sinh \(z —t) coshA(z —¢) )BP(W* (t, \)dt, (1.2.3)

(=) _ C-Az _ ® cosh )\(.’L’ - t) sinh )\(:I: — t) (=) :
#e ) - ( e ) /. ( ) T ) Brow e ne 24

—00

Lemma 1.2.2 For Re) > 0, each of (1.2.2) and (1.2.3) possesses a unique solution. Moreover, there ezists

a constant C > 0 which is independent of x and A, such that 7
lo()(z,\)| < Ce™Rere z e R, , - (1.2.5)
[P (@, \)| < CeeX*, zeR. (1.2.6)
Similarly, for Re A <0, each of (1.2.1) and ‘(1.2.4) possesses a uniquie solution aﬁd
o™ (z,))] < CeBe*, z R, (1.2.7)
[p(z, )| < Ce™ R, zeR. e (1.2.8)

Furthermore, gdxgo(‘)'(x, A) and £y (z, ) exist for all fired z € R and ReX > 0. Similarly, %\cp(‘”(x, A)

and d;‘l}\w(_)(:v, M) exist for all fized x € R and Re X <0.



Proof :
We only prove the lemma only for p(~). We use the iteration method to solve the integral equation (1.2.2).

Now we set

(0) (z,\) = ( )

n [ cosh(—A)(t —z) sinh(=X)(t —z) et _ .
ARG / ( sinh(— )\)(t—x) cosh(—=A)(t — z) )BP(t)g( (& Ndt. n = 1"27

Then we have

WW@ANS/

x

00 e —-x) . t—x IPll(t)l + |P12(t)| n—
( R ‘/\(t ) ReA(t—2) ) ( P (®)] + Pus(®)] ) lg™=D (¢, \)|dt

= / T RNt (1Pyy (8)] + | Paa(t) + [P (0)] + |Paa(t)]) l9" (¢, A)ldt.

Putting PO (t) = |Py1(t)| + |Pi2(t)| + | Par(t)| + | Paa(t)], we obtain

g™ (z, M)

< /oo dtleRe A(tl—i)P(O) (tl) *® dthRe )\(tz—t1)P(0) (tz)'
T t1

« * dtgeRe )\(t3-—t2)P(0) (t3) . /oo dtneRe z\(tﬂ—tn_1)P(0) (tn)lg(o) (tn, /\)l

t2 Jtn_a

0o C oo b
< e Re)\:l:/ dtIP(O)(tl) dtQP(O)(tz) .. / dtnP(O)(tn)

t1 tn—1

1 o " 1 0 "
— e~ Redz = (/ P(O)(t)dt> <e Re/\x_| (/ P(O)(t)dt)
n! \J,; n! \J_wo

because of |g(?) (t,,, \)| < e~ ReXtn Therefore, the series

N =3 g™ ()

n=0

is absolutely and uniformly convergent for any compact set of . Furthermore we obtain the estimate

lg(z, \)| < e” ReAexp {/ P(O)(t)dt} <e ReATexp {/ P(O)(t)dt}. (1.2.9)



Therefore, (1.2.5) is obtained. It is clear that g(z, A) is a solution to (1.2.2). The uniqueness for the solution
can be proved by successive apporoximation method. The existence of %cp(‘)(;v, A) for Re A > 0 follows
from the differential equation (1.1.1). O

By W|f, g] we denote the Wronskian :
Wf(@),o(2)) = F(2) (=) - £ (@)g(e).

Lemma 1.2.3 We assume that ReXA = 0. {p()(z, ), p()(z,\)} is linearly independent for all z. Fur-

thermore, {1 (z, \), (") (z, \)} is also linearly independent for all z.

Proof: '

Calculating the Wronskian W (p™)(z, A), ¢()(z, )], we have

W™ (@,X), ¢ N - -2 2 o0

by (1.2.1), (1.2.2) and P € C3(R). Then the Wronskian is not 0 for sufficiently large z.
Then {o()(z, \), (=) (z, \)} is linearly independent.

We can prove the linearly independence for {(*)(z, ), %(~)(z, A)} in the similar way. O

10



1.3 Scattering data

Let Re A = 0. From lemma 1.2.2, there exists () (z, \), p&)(z, \) which satisfies (1.2.1) — (1.2.4). Further-
more, from lemma 1.2.3, {e™)(z, N), o) (2, A)} and {9 (z;, ), () (z, \)} are linearly independent for all
z.

Therefore, we can take the scattering coefficients a(9)()), U )()\) (j=1,2,3,4) such as

@ (z, ) = a® NP (z, ) + b(”(,\)w(-)(x, N, (1.3.1)
e (2, X) = a@ (V) (z, 1) + BB (W) (2, N), | (1.3.2)
Y (@, A) = a®N)e® (2, A) + BN (2, 1), (1.3.3)
P (2, A) = W (V)M (2, ) + B (V) (, A). (1.3.4)

Note that these a(N), B9 (\) (5 = 1,2,3,4) are uniquely determined.

Substituting (1.3.3), (1.3.4) into (1.3.1), we obtain
ez, ) = (@®a® + gWa®)poH) (2, X) + (VBB + BB (2, N).

Therefore we have

aWa® L g0a® Z 1 4Wad 4 g1 g@ _ g

Similarly, substituting (1.3.3), (1.3.4) into (1.3.2), substituting (1.3.1), (132) into (1.3.3), and substituting

(1.3.1),(1.3.2) into (1.3.4), we obtain the following equations :

aWa® 1 gWa® =1, oMgE) 4 WA =,
a@a® 1 g@a® —0, o@8®) 4 gD = 1,
aWa® £ a@8@ =1, o® g0 4 4@ 56) = o,
aWa® 4 a@pW — o (WM 4 3@ @ — 1,

(1.3.5)

e,

Taking the Wronskian of (1.3.1) and ¢(*)(z, ), and taking the Wronskian of (1.3.3) and (") (z, \), we

have

WM (2, 1), (2, \)] = =D NWHH (2, ), v (2, V)],
W™ (2, 0), v (2, )] = B W)W (z,A), o (z, A)].

11



Therefore we obtain

BYR) = —/(NED (A)

where

W™ (z,)), o) (z, \)]
W (@, A), () (z, A)]

Y(A) =

Taking the Wronskian of (1.3.1) and ¥(~)(z, ), and taking the Wronskian of (1.3.4) and o) (z, \), we

have

Wi (x, X), ) (2, )] = aD W)W [ (z, A), v (z, A)],
W™ (z, 1), (2, A)] = SO N W™ (2, 1), 0 (z, ).

Therefore we obtain
@) =4(N)BD ().
Taking the Wronskian of (1.3.2) and ¢(+) (z,A), and taking the Wronskian of (1.3.3) and (=) (z, ), we

have

Wle) (2, 1), 4 (2, )] = ~BDNWHH (z, X), 6 (z, 3)],
W) (@, 1), 5 (z, )] = ~a@ W)W (@, 1), ¢z, N)].

Therefore we obtain

BAN) = y(Na® ().

Taking the Wronskian of (1.3.2) and (™) (z, )), and taking the Wronskian of (1.3.4) and () (z, ), we

have

W[(p(—) (.’L‘, /\), ’([J(_)(x, /\)] =a® (/\)W[%b(” (SL’, )‘)7 "/’(_)("Ev ’\)]’
Wi (2,2), 9z, V)] = —aD \W[p(z, 1), o)z, ).

Therefore we obtain

d®(3) = 1\l ().

Thus

BOX) = =MD (),
aW) =v(N)FD ),
AN =1(N)a®@ M),
a® () = =1 (\)a® ().

(1.3.6)

12



Substituting (1.3.6) into (1.3.5), we have

1

@MY oD NEIN) = 5.

(1.3.7)

" From (1.3.6) and (1.3.7), we can represent (), o, 31 31 'y in terms of a@,a®), @ 3G). In fact,

by direct calculation, we obtain

( B2 (A
1) = L5863,
(2) (3)
aM(y) = e GU ),

a® 3)
a®\) = ___.ng))ﬂ(tx) Q) ’ (1.3.8)

3 1 — /3(2)£/\2ﬂ(3’£>\2
( )()\) (20) 3 ()(%) bl
-« )3 A
13(4)()\) — ((2)2 ) ( )'

Therefore, the infomation of the data a()()), 8U )(’\), (j =1,2,3,4) is essentially included in the data

\

a@(X),a®(X), B3 (X), B (X). Therefore we can only consider about (1.3.2) and (1.3.3). Now we rewrite -
(1.3.2), (1.3.3) as

1

, o) (@) = &@W<»+TQ)”m», (139
() = (A)S"H)( /\)+R1(()\)) ), A). (1.3.10)

We call Tj()),7 = 1,2 and R;(\),j = 1,2, the transmission coefficients and the reflection coefficients.
Note that we defined these coeflicients only for Re A = 0.

For Re \ = 0, using (1.2.2), we have
¢ (2, )

sinh(=A)(t —z) cosh(—A)(t — z)

(e +1gre / Ten (! BP(t)o ) (¢, \)dt
—e e 2 0o 11

+ %e-& / Y ( 1 ‘11 )BP(t)w(')(f,)\)dt+0(1)
_ {1 B %/_‘: eAt( 1 -1 )P(t)(p(_)‘(t,)\)’dt} ( _e;\; )
+ {%/_Z e M ( 1 ’1 ),P(t)¢(_)(t7 )\)dt} ( Zi: ) +0(1)'

13

N /oo <cosh(—)\)(t—a:) sinh(—\)(t — z) ) BP@)o ) (6 )t +0(1) (2 — —o0)



Comparing this equation and (1.3.9), and taking the limit £ — —co, we obtain

ﬁ = 18(2)(,\) =1- %/oo et ( 1 -1 )P(t)kp(_)(t, N)dt, (1.3.11)

];’22((/)\\)) = a0 = %/ e (1 1)PEEOE N | (1312)
’Similarly we obtain

Tlt/\) =aP() =1- % / e ( 11 ) P(t)yp™ (¢, Ndt, (1.3.13)

_1;11((/)\\)) = ﬁ(s) (A) = %/m At ( 1 -1 )P(t)»t/l("')(t, Ndt. (1.3.14)

14



1.4 Properties of the Jost Solutions

‘We will deduce the asymptotic behavior of the Jost so,lu’cions; At first, we consider the case of Re A > 0, and
‘we will deduce the asymptotic behavior for (=) (z, \), p()(z, A).
From (1.1.4) and (1.1.5), we set
mI(z,A) = Xz, ), P (z,)) = e 2 (z, X).
Substituting () (z, ) = e **m) (z, X), ) (z,\) = *n(H)(z, X) into (1.1), we obtain
d . (p x ) L1y o
B—m'"(z,\) + P(z)m' ) (z,A) = A m T (z, N), (1.4.1)
dz 11
d_ ) =13 @ |
B%n (z,A) + P(z)n"(z,\) = A L1 )" (z, A). (1.4.2)
From (1.2.5) and (1.2.6), we also have
Im)(x,A)] < C, | (1.4.3)

In™)(z, )] < C. (1.4.4)
Using (1.2.2) and (1.2.3), we obtain the integral equations for m(=), n(+) :
_ 1 1 [ [ e 2At-2) _ 1 g=2XMt-2) 41 _
m( )(.’L‘, A) = ( -1 ) + §L ( 6;2)\(t-—1) +1 e~ 2\ (t—z) —1 P(t)m( )(t7 A)dtv (145)
1 1 % [ —eDE-0) 1] 21 41 ‘ '
n(z,)) = ( X ) -3 /_ 00( Soen ey | POV (146)
Let us investigate m(~). Remark that Re A > 0. When we set

9(0)(93’ >‘) = ( —1_1 )

) - —2X\(t—z) —2\(t—z)
@en=[ L e T e
; 2 1+e (t—z) ~1+4e 2X(t—zx)

T

) P(t)g*=1(t, N,
we have the following estimate :

9% (2, N)| < /oo(lpll(t)i + | Pra(t)] + lei(t)l + [Pa()])g* =V (t, N)|dt.

15



Setting P(O)(t) = |P11(t)| + | Pr2(t)| + | P21(t)| + | Pax(t)], we have

') o0 N oo .
lg®(z, \)| < / dtiPO(ty) [ dtaPO(ty) - / dt, PO(t,)

T t1 th-1

= i—' ( /x = P“”(t)dt)n

Then the series

[ee]

m( )(z,\) = Zg(k)(z,)\)

. k=0

are absolutely and uniformly convergent for z € R. Furthermore, we have the estimation :

Im)(z, \)| < exp (/_o; P(O)(t)dt) '

and (1.4.7) is the solution to (1.4.5).

Now we will deduce the asymptotic behavior of m(~) from (1.4.5). We set

()

DO DO
D[ D=

Then for k > 1,

oo N
g3 = [ (X +Ye ) Pa)gD (e, Nt
xz

. ‘
= / dty (X + Ye‘”‘(tl“x)) P(t1)
T t1

x / dtx (X+Ye~”<tk—tk—1>) P(tk)( 11)

tk—1

(o]
/ dt1 X P( tl) dthP(tz) X - / dtx X P(t) ( 11 ) + (remainder).

thk—1

Now we define the operator W, in the following way :

Wi : (@) = {CR)Y
D(W, o) = {C(R))?
(Wioott)(z) = [ X P(t)u(t)dt.

Then we have

P (z, ) = Wk ( 11 ) + (remainder).

16

dtz (X + Ye 2t tl)) P(tz) X oo

(1.4.7)



Let us consider the remainder term. Putting
ZW Ot z) =X, ZO(\t,z) = Ye 2 -2),

and setting ; =1lor2(i =1,--- ,k), the remainder term is represented as the summation of the followng

terms :

/ dtlZ(Tl) A tl,:c)P(tl) dt1Z(72)()\ tz,tl)P(tg) X

t1
X dtn Z) (A g, tr_1) P(ty) (1.4.8)
tk—1 -1
excepting the term for (71,---,7%) - 1,1,---,1).

Let us consider the term (1.4.8) with (71,---,7%) # (1,1,---,1). Taking the maximum i such that 7; = 2.

We denote this maximum ¢ as 35. Then (1.4.8) is written as

o0 oo
/ dt1 Z T (N t, ) P(ty) [ dtaZ7) (A tg, 1) P(t2) X

t1
0o : oo
ce X / dtio_lz(”cw‘l)(/\; tig—1, tio—2)P(tig—1) dtioYe-z'\(tio_tio"l)P(tio) X
tig—2 : tig—1 o
(o o] oo 1
X / dt10+1XP(ti0+1)/ dt‘kXP(tk) ( 1 ) (149)
tig te—1 -

For ig # k, by partial integration, we have

0o
/ dtioye—Z/\(tiO-—tio—l)P(tiO)

tig—1 tig

1
dtlo-i-lXP(tzo-i-l) X - / dtx X P(ty) ( . )
tk—1.

o .
— / dtioye-—2)\(ti0—tio-l)P(tio)

tig—1 tig

o 1 d N ° o 1
= / dtiy— | 5—e 2 tioto-1) ) Y P(t,) / dtigr1 X P(tigp1) Whoio™? (tio+1)
t “2A dt'LQ tio _1

R 1
dtio+1XP(tio+1)W-ik-:oom ! ( 4 ) (tio+1)

ig—1
© i 1
= ﬁYP(tio—l) dtior1 X P(tio 1) Wi ( 1 ) (tio+1)
tiO"l . -
L[ 2 (tig—tig—1)V D/ k—io—1 1
+ 53 diige” "o VY Pl(ty,) dt’to+1X P(tip+1)Wis (tio+1)
tig—1 ‘ tig -1 .
1 [ k—io—1 1
“ax | e TR Y P(tig) XP(i) WELT ) (tio)-
t,‘o_l ‘ -

17



For iy = k, we have

o0

dtpY e P bt p(y ) — %YP(tk_i) + Elxe‘”«(tk*tk-l)YP’(tk)dtk.

tk—1

Therefore, from (1.4.9), the absolute value of each component of remainder term is smaller than

ot [t ([ o)

.2,\|k| (/ PO( t)dt) I—Z%\_I (/ P”(t)dt) _1] - (1.4.10)

where

PO(t) = |Pyu(t)| + |Pra(t)] + | Par(t)| + |Paa(t)]
+ | P{1(t)] + | Pi2(t)] + | P3y (t)] + | Pay(t)|

+ (1P ()] + [ Pr2(8)] + [Par ()] + | P2 (2)])?
and C is a constant which depends on P. From (1.4.1‘0), the remainder term is bounded by

el ([T ae00a) ok ([Taroom)'

where C’ is the positive constant.

Therefore, we obtain

m)(z, \) = ig(k)(x, A) = iwfm ( _1 ) (x)+0 (IAI) . A — oo C(1.4.11)
k=0 k=0 .
Similarly we obtain
nt(z,A) = i(—v—oo)k ( ) (z)+ 0 (P\I) . MNeooo,  (14.12)
k=0 ’ R

where

Voo : {CR)}? = {C(R)}?,
D(V_o) = {C(R)}?,
Veou(®) = [ Y Pt)u(t)d

18



" Next, we consider the case of Re A < 0. We will deduce the asymptotic behavior of ¢(+) (z,\), v (z, A).

‘We can use the same ided for the case of Re )\ > 0. Setting \
mD(z,3) = 626 (,3), 0z, 2) = &2z, 1),
we have
Bim(+) (z,A) + P(z)m™) (z, ) = A ( 1 ) mH (z, \),
dz -1 1 \
BLaO@ )+ PO @) = b ) aO@ ),
dz ’ ’ 11
m) (z,A) = ( 1 )(1+o(1)) z — oo,
Sy s 1
n(z,\) = ( 1 )(1+0(1)) T — —oo.

- We can deduce the integral equation for m(t), n(=) :

_ 1 1 [ _eZA(t—x) +1 éZA(t—z) +1
(+) - - . (+)
mt(z,\) = ( 1 ) + 3 /m ( PANE-2) 11 _g2Mt-2) 41 P(t)m'™(t, N)dt,

B 1\ 17 [ At 1 M@0 1 O s
n)(z, ) = ( o ) -z /_ ) ( et 1y ety | PORE N
The asymptotic behavior of m(™), n(-) is given by

) (a,3) = ZV+«>( i)””(w)
@A) = Z( W»oo)'“( >(“°)+O<IAI)

where

Vieo @ {C(R)}* - {C(R)}?,
D(Vioo) = {C(R)}?,

Vieou(z) = [° Y P(t)u(t)dt,
W_w : {C(R)}? - {C(R)}?,
D(W-) = {C(R)}?,
W_oou(z) = [*. X P(t)u(t)dt.
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‘ 1
Now we calculate Y po o WX ( 1 ) (z). By direct calculation, we obtain

> Whe ( . ) @)
k=0

=i/oodt1 Oodtz-'- * dthP(t )XP(tz)XP(tk)( 1 )
k=0Y% t

1 tk—1

oo [e'e)
Z 1
k=0 T t

1 te—1

Pii(te) — Pai(te)  Pia(tx) — Pra(te)

« ( —Pi1(tk) + Pai(te) —Pia(te) + Paa(tx) ) (

Ry /°° * /oo —Pi1(t1) + Pai(t1)
= — dt dtg--- dt
kzzo L A ( Pri(t1) — Pai(t1)

o o —Pi1(t1) + Pa(t1)
@2 / dtk( Py (t1) — Pai(t1)

-1

)

—Py1(te-1) + Pa1(te—1) . —Pi2(tk—1) + Poa(te—1)
P;l(tk-l) — Pyi(tk-1)  Pia(tk—1) — Paa(tr-1)

1

X (=Pu(te) + Pra(te) + Por(te) — Pa2(tk)) ( 1

)

—Pia(t1) + Pea(t1)
Piy(t1) — Paa(t1)

—Pia(t1) + Paa(t1)
Pia(t1) — Poo(t1)

oo 1 ‘ e o] lo’e] [ele]
- Z o / dtl/ dtg-- - dti(—Pr1(t1) + Pia(t1) + Pai(t1) — Paz(t1)) x - -
k=0 z t1 )

[

el X (—Pu‘(tk) + P12(tk) + P21(tk) — Pzz(tk)) ( _11 )

2

— ex b (—Pll(t) + Plz(t) -+ P21(t) — P22(t)) 1
= p{/z - dt} ( ) .

Similarly, we have

-1

—00

i 1 . z (—Pu(t) — Plz(t) -
> (Vi) ( X ) @ =ew{ ;

Therefore, we obtain the following lemma.

Lemma 1.4.1 For Re A > 0, we have

Pa(t) =~ Pr(t)) dt} (

(@, \) = exp { [ R0+ Pal) £ Pal®) - Prlt) dt} (

oo 2

B e B e 22(t))dt}<

For Re A < 0, we can obtain the similar results.
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Lemma 1.4.2 For Re X <0, we have

e { [ )+ Pl a0+ Pt dt} ( i ) L0 (.&_‘)  (1423)

o3y et { / (Pu(t) = Puot) - P (t) +P22(t))dt} ( _11 ) +o<|-}\-|> . (1.429)

From (1.4.21) and (1.3.11), we have

I
o
I
N = N =
|
3
PN 7/~

Il
=
I

2

- )P(t) exp{/too —Pu(t1) + Pra(t1) + Poi(t1) _P22(t1)dt1} < 11 )dt

ﬂ(z)(A) - T; ») =P { /_ : —Pu(t) + Plz(t);— P21§t) — P(t) dt}‘+ ; (ﬁ—l) |

Similarly, we have

a(3) (}\) — Tlt)\) — exp {/;00 _Pll(t) — P12(t)2—' le(t) - P22(t) dt} Lo (I_;:I.) .

From (1.3.12) and (1.3.14), we can see

Ta(X) Ry
90 =757 =0 ()

by partial integration. From (1.3.8), we have
a(l)(/\) = exp / Pn(t) + Pm(t) + P21(t) + Pzg(t) @b ro i ’
—oo 2 A
1
“or-a()
« )
A B

90 =0 (),
D) = exp {/_O:o P11(t) — Pra(t) — Por(t) + Poal(t) dt} L0 (Fl\") ‘

2
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Therefore we have obtained the following.

Theorem 1.4.3 The following asymptotics hold :

2

atf+o

1
Al

)

2

1 % —Pu(t) — Pia(t) — Pau(t) — Po(t)
a(3)()\) = 0y =exp{/_oo | 12 5 22
a®(\) =0 %O,

m}+o(

B © _Puy(t) + Pia(t) + Pa1(t) — Paa(t)
B2 () 0 exp {/-oo 11 12 : 21 22
@y - ) (1
PN =75 ‘O(w)"

o Pll(t) — Plz(t) — le(t) + P22(t)

BO() = exp { /. -

22

w}+0(

il vof

1
A

).

).

1
Al

1
A

)

)

(1.4.25)

(1.4.26)

(1.4.27)

(1.4.28)

(1.4.29)

(1.4.30)

(1.4.31)

(1.4.32)



1.5 The spectrum of Ap
Let us define Ap : {L?(R)}? — {L*(R)}? as

{ Apu = Bfu+ P(z)u, (15.1)

D(4p) = {H'(R)}”.
Now we prove that the operator Ap does not have eigenvalues. Remember that P(z) € {C}(R)}*. We

assume that the support of P(z) is included in (—b,b) (b > 0).

Let us consider
Apu = \u. ‘ o (1.5.2)

At first, we consider the case of ReA > 0. Since P(z) = 0 for x < —b,b < z, the solution to (1.4.2) is

-z
Az

e

ez\:c

. Az
. . . . €
written as the linear combination of ( ) , (
. _e—

) for x < —b,b < z. Therefore, the non-zero

solution to (1.5.2) which is included in {L?(R)} satisfy

e
Gy oz z > b,

u(z, A) = N (1.5.3)
’ ) z<—b

where C; and C, are non-zero constants. Conversely, the functions written in the above form are included
in {L?(R)}.

We can connect (1.5.3) to —b < z < b, if and only if
Apu(z, \) = du(z, A)

u(=b, \) - 11 —0

u(b,A)-(i)zO :

has non-zero solution. Let us set Ag;t'b) : {L%(=b,b)}2 — {L?(—=b,b)}? as

(1.5.4)

D(A%Tz)#{ue{m(—b,b)}% u(—by( 11 ) =0, u(b)- ( i ) =o}, s
Ag;':gu =B&u+ P(z)u (—b <z < b). |

Then we easily obtain the following lemma.
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Lemma 1.5.1 The eigenvalue A for Ap with Re \ > 0 is the eigenvalue for Agfg . Conversely, the eigenvalue

for Ag;t'b) with Re A > 0 is the eigenvalue for Ap.

Similarly, for Re A < 0, we define Ag;’b) : {L2(—b,b)}? — {L%(~b,b)}? as

R e G ELICN () E S

ASJu=Biu+ Py (~b<z<b)

Then we easily have the following lemma.

Lemma 1.5.2 The eigenvalue )\ for Ap with Re A < 0 is the eigenvalue for Ag{b) . Conversely, the eigenvalue

for Ag,jg with Re A < 0 is the eigenvalue for Ap.

It is known that Ag’:g does not have eigenvalues. Therefore, by lemma 1.5.1 and lemma 1.5.2, Ap does
not have eigenvalues in Re A # 0.
For Re ) = 0, )\ is not eigenvalue, too. In fact, since P = 0 for x > b, the solution to Apu = Au is written

in the following form : ‘

(@, \) = Cy ( cosh Az )F+Cz< sinh Ax ), Re) = 0,\ £ 0,

sinh Az cosh Az

u(z,»:(g;), | A=o0.

This is-included in {L2(R)}? only for C; = Cy = 0. Therefore, the solution to Apu = Au is only 0. ‘Then A

is not eigenvalue for Re A = 0.

Propositon 1.5.3 Ap does not have eigenvalues. ' /

Now we can prove that a®()\) # 0, 33)()\) #£ 0 for all A € C. If not, there exists A such that ¢(=)(z, )

and () (z, A) are linearly dependent. Thus this X is the eigénvalue for Agj:g . This is contradiction.

Lemma 1.5.4 For all A € C, we have

a®() £0, FOQ) £0.
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Now we prove that X\ for Re A # 0 is included in the resolvent of Ap. Let us consider

B(—%:u(w,‘ A) + P(z)u(z, A) — Au(z, A) = glz) z€eR (1.5.7)

7

where g € {C°(R)}2.
Let us solve (1.5.7) by the method of variation of constants. At first, we consider the case of Re A > 0.

We set u(z, A) as

u(z, A) = Ci(z, N (z, A) + Co(z, Ny (z,A) = ( 0 (x, ) ¢(+)(g;, A) ) ( g:g’ :\\; ) (1.5.8)

Taking Wronskian for (1.3.2) and %) (z,)\), we can see {¢(7), (1)} is linearly indepehdent because of

Lemma 1.5.4. Since ¢(=), 9(*) are the solution to (1.1.1), we have

g(z) = Bgd:;u(x, A) + P(z)u(z, A) — du(z, A) |

_ B( o) (z,\) ¢(+)(x, A) ) j_x ( g:g’;\\; ) .

Then we have

Cl(:l,‘, /\) . Cl(/\) ) T _ .
( Ca(z, A) ) B ( c2(\) ) + /,00( PO(2) YN ) Bg(t)dt.

Therefore, by (1.5.8) we have
u(x, )‘) =G (/\)30(._) (1"7 A) + 02()‘)1/)(_'_) (1"7 A)
w7 (6PN 30EN ) (#6N $06N ) Bad (159

Because of g € {C§°(R)}?, there are zo such that the integral term of (1.5.9) is 0 for z < zo. P (z, \)
decreases exponentially for £ — —oo. Furthermore, ¢(=)(x, ) is not in {L?(—00,z0)}%. In fact, if so,

() (z, \) is eigenfunction for Ap, this is contradiction.
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Therefore, if u(z, ) is in {L2(R)}2, c1()) = 0. Then we have

u(z, ) = (M) (z, \)

+ / (D@D 9@ ) (6N ¥PEN) ) By

= (Y™ (z,2)
1 I e I R R ARV P
TGN TG | Ay ey )\ ey ey )
= (V¥ (@,3) |
1 I S CE IR  CR N APV I
oo WP, DI EN] | 087008 =8 @090 )
1 e IR ORI ORI CP R
w0 WEOEN, 0P EN] | = 6008 @) oG008 @) )70

Because of g € {C§°(R)}?, the first integral term decreases exponentially for £ — co. We can write

1 o~ >(x NP (6A) =i (@ NP (8, )
:L' A / W (- )(t )\) 1/;(+)(t )\)] ( ‘Pz (.’L‘ /\),‘pg-l‘)(t )\) _(pg—)(x’ /\)¢§+)(t, )\) Bg(t)dt
‘ { W+ [ W[w( R (50663~ 92670 ) dt} ¥z, ). (15.10)

Therefore, to make u € {L?(R)}?, c2 must satisfy

/°° a®e ) — e @A) (1.5.11)

=2 =" Wlp(t, \), w‘“(t )]

Substituting (1.5.11) to (1.5.10), we have

_ " a0uP N - eusP )
u(x, A) = /—oo W[(p( )t /\) ’(,[1(+)(t /\)] 80 (ZIJ /\)

P a®e 7N — ea)es (¢t 2) e
/z Wi A), ¥5P (¢, )] dty " (z, A).- (1.5.12)
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Now we have got the following representation :

(@, \) = / ” Gla t; Na(t)dt, (1.5.13)
o |

WOt 2), %50 (¢, M)]

07 (@, N (4,0) o7 (2, Vs (5, A)

G(z,t;\) = —

_ _ t
VD@ ey - eauen | ST (1510
PO @)~ 6N @ ) -
o7 (N (@, 8) o7 (8, s (2, M) '
We call G(z,t; A) the Green’s function.
- Similarly, for the case of Re A < 0, we have
A= * g7 N — g7t N 4 dto™ (z, A
oy ==f Wipt(t, ), z/»é e
® g1 ()i (8, ) — gz(t)<ﬁ (.2 4,0 |
- ), 5.
I TIPS T S TPV R (1519
or
u(z, \) = / ” Gz, No(t)dt, | (1.5.16)
Gz, 8 \) = — L
v Wl (t,A), 57 (t, A)] |
A0 @ NN e @ NN )
A\ ePenulen - @ 6,) ’ (1517)
AN @Y A | o

P N (2,8) =8P, Nl (2, )

For the case of ReA > 0, (Ap — A)1g is given by the right hand sides of (1.5.13) or (1.5.14). Now we
" prove the boundedness for (Ap — X\)~1. For this purpose, ‘we use the equation (1.5.13).

Now we consider W[p(=) (¢, \), (¢, \)]. If supp P(z) C [—b, b], for ¢ < —b, we have

@ et )
¢ (ta )‘) =1 e)\t .
- For t < —b, we can write p(~) as

: " 6)\t e—)\t
e (t,A) = di(N) ( " ) +da(N) ( o ) ,
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where d;()), d2()) are constants depending on A. Since Ap does not have eigenvalues, da()\) is not equal to

0. Therefore, for ¢ < —b, we have
Wt A), (8, V)] = 2da(N) # 0.

With similar argument, the Wronskian is constant non-zero value for ¢ > b.

Therefore, there is some positive constant ¢ > 0 depending on X such that
WO, 0),pPE,N] = >0, teR

because the Wronskian takes non-zero value everywhere by the linearly independence of {p), w(*’)}.
Then from (1.5.13), we have the fbllowing estimate for the first component u; of u. Here, the constants

C are general positive constants depending on .

lur(z,N)| < C [ 0 (6 Nga () — 5P (8 Vg (8) el (@, V)|
+C / 106 Nan(0) — 087 (6 Va0t (a, V)
<cC / W]+ RSO VD (9 (0)] + 920t (V)

+0 [T 1061+ 167 6 VD @+ loa @Dt e, 0]

Now using the estimates (1.2.5) and (1.2.6) in Lemma 2.2, we have

uy(z,\)| < C / " e RN (19, ()] + [g2()])dt
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By Hélder inequality, we obtain

/_00 |us(z, \)[Pdz < C/—Z (/°° ¢~ ReMt=al(|g, ()| 1 |92(t)|)dt>2d$

—0o0

< C’/_(: (/_: e ReAItl—zldt1> (/_: e—Re,\lt—:cl(lgl(t)I + ng(t)l)Zdt) dz‘ >

< C/_w /_00 e R (g, ()2 + |ga(t)[?)dtdz

o [~ ([ emerae) ot + loato)si

—00

Il

= ,
<C [ (a0 +1520)P)dt = ClgllEsz ooy
—oo
Such estimate is obtained similarly for the second component us. Therefore we have proved the boundednes
(Ap —A)7! for Re X > 0. Then X with Re\ > 0 is included in the resolvent of Ap. We can prove similarly

that A with Re A < 0 is also included in the resolvent of Ap.

Lemma 1.5.5 Ap does not have eigenvalues. Furthermore, X satisfying Re X # 0 is in the resolvent of Ap.

Now we consider the case of Re A = 0. For Re A = 0, let us solve (1.5.7). In this case, we use the linearly

independent system {d)(*), ’(/J(—)} for the variation of constants method. We set

u(z, \) = ( ¢(+)(m,)\) T/’('—)(.’II,/\) ) < g;g: i% )

Then we have

Ci(z, \) ) -

’g(x) = B%u-l—_P(:c)u— Au =B ( PP (z,A) v (z,N) ) d_(fc- ( Ca(z, \)

Therefore, we obtain
[ Cilz,N) \ [ a®) x ) .
f (@(mw)‘(@m)ﬁ (e@x ¢ ) Baba,

—00
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and we have

u(z, \) = cs WP (2, ) + 2Ny (2, \)

+ / (9 @A) w<-><x,A>’.)(¢<+><t,A> PO (5, A) )‘I»Bg(t)dt-

Let us assume suppg C (—b, b) and supp P C (=b,b). If z < —b, the integral term vanishes. Furthermore, if

q/)(”(x,k}\) = ( Zi: >, I (z,)) = ( _e;\; ) |

Then for z < —b, u(z, A) is written as

e e~ T
u(z,A) = c1(N) ( e ) +c2(N) ( P )

Then if u € {L?(R)}?, c1()\) and c2(\) must be 0. Therefore, we have

T < —b, we have

T -1
we = [ (99N 10N ) (#9EN $OwN ) Boo
1 ( (@) wﬁ(z,»)

oo WO EA), 9O, 0] \ 95 (@, 0) 957 (x, )

£ =i
x ( (+)((t ))\) g-ll-)(i, )\)) )Bg(t)dt

T 1 i (e, A)«p‘ Yt,0) P (@, N7 (@0
_/ [ 2), v (¢, )] ( W5 (@, NS (4,0~ (e, )\)1/;1 )(t,A) Bg(t)dt

1 w( )(z /\)1/)(+)(t A) w( )(a: )\)1/J(+)(t A)
o WD, ) ( IR S ST R

Now, for z > b, we can set

) 3 = \ eAz A e—)@ “) 3 = '/\ e)\:c \ e—/\x \
Y (.’D, )—al( ) v +a'2( ) _e e ) | P (:1;’ )"a3( ) Rt +a4( ) _e Xz .
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Then for x > b, we have

1
W[¢(+)(t A); %b(‘) (&, A)]

DN —0wN ) W) P,
X [al()\)( (e ) ( PN )+a3()\)( O P Bg(t)dt
—/\x/ 1
W (@A), 9 ><t A)]

, ¥$7 (¢, ) R IO IR SN (DY
X [a2(A)< _25—)(75’ A) 1/]11 t,\) ) +a’4()‘)< (+)(t A (+)(t A)

u(z, \) =

Bg(t)dt

Note that Re A = 0. If u(z, \) € {L3(R)}?, the two integral terms must be 0.
Therefore, for g with

1
—s W[p(H(t, /\) P()(t, N)]

-) ( ) +) 3 (+)
th( 2 (HA) “”)+m»< &) ¥ “”ﬂBmm¢o

e n) w7, <+) &N PN
or

1
-b W[¢(+) (t'/ ’\)a ¢(—)(ta ’\)]

N PV R PV =N e .
- [‘W)< Oy Oen )T ey —uen )| P00

(Ap — A)u = g does not have the solution. Then A with Re)\ =0isin \residual spectrum.

Theorem 1.5.6 We assume that P € {C}(R)}*. The operator Ap such that

| 4p : {L2®R))2 - {L2R)P?
D(4p) = {H'(R))?
Apu=BLu+ P(z)u

satisfies
p(Ap) ={A € C; Rel # 0}, -~ (1.5.18)

or(Ap)={A € C; ReA=0} (1.5.19)

where p(Ap)' and or(Ap) are respectively the resolvent and the residual spectrum of Ap.
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1.6 The proof of Theorem 1.1.1

1.6.1 Preliminaries

In this subsection we will show épectral properties for Ap restricted to a finite interval. To investigate the
uniqueness for the inverse problem, we use the following results. Now we let b be positive number and we
denote Q3 as

O ={(z,y);-b<y <z <b}
Similarly to [55], we can prove the following properties.
Propositon 1.6.1 For given b > 0, 2 x 2-matriz functions P,Q € {CL(R)}* and h € R satisfying lh| # 1,

there exists a unique K = K(x,y) = (Kxe(2,9))ke=1,2 € {CH()}* satisfying the following equations

(1.6.1) — (1.6.4).

B2 QK@) - KewPo) = -2 0B,  @yems (161
{ K@, =b) =hKu(z,-b) | (1.6.2)
Kzz(.’l?, —b) = hK21 (.’L‘, —b) .

Kiz(z, z) — Koi(z, z)
— Jexp(~61(a) — 6a(a)
X (@u(2) + Qua(2) = @1(2) — @22(x) = Pur(2) + Pra(2) — Pu(z) + Pa(2))
+ iexp(-—el (@) + 62(2))

X (Qu1(z) — Q12(z) + Q21(2) — Q22(z) — Pra(z) — Pi2(z) + Pa(z) + Pas(z)),

(—b <z <b). (1.6.3)
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Kii(z,z) — Koo (z, )
_ iexp(—el () — 62(x))
X (Qui(z) + le(i) — Qa21(x) — Q22(2) + P11(z) — Pra(z) + Pa1(x) — Paa(z)) -
n % exp(—6, (2) + 02(2)) | |
X (~Qni(@) + Qu(@) = Qai(e) + Q2(2) — Puu(v) — Pua(a) + Pu(z) + Pra()),

(-b<z<b). (1.6.4)

Here, we set

_ [ Pu(z) Pra(z) | Qu(z) Qu2(z)
P(z) = ( Pyi(x) Poy(z) ) , Qz) = ( Qo1(z) Qi) ) ,

and
01 (.’E) = %[Z(ng(s) + Qzl(s) — Plz(s) — P21(S))d8, . = b<z<hb, (1.6.5)
92(3,') == %/::(QII(S) + Q22(s) — P11(S) — ng(s))ds, —-b<z<hb ’ (1.6.6)

Propositon 1.6.2 (Transformation formula)

We use the same notations as Proposition 1.6.1. For X € C, if u(z, \) € {C'[—b, b]}? satisfies

B&EA) | p(z)u(z, ) = Mu(z,A), —b<z<b.
| 1
_‘ba)\ = ’
u(=b, ) 5
then @(z, \) € {C1[-b,b]} defined by
Az, A) = R(z)u(x, \) + / K(z,y)u(y,)dy,  —b<z<b (1.6.7)
-b
satisfies 4
| BE=X) | Q@)ia(z, A) = Mi(z,)), —b<z<b
; 1 ,
a(-b,N) = = |.
o= ()

Here R(x) is defined by

R(z) = exp(—6y () ( cosh(—62(z)) sinh(—0;(z)) ) '

sinh(—62(z)) cosh(—62(z)) (1.6.8)
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We define the operator AI}’>, hu bY
A i ¢ La(=b,b) — La(—b,b)

DA, 1) = {u(w) - ( e ) € (IR ; us(—b) = hua(-b), wa(®) = Hulw)} ,

A'}’,’h,Hu(x) =B%(z) + P(z)u(z), —-b<z<b

where h, H € R satisfies |h| # 1, |[H| #1and b >0, P € {C}(R)}*.

Next by [52], we show the results on Riesz basis in {L2(—b, b)}? and root vectors of A% b

Definition 1.6.3 {un}necz is a Riesz basis in {L2(—b,b)} if and only if each u € {La(—b,b)}? has a unique

exTpansion

, o
u= Z Cnln

n=-—00

with ¢, € C, n € Z and

Mt Z |Cn|2§HUH%L2(—b,b)}2 <M Z len)?

n=-—00 n=—oo

where a constant M > 0 is independent of u.

Definition 1.6.4 u # 0 is a root vector of A’};.’h, a if and only if
(A=A)"™u=0
for some A € C and m € N.

Now we state the property of the spectmm a(Ai’,’ h i) Of A’I’J’ hH

Propositon 1.6.5 Let h, H € R satisfy |h| # 1, |H| # 1. And we assume that P(x) € {C}(R)}. Then the
following (i) and (ii) hold.

(i) There exist N € N and £1,%5 C o(Ab), ;) such that
Co(Ab ) =S1U%,, TiNTy=0

and the following properties hold.
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(1) 1 consists of 2N — 1 eigenvalues including algebraic multiplicities in

{35 1m0 - i< (v - 3w},

where C}’,’h’ g s a constant depending on P, h, H,b.

(2) All the elements of 3o are eigenvalues whose algebraic multiplicities are one, and
b 1
EQC A ; |Im()\—CP’h,H)| > N"‘§ ™.
Furthermore, with suitable numbering {\,}nez of U(A’j,,h, ) the eigenvalues have an asymptotic behavior

An—Cth-F Jro(l I) (1.6.9)

as |n| — oo.
(ii) The set of all the root vectors of A% ), y is a Riesz basis in {L2(—b,b)}>.

1.6.2 Completion of the proof of Theoreml.1

Proof of Theorem 1.1
Let? us assume that (1.1.11) — (1.1.14) is satisfied, and that supp P,suppQ C (b, b), for some b > 0.
From (1.1.11), (1.1.12), the kernel K(z,y) in proposit.:ion 1.6.1 is equaj tb 0 in €. Furthermore, from
(1.1.13), (1.1.14), R(z) in Proposition 1.6.2 satisfies R(b) = E>. Thus from (1.6.7), we have @(b, \) = u(b, \)
for all b € R with |h| # 1. Therefore a@’(A) = aJ’(V), 8 (\) = 69 (N) (j = 1,2,3,4) hold for all X
7 satisfying Re A = 0. |

Conversely, we assume that ol )()\) oY )(A) g )( A) = ﬁg )(/\) G = 1,2,3,4) hol’d for all A satisfying
Re)\ = 0. We also assume that supp P, supp @ C (—b, b).

From (1.3.11) — (1.3.14), we see that ag),ag), (3), (3), ) ﬁg), }(3) and ﬁ(3) are analytic functions.
Therefore, ag),ag),ag),ag),ﬁ(l) ﬁ(l) ,B}(f) and ,8(4) are also analytic functions since a( ) (3), g) and
ﬂg ) is not equal to 0 fdr all A € C because of Lemma 1.5.4. Therefore, we have ag)()\) = oz(J ) (A), B gy )()\)

BN, §=1,2,3,4forall A€ C.
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7

Now we assume that h € R satisfies |h| # 1. By up(z, A) let us denote the solution to

Bup(z,\) + P(z)up(z, \) = Mup(z,)), =€R,
1

uP(—b, )\) = h

Since ag)(/\) = ag)()\), ﬂg)()\) = ﬂg)(/\), j= 1,2,_3,4 for all A € C, we have up(b,\) = u‘Q(b, A) for all

A € C. Then from Propositon 1.6.2,
b ' ,
up(b, A) = ug(b, A) = R(b)up(b,A) + / K(y,b)up(y,\)dy, XeC. (1.6.10)
: -b

Let Hy, Hy € R satisfy H; # Hy, |H1| # 1 and |Ha| # 1. We denote the set of eigenvalues of A?D,h,Hl by

{,\%H?)}nez. Similarly, we denote the set of eigenvalues of All’,,h’ H, DY {A%Hz)}nez. From (1.6.10), we have

(H;) (Hj) b !
U’Pl(byA‘n, g ) uPl(ba >\n ’ ) / (Hj) .
, : / =R(b : / + [ K(y,bup(y, \F)dy, =1,2,
( Hj’U,p,l(b, )\%H’)) ( ) HjuPyl(b,)\gH’)) —b (y ) P(y ) Y J

where up,1(b, A )) is the first component of up(b, A )). Taking the limit n — oo, we have

(5) = ()

from Riemann-Lebesgue theorem. Then we have R(b) = E2. Therefore
, .
| K@ bupw Ay =0
hold for all n € N. Because uP(y, )\%Hl) ) forms Riesz basis, we have
K(y,b) =0, —b<y<h.

From this equation, using characteristic method, we obtain K(y,z) = 0 in £ (See [55], Appendix III).

- R(b) = E5, K(y,z) =0 means (1.1.11) — (1.1.14). The proof is finished.
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Chapter 2

Inverse Problems for Vibrating
Systems of First Order

- 2.1 Introduction and the main result

We will consider the following initial value / boundary value problem:
—(t,z) = an%(t, z) + P(z)u(t, z) -T < t<T, 0< z<1 (2.1.1)
with boundary conditions
Uetn(t, 0) = howe(t,0), £=1,2,---,n, =T <t<T (2.1.2)
Uptn(t, 1) = Hpup(t,1) £=1,2,---,n, —T<t<T : (2.1.3)
and with initial conditions |
u(0,z) = a(z), 0<z<1. : (2.1.4j

Here,let n € N,hy, Hoc R \ {-1,1},£=1,2,--- ,n, and let

"1§t’ x; | 1 0

U2\l T ' 0 En

u(t,x) = 5 B2n = ( En 0 ) P En = T >
0

1
U2n (t, :L')
p11(x)  pr2(z) ... pi2a(x) ai(z)
Pla) _ pz,lz (z) :02,2'(53) . Pz,zfz(m)  alg)= azfx)
pzn,l(ﬂf)v pzn,2($) ce p2n,2n($) a2n($)
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and ug, pre, 1 <k, £ < 2n be real-valued. Henceforth 0 denotes zero matrices whose sizes may change line
by line, and (M), denotes the (k, £) -component of a matrix M. Moreover we assume also the compatibility
condition:

{ae+n(0)=he@e(0) =19 —T<t<T (2.1.5)

aetn(1) = Hyay(1),
System‘ (2.1.1) déscribes some vibrating system. For example, we consider a governing equation of an
electric oscillation in parallel n transmission lines :

(% a)alv) (8 5)2 () (% o) ()0 @
Here I = I(t,z) and V = V(t,z) are vector-valued fupctions whose j-th components are respectively
the current and the voltage of the j-th transmission line. Moreover we assume that the electromagnetic
broperties of the n lines are not homogeneous in = and the coefficients R, L, C, G depend on z € (0, 1).
The parameters R, L, C, G ére called a resistance matrix, an inductance matrix, a capacity fnatrix and a

conductance matrix respectively. If there exists a scalar function r(z) > 0 such that
L(z)C(z) = r(z)En, » (2.1.7)

we can reduce system (2.1.6) to (2.1.1). In fact, in terms of (2.1.7), we can reduce (2.1.6) to a equation in

of1\__1 (0 cwo 1 Bo) o \[1
a(yv)_~r(z)(L(-’E) 0 )8x<V)+( 0 é@«"))(V) - (2.1.8)

Changing variables as

the form

and

u(s,z) = V(t,z(z)) -

1
. (s, 2) = ————==L(z(2))I(t, z(z)),
_ (s,2) "0) (z(2))I(t, z(2))

38



we obtain the following system:

i(0)-ma(n) oo (1)

We will investigate

Inverse Problem
Determine a coefficient matrix P(z) and an initial value a(z) from the boundary values u(t, 0), u(t, 1),-T<

t<T.

For inverse problems for one-dimensional first-order system such as (2.1.1), the method of characteristics
is applicable (e.g. Chapter 5 in Romanov [45]). However such a method cannot characterize coefficients and
initial values yielding the same boundary values, although boundary data u(t,0), u(t,1), —T <t < T, can
simultaneously identify a coeflicient matrix and’ an initial value. For inverse problems for first-order systems,
see also Blagoveshchenskii [6] For the corresponding inverse spectral problems with n = 1, see Ning [3§],
Ning and Yamamoto [39], Trooshin and Yamamoto [53], Yamamoto [55].

In this paper, we will study the uniqueness in our inverse problem. Here, we will only considér the case
of n = 2. The basic properties for n = 2 such as the asymptotic behaviour of eigenvalues, are yefy different
from n = 1, and already the case n = 2 needs essentially different treatments.

In general, the uniqueness does not hold, as the following example shows.

Example
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Let

001 0 e %
000 0 1
P@=1 1000 | *@=| ,
000 0 0
0 0 2z 0 e
0 0 0 0 1
=1 ) b = )
@) 22 0 0 0 (z) 0
0 0 0 0 0,

and hy = Hy =0, £ =1,2. Then we can verify that the solution to

%(LJJ)=B4g—z(t,m)+P(x)u(t,m) ~-T<t<T, 0<z<1,
u3(t,0) = ug(t,0) =0, —-T<t<T,
us(t,1) = ug(t,1) =0, —-T<t<T,

| u(0,2) = a(z)

is

while the solution to

%%(t,x)=B4%(t,:v)+Q(x)ﬂ(t,x) “T<t<T, 0<z<1
Us(t,0) = Uy(t,0) =0, -T<t<T

Us(t,1) =us(t,1) =0, —-T<t<T

(0, z) = b(x)

is

Therefore we obtain the same boundary value:
-1

u(t, 0) = u(t, 0) = .t 1) =t 1) =

O O = o

0

Consequently, the uniqueness does not hold, even though we restrict the coefficient matrices P(z) in (2.1.1)

to a form 0 P(z) with 2 % 2 matrix P;(z). O
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We will find a condition for the uniqueness to our inverse problem, and the condition should be sufficiently

general. Here and henceforth, by u = u P,a(t, ) we denote the solution to

%(t,x) = 34%@, z) + P(z)u(t, z), —-T<t<T, 0<z<]l1,
uet2(t,0) = heue(t,0), £=1,2, —T<t<T,

ugra(t, 1) = Hpup(t,1), £=1,2, —T<t<T,

u(0,2) = af),

(2.1.9)

provided that hg, H; € R\{—1, 1} are fixed.

Throughout this paper, we assume that the solution u p,a.(t, z) is sufficiently smooth. By using an' energy
es:timate' we can prove that there exists at most one solution. Moreover the existence of the solution can be
proved, and the sufficient smoothness can be proved by compatibility conditions of a and P. We will omit
details of the unique existence of up, in order to concentrate on the inverse problem.

Henceforth L2(0,1) and H 1(O,vl) are the usual Lebesgue space émd Sobolev space of complex-valued
functions.

We set
Mr(P,a) = {(Q.b) € {C'[0, 1]} ; uga(t,0) = upa(t,0), ugu(t,1) =upa(t,1) —T<t<T)}

for arbitrdrily fixed (P,a) guaranteeing the unique existence of smooth up,. We can immediately see that
(P,a) € Mr(P,a). If M7(P,a) has only one element (P,a), then uniqueness in our inverse problem would

be true. Thus it is sufficient to characterize the set My (P, a).
Definition 2.1.1 We define an operator Ap acting from {L2(0,1)}* to {L2(0,1)}*, by

| { (Apu)(z) = Bs%(z) + P(z)u(z), 0<z<1 (2.1.10)

D(Ap) = {u € {H*(0,1)}* ug12(0) — heue(0) =0, weia(l) — Heue(1) =0, £=1,2}.
Definition 2.1.2 For an eigenvalue A of Ap,‘ we call ¢ # 0 a root vector of an operator Ap for X if
(Ap—XA)*¢ = 0 for some k € N. We call dim{¢; (Ap—X)*¢ = 0 for some k € N} and dim{¢; Y(Ap—)\)¢ =0} ,

the algebraic multiplicity and the geometric multiplicity of )\, respectively.
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In order to state the main result, we assume the following three conditions:

(I): For each root vector f* of the adjoint operator A} for Ap, the fixed initial value a(z) satisfies

(@ f*){L2(0,0)34 # 0. | (2.1.11)

(IT): The following quadratic equation in « has two distinct roots:

det {aEz - ( . )G@Pxn < S ) G(eP)(l)-l} =0 (2.112)

e

where hy = tanh yy, Hy = —tanh vy, and

6F (z) = (elil(x))k,l=1,2 = (%(Pk,e(x) + PI;,£+2($) + Pr+2,0(T) +Pk+2,e+2($))) k,é=1,2 , (2.1.13)
o (z) = (glie(x))k,e=l,2 = (%(—Pk,e(l‘) + Pk,e42(T) +Pli+2,e(l‘) - pk+2,e+2($))) R (2.1.14)

and by G(0)(z) for a 2 x 2 -matrix © = G(x), we denote the solution to
%(G(@)(x’)) +0(2)G(O)(@) =0, 0<z<1 (2:115)

- with the condition G(©)(0) = E».

(III): For an arbitrary eigenvalue A of Ap, we assume that the geometric multiplicity of X is 1.

Remark 2.1.3 Since Condition (II) holds if the determinant of quadratic equation (2.1.12) in «, is not zero,
we can assgr‘t that the conditioﬁ holds generically. Condition (III) is alwdys true for n = 1. By Theorem
2.2.1 stated m Section 2.2, if Condition (II) hblds, then the geometric multiplicities of the 4eigen'values is one
except for a finite number of eigenvalues. Moreover we can assert that Condition (II1) holds also generically.

In fact, let ¢ and 1 be the solutions to (Ap — \)u = 0 with conditions at z =0

1 0
0 1

0) = ) 0) = 1,
0=, | vo=],
0 ho
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respectively. Let u # 0 satisfy (Ap — \)u = 0. Then u = ap + B¢ with some a, f € C. Since u € D(Ap),

we have

(ps(1) = Hapr(1))ex + (s5(1) — Highy(1))8 = 0
and |

(a(1) — Hawa(1))ox + (a(1) — Hatpo(1))8 = 0.

If either of p3(1) — Hip1(1), ¥3(1) — Hib1(1), pa(1) — Hapa(1) and (1) — Hopa(1) is not zero, then
a =96 or f = ya wheré 7y is independent of o and B. Hence u = B(yep +1//) or u = ‘a(cp + Y.
That is, {u; (Ap — A\)u = 0} is spanned by one vector, wh;ch means that the geometric multiplicity ofA is
one. Therefére Condition (III) brea}cs only if 3(1) — Hip1(1) = ¢3(1) — Hip1(1) = pa(1) — Hapa(1) =
Pa(1) — H21,112(>1) = 0. Thanks to the transformation formula (2.2.10) (Theorem 2.2.5) with P = 0, the

condition ¢(1) can be described by

o(1) = oo, 0) + [ Ky, 1)io(a: iy

where
hlile)\z _ h]—le—~)\m
2 2

0
h12+1e>\w + h,2—1ef)‘z
0

@0(277 /\) =

Thus 3(1) — Hip1(1) = pa(1) — Hapz(1) = 0 are given by two equations involving A and K, R. We note
that K and R are determined by hy, hy and P. From v3(1) — H191(1) = a(1) — Hapo(1) = 0, we can
obtain similar equations. Hence for given hy, he, H1, Ha, if (\, P) does not satisfy those four equations, then

Condition (III) holds true. In this sense, Condition (III) holds generically.

Let P(x) and Q(z) be 4 x 4 -matrix functions. Here let 4 X 4-matrix function

RY(z) R%*(z ~
e = (410 60 ) 110
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with 2 x 2 -matrix functions R’ (x), 3 = 1,2, satisfy the following system of eight ordinary differential

equations

{ (BaR'(z) + Q(z) R(z) — R(z)P(2))y 0 + (BaR'(z) + Q(2) R(2) — R(z) P(T)) 19,012 =0 (2.1.17)

(BaR'(z) + Q(z)R(z) — R(x)P(2))y o1 + (BaR'(z) + Q(2) R(2) — R(2)P(2)) 42,0 =0,

0<z<l, k£=1,2

and R(0) = E4. Here and hengeforth we set R'(z) = ‘%(m). By the theory of ordinary differential equations,
we can prove that such an R(z) exists uniquely.

Now we are ready to state our main result characterizing M (P, a).

Theorem 2.1.4 Let (P, a) satisfy Conditions (1), (II) and (III) and let a € {C3[0, 1]}4ﬂD(A2). We assume

that T > 2. Then
(Qab) € MT(Pa a)

if and only if the following conditions hold:

R(1) =E, | : (2.1.18)
(B4R'(z) + Q(z)R(z) — R(:c)P(m))k’g =0, kt= 1,2 0<z<1 (2.1.19)
(B4R'(z) + Q(@)R(z) - R(2)P(z)) 012 =0, k£=1,2 0<z<1 (2.1.20)
b(z) = R(z)a(x). | C(21.21)

The theorem gives the uniqueness for some components. For example, we can prove obtain the following
result by verifying that (2.1.19) and (2.1.20) yield p1¢ =q1,, 1 <€ <4 whenpre=qre=0for2<k <4

and 1 </<4.

Corollary 2.1.5 If we restrict a class of coefficient matrices to the matriz with the form
a(z) b(z) c(z) d(z)
0 0 0 0 ;. a,bc,deCH0,1]
0 0 0 0 :
0 0 0 0 '
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and the initial value is known, then the solution to the inverse problem is unique under Conditions (I) - (III).

In Section 2.2, we will state the spectral properties of the operator Ap and in Sections 2.3,2.4, we prove

them. Section 2.5 is devoted to the proof of Theorem 2.1.4.

2.2 Spectral property of Ap and transformation formulae

In this section, we will first present the‘spectral property of Ap ‘deﬁned by (2.1.10), and such properties
are necessary for the proof of Theorem 2.1.4. There are very few works concerning Spectral properties for
a nonsymmetric opérator of ordinary differential equations and Theorem 2.2.1 and Theorem 2.2.3 may be
independent interests. On the other hand, there are many results on the spectral properties for the classical
Sturm-Liouville problem and readers can consult Levitan and Sargsjan [26], Naimark [36] as mondgraphs.
For our system with n =1, see Trooshin snd Yamamoto [52].

Let 0(Ap) denote the spectrum of the operator Ap and let i = /—1.

" We present the asymptotic behaviour of o(Ap).
Theorem 2.2.1 There exist N € N and ¥1,%53 C 0(Ap) such that
O'(AP)=21U22, 1Ny =0

(1) Let equation (2.1.12) possess distinct roots oy and . Then the following (a) and (b) hold.
(a): X1 consists of 2(2N — 1) eigenvalues by taking the algebraic multiplicities into consideration, and is

included in
~ T
{A . [Im\ — & < Nt — 5}.
Here and henceforth we set
=1 Iml + 11 1 ‘
a—4 m log a; 1 m log a2
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- and we take the principal value of the logarithm : —w < Imlogay; < m, j=1,2.

(b) : All the elements of £y are eigenvalues whose algebraic multiplicities are one, and
Sy C {)\ | fmA—a| > Nrm— 32’-}
and with suitable nurﬁbem’ng {A]‘,m}j=1’2’lm|2 N,mez of 0(A), the eigenvalues have an asymptotic‘ behaviour

1 1
Ajm = 3 log o A+ mmni 4+ O (W) ’ (2.2.1)

as |m| — oo.
(2) Let (2.1.12) possess the multiple root a1 = as = . Then %1 has the same property as in- Case (1) and
we can number all the eigenvalues of Lo by {Ajm}j=12,m|>Nmez such that \1,;m = Xo,m may happen, but

Ajm F Ajrmy fér 53 =124 m+#m', and

1 1
Xjym = 3 loga +mmi + O (—m) (2.2.2)

1

as |m| — oco. Moreover for sufficiently large |m|, the ’algebmic multiplicities of A\1.m and A2, are one if

A,m # Ao,m and are two if A1n = Ao p.

The asymptotic behaviour in the case of a; # a2 has two branches whose real parts are close to % Relog oy
and % Re log az, and is very different from the case of n = 1.

Next we discuss the completeness of eigenvectors.

Definition 2.2.2 We call {by}mez o Riesz basis in {L2(0,1)}* if each u € {L2(0,1)}* has a unique ezpan-
sion

u= Zcmbm, cm €C
meZ

and there exists a positive number M , which is independent of the choice of u, such that

MY Jeml < Hullfr,onye <M Y leml™
meZ meZ
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We state the completeness of the root vectors.

Theorem 2.2.3 Let (2.1.12) have two distinct roots. Then the set of all the root vectors of Ap is a Riesz

basis in {L2(0,1)}4.

In Theorem 2.2.3, we note that we need not assume Condition (III).
In order to state transformation formulae, which are basic tools for our inverse problem, we prove the

following lemma. Until the end of section 2.2, we will consider general n € N, not necessarily n = 2.

Lemma 2.2.4 Assume that P(z) and Q(x) are 2n x 2n-matriz functions whose elements are in C1[0,1]. Let
ak,e(z), bre(x),1 < k, £ < n be real valued functions. Let hy,1 < k < n be constants and |h| #1,1 < k < n.
 Moreover we set

Q={(y,x)€R2;O<y<x<1}

Then there exists a unique solution K(y,z) € {C1()}?>"*?" to

0K . 0K .

Bon %‘(y, ) + Q(z)K(y,x) = K(y,z)P(y) — ‘55‘(1/7 z)Ban  in Q (2.2.3)
K 4n(0,7) = —h Ky 0(0,2) . kt=1,2---,n, 0<z<l1 (2.2.4)
Kk+n,£+n(01 il?) = _thk-l—'n,e(Ov 1:) :

Kieern(2,2) = Kipne(@,2) = are@) )19 0 gcz<l (2.2.5)
Kk,e(l" 37) - Kk+n,£+n(xa -7:) = bk,g(.'l,‘) ’

The proof is given in section 2.6.
Transformation formulae are given as follows. Let P(z), Q(z) be fixed 2n X 2n -matrix functions with

C1[0, 1]-elements. Here, let 2n x 2n-matrix function R(x)

_ [ R'Y(z) R%*(z) \
R(z) = ( R2(z) Rl(z))
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with n X n matrix functions R’(z), j = 1, 2, satisfy system of 2n? ordinary differential equations:

| { (BnR/(@) + QR() ~ RWP@), o + (BanF(E) + QEIRE) ~ REP@isnesn =0 1y 0

(BanR'(z) + Q(z)R(z) — R(2)P(2))), g4 + (B2nR'(2) + Q(2)R(2) — R(2)P(Z))4 4o =0,
0<z<1l, kf=1,2,---,n
and

R(0) = Ey,.

By a classical theory of ordinary differential equations, we can prove that there exists a unique solution

R = R(z) to this system of ordinary differential equations.

Theorem 2.2.5 (Transformation formula in the stationary case)

Let 11,72, , 7 € R and let K = K(y,x) be the solution to (2.2.3), (2.2.4) and

{ Kien(@,2) = Kine(52) = (BnF (@) + Q@R@) ~B@P@ee 4y 1y 1 0o

Ky o(z,2) — Kkyno4n(z, T) = (B2n R'(z) + Q(z)R(z) — R(2)P(x))k,t4n ’

p1(z, A) | Yi(z,A) ,
Assume that ¢(z, \) = : and P(z,A) = o are R2"_valued functions and satisfy
¢2n(1§, )‘) ‘ ¢2n($7 A)
an%‘g-i—P(x)qﬁ:)\(ﬁ, 0<z<l1
¢1(0a A) =T1, ", ¢n(07 )‘) =Tn (228)
¢n+l(oa )\) = thla Tty ¢2n(0’ )\) = h,Ty
BnZ + Q@) =X, O0<z<l1
wl(oj )‘) =T1, ", "p'n(o’ A) =Tn (229)
¢n+1(07 >‘) - thla Tty ¢2n(07 ’\) = hnTn-
Then, |
W(z, ) = R(z)d(z, ) + / K 2)b(y Ndy, 0<z<l.  (22.10)
0

- The proof of Theorem 2.2.5 is given in section 2.2.7.
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Next we consider the following Cauchy problems:

84(t,2) = Ban82(t,0) + P(@)ult,z), ©>0, —T+e<t<T-z (22.11)

ue(t,0) = we(t), unte(t,0) = hewe(t), £€=1,2,---,n B
and

ZE(t,7) = B 32(t,2) + Q(2)U(t,2), >0, —TH+z<t<T-z (2:212)

Te(t,0) = we(®),  Tnre(t,0) = hewel®), £= 1,2, ,m B

for given w, € C[-T, T).

We can prove the transformation formula for these Cauchy problems.

Theorem 2.2.6 Between the solution to (2.2.11) and the solution to (2.2.12), the following relation holds :
u(t,z) = R(z)u(t, x) +/ K(y,z)u(t,y)dy;, x>0, —-THz<t<T-—z,
0
where R(z) and K (y,x) are defined in Theorem 2.2.5.

Theorem 2.2.6 can be proved similarly to Theorem 2.2.5, by verifying that the right hand side satisfies

(2.2.12) and using the uniqueness for the Cauchy problem (2.2.12). We omit the proof.

2.3 The proof of Theorem 2.2.1

Step 1. We shall prove the following lemma.

Lemma 2.3.1 The spectrum o(Ap) consists entirely of countable isolated eigenvalues with finite algebraic

multiplicities.
Proof of Lemma 2.3.1. Let U(z, A) = (Ug,o(x, A))k,e=1,2,3,4 be the solution to

au _
{B4dz+P(x)U N, 0<z<l (231)

U(0,)\) = Ey.

49



We set

>
I
N
o
=
N——
m
]
/N
o I
-
oo
N—

B = ~h B , BV = o 0.
0 o -H E,

. We note that 0 means a zero matrix whose sizes may ‘change line by line and for example, in the above, 0

means the 2 x 2 zero matrix. Then we have

M

y=| ? | eD4p)
73 .

- Y4

if and only if
ye{H'O,1},  B{0)+B"1) =0.
For given f € {L?(0, 1)}4, let us consider the following equation:
B d + P( ) Av=f
Ydz o T=7
By the variation of constants, a general solution to this equation is |
, T
1@ ) = U Nn+ UG ) [ V) Bafwd,

where U(z,;\) is the fundamental solution and 7 € C* is arbitrary. In order to satisfy fhe condition

v € D(Ap) for fixed A, we choose 1 such that
B{"%(0) + B{y(1) = 0,
that is to say,

1
(B + BPUL,\)n+BPU(L,N) /0 U(y, )™ Baf(y)dy = 0.
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If det(B” + BPU(1, \)) # 0, then
; 1 ,
n=—(B +BOUON BTN [ U0 By
satisfies this condition. Moreover we can write

) =~V NED +BIU0N)TBPUAN [ U0 By

+U@ ) [ " Uy, ) Baf(y) d.

Therefore, if det(Bl(lo) + Bél)U(l, Xo)) # 0 for some Ag € C, then (Ap — Xg)~! is a compact operator from
{L?(0,1)}* to itself. By Kato [22], this implies that o(Ap) consists of isolated eigenvalues with finite algebraic
multiplicities. Hence it is sufficient to show that there exists Ao € C such that det(BiO) + Bil)U (1, X)) #0.

Since

FEycoshAxz  Essinh Az )

Up(z, \) =
o(@,A) <E2 sinh Ax  FE5cosh Az

is the solution to

BaLUs(z,\) = \Up(z,)), 0<z<1
Uo(0, ) = By,

by the transformation formula, we can write

L , z KO

T E H
+ / KOy, x)( 0 Fasinhly )dy~ (2.3.2)
A |

E5 cosh Ay | 0 )dy

0  Ejcosh Ay

Here, we recall that the 4 x 4-matrix

_( RY(z) R%@=)
R(z) = < R*z) R(z) )

with 2 x 2-matrix functions R, j = 1, 2, satisfies

{ (B4R'(.’I)) —+ P(:E)R(:E))k’e + (B4R’(:E) + P(:L‘)R(.’I)))k_;_z,g.;.z =’O, k,f _12 0<z<1 .

(B4R (z) + P(x)R(x))k,e+2 + (B4R () + P(z)R(x))k+2,e = 0,

51



and R(0) = E4. Let K be the solution to

[ Bi2E 2 (y,2) + P@)K D (y,2) = ~2E2(y 2)B,  in Q
K,§3+2(0x)_o k_1234,e_1,2 933
KD, ,(@,2) - K,Eiu(x z) = [BiR(z) + P@)R@)ke, 0<z<1 k=12 (233)

{ (1)(.2: z) — k+2 242(T, %) = [B4R (x) + P(z)R(x)|k,e42, 0<z <1 Kk, £=1,2,

and K@ be the solution to '
( By2KZ(y,2) + P()KP)(y,2) = 262y, 2)B;,  in Q
) K,?g(o:c)_o k=1,2,3,4, e_lz f (23.4)

Kk23+2($ T) — Kk+2 (@, %) = [B4R'(z) + P(2)R(z)|ke, 0<z<1 k£=1,2 o

\ K,?,?(x ) = K2, 4,2(2,2) = [B4R (z) + P(@)R(@)kp2, 0<z<1 k£=1,2

We can prove by a usual method of characteristics that K1) and K(® exist uniquely.

Let us consider the second term on the right hand side of (2.3.2). By integration by parts, we obtain

z 1 /® d | i

/ K(l)(y, 2) Es c?sh Ay 0 dy = _/ K(l)(y, L FEssinh Ay 0 dy

0 Essinh\y 0 AJo ' dy \ E3cosh)\y 0
y=z

1 Essinh Ay 0 * o Essinh )y 0

== KDy, _/ O gy, e
A { [ 2 Escoshdy 0 v—o 70 Oy (v, ) Escoshdy 0 4

Therefore, for any C' > 0, there exists a constant Cy > 0, which is dependent on C and is independent 'of A,

such that

sup

e h
/ KW (y, z) ( Ezcosh Ay 0 ) dy"g Co if |ReX| < C.
0<z<1|Jo

Essinh Ay 0 [A|

Here, for a 4 X 4-matrix M, we define a matrix norm |M| by

M| = My o|.
IMI= | 25 o 1Ml

Similarly, we can verify that there exists a constant Cy = Cy(C) > 0 such that

z Escoshdy 0 z 0 E3sinh\y Cy
K®(y, dy + / K@@y z dyl < 22 2.3.5
02321 /0 ) Essinh Ay 0 4 0 ) 0 EjcoshAy v = [A| ( )
if |[Re)| < C.

Setting A = B+ 2mmi with 8 € C and m € Z,‘ we can write

Escoshf3 Essinhf 1
B + BPU@1, ) = det | B + BV R(1 +O( >
det(By" + B3 U(1,X)) =det | By” + By " R(1) Eysinh 3 Escosh Im|
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Let us calculate

B(O) +B I)R(l) E, Cf)Shﬁ E, smhﬁ
Essinh 8 E3cosh B

By the definition of R(z), we can write

o
Rie(®) = ~3 3 (Pems2(&) + Prga () B (@)
m=1

1
~3 Z (Pe,m(2) + Prt2,m+2(x)) Rmera(z),  k,£=1,2

m=1

Rj p1o(z) = ——Z(Pk m(z)+Pk+2m+z<x)) m,e()

m=1
2

5 Pk,m+2($) + Pk+2,m(.’1:))Rm’g+2(.’L'), k,ﬁ = 1, 2
m=1

—

Rk,e(O) =0k, k,£=1,2, Rk,¢+2(0) =0, k,£=1,2.
Here and henceforth we set dxx = 1 and dxe = 0 if k # £. Setting

{ Tk,e(2) = Ry e(z) + Ri e42() kl=19

Tk, e(z) = Ri,e(z) — Rie42(2),
we can reduce the preceding differential equation into

e (@) + X O (@)rme(@) =0
Tee@ + 32 _ 00 (2)Fme(z) =0  k,£=1,2.
7k,e(0) = Tk,£(0) = de,

Recalling the definition of G(6F)(z) and G(6F)(x), we can write

Riz) =L ( G(67)(x) + G(6")(x) G(67)(z) — G(EF)(a) ) ) 236)

G(67)(z) — G(67)(z) G(67)(z) + G(6F)(x)

Hence
(0) (1) Eycosh3 Essinhf
B, + B, R(1 )
‘ + 1 B ( Ejsinh3 FEjcoshpf

[ -k By Lo o elell )(1)+e—ﬂa(9P)(1) eﬁa(ep)u)—e—ﬂa(aP)()
o 0 ) 2\ -H E, BG(OP)(1) — e=PG(6P)(1) eﬂG(oP)(1)+e—ﬁG(eP)()

—h E-
=< P (B2 —H)G(0F)(1)—e~P(E2+H)G(OP)(1) P (B2a—H)G(6F)(1)+e~P(Ea+H)G(BF)(1) )
2 . 2
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Therefore we have

det | B + B{R(1) [ Z20shF Epsinhf
Eysinh B E5cosh 8

1 0 B,
= g det ( e? {(E2 ~ H)G(07)(1)(Bz + h) — e~ (Ey + H)G(67)(1)(E2 — ’ﬁ)} * ) '

This determinant is not zero if and only if

det (eﬁ {(E2 — H)G(6P)(1)(Ez + h) — e 28(By + HYG(67)(1)(Es — ﬁ)}) £ 0.

By hj # +1and H; # +1for j = 1,2, det G(6F)(1) 7é 0 and the continuity of the determinant, for sufficiently
‘large Re 3 > 0, the preceding determinant is not equal to zero. Here we used that det G (6% )(1) # 0. In fact,
fory € (0,1), by G(6)(z; y) we denote the solution to (2.1.15) such that G(6)(y; y) = E5. Then the uniqueness
of the initial value problem for (2.1.15) yields ‘G(O)(x; y)G(9)(y; ) = E2, which implies det G(O)(:c, Y) 76‘0
for any z,y € (0,1). Since G(6F)(1) = G(6F)(1;0) by the deﬁnitioﬁ, we have det G(HP)(I) # 0.

Consequently we can choose sufficiently large |m| and sufficiently large Re 3 > 0 such that
det(B” + BPU(1,0)) £0
for A # B+ 2mmi.

Therefore, the proof of Lemma 2.3.1 is completed. O

Step 2. Let a 4 x 2-matrix function ¢(z, A) be the solution to the following equations:

B4%¢(a:, A) + P(z)p(z, A) = Ap(z,\), 0O0<z<1

$(0, ) = ( z

Then, A € C is an eigenvalue of Ap if and only if the determinant of
o) =(-F B )¢,

is equal to zero. Henceforth we call det ®(\) the characteristic function for A p. Infact, if 1 is an eigenfunction

of Ap, then we can choose (c1, c2) # (0,0) such that

’l/)(.’lf, )‘) = Cl¢1($7 )‘) + Cg¢2(l', /\)a .
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where ¢y is the £-th column vector of ¢(z, \), £ = 1,2. Since
(-& B )wan =0,
we have
(_ﬁ E, )¢(1,A)=(._f1 By )N+ (B B )eaa(1,)) =0.
Hence |
(7 B )aun. (-0 5)eo)

is linearly dependent, so that det ®(\) = 0 follows.

Conversgly, if
( _H B, )¢e(1,,\), =12
are linearly dependent, then thgre exists (c1,c2) # (0,0) such that
( -H E, ) (c101(1, X)) + cagp2(1, X)) =\ 0.

Then ¥(z, ) = c1¢1(x, A) + cada(x, ) is an eigenfunction of Ap, that is, A is an eigenvalue of Ap. Thus we
have proved that ) is an eigenvalue of Ap if and only if det ®()\) = 0.

Moreover we can prove

Lemma 2.3.2 The algebraic multiplicity of an eigenvalue Ao is equal to the multiplicity of o as zero of

det ®()).

The proof is given in section 2.8.
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Let us calculate ®(\). Using the transformation formula, we have

cosh Az 4 hj sinh Az 0
h . .
é(z,\) = R(z) | . 0 cosh Az + hg sinh Az
sinh Ax + hy cosh Az 0
0 sinh Az + h2 cosh Az
; cosh Ay 0
: 0 cosh \y
+ [ KOy, ] i
/0 v, 2) sinh Ay 0 Y
0 sinh \y
h1 sinh Ay 0
[ 0 hg sinh Ay
K0 dy. 2.3.7
ot /0 K (y,z) hy cosh Ay . Y 23.7)
0 hq cosh Ay

Here KW (y,z) and K@ (y,z) are defined by (2.3.3) and (2.3.4).
For simplicity, by ¢(\) we denote the integral terms on the right hand side of (2.3.7) with z = 1. Setting

hg = tanh py, we can write

cosh(A + p1) 0 }
' 0 cosh(A + p2) e 0 ~
1L,A)=R(A1 cost p + o(A 2.3.8
sy =r| 0 et e RO (239
0 sinh(X + p2)

By (2.3.6), we have

’ Atpie —~A—pie . 1 0 -
¢(1’/\) _ % ( (Ak,ee + By e )k,€—1,2 ) ( cosh p11 ) +¢(}\)’

(Ak,ce?tHt — By pe A 7He )k g1 2 coh7im
where G(6F)(1) = (Ak,e)ke=1,2, G(OF)(1) = (Bre)k,e=1,2-

Multiplying ( —H FEo ) from the left, we obtain

1
o)) = 1 ( 0058’/1 ; (1) ) (Ak,ee)"*"‘f""’k _ Bk,ee_()‘+“‘+yk))k,e=1,2 .

" coshvy
1 0 _ _
x ( w0 =2+ B | (2.3.9)
cosh p2 . )

where H, = —tanh v, and 5()\) = ( —H E, )EE(A)
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Let us calculate 5()\) By integration by parts,

)= -# E2)l

A
sinh Ay 0 hy cosh Ay 0 v=1
x KW (y,1) 0 sinhdy | gy N, hz cosh Ay
cosh Ay 0 hisinh Ay 0
0 coshly / 0 hpsinhy /|
sinh Ay 0
H 1[0 0 sinh Ay
(-7 B ): | LrOE .
( ’ ) ’\/0 Ay ®.1) cosh Ay 0 y
0 cosh \y
h1 cosh Ay 0
H 1o 0 ha cosh Ay
- - = K@ .1 2 du.
(-# Ez))‘/o KO | S .
0 hg sinh Ay
Hence
S C |Rrex| ‘ '
2V < we (2.3.10)

where we recall that |®()\)| denotes the matrix norm of ®(A) and C > 0 is a positive constant which is
independent of A.

We show that there exists a positive constant K satisfying
|ReA| < K . forany A € o(Ap). (2.3.11)

If not, then there exists a sequence {Am}men C 0(Ap) such that lim,;,—.s | ReAn| = co. Without loss of
generality; we suppose that there exists a subsequence {);,, }meN C {Am}men satisfying limp, oo Re ), =

oo. Since A;,. are eigenvalues, by (2.3.9) we have

0= |detB();,)|

1
det <_1. ( coshv (1) ) (Ak ee)\jm+ﬂl+’/k — By, ee_()\jm+ﬂt+Vk))k r—12
2 0 cosh vy

1 0 -
Sl R T l (CVAOR I
) cosh ug
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Here, using (2.3.10), we have

0=|det®(\;,.)| =

1 1 0 ) , -

h . iIm X, +pe+ ) —2ReXj,, —iIm X, —pe—

det<§ T L e T W
cosh vy

1 0 '
X COSS H1 1 + em
cosh g

where im0 |€m| = 0. Here we have det G(67)(1) # 0, which is derived at the end of Step 1. Hence,

62 Re Ajm

since det(Ay geht+*)y, p—y 5 = elr1HHat114+2 det G(AP)(1) # 0. Then taking |m| — oo, the right hand side
tends to oo, because of the continuity of the determinant. Thus this yields a contradiction and the proof of
(2.3.11) is completed.

Step 3. We choose sufﬁcienﬂy large K > 0 satisfying (2.3.11) and

1
'ERelogajl<K, j=12..

We further choose K > 0 large enough, so that
| det ®(A) — det @o(A)] < | det Po(A)]

for all A with |ReA| = K. Here we recall taht ® = ® — &. It is possible because (2.3.10) holds and
det(Ak,ee“""V’“)k,z:Lz #0, det(Bk,ee"M—V’“)k,gzl,z # 0 in (2.3.9).

Then we set -
Km:{A; ~K-1<ReA<K+1, a+m7r—g<'lm)\<&+m7r+g-}, meZ,

using the constant & defined in the statement of Theorem 2.2.1.
Now we will prove the following assertion :
There exists N € N such that in K, there are exactly 2 zeros of det ® by taking the algebraic multiplicities

into consideration for |m| > N.
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Noting

Ky ={A+mmi; X € Ko},

and
cosh(A + u1) 0
_ 0 cosh(\ + p2) P 0
Bo(\) = _# E R(1 cosh p11
0( ) ( 2 ) ( ) Sll’lh()\ + [J«l) 0 ( 0 coslll M2 . 7
0 - sinh(A + u2)

by definition (2.3.9) of &g, we have

\oin | det @o(N)| = ,min | det Bg(N)] = L.
For suﬁiéiently large N € N, we have

sup |det®(A\) —det®o(N)| < L, N <|m|
AEOK ,

by (2.3.10) and the linearity of the determinant in each column. Therefore
/

| det ®(A) — det ®o(N)| < |det o(N)|, on X € K.
On the other hand,

det Bo(A) =0

2 0 1

cosh vg

' 1
(= o))
cosh pg

< det ((Ak,eek+m+uk _ Bk,ee_('\+”’+”"k)')k,e=1,2) =0

et 0 et 0
= det (e”( -~ )G(OP)(l)( I )
- ( o )G(5P>(1)<e'()“l o )) =0

1
<« det (_1_ ( cosh vy 0 ) (Ax eex+uz+uk — By Ze—(/\+,ue+wc)),C pe12

et <e2*E2— ( . )G(5P><l> ( . )GwP)(I)-l) ~o
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Therefore, from the definition of a1 and ag, the zeros of det @ are
1 .
3 loga; +mmi, meZ.

By the Rouché theorem, all K, contains exactly 2 zeros of det ® by taking into consideration the multiplic-
ities. Thus the proof of Assertion is compleﬁed.

Setting

K(O)E{)\; _K—-1<Rer<K+1, &—Nw+%<lm)\<&+N7r—g},

we have
| det ®(N\) — det Do(N)| < |det Bo(N)| on KO,

by (2.3.12). Hence, since det ®o(\) = 0 possesses 2(2N — 1) zeros in K(©), the Rouché theorem yields that
K© contains exactly 2(2N — 1) zeros of det ® by taking into consideration the multiplicities.

According to the argument of this step, in terms of Lemma 2.3.2, we see :

There exists N € N such that K., contains exactly 2 eigenvalues of Ap for all |m| > N and K contains

2(2N — 1) eigenvalues of Ap by taking into consideration the algebraic multiplicities.

Step 4. We will show the asymptotic behaviour of the eigenvalues. Here let N < |m|. We note that two
zeros of det ® are included in K, with the multiplicities. Now we consider det ®(A) =0 in K,,. By (2.3.9)
and (2.3.10), using the linearity of the determinant in each column, we see that det ®(\) = 0, A € K,,, is

rewritten as

1

det ((Ak’ze)\-i—ﬂz-i-vk _ Bk,ee—()\+ul+uk))k,l:l,z) -0 (W

), A€ K.
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By |ReA| < K +1, we can rewrite the left hand side to obtain

20 ~p\/ 0 1
det{ez’\Eg - ( € 0 e > G@")(1) ( € 0 2w ) G(ep)(1)~1} =0 (W), A€ K.

We rewrite this equation as
2X)2 2X 1
(e ) +aie** +ag =0 W , A€ K, '(2.3.13)
where a; and ag are constants. That is, A is a root of

1
64)‘+ale2)‘+ao+nm=0, nm=0(l7n-|-).

We set Cm = -é—log aj +mmi € K. Then a; = €% and by the definition of a;, we have
2% e~ 0 ~p e~ 2 0 Py a1
det{ e**™ FEy — o o2 G(6°)(1) 0 22 G(67)(1) =0,
that is, (;,, is a root of the equation in A :
e + alez)‘ + a9 =0.

Using the Rouché theorem, we will estimate the difference between (,,, and a root of (2.3.13). First, for
sufficiently large |m/|, we consider a circle Se....rn centred at (,, with radius r,,. For large |m|, we will find

Tm such that
lkm| < |€** +a1e® +ao| on Sc,, .. , (2.3.14)

We set p(A) = e** +a1e?* + a9 and n = a3 +2a;. Let us calculate |o(A)] under |A—(m| = rm- By p(ém) =0,

we have

le** + a1e® + ao| = |{(e® — a1) + a1 }® + a1 {(e®* — a1) + a1} + ag|

=P — )+ 2(62)‘ —a1)ag + ar(e® —ag)| = (e — aq)? + ’17(62)‘ —ay)l.
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Case 1 : (2.1.12) possesses distinct roots a; and as.

Then 1 # 0 and we have
PN)] = 1 — | — @) + 7| = Cor |2 —ar) 41| on S,

At the last inequality, we used {m = 3 logoy + mmi and |e?* — | = |a||e?*~¢m) — 1|. Taking sufficiently

smalld < 1, by |n| >0 We can estimate
(e - al) +n|>Inl—=Cor>C>0 \on Senrs forall r<d,
where d and C are dependent on a;, o1, and independent of m. Hence
lo(N)| = Cr.

Therefore, since Inm |=0 (ﬁ), for sufficiently large C’ > 0, we set rp, = I%ll-’ so that Crp, > |kml, that is,
(2.3.14) holds on S\, .
Moreover p(X) possesses a unique zero in {A; |A\ — {m| < 7} for sufficiently large |m|. Applying the

Rouché theorem, in terms of (2.3.14), we see that e** +a;e** +ag + K, = 0 possesses a unique zero denoted

by A,m in {A; |A = (m| < rm} and

1 1
Mm==logas +mmi+0|—].
2 Im|
For a2, we can argue similarly. Thus the proof of (2.2.1) is completed in Case 1.

Case 2 : (2.1.12) possesses the multiple root a; = as. Then n = 0, and
lp(V)] = ¥ —e*m > > C3r® on S¢,»

and for sufficiently large |m/|, the function p(\) possesses exactly two zeros in {A ; |\ = (m| < rp} including

the multiplicity. Choosing r,, = \/CI_/FI with ‘large C’ > 0, we can argue sifnilarly to Case 1, in terms of the
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Rouché theorem to see that e** +a;e?* +ag+ £k, = 0 possesses two zeros A,m and Ay in {A; [A=Gn| <7}

by taking into consideration the multiplicities, and

1 .
b=t =0 (A=) -2

Im|

as |m| — oo. Thus the proof of Theorem 2.2.1 is completed. [

2.4 The proof of Theorem 2.2.3

In this section, we prove Theorem 2.2.3. For this, we apply the Bari theorem (e.g., Gohberg and Krein [16]).
Let ay, as be the solutions to (2.1.12). Because of the assumption a; # ag, for sufficiently large |m|, we
see that

Km={)\; —K-1<ReA<K+1, a+mw—g<1mx<a’+m7r+g}

contains two eigenvalues each of whose algebraic multiplicity is one.

Let us set §; = %log aj, j =1,2. Now we prove that

cosh (81 + p1) 0
~ 0 cosh (81 +p2) |
rank ( —H E, ) R(1) sinh (81 + u1) 0 : =1.

0 sinh (81 + p2)

By (2.3.6), this rank is equal to

rank{e%Ez —.( - )G(5P><1) ( - )G(«?P)(l)“}-

By the assumption that a; = €21 is the solution to (2.1.12), the rank is not equal to 2. We assume

26 e 0 P e 0 Py -1 __A
kB, - © 0 L@ T ., |eenmT =0,

Then because each column of this matrix is equal to 0, we have

e~ 2 - e~ 21 :
Lanfor- (0 2 Jem (" 2, aowr ]
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This contradicts the assumption that quadratic equation (2.1.12) has distinct roots. Therefore we obtain -

cosh (81 + p1) 0
~ : 0 cosh (81 + p2)
rank ( ~H E, }R(1 =1.
( 2 ) @) ~sinh (81 + p1) 0
o sinh (,81 -+ ,ug)
Then there exists (c1,¢2) # (0,0) such that
" cosh (B + p1) 0
~ ‘ 0 cosh (81 + p2) c1 0
—-H E; )R(1 = .
( 2 ) (1) sinh (81 + u1) 0 c2 0
~ 0 sinh (81 + p2)
Without loss of generality, we can assume that
0
~ h 0
(- B )RQ)| “® Brtp) | ( ) , (2.4.1)
0 0
sinh (81 + p2)
Then we have c; # 0. '
Similarly, we can take (d1,d2) # (0,0) such that
cosh (B2 + p1) 0 ,
~ 0 - cosh (B2 + p2) di 0
~H E; )R(1 = ,
( 2 ) ( ) sinh (,62 + ,u1) 0 do _ 0
0 sinh (82 + p2)
and we can assume that
) 0
~ cosh (G2 + 0

sinh (82 + p2)
without loss of generality. Then we can directly verify that d; # 0.

By S(z), we denote a 4 x 4 matrix

cicosh(Biz + p1) dicosh(fex + p1) cisinh(Biz + p1)  disinh(Baz + p1)
cacosh(fix + p2)  dacosh(Box + p2) cosinh(Biz + po)  dosinh(Baz + p2)
cisinh(Biz + p1)  disinh(Bex + p1) c1cosh(Biz + p1)  dicosh(Bax + 1)

S(z) = R(z) (
cosinh(fBiz +p2)  do sinh(ﬁzx + p2)  cacosh(Biz + p2)  dgcosh(Baz + p2)
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Since the property of the determinant yields

o A B _ 4. [A-B B-4
B A B A

A-B 0
= det = — B)d
e ( B A+B ) det(A — B)det(A + B)

for 2 x 2-matrices A, B, we have

det S(z) = det R(z) det c1exp (1T + 1) ~diexp (6o + 1)
coexp (Bix + p2) daexp (Boz + p2)

wdet [ € exp (—fiz —p1) diexp(—Fez — p1) ,
c2exp(—piz — p2) daexp(—faz —p2) |

If c1d2 — cady # 0, then the inverse matrix S~1(z) exists. We will prové ci1da — cady # 0. If not, then we

(2)-(2)

Hence 51 and B2 are the solution to the following equation in A:

can take a constant v such that

cosh (A + 1) 0
~ 0 cosh (A + u2) c1
— E; ) R(1 =0, 24.
( H 2) ) sinh (A + p1) 0 : 02) (242)
0 sinh (A + p2)

which implies

{ dl;le" +dy 27 = 0
do,1e* +doze™ =0
with some di ¢ € C, k,¢ = 1,2. Then there exists di ¢ # 0. Otherwise all X € C is the solution to (2.4..2),
which means that ®¢(A) = 0 for all A € C. This is a contradiction.

Therefore dividing some dy.e # 0, we obtain 201 = 27z, H;znce 231 — 232 = 2kmi with some k € Z, that
is,

loga; = log g + 2kmi.

This contradicts that a; # ay. Thus we proved that cida — cady # 0.

65



By the definition of S, we have

cos mmx ‘ ci cosh (Bix + mmiz + p1)
s@| 0 _R@) | @ c?sh (Brz + miz + p2) ,

isinmnz cy sinh (B1z + mmiz + py)

0 co sinh (1 + mmiz + po)

0 ( di cosh (Box + mmiz + p1)

S(z) cosmmz | _ R(z) da c?sh (Baz + mﬂ'?x + p2)

0 dy sinh (Boz + mmiz + p1)

isinmnz ) ‘ da sinh (B2z + mmiz + pg)

We set
¢1 cosh (B + mmiz + py) dy cosh (Bex + mmiz + 1)
h ] , d h )
erm = R(z) Co c?s (B + ’m,'?ﬂ:ﬂ? + p2) . eam = R(z) 2 c<.)s (Baz + mw?x + p2)
c1sinh (B1z + mmiz + py) dy sinh (Bex + mmiz + p1)
cesinh (81 + mmiz + po) _ da sinh (Bex + mmiz + psg)
Since S(z) is invertible and ,
COS MTx 0
0 COS T
isinmrz |’ 0
0 isinmmz
mEZ

is a Riesz basis in {L2(0, 1)}, we see that {e1,m, é2,m}mEZ is a Riesz basis in {L3(0,1)}* (e.g., Gohberg and

Krein [16]).

We can write an eigenfunction corresponding to Ay ., as

cosh(A1,ma + p1) 0
/ R(z) 0 cosh(A1,m + p2) ( g™ )
sinh(Ay mz + p1) 0o - E{zm)
0 Sinh(AlymZ + ,u,2)
oy~ - &m)
+( $104m2) Br(mi2) ) ( 2o ) . (24.3)

from (2.3.7). .Here, 51(/\1,m,m),¢72()\1,m,x), m‘ € Z correspond to the integral terms on (2.3.7) and

&™) &™) m e Z are constants such that
cosh(A1,m + p1) 0
~ 0 cosh(Ay,m + p2) E(lm)
- R(1 ’
( H, B ) M sinh(A1,m + p1) 0 g
0 Sinh()\l,m + /J,z)

+(~F B ) ( $:100mD) $20um1) ) ( ?:Z; ) = ( g ) (2.44)
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Such E(lm),Eém), m € Z exist because Ay, are eigenvalues. By (2.2.1) and (2.3.10), we choose C' > 0 such
that

~ o
|¢k()\1,m7-'17)| < W’ meZ, 0<z<l. (245)

Now we prove that for sufficiently large |m|, we can take “c{lm), Eg’"’ such that Eﬁ"" = c; and ’é(zm) —c =

O(F}ﬂ).

Because we assume (2.4.1), we have

0
( i B )R(l) cosh ()\1(,)m + p2) £ ( 8 ) ' (2.4.6)

sinh ()\l,m + ;1,2)

for sufficiently large |m|. Then, by (2.4.4) and (2.4.5), we have 'c‘(lm) # 0 for sufficiently large |m|. Multiplying
&™) &™) with a7, We can take (c1,8™) as @™, &™),
1 .
Now let us prove cp — E(zm) =0 (I_;zf) For this purpose, we will first prove that “cém) = O (1). Equation

(2.4.4) yields

cosh(A1,m + 1) 0
- 0 cosh(A1,m + p2) a
—-H R(1) | ’
( 2 ) (1) sinh(Ay,m + p1) 0 Eém)
» 0 sinh(Ay,m + p2)
~ C~ ~ c 0 B
+( =B B ) ( $10um 1) $20am1) ) ( e )= ( . ) (2.4.7)
2
that is,
cosh(A1,m + p1)
— R(1 —-H Alm, 1
cl( H E, ) (1) sinh(Am + 1) | +Cl( E, )¢1( 1,m,1)
0
0 ‘ .
. h(Apm + _ - 0
& (i m )Ry | RO (B ) faum ) = ( 0 ) :

sinh(A1,m + u2)

By using (2.4.6) and 5k(>\1,m, 1)= 0 (ﬁ[), we obtain Acém) =0(1).
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We will estimate c; — &5™. Because of (2.4.7) and AM,m = B1 + mmi + &y, with 8,y = O (ﬁ), we have

cosh(B1 + p1) 0
~ 0 cosh(B1 + p2) a
-H E, JR(1 h
( 2 ) @) sinh(B1 + 1) 0 cosh o &
0“ Sinh(ﬂl + I,LQ)
sinh(68; + p1) 0
- * 0 sinh(8; + u2) . c1

—-H E, JR(1) m

+< 2 ) (1) cosh(B1 + 1) 0 sinh §, ?:(2"’)
0 cosh (B + p2)

+( -H E, )( $1(Am 1) G2(A1m, 1) ) ( 5?” ) - ( g )

From this equation, we subtract the following:

cosh(B1 + u1) -0
_ 0 cosh(B + p2) a\_ (0
( —H E; )R(l) sinh(8; + p1) .0 COShém( c2 ) B ( 0 >’
0  sinh(81 + u2)

which follows from (2.4.2). Then, since the second and the third terms on the left hand side are bounded by

o (ﬁ) in tefins of by, = O (F}ZT) and (2.4.5), we obtain

0 ,
~ h m 1
coshém( _f B )R(l) cos (ﬂ(1)+ll2) (02—"6{2 )):O(W>'
sinh(8; + p2)
Therefore, by (2.4.1) we have

s -0(k)

Thus for sufficiently large |m|, we can choose an eigenfunction fi ., corresponding to A1, such that

cosh(Ay,me + p1) 0
0 cosh(A1,me + p2) ¢ ( 1 )
-R ’ +0(—=). (248
f1,m(x) () Sinh()\l,mx + p1) 0 c2+ O (T717|) |m| ( )
~ 0 sinh(A1,m® + p2)

For the eigenvalue A ,,, for sufficiently large |m/|, we can argue similarly and can choose an eigenfunction

f2,m corresponding to Az ., such that

cosh(Ao,mx + p1) 0
, 0 cosh(Ag,mz + p2) d1 ( 1 )
(@) =R » ) +o(—). (49
fam(x) (z) sinh(A2,m® + p1) 0 : d2 + 0O (]%T) Im| ( )
0 sinh(Ag mx + p2) /- ? ‘
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Supplemel_lting root vectors to fjm, j = 1,2 for sufficiently large |m|, we can obtain the totality of all

the root vectors which can be denoted by {fjm};j=1,2, mez without fear of confusion such that
1 ,
@ = fn@l =0 (7). 0<a<L

Therefore we have

o D lesm = Fimlliranys < .

j=1,2meZ

If {fjm}j=1,2,mez is linearly independent, then we can complete the proof of the theorem by the Bari
theorem (e.g., [16]). Let us prove the linear independence of {fj.m };j=1,2,mez. For this purpose, we renumber
the eigenvalues of Ap and the root vectors {fjm}j=1,2,mez as follows. In terms of Theorem 2.2.1, we number

the eigenvalues {\jm}j=12mez as

o(Ap) = {ur}rez U {vehi<e<n,

where pr, k € Z are the eigenvalues with algebraic multiplicity one, vp, 1 < £ < N are the eigenvalues with

algebraic multipiicity xe > 2 and
Bk # Hkyy Ve, # Ve, k1 # ko2, 61 # Lo,
We renumber the root vectors {fjm};j=1,2,mez as
{fim}Yi=1,2,mez = {gk}rez U {he,j}1<0<N1<i<xer

where gy, is an eigenfunction corresponding to the eigenvalue ux, and {he ;}1<j<y, is a basis of {¢; (Ap —
vs)¥¢ = 0 for some k € N}.

Now we verify that

> agshe;+ Y Bege =0, ap;, i€ C | (2.4.10)

£=1,2,--- N, j=1,2,--- ,xe k€EZ
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implies ap ; =0,1 </ <N, 1 §‘j < x¢and Bx =0, k € Z. We define

. «
P = — — -1
k=5 Fk(u Ap)ldu, keZ

where I'y, k € Z is a sufficiently small circle. centred at uy including no other points of o(Ap). By Theorem

2.2.1, such T’y exists. Then
Prgk = gk, Prge, =0, Prhej =0 ifk#k,1<L<N,1<j<xe

hold (e.g., Kato [22]). Applying P; to (2.4.10), we have By = 0, k € Z. Since {he;}1<e<n,i<j<x. 15 a
linearly independent system, we obtain ay; = 0,1 < £ < N, 1 < j < x. Thus the proof of Theorem 2.2.3

is completed.

2.5 The proof of Theorem 2.1.4

We denote the adjoint operator of Ap by A}. We can easily see that
* ’ du T
(Apu)(z) = —345(2:) + PYz)u(z) O0<z<1

D(Ap) = {u € {H'O,1)}*; uesn(0) + heue(0) = 0, uesn(l) + Heug(1) =0, £=1,2}.
Here P* denotes the transpose matrix of P. By Theorem 2.2.1, we can number all the eigenvalues of Ap

as {Am Hmj<v-1 U {Xjm}im|>n,j=1,2 such that the algebraic multiplicity of \;,, is one for |m| > N and

j = 1,2, and the value A, |m| < N — 1 appears as many times as its algebraic multiplicity. According to

the numbering of the eigenvalues, we number the eigenvectors and the associated root vectors. That is, in -

the case [m| > N, for j = 1,2 we choose an eigenvector fj, of Ap for A;,, satisfying (2.4.8) and (2.4.9).

We note that by Condition (III) an eigenvector is determined uniquely up to multiples. Furthermore we

know (e.g., [22]) that o(Ap) = o(A}) and the algebraic multiplicity of X\ € o(A4%) is equal to the one of |
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A € 0(Ap). BY gjm, j =1,2,|m| > N, we denote an eigenvector of A% for X;,, such that

(fims 95,m){L2(0,1)}2 # O.

In fact, g;m is orthogonal to {¢ € {L2(0,1)}* (Ap — A\)*¥¢ = 0 for some k € N} for any eigenvalue A
of Ap which is different from A;, (e.g., [22]). Therefore if (fjm,9jm)(r2(0,1)}¢ = 0, then Theorem 2.2.3

implies that g;,» = 0, which is impossible. Hence, for any a € {L?(0,1)}*, we can set

(a, gjm){L2(0,1)}4
" Fim Gm){L2 0,030

Qjm

»m

Moreover we put

],m(t)—ajme mt im| >N, j=1,2.

In the case |m| < N — 1, the eigenvalue )\, appears xm,-times according to its algebraic multiplicity ., :
Ag = -- = Ag4xm—1- Then by f, we denote a corresponding eigenvector, and by fy4¢(x),1 VS £<xm—1,a
Jordan chain of the associated root vectors. That is, fo1e, 1 < £ < xom — 1, satisfy (Ap — Ag) fg+e = fore—1-
We denote by 9§+xm—1 an eigenvector of the adjoint operator A} for the eigenvalue A4, and by ggiy..—e,
2 < ¢ < xm we denote a Jordan‘chain of associated root vectors. Here, (Ap — Aq)ggxm—t = Ggtxm—e+1 for
£=2,3,--+,Xm- Then we can prove (e.g., Proposiitions 2‘.2 and 2.3 in [39]) that (fq+g,gq+e){L;(o,1)}4 #0,

0 < £ < Xm — 1. Thus for any a € {L3(0,1)}*, we can set

(a, gg+e){L2(0,1)}4
(fo+e> 9g+e) {L2(0,1)}2 ’

Yq+£.= 0<f<xm—1

and
q+e t) ‘_6 ( Z k'7q+£+k) y OSZSXTn_l'

Then we renumber { fj m }m|>nN,j=1,2) fo+&, {05,m}im|>N,i=1,2) Og+, {gs,m }m|>N,j=1,2) Gg+e With 0 < j <

Xm — 1 as {fm}mEZ7 {am}mez and {gm}mEZ‘
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In terms of 6, and f,, we can prove an expansion of the solution to the initial value/boundary value
problem (2.1.9). The proof is done by arguments similar to Appendix in [39] and Proposition 2.2 in [53],

and is omitted.
Propositon 2.5.1 Let a € {C3[0,1]}*N D(A?) and up, satisfy (2.1.9). Then

u(t,x) = Z Om (t) fm (),

meZ

where the series converges absolutely and unifor'rrily in -T<t<Tand0 <z <1

Proof of Theorem 2.1.4. The ”if” part is directl?f proved. In fact, by (2.1.19) and (2.1.2"0), we see that
K = 0 satisfies (2.2.3), (2.2.4) and (2.2.7), so that u(t,z) = R(z)u(t, x) satisfies (2.2.12) with some w;(t)
.and wa(t) by Theor;am 2.2.6. In terms of (2.1;18) and (2.1.21), we can conclude that (Q,b) € Mp(P,a).

Proof of ”only if’ part. Let us recall that up, is the solution to (219) with coefficient matrix P and
initial value a. Let us suppose that upa(t,0) = ugp(t,0) and up,e(t,1) = ugp(t,1) for =T <t < T. Then

it follows from Theorem 2.2.6 that for —-T +1<t<T -1

1
uQ,b(t’ 1) = uP,a(t7 1) = R(l)uP,a(t7 1) +/; K(yv ]-)U'P,a (ta y)dy
We recall that
_ [ RY1) R2Q1) = (H 0
R(1) = ( R%(1) R\(1) ) "= ( 0 H, )

where Rl,\ R? are 2 x 2 matrices. For simplicity,lwe set

ul(t7 ZL‘)
_ | ue(t@) : - [ KD
\ u(t, ;1:) = up’a(t, CL’) = ’U,3(t, .’L') 7» K(:’/a 1) = < Kz(y, 1) )
U4(t,’$) ’ ’

where Ki(y,1) and K»(y,1) are 2 x 4-matrices. Then it follows from ug(¢,1) = u(t,1) and uey2(t, 1) =
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Hyuy(t,1), £ =1,2 that

(Bs — RAN1) — RA()) ( Z;g’ 3 ) = [ Ky vutt,
(- R - RY(DD) ( e ) ~ [ Katwvutt,)ay.

By Proposition 2.5.1, we have

(B R1<1> ~ROE) Y () ( Im() )

Z 720
/ Ki(y,1 ) D Om(t) fm(v)dy,
meEZ
~ ~ 1.1
(- R() - R ) gzemu) ( e )
/ K1) 3 0n(8)fn(y)
mEZ

for -T+1<t<T—1. Here f, £ =1,2 is the £-th component of f,,. Since the series on the right hand

converge uniformly by Proposition 2.5.1, we can change orders of summation and integration

3 6n®) {(Ez - RY) - R ) ( o ) [ x 1)fm(y)dy} =0
meZ

3 bm(t) {(ff— R2(1) - RM(D)H) ( Jf”m Y ) / Ko y,1>fm(y)dy} ~0
mGZ m

for —1 <t < 1. Here we used that —T+1§'t§T——1andT22implies -1<t<1.

We can prove that for the system S = {6y, }mez, there exists another system Sc L?(—-1,1) such that
for any ¢ € S, we can cho‘ose a unique @ € S satisfying (¢,%)r2(~1,1) = 0 if and only if ¢ € 6~‘\ {¢}. The

- proof is based on Theorem 1.1.1 in Sedletskii [47], and see Appendix C in [53] for the proof. Taking the
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scalar products in L?(—1,1) with all ¢ € S, we can obtain

_ 1
(B> — R\(1) - R2(1) ) ( jfmg) ) / Ky 1) fm()dy =0, m e Z,

~ 1(
(H - R*(1) - RY(1)H) ( ;2 (1) ) / Ko(y, 1) fmly)dy =0, meZ.
1
im
. 2
Here for sufficiently large |m|, as f,,, we see that fim = fj3’m , J = 1,2, are two linearly independent
ijm
fim

J
eigenvectors corresponding to the eigenvalue \; ,,. We will prove that

e )
{733‘310 ( P ) ’ 735“00< Bn) )}

is linearly independent. In order to prove this, it is sufficient to prove that

(@) B
| 7.0 | 7.0
e | o) |0 | )
. \ )

is linearly independent because of

B (D) =Hif} (1), fin.Q)=Haf(1), j=1,2.

By (2.4.8) and (2.4.9), we have

fim(1) , c1 cosh(By + p1)

- RAm@) | _ ez cosh(B1 + p2)
mk’x‘r’}c’" f%m( ) | R() cysinh(B1 +p1) |’

ftm(1) \ cosinh(B1 + p2)

( F3m(1) ( d1cosh(Bz + 1)

13 (1) da cosh(Ba + po

: _ )
ml—g-ri-loo f2 m(l) N R(l) d1 smh( 2 + Nl)
)

f2 m(l) | d2sinh(B2 + p2

Since R™1(1) exists and cld2 —cody #0 whlch is proved for (2.4.2), we can venfy that

c1cosh(By + p1) » dq cosh(Bz + p1)
ca cosh(By + p2) - da cosh(Bz + p2)
R() cisinh(By + p1) |’ ) d1sinh(B2 + p1)
cosinh(By + u2) dy sinh(5; + p2)
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is linearly independent. Thus
1 1
m=o0 \ fim(1) m=00 \ fym(1)

Furthermore, from Riemann-Lebesgue lemma, we have

is linearly independent.

1 ' '
lim / Koy, ) fm(y)dy =0, £=1,2.

,m
Therefore, we obtain
E; —R'(1) - R?(1)H =0, H-R*(1)-R:1)H=0 (2.5.1)

and
1
/ Ko(y, N fm(y)dy =0, £=1,2, meZ.
0

Since {fm }mez forms a Riesz basis, it follows that
Ki(y,1) = Ka(y,1) =0, 0<y<1. (2.5.2)

Therefore, using a characteristic method, we can prove the uniqueness in the problem (2.2.3) - (2.2.4) with

(2.5.2) (e.g., [52], [55]), and obtain
K(y,z) =0, 0<y<z<lL

Consequently, we obtain (2.1.19), (2.1.20) and (2.1.21). Since H, # =*1, we can directly derive R'(1) = E»

and R?(1) = 0 from (2.5.1). Thus we obtain (2.1.18), and the proof of Theorem 2.1.4 is completed.
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2.6 Proof of Lemma 2.2.4

We set
Ll(cl}(y’ .’L‘) = Kk,f(% 117) - Kk+n,€+n(y7 -’E)
1 ;
Ll(c,;+n(y7 z) = Kk 04n (Y, T) — Kiyn,e(y, T) K l=19 .
2 b= Ly,4y,° 00,
' Li,z(ly’ SC) = Kk,e(yv 1:) + Kk+n,€+n(y, IL')
2
L), (1,2) = K (0, 2) + Kipn ey, 2),
and

fk,@(y7 SL') = (K(y7 .’B)P(il?) - Q(.’L’)K(y, z))k,lv k, = 17 2) Tty 2n.

From (2.2.3), we obtain

L Kiyne+ %Kk,un = fr,e

S Kkintin + 5 Kie = froin Q. kf—19 "
8 ) 2t = Ay syttt T
L Ko+ 5y Bkane4n = frin,e

5 8
Bk t4n + 55 Kk tn,e = frin,e4n,

Hence we obtain the following system for k,£ =1,2,--- ,n:
o 1o} ~
5;;[4;(:,/)3 - 6—ng} = frt = feine = frpin (2.6.1)
0 0 ~ .
'a_z.L§c1}+n - '@Lg}-f-n = fk,€+n = fetn,oin — fk,é (2.6.2)
o 2 0 ~
%L& + 55111(2 = frtnt = frpan + frine (2.6.3)
) ) - '
_5;‘[’1(62,%+n + a_yLi(c?,Lrn = frtn,t4n = fetnetn + fie (2.6.4)
By (2.2.5), we have
ngl}(x7m) :bk,e(x)’ 0<z< 1) k7£= 172a"' s 1. . (265)
L) (@,7) = are(z), 0<z<1, kL=12---,n - (2.6.6)

Moreover from (2.2.4), we have

L2)(0,) = Ki0(0,2) + Kictn,e4n(0,7) = Kie(0,) = hiKi4n,e(0,7)
L) n(0,2) = Ki,4n(0,3) + Kirtn,e(0,3) = ~hiKi,e(0,7) + Kine(0, 7).
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Since

L0, 3) = K 0(0, %) — Kin,e4n(0, 2) = K ¢(0,2) + hiKipne(0, 7)
L,(:Hn(o ) = Kk 04n(0,2) — Kiyn,e(0,2) = —hp Ky 2(0, z) — Kin 2(0, z),

we have

Ki(0,7) = ——TLQ}(O )+ 1 ng +n(0 z)
Kiyne(0,2) = —%L,‘j}(o :c) )

Consequently we have

1+ R} 2h
(2)(0 z) = + kL(l)(O z) + — 22 ’(91;%(0 z) (2.6.7)
2 2hk 1 1+ hZ
L), (0,2) = - L,(“)z(O ) - 1 h’; L), (0,2). (2.6.8)

Here, we introduce the other variables

[
o] ol

{

Then, we integrate (2.6.1) and (2.6.2) for v with (2.6.5) and (2.6.6) and we have

z » z+
Ll(cl,z(ya l') = /m fk,l(_£ +x+ Y, §)d§ + bk,l ( y) 3 (?J, .'17) c Qa 1 S k7 £ S n (269)
2 .

T (z+ |
L;cll)z+n(y, z) = /m fopin(—E+ T+ y,&)dE + ake (x > y) , (y,2) e, 1<k,£<n(2.6.10)
2 .

Integrating (2.6.3) and (2.6.4) for u, we have

. |
LOw2) = | frtnelt —c+y,0d+ L0,z —y), (1,2) eQ1<kL<n,  (2611)
z—y

x —~
LY) . (v,2) = / Frern€—o+y,6)de + L) (0,2 —y), (3,3) € 1<k L<n(2612)
. T—Y
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By (2.6.7) - (2.6.10), we have

L3(y,z) = / Framelé — o +y, £)de
z—y

T—y - _
-+ /_;z {gkfk,e(—§ +z —4,8) + Grfresn(—E+2z —y, E)} d¢

T — - xTr —
+ grbr.e < 5 y) + grkak,e ( 3 y) ; (2.6.13)
) ‘oz |
L0 0) = [ Foesn(e - o +2,60de
T—y

z—y - _ C
b [ R+ 009~ gFuern(- 42,0} de
— Gibre (z ; y) — gkOk.e (z ; y) (2.6.14)

for (y,z) € Q and k,£=1,2,---,n. Here we set

_1+h ~  2m
gk_l—-hi’ gk“l_h%-

Therefore we obtain Volterra integral eqations (2.6.9), (2.6.10), (2.6.13) and (2.6.14) of the second kind, which

are equivalent to (2.2.3) - (2.2.5). Using the iteration method, we can complete the proof. [

2.7 Proof of Theorem 2.2.5

According to the general theory of the ordinary differential equation, equation (2.2.9) possesses a unique

solution in {C[0,1]}?". Let us denote the right hand side of (2.2.10) by 1’[(:2, A). Hence it suffices to verify

that ¢ satisfies (2.2.9). Clearly, initial conditions of (2.2.9) are satisfied.

We have

Ban 5 (@) + Q)P ) — X, )

= BnR@) 2 (2,3) + {BinR(0) + BnK(z,) + Q@)R(E)}6(a,Y) ~ AR()O(z. )

+ [ B 0 Ny + (@) - V) [ K 2w N

g



Using (2.2.3) in Lemma 2.2.4 and (2.2.8), we obtain by integration by parts,

Ban S22, 0) + Q@)F(z,X) ~ X, )
— BonR() 5 (2,0) + {BanR (2) + BanK (2,2) + Q@) R(2) }$(z, Y) ~ MR(a)(z, )

+ K(0,2)B2n,¢(0, A) — K(z, ) Bang(z, \).
Here (2.2.4) and the condition in (2.2.8) at z = 0, yield
K(0,2)Band(0, \) = 0.

Hence

Ban SE (@) + Q)2 X) - AP, )
= BgnR(x)%(z, A) — AR(z)¢(x, ) + { B R/ (z) + Q(ij(x) — (K(z,2)Ban — BanK(z,2)) }b(z, A).

. ' 1 p2
By the differential equation in (2.2.8) and R = ( 22 21 ), we have

BanR(z) 32 (2, 3) = B(@)Ban 2z, 3) = R(x)(~P(x) + Ng(a, V).

so that

d ~ ~
Bgngqf-(m, A) + Q@) (@, A) — Ab(z; \)

= {BanR/(z) + Q(z)R(z) — R(z)P(z) — (K(z,2)B2n — BonK (z, 7)) }¢(z, N).
By (2.2.6) and (2.2.7), we can directly verify that the right hand side of this equation is zero. Then

J(;c, A) = ¥(z, A). Thus the proof is completed. O

2.8 Proof of Lemma 2.3.2

We set
N =(-F B )e;1y), =12
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Here, ¢j(z, ), j = 1,2 satisfies

By (2, )) + P(2)5(z, ) = Ag;(z, \),
1 0
$1(0,)) = 00 =|

0
hy |’
0 ha

Then we have
det ®()) =det( AO) 20 )

Let £p € N U {0} be the smallest number in

' {EENU{O}; rank( %\Q_()\O) d)\’-’ <12 (Xo) ) 7&@}

We consider two cases separetely ; Case I: {3 > 1 and Case II: ¢, = 0.
If £o = 0, then we can argue similarly to the Case I-B stated below. Thus we argue only for the Case I.
Case I: Let 45 > 1. Then

d*f1

d\t dXt 0

dt 0 |
(Ro) = I —7 (h) = ( ) ;o 0<£<4 -1 : (2.8.1)
‘In particular, we have f1(Xo) = f2(Xo) = 0, that is, (—H E2)¢i(1,X0) =0, j = 1,2, which means that ¢;,
- J = 1,2 satisfies the boundary condition at z =1 in (2.1.10). Therefore ¢1, 2 € D(Ap).

Let us define {¢U9(2)};=1,2.6=1,2,. 4, as follows:

¢D(z) = ¢a(z, Mo) [ $®1(z) = ¢a(=, Ao)
¢<l2’() 155 (2, M) | ¢ (z) = %i(m,xo)
909 (@) = 158 @) § #09E) = 358 (@) (282)

’ Lo—1 ’ ¥4 1
L ¢(1,e0) (:L‘) = zeoiljl 63;20—11 (xy A0)1 : L >¢(2,e0)( ) ieol 1! aa;:zo 1 (m A0)
Now by (2.8.1) we can easily check that (9 € D(Ap) forall j =1,2 and £=1,2,---, 4. Moreover

(AP _ )\0)¢(.7,£) = ¢(j1e—1)

holds for all j = 1,2 and £ = 1,2,-- -, £y where 09 =0, j = 1,2. This fact is checked by differentiating

the equation
quﬁj(x, )\) = )\(ﬁj(lt, /\)
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Witﬁ respect to A successively.
By (2.8.2), we can check that {9 (z)};=1.2,¢=14, ¢ is & linearly independent system. In fact, let
$O=1 dj=12 a; 9P = 0. Appiying (Ap — Xo) successively and using (Ap — Xg)pW® = ¢@-1 for
2<¢</{yand (Ap - Ao)¢P) = 0, we see by the linear independence of ¢(:1) and ¢V that aje=0.
Therefore, the algebraic multiplicity of the eigenvalue )\ is at least 2¢;.

Moreover, by (2.8.1) and the linearity of the determinant, we have

. “
<z det (M) . =0, ogeg 200 — 1.

» for £y > 1. Hence, for £y > 1, the mﬁltiplicity of a zero Mg of det ®()) is at least 24,.

Therefore, we proved that the algebraic multiplicitiy of Ao and the multiplicity of a zero A of det ®(\)

are at least 2/;.

We separately discuss the following two cases :

Case I-A: The case of

rank( (o) G2 (M) )= >
Case I-B: The case of

raﬁk( s (Yo) X o) )

Case I-A: Let
rank( s ()\0) —)\i‘:’;()\o) )=2

We will prove that the algebraic multiplicity of the eigenvalue Ag is 2£g.

The set of all the solutions to:
(AP - )\0)¢($) = Zj=1r2$ £=1$2y“' ,eo a]qus(J,e) (x)

(-5 B )¢(o)=<0

0
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with given a;, € C, is written as
(G l+D) 0% 1
> aj 00 (m)+a130€'8>\ (z, Ao)
j=1,2, £=1,2,--- 4o -1

+az, loe ] a)\g (17 Ao) + b1¢1(z, Ao) + bada(x, Ao) ;5 b1, b2 € C}. (2.8.3)

Then there exist,sA a solution to
(AP - A0)¢($) = Ej:l,z, £=1,2,-+ £o aj,€¢(j’e) (:L')
~ 0
( —h E; )(25(0)% ( 0

(- &)= (7)

(2.8.4)

if and only if

deo | 0
@10 gy (/\0)+ a2,z d)‘f2(>\0)= < 0 )

Because of

Lo
rank (€941 (%) Loz (n) ) =

this condition holds if and only if a1, = a2¢, = 0. Therefore for j = 1,2, there exist no solutions to
(Ap — Xo)¢p = ¢U#0). Hence the Jordan block corresponding ¢1) is of size £y x £, and the algebraic
multiplicities of \g is 24p.

Because of (2.8.1) and the linearity of the determinant, we have

d*o (2¢6o)! & .
Y det ®(A) . = (L2 det ( d—;‘%o\o) fi—;\z%()\o) ) #0

that is, the multiplicity of the zero g of det ®(\) is 2€y. Therefore, the algebraic multiplicity of Ao is equal

to the multiplicity of a zero Ag of det ®(A).

Case I-B: Let

rank( %0&()\0) %f;’—é%%(,\‘o) ) =1
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Without the loss of generality, we assume that there exists some ¢ € C such that

and we assume that

Now we define {a(j’e)(x)}j=1’2’ £=1,2,- £ 8S follows:

dlo d '
dvf;( Ao) = c——2 Afj(Ao) (2.8.5)
d% 0

dT[:()‘O) £ ( 0 ) . (2.8.6)

¢ (2) = ¢ () — cp®V(a) 6N (z) = ¢ (a)
#D(@) = 49 (a) - e N(a) $2D(z) = ¢ (z)
¢(1 ) (z) = (1) (z) — c¢(2 Lo (), ;Z(z,lo) (i) = ¢(200),

We can easily check that (Ap —Ag)pU® = ¢U¢=D for j = 1,2 and £ € {1,2,---

forall j =1,2and £ € {1,2,---

We set
Fn=(-f B )Eﬁ?(f’”(l;A), i=12
Then
det (i) RN ) =det( i(3) fa(d) ) = det ().
Because
%(/\0)=<g), J=19 0=1,2 - fo—1, (2.8.7)
we obtain -
‘f:{g(xo) (g), j:1,2,e=1,}2,---,zo—1. (2.8.8)
By the definition of ¢(11) and ;;(2’1), and from (2.8.5) and ’(2.8.6), we have
deofl ’ 0 deo]?z 0 ‘
W(AO) - ( 0 )7 W(Ao) # ( 0 ) | (2.8.9)

.} and that ¢U9) € D(Ap)

,£o}. Here we set ¢ =0, j=1,2.
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Therefore, we obtain

200

Ao =0,

A=Xo

—— det ®()\)

that is, the multiplicity of a zero Ao of det ®()) is at least 24y + 1. Now we define $(1’£°+1)(x) b,

FtotD) (g )= 75 (6”/\21 (z,Ao) — %1?2 (z, /\0))

Then ¢(10+1) € D(Ap) and (Ap — Ag)(LtotD) = G(1.bo),
According to the following respective cases, we proceed:
Case I-B-a: the multiplicity of a zero Ag of det ®(\) is 24y + 1.

Case I-B-b: the multiplicity of a zero Ao of det ®(\) is 24y + £; with ¢; > 2.

- Case I-B-a: Let the multiplicity of a zero Ao of det ®()\) be 24 + 1, that is,

d2lo+1@
d)\2eO+1 (/\0) # O

Then by (2.8.8) and (2.8.9), we have
+ dt
det (4200 (n) 4282 (\o) ) 0.

The set of all the solutions to

(AP = 20)d(x) = > g1 2.... 2o+1 a1,6610 (z) + 20=1,2, o 02,66 ()

(- B)so=,

witha;,€C, £€{1,2,---,4p+1} and agp € C, £ € {1,2,---,4p}, is written as

. { Z al’e¢(1,€+1)(x)+ Z a27e¢(2,€+1)(x)

£=1,2, lo . £=1,2,+ £o—1

1 dbotly aéo+
b + 1)! <6A€o+11( »A0) = CoNE+1 (x )‘0))

+ al,eo-l—l (

+02£o€ i a/\go ( s A0) +b161(z, Ao) + b2ga(w, No) ; b1, b2 € C}-

84

(2.8.10)

(2.8.11)



Then there exists a solution to
(AP - /\0)¢(.'1,‘) = Zl:l’Q’... JLo+1 al,la(l’e)(x) + Eezl’g’... Lo a2,2$(2’4)(x) :
~ 0
(& )eo- ()

(-7 5 )oo-(})

(2.8.12)

if and only if .

1 dl0+1}'1 : 1 dl?ojé 0
U lotl o TTTY] g+ (Ao) + a2,e0@m(/\o) =14 )
By (2.8.10), this condition holds if and only if a1 4,41 = a2, = 0. Therefore, by an argument similar to
Case I-A, the algebraic multiplicities of Ao is 2¢p + 1. Hence we see that the algebraic multiplicity of g is

24p + 1 which is equal to the multiplicity of a zero Ao of det ®(\).

Case I-B-b: Let the multiplicity of a zero Ag of det ®(\) be 2£y+¢; with Z; > 2. Let usdefine ¢y, c2,- - - , ¢y —1
as follows.
(a):The definition of c;.

We define ¢; by

1 df, 1 dbtlf

(%) = (lo + 1)1 dXbo+1

AR (Ro)- (2.8.13)

Such ¢ exists. In fact, since dd::,% det @()) = 0, by means of (C.8) and (C.9), we have

A=Xo

Lo+1 F 20 T
det (€ R (x) E2E(2) ) =0,

Recalling

d® f 0
from (2.8.9) we can obtain ¢; such that (2.8.13) holds.
(b): The definition of c3,c¢3,- -+, coy—1-

We define ¢, ¢3, - - - , cg;—1 in an inductive way as follows. For k = 2,3, ..., {1 — 2, assume that c1,¢a, -+ ,crp_1
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are already defined. Then we will define ¢ such that

1 dée f’; 1 dlotk fl

dbot+k— Qf2
_Ck

holds. Now we prove that such c exists and that there does not exist ¢, such that

1 deof'; 1 dio+41}:i ) 41 Cq dbott -Qf’;

To1 e M) = T anera o) = ,; G T i i dvirie o) (2.8.15)
Let us calculate
d‘fjj*fk det B(\)
A=o
200+k /
- ; Tt et ( $B00) SEE o) )
Lotk
2 e oo o))
k
=3 morata o (k0 Sk ).
~ Here we}used (2.8.8) and (2.8.9). -
Now we eliminate -7‘251%0\0) for g € {1,2,- —1} by (2.8.14). Using (2.8.14), we have
d2lo+k
TR det <I>()\) .

- (2@0 + k) cp . dlotarE qlot+k—a¥;
Z (o + (o + k — g)! (EO + q)!det( ZP—I (€o+g—p)! drfota=rp ()‘0) d>\f0+’°‘];2 (R0) )

(260 + k)! - -

¥ mdet( L5 00) B0 )
q .
Lo +q P Lo+k—qF
21?0 + k) Z Z cpdet ( (€o+t11 P! ‘fi)\olo+q 2 (Xo) (eo+}c_q)! (fwwk—{f (Xo) )
g=1p=1
(230 + k) qlotk 7 g 7,
(Eo+—k)!£o!det< d)\20+1:<1 (M) (M) )
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Then changing orders of the summations, we have

d2£o+k:
det ©(N)
dX2totk N AO
i k-l - 2o+ 2, k— |
dtota— p o+ q
= (26 + k) 'Zcp Zdet( (e0+; )1 dxEoFa—p ()‘0) (eo_;_i —! cil,\lo+k 2 (o) )
=1 g=p
(260 + k)' Lotk T,
TR o et (R 00) BB )
k—p—1 .
- o+q Lo+k—p— q
= (2£0+k)!ch Z det( (eo.l,.q)r ‘fp\ewq ()\0) (eo+k “p— q)u(fi)\oewk —p—q (’\0) )
p=1 q=0 )
(200 + k)!

—_ 7 dlo+k
T o + Rty det (0B () 40T (AO) ).

Now we prove that

1 dlo+q dtotk—p— q
Z det( Wot+a)! d)\to+q ()‘0) (e0+k p—q)! dAfotk—p—q (/\0) )

_ dof dlotk—rF
= det( e})' o (Ao) (lo-l—’]ﬁ;—P)' A loFk—p (AO) )

dfo+q

In fact, let by = ¢ iq), W%(/\O) for ¢=1,2,---,k—p—1. Let k—p —1 be odd. Then the left hand side
of the above equation is

k—p—1

Z det( by br—p—q )

g=0

= det( b br—p )+det( b1 br—p-1 ) + det( by br—p—2 )+ - -+ det( bp—p-1 b1 )
= det( by bi—p )+ {det( by bk;p—l )+det( bk—p—l by )}

4 {det( by bioyos )+ det( bupos by )}t

- {det( beza_y bageyy )b det( bageyy bz )} +det( bae bice )

: Lo+k-p F
= det( bo bk—p )=det( elutfi;eo (M) (lo+11c—p)' tfi,\lo+k— (Xo) )

For even k — p — 1, the argument is similar.
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Therefore, we obtain

d2€0+k

TarerE det 3(3)

A=Xo
k-1 ok
dof o 37
= (260 + k')! Z Cp det ( gil d,\eoz (’\0) (eo.ch._p)v lfz,\lo+k P (’\0) )
p=1

(250 + k) SR T o
T o+ Wt * et (3 (o) R () )

Lo+k T _ k— 20 +k— o T
= (260 + k)t det (gl St B (M) = T g SR () 40 (o) ) .(28.16)

Now, since A is a zero of det ®(A) with multiplicity 24y + £, we have

Lot det®(N)| =0 1<k<f -1
A=Xo .
Lok det®(N)| A0 ifk =4
A=Ao

Then there exists ¢, satistying (2.8.14) for k =2,3,---,£; — 1, and there is no ¢, satisfying (2.8.15).

Now we define ¢(1:40+2) g(LLo+3) ... 4(1Lo+l) a5 follows:
~ 1 de°+k_1¢ dlot+k— 1¢
1Leo+k) [\ _ 1 2
R ] ( DEET (@ 20) ~ e (@, *0))
d€o+k—1—q¢2
B q; (o + k—1—q)! dXbotk-T-q (2, 20)

for k € {2,3,---,£1}. Then, for all k € {2,3,---,£}, we have ¢(1+%) € D(Ap) and

(Ap — Xo) o0 (z)

-1
= gLo+k=1) () 4 (a linear combination of ¢o(z, )\o) (a: o), - %(w, )\0)) .
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We define (Y (z), (1) (), - - -, ¢botb)(g), §(2,1)7<(2,2), oo, ((200) by

( C(l,eo-}-h)(x) = g(lylo-l-h)(a;)
C(l,lo+£1—1)(x) = (Adp-— A0)$(1,50+41)(x)
¢(Wlott=2)(z) = (Ap _')\O)Zg(l,lo‘l‘el)(x)
¢(tot1) () = (4p— )‘O)el—'1$(1,eo+e1)(x)
(@) = (Ap = M) gath) ()
((1,110—1)(33) = (Ap - A0)30+1$(1750+¢1)(x)

\ ¢D(z) = (4p - )\o)eo+e1—lg(1,eo+e1)($),

( (20 () = ¢ (g)

C(2,Eo—l)‘(z) — $(2,e0—1)(x)

{ ;(2,1)(:,3) — $(2,1)(.,L.).

Then we can see that {¢(1:9) (w)}gzl,é,... tot+ts U{C®D Yooy 2... 4, is a linearly independent system.

For fixed a0 € C, j € {1, 2" -, 0o+ L1} and agp € C, L€ {1,2,---,4}, the set of all the solutions to
(Ap = 20)8(2) = Cp_12.. oty 1,661 P (@) + Fpmia,... g, 32,60 ()

(-* E2)¢(0)=<8)

is written as

{ z a1,£<(1,8+1)(x) + Z az,eC(z’e"'l)(a:)

£=1,2,--- Lo+£1—1 £=1,2,--- £o—1

1 (alo +£6, ¢l a€0+21 ¢2

-+ a1,80+41 |:(€0 + el)! a)\£0+e1 (xy )\0) - CW(CE’ )\0))

]1_1 Cq 8e0+e1 —q¢2
B 2—: (€o + €1 — q)! ONbot+br—a (=, Ao)

1 8% | . -
+ ‘12,20@%(% o) +b1o1(z, Ao) + bagpa(x, Xo) ; b1, b2 € C}. (2.8.17)

Then there exists a solution to
(AP = 20)0(T) = Tpmyn tos, 11,6810@) + s 5. g 02,6039 ()

(= & )so-()

(-& E2)¢>(1)=<g)

(2.8.18)
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if and only if

1 gt f1 bl dlo+ti=aF,
A1,80+4, ((EO +€1)| d/\lo+£1 Z (EO +£1 — q l d)\o+E1—q (/\0)
d% fy
+“”°e Fane (0) = ( 0 )

Because there is no ¢, satisfying (2.8.15), this condition holds if and only if 1,61, = a2, =0.
Therefore, if the solution to (2.8.18) exists, then it is in the space spanned by {¢(1:) () }e=1,2, ,go;gl' U
{¢ (“)}ezlvz,... .- Hence, by an argument similar to Case I-A, the algebraic multiplicity of an eigenvalue \g

of Ap is 2{p + £;. This is equal to the multiplicity of a zero Ag of det ®()).

v Thus in all the cases, we have seen that the algebraic multiplicity of Ay is equal to the multiplicity of a

zero Ag of det ®(A), that is, the proof is completed. [
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Chapter 3

Inverse PrOblem for One—Dimensional'

Fractional Diffusion Equation

3.1 Introductidn

We consider a one-dimensional fractional diffusion equation: Ofu(z,t) = 3% (p(a:)g—z(:z:, t)), 0 < z < £, where
0 < o<1 and 0 denotes the Caputo derivative in time of order a. We attach the homogeneous Neumann
boundary condition at = 0, £ and the initial value given by the Dirac delta function. We prove that oz and
p(z), 0 < z < £, are uniquely determined by data u(0,t), 0 < t < T. The uniqueness result is a theoretical
background in experimeﬁtally determining the order a of many anomalous diffusion phenomena which are
important for example in the environmental engineering. The proof is based on the eigenfunction expansion
of the weak solution to the initial value/boundary value problem and the Gel’fand-Levitan theory.
Recently there are many anomalous diffusion phenomena observed which show di;‘ferent aspects from the
classical diffusion. For example, Admas and Gelhar [1] pointed that field data in’ the saturated zone of a
highly heterogeneous aquifer are not well simulated by the classical advectio‘n-diffusion equation which is
based on the randém Walk, and the data indicate ”"slower” diffusion than the classical one. The slow diffusion
is characterized by the long-tailed proﬁle in spatial distribution of densities as the time passes. Also sée Zhou

and Selim [57]. Such slow diffusion is called the anomalous diffusion. Since [1], there are many studies for

91



bétter models, because from the practical viewpoint, the anomalous diffusion is seriously concerned e.g., with
the quantitative environmental problems such as evaluation of underground contaminants. In particular,
Berkowitz, Scher and Silliman [5], Y. Hatano and N. Hatano [18] have applied the continuous-time random
walk to the underground environmental problem.

For applying the continuous-time random walk, we have to determine some parameters in the continuous-
time random walk, and one important parameter is the power in the large-time behaviour of a waiting-time
distribution function. We can refer to Y. Hatano and N. Hatano [18] where the authors fit the parameters
by data of columun experiments at laboratory. See élso Xioné, G. Huang and Q. Huang [54], and Berkowitz,
Cortis, Dentz and Scher [4] as a survey. Although there have been many works which are concerned more
experimentally with the continuous-time random walk, there are very few mathematical analyses for the
parameter identification. The continuous-time random walk is a microscopic model for the anomalous
diffusion, while from it, we can derive a macroscopic model equation, e.g., Metzler and Klaft;ef [33] (pp.14-
18), Roman and Alemany [44], Sokolov, Klafter and Blumen [48]. The derivation corresponds to the way
with which the classical diffusion equation is derived from the réndom walk, and ;15 a macroscopic model

from the continuous-time random walk, we have a fractional diffusion equation:

Ou

ofu(z,t) = E?:; (p(x) o (, t)) , O<z<d, t>0, (3.1.1)

where the diffusion coefficient p(x) describes the heterogeneity of the medium, o > 0, and 82u(z, t) means

the Caputo derivative :

Ofu(z,t) = f‘Tl—l:—a—)/o (t— s)""g—z(m,s)ds. | (3.1.2)

In the slow diffusion, we can take 0 < o < 1. The fractional order « is related with the power parameter
in the waiting-time distribution function. As related papers, see Giona, Gerbelli and Roman [14], Giona

and Roman [15], Mainardi [27] - [29], Metzler, Glockle and Nonnenmacher [32], Metzler and Klafter [34],
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Nigmatullin [37], Roman [43] and see section 10.10 in Podlubny [41].

The main purpose of this papcr is to establish the uniqueness in determining o and p(z) by means
of observation data u(0,%), 0 < t < T at one end point. By our uniqueness result, we expect that by
experiments, we can identify an important parameter o and p(z) characterizing the anomalous diffusion.

There are many v;rorks on the forward problem for fractional diffusion equations such as an initial value/
boundary value problem and we refer to Bazhlekova (3], Eidelman and Kochubei [10], Metzler and Klafter(
(34], Gorenﬁo, Luchko and Zabrejko [17], Hanyga [19] and the references therein. Also see Prﬁssv [42] (e.g,
Section 2 of Chapter I) as a monograph. However, to my best knowledge, there are‘ very few works on
inverse problems for fractional diffusioﬂ equations in spite of the physical and practical importance, and
our uniqueness is the first mathematical result for the coefficient inverse problem for a fractional differential
equation.

The chapter is ccmposed of 4 sections. In section 2, we formulate our inverse problem and state the
uniqueness in the inverse problem as main result. In section 3, we prove the unique existence of weak

solution, and in section 4, we complete the proof of the main result.

3.2 Formulation and the main result.

‘We consider the following fractional partial differential equation.

. 0 ou ‘ o
Ofu(z,t) = B (p(a:)a(:c,t)) , O<z <, 0<t<T, (3.2.1)
u(z,0) = &(z), \ (3.2.2)
du ou 7 ' k
= = — = <T. 2.
5-(01) = = (61)=0, 0<¢<T (3.2.3)

Here T > 0,£ > 0 are fixed and é(z) is the Dirac delta function,
00wz, ) = —— /t(t _ e s
¢ Ui TT(l-a)Jy s’
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(e.g., Kilbas, Srivastava and Trujillo [23], Podlubny [41]). We assume that p € C?[0,4] and 0 < o < 1. The
initial condition (3.2.2) means that we start experiments by setting up a density profile concentrating at
z = 0, and the boundary condit;ion (3.2.3) requires no fluxes at the both énd points.

We discuss |
Inverse problem. Determine the order a € (0, 1) of the time derivative and the diffusion coefficient p(z)
from boundary data u(0,t),0 <t < T.

Due to the irregular initial value in (3.2.2), we have to consider a weak solution to (3.2.1) - (3.2.3) which

is defined below. In terms of the weak solution, we can state our main result.

Theorem 3.2.1 Let us assume p,q € C2[0,£], p,g > 0 on [0,4], a, B € (0,1). Let u be the weak solution to
(3.2.1) - (3.2.3), and let v be the weak solution to (3.2.4) with the same initial and boundary conditions as

(3.2.2) and (3.2.3) :
0 v ’
3 _ 9 v .
O v(z,t) = p (q(x) . (z,t)) , O0<z<l, 0<t<T. | (3.2.4)
Then u(0,t) = v(0,t),0 <t < T with some T > 0, impiies a=0and p(z) =q(z), 0 <z < L.

In the case‘of a = (8 =1, our inverse problem is for the one-dimensional diffusion equatic;n and we can
refer to Isakov and Kindermann [21], Murayama [35], Pierce [40], Suzuki [49], [50], Suzuki and Murayama [51].
As source books for inverse problems for partial differential equations withtout fractional order derivatives,
sée for example, Isakov [éO], Klibanov and Tirﬁonov [24] and Lavrent’ev‘, Romanov and Shishat-skii[25],
Romanov [45].

Now We‘deﬁne the weak solution to (3.2.1) - (3.2.3). First we define an operator A, in L?(0,£) by

(o) =~ (P @) 0 <<t Day) = {u e 120,05 550 = 24 =0}

dx
It is known that the operator A, has only real and simple eigenvalues {\, }rnen, and with suitable numbering,

94



we have

0= <A<, lim \,; = co.

n—oo

Moreover by means of the Liouville transform (e.g., Yosida [56]) and Levitan and Sargsjan [26], we see the

following asymptotic:

- -2 ) s .
Ao = (/0 ,p(x)dx) o +0(1), n- oo | (3.2.5)

By ¢n we denote the eigenfunction corresponding to A, which satisfies n(0) = 1. Henceforth (-, -) denotes

the scalar product in L2?(0,£) and we set |.|90||L2(0,e) = |||l = (,¢)%. We define

Pn = ”9071”—2-

Then, for each v € L?(0,£), we have the eigenfunction expansion :

Y= Z Pn (¢7 SOn)SOn-

n=1

Moreover {pn }nen satisfies the asymptotic behaviour: there exists a constant cy > 0 such that
P = co+0(1), n — oo, (3.2.6)

which is derived by the Liouville transform (e.g., Yosida [56]) and Levitan and Sargsjan [26].
Now we arbitrarily choose a constant M > 0 and define the operator A, ps in L2(0, £) as follows :
()@ =~ (o) Ls(@)) + 29, 0<<e
MYRE) == \PW dz ’ =5
dp o _ dv
. P 2 S —_— = — =

D(Ap M) = {1,[1 G.H 0,2); o (0) . ) 0}
Then the set of all the eigenvalues of A, ar is {An + M }nen, and we set /\%M) = A\, + M. Then we have
A >0,neN.

We define the function space D(Ag’ ) for € >0 by

D(Af ) = {w € L2(0,0); > pul AV (3, 0n)[? < 00} .

n=1
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Then we see that D(A /) is a Banach space with the norm :
1
2

1¥llocag ) Z{Z Pl AT (3, ‘Pn)lz} :

n=1

We have D(Af /) = H?**(0,£) if 0 < k < 3. Since D( m) C L?(0,£), identifying the dual L?(0,£)" with
itself, we have D(A% ;) C L?(0,4) C (D(Aj 1)) Henceforth we set D(A, ) = (D(Af 1)), which consists
of bounded linear functionals on D(Ap ). For f € D(A, ) and Y € D(AS pr), by —w < fL9) > we denote

the value which is obtained by operating f to 1). We note that D(A;’X,I) is a Banach space with the norm :

1

00 z
_ (M) -2k 2
Hf”D(A;"fw) = {z PrlAn T e < fru >k | } .

n=1

Now we fix 0 < € < % By the Sobolev embedding theorem, we have § € D(A‘%°‘) and 6 =377 | pnin
in D(A~%¢). We set < -, - >=_1_<-->14.. Wenote
<fY>=(f0) i feL*(0,0) and ¥ € D(AT L)
(e:g., Chapter V in Brezis [7]).

Let us define the weak solution to system (3.2.1) - (3.2.3) as follows.

Definition 3.2.2 We call that u is a weak solution to (2.1) - (2.8) if the following conditions hold :
(u(-,t) € L2(0,£) for 0<t<T,

u € C([0,TY; (A; M‘ €, | : o (3.2.7)
| o, 9w, Aparu € (0,7 D(4, 47, |
fig (1) = 8l 3o =0, | (3.28)
<OU( 1), %> +(ul-t), Ay =0 for te (0,T], P € D(Ap). (3.2.9)

Remark. Let u be a sufficiently smooth weak solution. Then, integrating (3.2.9) by parts, we have

0 =< d%u(-,t), ¥ > +(u(-t), Apt)

- (agu; 2 (p(@%) ﬂﬁ) + [‘p(x)p(“’)%(x’t)]:

96



for ¢ € D(4,). Taking ¢ € C§°(0,), we see that fu(z,t) = 2 (p(x)§) for z € (0,£) and ¢ € (0,T).
Since we arbitrarily choose 1(0) and v(¢) within ¢ € D(4,), we obtain g—’;(O, t) = 2%(¢,¢) =0 for t € (0, T).

Therefore the smooth weak solution satisfies (3.2.1) and (3.2.3) in a usual sense.

Propositon 3.2.3 There ezists a unique weak solution to (3.2.1) - (3.2.3) and

w(@,t) = 3 prEai(~Aat*)en(z) in C([0, T];D(A;’i,,—s)’)‘. | (3.2.10)

n=1

Here for & > 0 and 3 € R, the Mittag-Leffler function E, g(2) is defined as

. - Zk
Ea’ﬁ(z) = I;) m ) (3211)

(e.g., [23], [41]) and T is the gamma function. We note that E, g(2) is an entire function in z € C (e.g.,

[23]).

3.3 Proof of Proposition 3.2.3.

First Step. We will prove the uniqueness of the weak solutions to system (3.2.1)-(3.2.3).

Let u be a weak solution with u(-,0) = 0. We set

Up(t) =< u(-,t),on >, 0<t<T.

1

By u € C([0,T}; D(4, 3 %)), we see that v, € C’[Ob, T] and v, (0) = 0. By u(-,t) € L%(0,¢), t € (0,T), we

have v, (t) = (u(-,t), pn) for t € (0,T]. Therefore (3.2.9) implies
< Ogu(,t), on > +(ul(-,t), Appn) =0, 0<t<T,
that is,
< Ofu(-, 1), on > +/\n1/);l(t) =0, 0<t<T. (3.3.1)

Now we prove the following.
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Lemma 3.3.1 We have

< 8%u(-,t), on >= 0% (u(-, ), on), 0<t<T.

Proof. Since the third condition in (3.2.7) yields

aau(-t)=—i—- t(t—)'aéﬁ- dse DA™, 0<t<T
e rl—oa) /o ? 83(’8)86 (Api )y 0<tsT,

setting

Ou

. 1 t—eo
J )= — — -« .
51a52( I ) F(l _ a) /;1 (t 3) as( 7S)d87
we have ime, ;01,6550 Jeq,e5(+ t) = Ofu(, t) inkD(A;]“_M_e) for 0 <t < T. Appoximating Je, , (-, t) By the

Riemann sum, in terms of %15‘ € C(le1, T — &3]; D(Ap’fw %)), we can see

Ou

‘ 1 t—eg
< J, -t == t—s)"® . n <T.
< 51,52(7 )’§0n> F(l_a)./sl , ( S) <68(’S)’¢ >d$a 0<t._T
Hence letting €1,e2 — 0, by (3.2.7) we have
< 8%u(-t) >—*';/t(t—s)_°‘ O ) onVds, 0<t<T
t’ b 790’!1. "‘l—\(l_a)o : as ? 7§0n 57 ) - .

Moreover (3.2.7) yields

du 9 d '
<£u(, s),cpn> =% < u(+ 8),pn >= b;(u(-,s),cpn), 0<s<T.

Then we have

N * 1 prt ‘ _d 8 ) N
< Ogu(-,t), pn >= m/o (t—s) a(u(~,s),<pn)ds = 0g(u(- 8),n), 0<t<T.

Thus the proof of the lemma is completed.
Applying Lemma 3.3.1 in (3.3.1), we have
Ofun(t) + Aon(t) =0, 0<t <T, v,(0)=0.
The uniqueness of the initial value problem for the fractional ordinary differential equation (e.g., Kilbas,
Srivastava and Trujillo [23], Chapter 3 in Podlubny [41]) implies v, (¢t) =0 for 0 < ¢ < T and n € N. Since
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{¢n}nen is complete in L?(0,£), we see that u(-,t) = 0 for 0 < ¢t < T. The proof of the uniqueness is
completed.
Second Step Next, we will vérify that representation (3.2.10) gives the weak solution to system (3.2.1) -

(3.2.3). In the following, we set

u(z,t) = Z PrEa1(=Ant®)on(T).

n=1

We will use the following results on the Mittag-Leffler function.

Lemma 3.3.2 If a < 2, B is an arbitrary real number and p satisfies Ta/2 < p < min{r, ma}, then there

exists a constant C1 > 0 such that

Cy
1+ |z|

|Ea,p(2)| < ) z€C, p<|arg(z)| < .

For the proof, we refer to Theorem 1.6 (p.35) in Podlubny [41] for example.

Lemma 3.3.3 Let A > 0.

@) -

%Ea,l(—mea) = M E, o(-X%), t>0, a>0.

(ii) :

0% Eg1(~Xt%) = ~AEq1(—M\t%), t>0, 0<a< 1.

By noting that E, 1(%) is an entire fucntion in z € C, the proof of the lemma follows directly by the termwise

differentiation of (3.2.11) and

(@2n*)(t) = %t“‘*“k, 0<a<1,keN.

Now we prove (3.2.7).

(i) Verification of & € C([0, T; D(Apj,l_e)) :
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Let us fix ¢ € [0, 7. It follows from (3.2.5), (3.2.6) and Lemma 3.3.2 that

o0

i ;
Z —1€Pn|Ea,1(_)‘nta)’2 < oo.

M) 1
n=1 ’\1('1 )!2+2

Thus for fixed t € [0, T], we have u(:,t) € D(Ap Xl—e) For t,t+ h € [0,T], we have

laC, ¢+ h) = a(, £)l)?

1_.
D(A %4 )
= 3 g aa( =t 1) = Ban(-3nt")P (33.2)
n=1 n )

Here it follows from Lemma 3.3.2 that |Ea,1(=An(t +h)%) — Eq 1(—Ant®)|? is uniformly bounded for n € N.

Thus using the Lebesgue convergeﬂce theorem, in terms of (3.2.5) we have

Lim [[u(-, ¢ + h) —af, t)lID(A i , =0

Therefore % € C([0, T}; D(A;;,I—E))
(ii) Verification of u(-,t) € L2(0,¢) for t € (0,7] :

For fixed t € (0, T, Lemma 3.3.2, (3.2.5) and (3.2.6) yield

oo . o] C 2
||ﬁ('7t)|li2(o,2) = an’Ea,l(_’\nta)lz < an T o] <00
. n=1 n=1 1+ ‘/\nt '

which means that (-, t) € L?(0,£) for t € (0, T).

—1-¢

(iii) Verification of a“ € C((0,T);D(A, 3 ) :

First, we consider
o d
Uz, t) = Z an(Ea,l(_)‘nta))‘Pn(x)
n=1

for t € (0,T]. By Lemma 3.3.3-(i), we have

Ulz,t) = an W E (=Mt on ().

By Lemma 3.3.2, (3.2.5) and (3.2.6), we have

e o]

1 o | o
> anl(—)\n)t lEa,a(——/\nt NP <oo, 0<t<T.

n=1
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Thus U(-,t) € D(A; &) for t € (0,T].

Next we have
~ N )
U(7t+h)—u(,t) —U(,t) N
, h . D(A, 4 %)
_' oo 1 Ea,l(_)\n(t + h)a) — a,l(_Anta) d E A N 2
B nz=:1 M gze o ' h = 5 (Ba1(=Ant%)) (3.3.3)

Since the mean value theorem implies that

Ea1(=An(t +h)%) = Eq1(=Ant®)
h

— ' dEa,l(—/\nna) I
- n

d"] =t+60h

with some 6 € [0, 1],

Eoi(—An(t+ h)®) — Eq1(—Ant® d
,1( (t+ )h) 1( )_a E, 1( ta))

is uniformly bounded for n € N from Lemma 3.3.2 and Lemma 3.3.3 (i). Therefore the left-hand side of

(3.3.3) tends to O for h — O Hence ZZ(-,t) exists and is equal to U(-,t) € D(A M [ ) for0<t<T:

%(-, )= Pa(-A)t* Eaa(~Int®)pn, 0<t<T. (3.3.4)

n=1
The continuity of $%(-,t) in ¢ € (0,7 is proved similarly to (3.3.3). Therefore 9L ¢ ¢((o, T] D(4,, 1_\,;6)) is
proved.

(iv) Verification of 33T € C((0, T); D(4; ;) :

Let us fix t € (0,7T]. For 0 < s < t, by Lemmata 3.2 and 3.3 (i), the following estimation hold :

2

H(t— o) (R
D(Ap,ﬁ,; ) ‘ \
_ 1 _
e MZIW%MZS% | Baa(=dns)?
. o0 1 l)\ |2
< 20—=2(4 —2a n
S ot T ) O e (L Pl

101



where C > 0 is some constant. On the other hand,

1 Y T e e L 1

GO 3+26 (14 Anls2)2 A3 e NP e (14 [Anfs2)27¢ (1 + [An]s%)<
Ll (Aals®)?e 1 1 PAal® ~2-0)a

= DD Fe NODe (L+ Pafs*)2= sC=aa = |30 e [, 00 ’

so that

L < 033—1+%ea(t —5)@
D4, 79

|- s)-4§<~,s)[

with some constant C3 > 0. Therefore ||(t — s)~ 6“( s)| .. is integrable over the interval s € (0,t).

_é_
DA, 4 )

‘ L
Then 67u(-,t) € D(A, 3, ) exists. From (3.3.4) and Lemma 3.3.3 (i), in terms of the Lebesgue convergence

theorem, we can prove

02U, ) =D pn(—An)Ea1(—Mnt®)gpn, 0<t<T. (3.3.5)

n=1
The continuity of 0f4u(-,t) in ¢ € (0,7 is proved similarly to (3.3.3).
Therefore, 6?‘31 € C((0,T}; D(A;'I%V;e)) is verified.
. (v) Verification of (3.2.8):
Since

o0
_1_,
5= pnon inD(A, 5 ),

n=1

we have

oo

1
ul- 2 - - _ ay 12
l[a(-,¢) - 5"D(A-l~= > |A$,M);%+2ep"|E°"1( Ant®) — 1]2.

M ) n=1

Taking t — 0, by Lemma 3.3.2 ‘and the Lebesgue convergence theorem, we verify (3.2.8).
(vi) Verification of (3.2.9):

Let us take 1) € D(A,) arbitrarily. Then we have ¢ = > | pn(¥, ¢n)¥n in D(Ap). Then by (3 3.5), wi
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have

(aaa( t), <an An) al = Ant® )SOn,an ¢a(Pn)30n>‘

n=1

= Z pn(_)\n)Ea,l("/\nta)("vbv Son), 0<t S T.

n=1

On the other hand,

(ﬂ(Wt)’Ap"p) = <Z ana,l(-')\nta)Qam Z /\mpm('ﬁba Som)‘Pm)

n—1 m=1

= an)\ Ea1(=2Aat®) (¥, ¢n),

n=1

which means (3.2.9).

From (i)-(vi), the eigenfunction expansion (3.2.10) gives the weak solution.

3.4 Proof of Theorem 3.2.1.

By Proposition 3.2.1, the weak solutions u and v are given by

u(z,t) = an Eo1(=Mt®)on(x) (3.4.1)
and
v(@,t) =Y 0nEp1(—pnt? ) (z). (3.4.2)
n=1
Here 0 = A\; < A2 < -+, n € N are all the eigenvalues of A, and ¢, is the eigenfunction corresponding to A\,

with ¢,(0) = 1 and we set p, = “397»”222(0,2)7 while 0 = p3 < pg <--- are all the eigenvalues of Ay, v, is the

eigenfunction corresponding to p, with 1,(0) = 1, and we set o, = ||¥n||72, - Let to > 0 be arbitrarily
. L2(0,8)

fixed. By the Sobolev embedding theorem, we héve ,

Ieallcio.a < Collgall asne oy,

with sufficiently small > 0. Moreover we see that

. 14 1 1
H‘Pn”Hl+2e(O 2 < C(,J||A4,A/I€‘Pn“L2(O,Z) = C(I)P‘%M)"“{-E_

n
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Hence by Lemma 3.3.2, (3.2.5) and (3.2.6), we have

oo

1

o0
o (At on(@)] < Co S G e L
org:?%(e |an(t!’1( Ant )Qon(x)l <Co Z PrlAr |4 1+ l/\nto‘l <%

n=1 n=1 i

for to <t < T'. Therefore we see that the series on the right-hand sides of (3.4.1) and (3.4.2) are éonvergent
uniformly in z € [0, £].

Consequently, assuming that u(0,t) = v(0,t) for 0 < t < T, we have

> PnBai(-Mnt®) =Y onEpi(—pat®), 0<t<T. (3.4.3)

n=1 . n=1

Since the both sides of this equaﬁon are analytic in Re ¢ > 0, we have

oo o0, .
anEa,l(—-)\nta) = Z anEgyl(—untﬁ), t>0.
- n=1

n=1

For E,,1(z), we have the following asymptotic behaviour

Ep1(—t) = T +0(t|™%), ast— oo. (3.4.4)

1
(1-a)
(e.g., Theorem 1.4 (pp.33-34) in [41]).

First Step. First we will deduce oo = 5 and

Y, Y] :
1 1
/ —dx =/ ——dx.
o /p(z) o Va(z)
Since A\; =0 and A, > 0 for n = 2, 3,4, ..., we have

_ ay n | ————  —— « —/\n N .
n§=1 prnEa,i( ’/\nt ) =po + n§=:2p [I‘(l —a) Apt® + {E a( %) Fl—a) At }]

, By‘ (3.4.4) and A\, >0 for n > 2, there exists a constant C; > 0 such that

1 1

C
_ . >2
T(1 — a) Ate "

= )\%t2a, -

anll(—)\ntq)

for sufficiently large ¢. Taking the summation for n =1,2,---, by (3.2.5) and (3.2.6) we have

. 11
Eo1(=Ant®) — Ti—a) e

o0
C
> pn <o

n=1
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with some C3 > 0. Then we have

> > 1 1 (1
Eo1(—2pt®) = 7 e ———— —— .
;pn a,l( ) Po +nz=:2p F(l—a))\nt"‘ +O(t2a>

Similarly arguing for Y o> | 0,Eg1(—pnt?), we have

1 & 1 1 1 1 & 1 1 1
g e, O (a) =0 5 S w0 ()

(3.4.5)

as t — o0o. This means that a = 3 and pp = 9. In fact, letting ¢ — oo, we see that py = 0. Let o > 3.

Then

s_ ¥ 1 L N, L1 1y
pot (an Ol))\ )+O<t2a)+UO+7§UHF(1_ﬂ)Nn+O<tg)'

Then, letting t — 0o, we have

1 1

oo
— im % = S —
o=l =or Sl

because po > 0. This is a contradiction. Similarly 8 > o is impossible. Therefore o = 3 follows.

Hence we have

oo o]
Z PrEai(—Ant*) = Z OnEoi(—pnt®), t>0.
n=2 n=2 i :

Second Step. We will prove A, = Un, n € N. We take the Laplace transform and we can obtain

za—l

—zt _ a —
/0 € " Eq1(—Ant®)dt s Re z > 0.

In fact, we can take the Laplace transforms termwise in (3.2.11) to obtain

za—l

1
e Re z > A3

/ e B 1 (~Ant®)dt =
e

(3.4.6)

(3.4.7)

(cf. formula (1.80) on p.21 in [41]). Since sup;>g |Eo;,1(——/\nt°‘)| < oo (e.g., Theorem 1.6 on p.35 in [41]), we

see that fooo e * Eq1(—Ant®)dt is analytic with respect to z in Re z > 0. Therefore the analytic continuation

yields (3.4.7) for Re z > 0.
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By Lemma 3.3.2, (3.2.5), (3.2.6) and the Lebesgue convergence theorem, noting that

é—tRez Z PnEa,l(—)\nta)

n=2

1 _C
—t R § : 1 _—tR X
s Cle ez( An I)t“‘tore >0,

and e"tRez¢~ jg integrable in t € (0, 00) for fixed z satisfying Re z > 0, we have

”/f

Similarly

r

Hence (3.4.6) yields

That is,

a—l

—thpn Ey1(=Xpt®)dt = an . Rez>0.
n=2

o sl za—l
ey 0pEq1(—pnt®)dt = on———, Rez>0.
. nz=:2 n aal( Hn ) 7;2 nza +/,l/n

oo o0

Pn On
= , Rez>0.

o :
Pn On
= E , Ren>0.
n=2n+)\" n=277+un ‘

(3.4.8)

By (3.2.5) and (3.2.6), we can analytically continue the both sides of (3.4.8) in 7, so that (3.4.8) holds for

n€ C\ ({—An}n>2U{~tin}n>2).

Now we deduce Az = pg from (3.4.8). Let us assume Ay # po. Without loss of generality, we can assume

that Ao < ,ué. Then we can take a suitable disk which includes —)2 and does not include {—X,}n>3 U

{~#n}n>3. Integrating (3.4.8) in a disk, we have

2mips = 0.

This is contradiction because of ps # 0. Then we obtain A2 = po. Repeating this argument, we can obtain

A = Hn, N=2,3,4,...

Moreover by (3.2.5) we see that

k/fﬁd&; = /OZ ﬁdz
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Third Step. In order to prove that p = gqon [0, /], we apply the Gel’fand-Levitan theory. For it, we have to

transform (3.2.1) to the canonical form by means of the Liouville transform (e.g., Yosida [56]). The argument

in this step is a modification of Murayama [35].

By (3.4.9), we set

By the Liouville transform, we have

|
z = Z(.’E) = /(; \/—p@-——)dg

and
ﬁ(?, t) = u(z, t)p(z) /4,

system (3.2.1) - (3.2.3) is transformed to

ﬂ(zv O) = 5(z)f(z), 0 <2z <4,

where

. ‘1 d? 1
a(z) = f(—z)gggf(-z), f(2) = p(z)"/*

and

ldfOH 1 df

h = m%( )s = —m%(%)

Similarly, by

v o
w:w(y)=/0 \/q—(—g)df :

and
U(z,t) = v(y, t)a(y)"/*,
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L | | |
o= [ izt [ Zate

( Ou 0%\ -
E%-(a—@)u:o, 0<z<4dy, 0<t<T,
ou ~
-—(0,t) — hu(0,t) =0, 0<t<T,
0z ‘ .
ou ~
a_‘(€O,t)+Hu(e0’t)=07 0<t<T,
z

(3.4.10)

(3.4.11)



system (3.2.2) - (3.2.4) is transformed to

( Ov 0%\
—ét—+(be51—55)v—0, O<w<by, 0<t<T,

o :
Z—(0,t) — j5(0,t) =0, 0<t<T,
aw() Ju(0, ) <t<

S—Z(fo,t) + Ju(ly,t) =0, 0<t<T,

v(w,0) = §(w)g(w), 0<w < 4L,

‘where
) = ——Lg(w), o) = g)" 3412
| = o) a2 9w) =aly | (3.4.12)
“and
. 1 dg 1 dg
=—=—(0), J=—-——F—=——(b). 3.4.13
Then u(0,t) = v(0,t), 0 <t < T is equivalent to
p(0)~Y4%(0,t) = ¢(0)~V*5(0,t), 0<t<T. h (3.4.14)

We will definé an operator A, 5 g in L2(0,4) by

2 .
(Agn,mY)(2) = "%TP +a(2)yY(z), 0<z<¥y,

— Stt) + Hu(l) =0}

D(Aopir) = {1 € 0, 80): 520) ~ hp(0) = &

and we define an operator Ay ; j similarly. By 0(Aq p,1), we denote the set of all the eigenvalues of Agp,m.

Since the Liouville transform does not change the eigenvalues, by o(Ap) = 0(A,) we obtain
0(Aa,n,i) = 0(Ab,5,7) = {An}nen. (3.4.15)

Let Pn and {ﬂvn, n € N be the corresponding eigenfunctions of A, p r and A ;s for A, respectively such

that &n(0) = ¢n(0) = 1. We set

5= 1 . 1
n — # 9 n _ .
”9071“L2(0,l0) [|¢"“%2(0,€0)
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Similarly to Proposition 3.2.1, noting that (z,0) = 6(2)p(z)7 and (w, 0) = 6(w)q(y) %, we obtain
U(z,t) = p(0)Y* Y BrBai(—Ant*)@n(2),
n=1

5(2,8) = 4(0)/4 S G Bt (~Ant®)n (2),

n=1

(3.4.16)

where the convergences are understood in a corresponding space to (3.2.7). Moreover it is known (e.g., [26])
that SUP,eN Pns SUPpen On < 00. Therefore by (3.2.5) and Lemma 3.3.2, similarly to (3.4.3), we can prove
that the series on the right-hand sides of (3.4.16) are convergent in C((0,T]; C[0, £o]).

Hence (3.4.14) yields

o0 (o)
> PnBar(=Mnt®) =D FnBoai(~Mat*), 0<t<T.
n=1 n=1

Similarly to (3.4.8), we can argue to obtain

> (o2
= LA, € C\ {-An}nen-
,;774-/\71 n \ { Jnen

oo ~
Z Pn
= +An
Integrating the both sides in a sufficiently small disk centred at —\,, we see that

Pn=0n neN. o (3.4.17)

By (3.4.15) and (3.4.17), we apply the Gel’fand-Levitan theory (e.g., Theorem 1.4.2 (p.21) in Freiling and

Yurko [13], Marchenko [30]) to have
a(z) =b(z), 0<z<4l, h=j H=J ' (3.4.18)

Finally we have to derive p(z) = ¢(z), 0 < z < £ from (3.4.18). The argument is same as in Murayama,

[35] and we repeat it for the completeness. We first have

s ‘ |
t= [ Edz = Vp(z)dz = / f(2)?dz (3.4.19)
. 0 0 . ’

and similarly



On the other hand, we can prove that the positive solution e = e(z) to

d%e
@(z) =a(2)e(z), 0<z <4,

1 de _ b, o,
mzﬁ(O)—h, /Oe(z) dz=1¢,

is unique. Consequently we have
9(z)=f(z), 0<2<4

by (3.4.10) - (3.4.13) and (3.4.18). Therefore, since

dz 1
& FoE 0<z<Y 2(0)=0
and
dw 1
iz = gy ° z <4, w(0)=0,

we obtain w(z) = 2(z), 0 < z < £. Therefore
dw -2 dz -2 :
== == = <z</
w0 = (5@) = (F@) -pw), oszse

Thus the proof of Theorem 2.1 is completed.
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